OpenCloudOS-Kernel/drivers/spi/spi-dw-dma.c

712 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Special handling for DW DMA core
*
* Copyright (c) 2009, 2014 Intel Corporation.
*/
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/irqreturn.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include "spi-dw.h"
#define DW_SPI_RX_BUSY 0
#define DW_SPI_RX_BURST_LEVEL 16
#define DW_SPI_TX_BUSY 1
#define DW_SPI_TX_BURST_LEVEL 16
static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{
struct dw_dma_slave *s = param;
if (s->dma_dev != chan->device->dev)
return false;
chan->private = s;
return true;
}
static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
{
struct dma_slave_caps caps;
u32 max_burst, def_burst;
int ret;
def_burst = dws->fifo_len / 2;
ret = dma_get_slave_caps(dws->rxchan, &caps);
if (!ret && caps.max_burst)
max_burst = caps.max_burst;
else
max_burst = DW_SPI_RX_BURST_LEVEL;
dws->rxburst = min(max_burst, def_burst);
dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
ret = dma_get_slave_caps(dws->txchan, &caps);
if (!ret && caps.max_burst)
max_burst = caps.max_burst;
else
max_burst = DW_SPI_TX_BURST_LEVEL;
/*
* Having a Rx DMA channel serviced with higher priority than a Tx DMA
* channel might not be enough to provide a well balanced DMA-based
* SPI transfer interface. There might still be moments when the Tx DMA
* channel is occasionally handled faster than the Rx DMA channel.
* That in its turn will eventually cause the SPI Rx FIFO overflow if
* SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
* cleared by the Rx DMA channel. In order to fix the problem the Tx
* DMA activity is intentionally slowed down by limiting the SPI Tx
* FIFO depth with a value twice bigger than the Tx burst length.
*/
dws->txburst = min(max_burst, def_burst);
dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
}
static int dw_spi_dma_caps_init(struct dw_spi *dws)
{
struct dma_slave_caps tx, rx;
int ret;
ret = dma_get_slave_caps(dws->txchan, &tx);
if (ret)
return ret;
ret = dma_get_slave_caps(dws->rxchan, &rx);
if (ret)
return ret;
if (!(tx.directions & BIT(DMA_MEM_TO_DEV) &&
rx.directions & BIT(DMA_DEV_TO_MEM)))
return -ENXIO;
if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
else if (tx.max_sg_burst > 0)
dws->dma_sg_burst = tx.max_sg_burst;
else if (rx.max_sg_burst > 0)
dws->dma_sg_burst = rx.max_sg_burst;
else
dws->dma_sg_burst = 0;
/*
* Assuming both channels belong to the same DMA controller hence the
* peripheral side address width capabilities most likely would be
* the same.
*/
dws->dma_addr_widths = tx.dst_addr_widths & rx.src_addr_widths;
return 0;
}
static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
{
struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
struct pci_dev *dma_dev;
dma_cap_mask_t mask;
int ret = -EBUSY;
/*
* Get pci device for DMA controller, currently it could only
* be the DMA controller of Medfield
*/
dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
if (!dma_dev)
return -ENODEV;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/* 1. Init rx channel */
rx->dma_dev = &dma_dev->dev;
dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
if (!dws->rxchan)
goto err_exit;
/* 2. Init tx channel */
tx->dma_dev = &dma_dev->dev;
dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
if (!dws->txchan)
goto free_rxchan;
dws->host->dma_rx = dws->rxchan;
dws->host->dma_tx = dws->txchan;
init_completion(&dws->dma_completion);
ret = dw_spi_dma_caps_init(dws);
if (ret)
goto free_txchan;
dw_spi_dma_maxburst_init(dws);
pci_dev_put(dma_dev);
return 0;
free_txchan:
dma_release_channel(dws->txchan);
dws->txchan = NULL;
free_rxchan:
dma_release_channel(dws->rxchan);
dws->rxchan = NULL;
err_exit:
pci_dev_put(dma_dev);
return ret;
}
static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
{
int ret;
dws->rxchan = dma_request_chan(dev, "rx");
if (IS_ERR(dws->rxchan)) {
ret = PTR_ERR(dws->rxchan);
dws->rxchan = NULL;
goto err_exit;
}
dws->txchan = dma_request_chan(dev, "tx");
if (IS_ERR(dws->txchan)) {
ret = PTR_ERR(dws->txchan);
dws->txchan = NULL;
goto free_rxchan;
}
dws->host->dma_rx = dws->rxchan;
