OpenCloudOS-Kernel/drivers/net/ethernet/davicom/dm9051.c

1261 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2022 Davicom Semiconductor,Inc.
* Davicom DM9051 SPI Fast Ethernet Linux driver
*/
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include <linux/regmap.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include "dm9051.h"
#define DRVNAME_9051 "dm9051"
/**
* struct rx_ctl_mach - rx activities record
* @status_err_counter: rx status error counter
* @large_err_counter: rx get large packet length error counter
* @rx_err_counter: receive packet error counter
* @tx_err_counter: transmit packet error counter
* @fifo_rst_counter: reset operation counter
*
* To keep track for the driver operation statistics
*/
struct rx_ctl_mach {
u16 status_err_counter;
u16 large_err_counter;
u16 rx_err_counter;
u16 tx_err_counter;
u16 fifo_rst_counter;
};
/**
* struct dm9051_rxctrl - dm9051 driver rx control
* @hash_table: Multicast hash-table data
* @rcr_all: KS_RXCR1 register setting
*
* The settings needs to control the receive filtering
* such as the multicast hash-filter and the receive register settings
*/
struct dm9051_rxctrl {
u16 hash_table[4];
u8 rcr_all;
};
/**
* struct dm9051_rxhdr - rx packet data header
* @headbyte: lead byte equal to 0x01 notifies a valid packet
* @status: status bits for the received packet
* @rxlen: packet length
*
* The Rx packed, entered into the FIFO memory, start with these
* four bytes which is the Rx header, followed by the ethernet
* packet data and ends with an appended 4-byte CRC data.
* Both Rx packet and CRC data are for check purpose and finally
* are dropped by this driver
*/
struct dm9051_rxhdr {
u8 headbyte;
u8 status;
__le16 rxlen;
};
/**
* struct board_info - maintain the saved data
* @spidev: spi device structure
* @ndev: net device structure
* @mdiobus: mii bus structure
* @phydev: phy device structure
* @txq: tx queue structure
* @regmap_dm: regmap for register read/write
* @regmap_dmbulk: extra regmap for bulk read/write
* @rxctrl_work: Work queue for updating RX mode and multicast lists
* @tx_work: Work queue for tx packets
* @pause: ethtool pause parameter structure
* @spi_lockm: between threads lock structure
* @reg_mutex: regmap access lock structure
* @bc: rx control statistics structure
* @rxhdr: rx header structure
* @rctl: rx control setting structure
* @msg_enable: message level value
* @imr_all: to store operating imr value for register DM9051_IMR
* @lcr_all: to store operating rcr value for register DM9051_LMCR
*
* The saved data variables, keep up to date for retrieval back to use
*/
struct board_info {
u32 msg_enable;
struct spi_device *spidev;
struct net_device *ndev;
struct mii_bus *mdiobus;
struct phy_device *phydev;
struct sk_buff_head txq;
struct regmap *regmap_dm;
struct regmap *regmap_dmbulk;
struct work_struct rxctrl_work;
struct work_struct tx_work;
struct ethtool_pauseparam pause;
struct mutex spi_lockm;
struct mutex reg_mutex;
struct rx_ctl_mach bc;
struct dm9051_rxhdr rxhdr;
struct dm9051_rxctrl rctl;
u8 imr_all;
u8 lcr_all;
};
static int dm9051_set_reg(struct board_info *db, unsigned int reg, unsigned int val)
{
int ret;
ret = regmap_write(db->regmap_dm, reg, val);
if (ret < 0)
netif_err(db, drv, db->ndev, "%s: error %d set reg %02x\n",
__func__, ret, reg);
return ret;
}
static int dm9051_update_bits(struct board_info *db, unsigned int reg, unsigned int mask,
unsigned int val)
{
int ret;
ret = regmap_update_bits(db->regmap_dm, reg, mask, val);
if (ret < 0)
netif_err(db, drv, db->ndev, "%s: error %d update bits reg %02x\n",
__func__, ret, reg);
return ret;
}
/* skb buffer exhausted, just discard the received data
*/
static int dm9051_dumpblk(struct board_info *db, u8 reg, size_t count)
{
struct net_device *ndev = db->ndev;
unsigned int rb;
int ret;
/* no skb buffer,
* both reg and &rb must be noinc,
* read once one byte via regmap_read
*/
do {
ret = regmap_read(db->regmap_dm, reg, &rb);
if (ret < 0) {
netif_err(db, drv, ndev, "%s: error %d dumping read reg %02x\n",
__func__, ret, reg);
break;
}
} while (--count);
return ret;
}
static int dm9051_set_regs(struct board_info *db, unsigned int reg, const void *val,
size_t val_count)
{
int ret;
ret = regmap_bulk_write(db->regmap_dmbulk, reg, val, val_count);
if (ret < 0)
netif_err(db, drv, db->ndev, "%s: error %d bulk writing regs %02x\n",
__func__, ret, reg);
return ret;
}
static int dm9051_get_regs(struct board_info *db, unsigned int reg, void *val,
size_t val_count)
{
int ret;
ret = regmap_bulk_read(db->regmap_dmbulk, reg, val, val_count);
if (ret < 0)
netif_err(db, drv, db->ndev, "%s: error %d bulk reading regs %02x\n",
__func__, ret, reg);
return ret;
}
static int dm9051_write_mem(struct board_info *db, unsigned int reg, const void *buff,
size_t len)
{
int ret;
ret = regmap_noinc_write(db->regmap_dm, reg, buff, len);
if (ret < 0)
netif_err(db, drv, db->ndev, "%s: error %d noinc writing regs %02x\n",
__func__, ret, reg);
return ret;
}
static int dm9051_read_mem(struct board_info *db, unsigned int reg, void *buff,
size_t len)
{
int ret;
ret = regmap_noinc_read(db->regmap_dm, reg, buff, len);
if (ret < 0)
netif_err(db, drv, db->ndev, "%s: error %d noinc reading regs %02x\n",
__func__, ret, reg);
return ret;
}
/* waiting tx-end rather than tx-req
* got faster
*/
static int dm9051_nsr_poll(struct board_info *db)
{
unsigned int mval;
int ret;
ret = regmap_read_poll_timeout(db->regmap_dm, DM9051_NSR, mval,
mval & (NSR_TX2END | NSR_TX1END), 1, 20);
if (ret == -ETIMEDOUT)
netdev_err(db->ndev, "timeout in checking for tx end\n");
return ret;
}
static int dm9051_epcr_poll(struct board_info *db)
{
unsigned int mval;
int ret;
ret = regmap_read_poll_timeout(db->regmap_dm, DM9051_EPCR, mval,
!(mval & EPCR_ERRE), 100, 10000);
if (ret == -ETIMEDOUT)
netdev_err(db->ndev, "eeprom/phy in processing get timeout\n");
return ret;
}
static int dm9051_irq_flag(struct board_info *db)
{
struct spi_device *spi = db->spidev;
int irq_type = irq_get_trigger_type(spi->irq);
if (irq_type)
return irq_type;
return IRQF_TRIGGER_LOW;
}
static unsigned int dm9051_intcr_value(struct board_info *db)
{
return (dm9051_irq_flag(db) == IRQF_TRIGGER_LOW) ?
INTCR_POL_LOW : INTCR_POL_HIGH;
}
static int dm9051_set_fcr(struct board_info *db)
{
u8 fcr = 0;
if (db->pause.rx_pause)
fcr |= FCR_BKPM | FCR_FLCE;
if (db->pause.tx_pause)
fcr |= FCR_TXPEN;
return dm9051_set_reg(db, DM9051_FCR, fcr);
}
static int dm9051_set_recv(struct board_info *db)
{
int ret;
ret = dm9051_set_regs(db, DM9051_MAR, db->rctl.hash_table, sizeof(db->rctl.hash_table));
if (ret)
return ret;
return dm9051_set_reg(db, DM9051_RCR, db->rctl.rcr_all); /* enable rx */
}
static int dm9051_core_reset(struct board_info *db)
{
int ret;
db->bc.fifo_rst_counter++;
ret = regmap_write(db->regmap_dm, DM9051_NCR, NCR_RST); /* NCR reset */