dws->host->dma_tx = dws->txchan;
init_completion(&dws->dma_completion);
ret = dw_spi_dma_caps_init(dws);
if (ret)
goto free_txchan;
dw_spi_dma_maxburst_init(dws);
return 0;
free_txchan:
dma_release_channel(dws->txchan);
dws->txchan = NULL;
free_rxchan:
dma_release_channel(dws->rxchan);
dws->rxchan = NULL;
err_exit:
return ret;
}
static void dw_spi_dma_exit(struct dw_spi *dws)
{
if (dws->txchan) {
dmaengine_terminate_sync(dws->txchan);
dma_release_channel(dws->txchan);
}
if (dws->rxchan) {
dmaengine_terminate_sync(dws->rxchan);
dma_release_channel(dws->rxchan);
}
}
static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
{
dw_spi_check_status(dws, false);
complete(&dws->dma_completion);
return IRQ_HANDLED;
}
static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
{
switch (n_bytes) {
case 1:
return DMA_SLAVE_BUSWIDTH_1_BYTE;
case 2:
return DMA_SLAVE_BUSWIDTH_2_BYTES;
case 4:
return DMA_SLAVE_BUSWIDTH_4_BYTES;
default:
return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}
}
static bool dw_spi_can_dma(struct spi_controller *host,
struct spi_device *spi, struct spi_transfer *xfer)
{
struct dw_spi *dws = spi_controller_get_devdata(host);
enum dma_slave_buswidth dma_bus_width;
if (xfer->len <= dws->fifo_len)
return false;
dma_bus_width = dw_spi_dma_convert_width(dws->n_bytes);
return dws->dma_addr_widths & BIT(dma_bus_width);
}
static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
{
unsigned long long ms;
ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
do_div(ms, speed);
ms += ms + 200;
if (ms > UINT_MAX)
ms = UINT_MAX;
ms = wait_for_completion_timeout(&dws->dma_completion,
msecs_to_jiffies(ms));
if (ms == 0) {
dev_err(&dws->host->cur_msg->spi->dev,
"DMA transaction timed out\n");
return -ETIMEDOUT;
}
return 0;
}
static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
{
return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
}
static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
struct spi_transfer *xfer)
{
int retry = DW_SPI_WAIT_RETRIES;
struct spi_delay delay;
u32 nents;
nents = dw_readl(dws, DW_SPI_TXFLR);
delay.unit = SPI_DELAY_UNIT_SCK;
delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
while (dw_spi_dma_tx_busy(dws) && retry--)
spi_delay_exec(&delay, xfer);
if (retry < 0) {
dev_err(&dws->host->dev, "Tx hanged up\n");
return -EIO;
}
return 0;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for tx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_tx_done(void *arg)
{
struct dw_spi *dws = arg;
clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
return;
complete(&dws->dma_completion);
}
static int dw_spi_dma_config_tx(struct dw_spi *dws)
{
struct dma_slave_config txconf;
memset(&txconf, 0, sizeof(txconf));
txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr = dws->dma_addr;
txconf.dst_maxburst = dws->txburst;
txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
txconf.device_fc = false;
return dmaengine_slave_config(dws->txchan, &txconf);
}
static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
unsigned int nents)
{
struct dma_async_tx_descriptor *txdesc;
dma_cookie_t cookie;
int ret;
txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc)
return -ENOMEM;
txdesc->callback = dw_spi_dma_tx_done;
txdesc->callback_param = dws;
cookie = dmaengine_submit(txdesc);
ret = dma_submit_error(cookie);
if (ret) {
dmaengine_terminate_sync(dws->txchan);
return ret;
}
set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
return 0;
}
static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
{
return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
}
static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
{
int retry = DW_SPI_WAIT_RETRIES;
struct spi_delay delay;
unsigned long ns, us;
u32 nents;
/*
* It's unlikely that DMA engine is still doing the data fetching, but
* if it's let's give it some reasonable time. The timeout calculation
* is based on the synchronous APB/SSI reference clock rate, on a
* number of data entries left in the Rx FIFO, times a number of clock
* periods normally needed for a single APB read/write transaction
* without PREADY signal utilized (which is true for the DW APB SSI
* controller).