if (ret)
return ret;
ret = regmap_write(db->regmap_dm, DM9051_MBNDRY, MBNDRY_BYTE); /* MemBound */
if (ret)
return ret;
ret = regmap_write(db->regmap_dm, DM9051_PPCR, PPCR_PAUSE_COUNT); /* Pause Count */
if (ret)
return ret;
ret = regmap_write(db->regmap_dm, DM9051_LMCR, db->lcr_all); /* LEDMode1 */
if (ret)
return ret;
return dm9051_set_reg(db, DM9051_INTCR, dm9051_intcr_value(db));
}
static int dm9051_update_fcr(struct board_info *db)
{
u8 fcr = 0;
if (db->pause.rx_pause)
fcr |= FCR_BKPM | FCR_FLCE;
if (db->pause.tx_pause)
fcr |= FCR_TXPEN;
return dm9051_update_bits(db, DM9051_FCR, FCR_RXTX_BITS, fcr);
}
static int dm9051_disable_interrupt(struct board_info *db)
{
return dm9051_set_reg(db, DM9051_IMR, IMR_PAR); /* disable int */
}
static int dm9051_enable_interrupt(struct board_info *db)
{
return dm9051_set_reg(db, DM9051_IMR, db->imr_all); /* enable int */
}
static int dm9051_stop_mrcmd(struct board_info *db)
{
return dm9051_set_reg(db, DM9051_ISR, ISR_STOP_MRCMD); /* to stop mrcmd */
}
static int dm9051_clear_interrupt(struct board_info *db)
{
return dm9051_update_bits(db, DM9051_ISR, ISR_CLR_INT, ISR_CLR_INT);
}
static int dm9051_eeprom_read(struct board_info *db, int offset, u8 *to)
{
int ret;
ret = regmap_write(db->regmap_dm, DM9051_EPAR, offset);
if (ret)
return ret;
ret = regmap_write(db->regmap_dm, DM9051_EPCR, EPCR_ERPRR);
if (ret)
return ret;
ret = dm9051_epcr_poll(db);
if (ret)
return ret;
ret = regmap_write(db->regmap_dm, DM9051_EPCR, 0);
if (ret)
return ret;
return regmap_bulk_read(db->regmap_dmbulk, DM9051_EPDRL, to, 2);
}
static int dm9051_eeprom_write(struct board_info *db, int offset, u8 *data)
{
int ret;
ret = regmap_write(db->regmap_dm, DM9051_EPAR, offset);
if (ret)
return ret;
ret = regmap_bulk_write(db->regmap_dmbulk, DM9051_EPDRL, data, 2);
if (ret < 0)
return ret;
ret = regmap_write(db->regmap_dm, DM9051_EPCR, EPCR_WEP | EPCR_ERPRW);
if (ret)
return ret;
ret = dm9051_epcr_poll(db);
if (ret)
return ret;
return regmap_write(db->regmap_dm, DM9051_EPCR, 0);
}
static int dm9051_phyread(void *context, unsigned int reg, unsigned int *val)
{
struct board_info *db = context;
int ret;
ret = regmap_write(db->regmap_dm, DM9051_EPAR, DM9051_PHY | reg);
if (ret)
return ret;
ret = regmap_write(db->regmap_dm, DM9051_EPCR, EPCR_ERPRR | EPCR_EPOS);
if (ret)
return ret;
ret = dm9051_epcr_poll(db);
if (ret)
return ret;
ret = regmap_write(db->regmap_dm, DM9051_EPCR, 0);
if (ret)
return ret;
/* this is a 4 bytes data, clear to zero since following regmap_bulk_read
* only fill lower 2 bytes
*/
*val = 0;
return regmap_bulk_read(db->regmap_dmbulk, DM9051_EPDRL, val, 2);
}
static int dm9051_phywrite(void *context, unsigned int reg, unsigned int val)
{
struct board_info *db = context;
int ret;
ret = regmap_write(db->regmap_dm, DM9051_EPAR, DM9051_PHY | reg);
if (ret)
return ret;
ret = regmap_bulk_write(db->regmap_dmbulk, DM9051_EPDRL, &val, 2);
if (ret < 0)
return ret;
ret = regmap_write(db->regmap_dm, DM9051_EPCR, EPCR_EPOS | EPCR_ERPRW);
if (ret)
return ret;
ret = dm9051_epcr_poll(db);
if (ret)
return ret;
return regmap_write(db->regmap_dm, DM9051_EPCR, 0);
}
static int dm9051_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
struct board_info *db = bus->priv;
unsigned int val = 0xffff;
int ret;
if (addr == DM9051_PHY_ADDR) {
ret = dm9051_phyread(db, regnum, &val);
if (ret)
return ret;
}
return val;
}