*/
nents = dw_readl(dws, DW_SPI_RXFLR);
ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
if (ns <= NSEC_PER_USEC) {
delay.unit = SPI_DELAY_UNIT_NSECS;
delay.value = ns;
} else {
us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
delay.unit = SPI_DELAY_UNIT_USECS;
delay.value = clamp_val(us, 0, USHRT_MAX);
}
while (dw_spi_dma_rx_busy(dws) && retry--)
spi_delay_exec(&delay, NULL);
if (retry < 0) {
dev_err(&dws->host->dev, "Rx hanged up\n");
return -EIO;
}
return 0;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for rx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_rx_done(void *arg)
{
struct dw_spi *dws = arg;
clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
return;
complete(&dws->dma_completion);
}
static int dw_spi_dma_config_rx(struct dw_spi *dws)
{
struct dma_slave_config rxconf;
memset(&rxconf, 0, sizeof(rxconf));
rxconf.direction = DMA_DEV_TO_MEM;
rxconf.src_addr = dws->dma_addr;
rxconf.src_maxburst = dws->rxburst;
rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
rxconf.device_fc = false;
return dmaengine_slave_config(dws->rxchan, &rxconf);
}
static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
unsigned int nents)
{
struct dma_async_tx_descriptor *rxdesc;
dma_cookie_t cookie;
int ret;
rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc)
return -ENOMEM;
rxdesc->callback = dw_spi_dma_rx_done;
rxdesc->callback_param = dws;
cookie = dmaengine_submit(rxdesc);
ret = dma_submit_error(cookie);
if (ret) {
dmaengine_terminate_sync(dws->rxchan);
return ret;
}
set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
return 0;
}
static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{
u16 imr, dma_ctrl;
int ret;
if (!xfer->tx_buf)
return -EINVAL;
/* Setup DMA channels */
ret = dw_spi_dma_config_tx(dws);
if (ret)
return ret;
if (xfer->rx_buf) {
ret = dw_spi_dma_config_rx(dws);
if (ret)
return ret;
}
/* Set the DMA handshaking interface */
dma_ctrl = DW_SPI_DMACR_TDMAE;
if (xfer->rx_buf)
dma_ctrl |= DW_SPI_DMACR_RDMAE;
dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
/* Set the interrupt mask */
imr = DW_SPI_INT_TXOI;
if (xfer->rx_buf)
imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
dw_spi_umask_intr(dws, imr);
reinit_completion(&dws->dma_completion);
dws->transfer_handler = dw_spi_dma_transfer_handler;
return 0;
}
static int dw_spi_dma_transfer_all(struct dw_spi *dws,
struct spi_transfer *xfer)
{
int ret;
/* Submit the DMA Tx transfer */
ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
if (ret)
goto err_clear_dmac;
/* Submit the DMA Rx transfer if required */
if (xfer->rx_buf) {
ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
xfer->rx_sg.nents);
if (ret)
goto err_clear_dmac;
/* rx must be started before tx due to spi instinct */
dma_async_issue_pending(dws->rxchan);
}
dma_async_issue_pending(dws->txchan);
ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
err_clear_dmac:
dw_writel(dws, DW_SPI_DMACR, 0);
return ret;
}
/*
* In case if at least one of the requested DMA channels doesn't support the
* hardware accelerated SG list entries traverse, the DMA driver will most
* likely work that around by performing the IRQ-based SG list entries
* resubmission. That might and will cause a problem if the DMA Tx channel is
* recharged and re-executed before the Rx DMA channel. Due to
* non-deterministic IRQ-handler execution latency the DMA Tx channel will
* start pushing data to the SPI bus before the Rx DMA channel is even
* reinitialized with the next inbound SG list entry. By doing so the DMA Tx
* channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
* the DMA Rx channel being recharged and re-executed will eventually be
* overflown.