static int dm9051_mdio_write(struct mii_bus *bus, int addr, int regnum, u16 val)
{
struct board_info *db = bus->priv;
if (addr == DM9051_PHY_ADDR)
return dm9051_phywrite(db, regnum, val);
return -ENODEV;
}
static void dm9051_reg_lock_mutex(void *dbcontext)
{
struct board_info *db = dbcontext;
mutex_lock(&db->reg_mutex);
}
static void dm9051_reg_unlock_mutex(void *dbcontext)
{
struct board_info *db = dbcontext;
mutex_unlock(&db->reg_mutex);
}
static struct regmap_config regconfigdm = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.reg_stride = 1,
.cache_type = REGCACHE_NONE,
.read_flag_mask = 0,
.write_flag_mask = DM_SPI_WR,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
.lock = dm9051_reg_lock_mutex,
.unlock = dm9051_reg_unlock_mutex,
};
static struct regmap_config regconfigdmbulk = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xff,
.reg_stride = 1,
.cache_type = REGCACHE_NONE,
.read_flag_mask = 0,
.write_flag_mask = DM_SPI_WR,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
.lock = dm9051_reg_lock_mutex,
.unlock = dm9051_reg_unlock_mutex,
.use_single_read = true,
.use_single_write = true,
};
static int dm9051_map_init(struct spi_device *spi, struct board_info *db)
{
/* create two regmap instances,
* split read/write and bulk_read/bulk_write to individual regmap
* to resolve regmap execution confliction problem
*/
regconfigdm.lock_arg = db;
db->regmap_dm = devm_regmap_init_spi(db->spidev, &regconfigdm);
if (IS_ERR(db->regmap_dm))
return PTR_ERR(db->regmap_dm);
regconfigdmbulk.lock_arg = db;
db->regmap_dmbulk = devm_regmap_init_spi(db->spidev, &regconfigdmbulk);
if (IS_ERR(db->regmap_dmbulk))
return PTR_ERR(db->regmap_dmbulk);
return 0;
}
static int dm9051_map_chipid(struct board_info *db)
{
struct device *dev = &db->spidev->dev;
unsigned short wid;
u8 buff[6];
int ret;
ret = dm9051_get_regs(db, DM9051_VIDL, buff, sizeof(buff));
if (ret < 0)
return ret;
wid = get_unaligned_le16(buff + 2);
if (wid != DM9051_ID) {
dev_err(dev, "chipid error as %04x !\n", wid);
return -ENODEV;
}
dev_info(dev, "chip %04x found\n", wid);
return 0;
}
/* Read DM9051_PAR registers which is the mac address loaded from EEPROM while power-on
*/
static int dm9051_map_etherdev_par(struct net_device *ndev, struct board_info *db)
{
u8 addr[ETH_ALEN];
int ret;
ret = dm9051_get_regs(db, DM9051_PAR, addr, sizeof(addr));
if (ret < 0)
return ret;
if (!is_valid_ether_addr(addr)) {
eth_hw_addr_random(ndev);
ret = dm9051_set_regs(db, DM9051_PAR, ndev->dev_addr, sizeof(ndev->dev_addr));
if (ret < 0)
return ret;
dev_dbg(&db->spidev->dev, "Use random MAC address\n");
return 0;
}
eth_hw_addr_set(ndev, addr);
return 0;
}
/* ethtool-ops
*/
static void dm9051_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strscpy(info->driver, DRVNAME_9051, sizeof(info->driver));
}
static void dm9051_set_msglevel(struct net_device *ndev, u32 value)
{
struct board_info *db = to_dm9051_board(ndev);
db->msg_enable = value;
}
static u32 dm9051_get_msglevel(struct net_device *ndev)
{
struct board_info *db = to_dm9051_board(ndev);
return db->msg_enable;
}
static int dm9051_get_eeprom_len(struct net_device *dev)
{
return 128;
}
static int dm9051_get_eeprom(struct net_device *ndev,
struct ethtool_eeprom *ee, u8 *data)
{
struct board_info *db = to_dm9051_board(ndev);
int offset = ee->offset;
int len = ee->len;
int i, ret;
if ((len | offset) & 1)
return -EINVAL;