*
* In order to solve the problem we have to feed the DMA engine with SG list
* entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
* synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
* and rx_sg lists may have different number of entries of different lengths
* (though total length should match) let's virtually split the SG-lists to the
* set of DMA transfers, which length is a minimum of the ordered SG-entries
* lengths. An ASCII-sketch of the implemented algo is following:
* xfer->len
* |___________|
* tx_sg list: |___|____|__|
* rx_sg list: |_|____|____|
* DMA transfers: |_|_|__|_|__|
*
* Note in order to have this workaround solving the denoted problem the DMA
* engine driver should properly initialize the max_sg_burst capability and set
* the DMA device max segment size parameter with maximum data block size the
* DMA engine supports.
*/
static int dw_spi_dma_transfer_one(struct dw_spi *dws,
struct spi_transfer *xfer)
{
struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
unsigned int tx_len = 0, rx_len = 0;
unsigned int base, len;
int ret;
sg_init_table(&tx_tmp, 1);
sg_init_table(&rx_tmp, 1);
for (base = 0, len = 0; base < xfer->len; base += len) {
/* Fetch next Tx DMA data chunk */
if (!tx_len) {
tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
tx_len = sg_dma_len(tx_sg);
}
/* Fetch next Rx DMA data chunk */
if (!rx_len) {
rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
rx_len = sg_dma_len(rx_sg);
}
len = min(tx_len, rx_len);
sg_dma_len(&tx_tmp) = len;
sg_dma_len(&rx_tmp) = len;
/* Submit DMA Tx transfer */
ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
if (ret)
break;
/* Submit DMA Rx transfer */
ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
if (ret)
break;
/* Rx must be started before Tx due to SPI instinct */
dma_async_issue_pending(dws->rxchan);
dma_async_issue_pending(dws->txchan);
/*
* Here we only need to wait for the DMA transfer to be
* finished since SPI controller is kept enabled during the
* procedure this loop implements and there is no risk to lose
* data left in the Tx/Rx FIFOs.
*/
ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
if (ret)
break;
reinit_completion(&dws->dma_completion);
sg_dma_address(&tx_tmp) += len;
sg_dma_address(&rx_tmp) += len;
tx_len -= len;
rx_len -= len;
}
dw_writel(dws, DW_SPI_DMACR, 0);
return ret;
}
static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{
unsigned int nents;
int ret;
nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
/*
* Execute normal DMA-based transfer (which submits the Rx and Tx SG
* lists directly to the DMA engine at once) if either full hardware
* accelerated SG list traverse is supported by both channels, or the
* Tx-only SPI transfer is requested, or the DMA engine is capable to
* handle both SG lists on hardware accelerated basis.
*/
if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
ret = dw_spi_dma_transfer_all(dws, xfer);
else
ret = dw_spi_dma_transfer_one(dws, xfer);
if (ret)
return ret;
if (dws->host->cur_msg->status == -EINPROGRESS) {
ret = dw_spi_dma_wait_tx_done(dws, xfer);
if (ret)
return ret;
}
if (xfer->rx_buf && dws->host->cur_msg->status == -EINPROGRESS)
ret = dw_spi_dma_wait_rx_done(dws);
return ret;
}
static void dw_spi_dma_stop(struct dw_spi *dws)
{
if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_sync(dws->txchan);
clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
}
if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_sync(dws->rxchan);
clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
}
}
static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
.dma_init = dw_spi_dma_init_mfld,
.dma_exit = dw_spi_dma_exit,
.dma_setup = dw_spi_dma_setup,
.can_dma = dw_spi_can_dma,
.dma_transfer = dw_spi_dma_transfer,
.dma_stop = dw_spi_dma_stop,
};
void dw_spi_dma_setup_mfld(struct dw_spi *dws)
{
dws->dma_ops = &dw_spi_dma_mfld_ops;
}
EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
.dma_init = dw_spi_dma_init_generic,
.dma_exit = dw_spi_dma_exit,
.dma_setup = dw_spi_dma_setup,
.can_dma = dw_spi_can_dma,
.dma_transfer = dw_spi_dma_transfer,
.dma_stop = dw_spi_dma_stop,
};
void dw_spi_dma_setup_generic(struct dw_spi *dws)
{
dws->dma_ops = &dw_spi_dma_generic_ops;
}
EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);