ee->magic = DM_EEPROM_MAGIC;
for (i = 0; i < len; i += 2) {
ret = dm9051_eeprom_read(db, (offset + i) / 2, data + i);
if (ret)
break;
}
return ret;
}
static int dm9051_set_eeprom(struct net_device *ndev,
struct ethtool_eeprom *ee, u8 *data)
{
struct board_info *db = to_dm9051_board(ndev);
int offset = ee->offset;
int len = ee->len;
int i, ret;
if ((len | offset) & 1)
return -EINVAL;
if (ee->magic != DM_EEPROM_MAGIC)
return -EINVAL;
for (i = 0; i < len; i += 2) {
ret = dm9051_eeprom_write(db, (offset + i) / 2, data + i);
if (ret)
break;
}
return ret;
}
static void dm9051_get_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct board_info *db = to_dm9051_board(ndev);
*pause = db->pause;
}
static int dm9051_set_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct board_info *db = to_dm9051_board(ndev);
db->pause = *pause;
if (pause->autoneg == AUTONEG_DISABLE)
return dm9051_update_fcr(db);
phy_set_sym_pause(db->phydev, pause->rx_pause, pause->tx_pause,
pause->autoneg);
phy_start_aneg(db->phydev);
return 0;
}
static const struct ethtool_ops dm9051_ethtool_ops = {
.get_drvinfo = dm9051_get_drvinfo,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
.get_msglevel = dm9051_get_msglevel,
.set_msglevel = dm9051_set_msglevel,
.nway_reset = phy_ethtool_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = dm9051_get_eeprom_len,
.get_eeprom = dm9051_get_eeprom,
.set_eeprom = dm9051_set_eeprom,
.get_pauseparam = dm9051_get_pauseparam,
.set_pauseparam = dm9051_set_pauseparam,
};
static int dm9051_all_start(struct board_info *db)
{
int ret;
/* GPR power on of the internal phy
*/
ret = dm9051_set_reg(db, DM9051_GPR, 0);
if (ret)
return ret;
/* dm9051 chip registers could not be accessed within 1 ms
* after GPR power on, delay 1 ms is essential
*/
msleep(1);
ret = dm9051_core_reset(db);
if (ret)
return ret;
return dm9051_enable_interrupt(db);
}
static int dm9051_all_stop(struct board_info *db)
{
int ret;
/* GPR power off of the internal phy,
* The internal phy still could be accessed after this GPR power off control
*/
ret = dm9051_set_reg(db, DM9051_GPR, GPR_PHY_OFF);
if (ret)
return ret;
return dm9051_set_reg(db, DM9051_RCR, RCR_RX_DISABLE);
}
/* fifo reset while rx error found
*/
static int dm9051_all_restart(struct board_info *db)
{
struct net_device *ndev = db->ndev;
int ret;
ret = dm9051_core_reset(db);
if (ret)
return ret;
ret = dm9051_enable_interrupt(db);
if (ret)
return ret;
netdev_dbg(ndev, " rxstatus_Er & rxlen_Er %d, RST_c %d\n",
db->bc.status_err_counter + db->bc.large_err_counter,
db->bc.fifo_rst_counter);
ret = dm9051_set_recv(db);
if (ret)
return ret;
return dm9051_set_fcr(db);
}
/* read packets from the fifo memory
* return value,
* > 0 - read packet number, caller can repeat the rx operation
* 0 - no error, caller need stop further rx operation
* -EBUSY - read data error, caller escape from rx operation
*/
static int dm9051_loop_rx(struct board_info *db)
{
struct net_device *ndev = db->ndev;
unsigned int rxbyte;
int ret, rxlen;
struct sk_buff *skb;
u8 *rdptr;
int scanrr = 0;
do {
ret = dm9051_read_mem(db, DM_SPI_MRCMDX, &rxbyte, 2);
if (ret)
return ret;
if ((rxbyte & GENMASK(7, 0)) != DM9051_PKT_RDY)
break; /* exhaust-empty */
ret = dm9051_read_mem(db, DM_SPI_MRCMD, &db->rxhdr, DM_RXHDR_SIZE);
if (ret)
return ret;
ret = dm9051_stop_mrcmd(db);
if (ret)
return ret;
rxlen = le16_to_cpu(db->rxhdr.rxlen);
if (db->rxhdr.status & RSR_ERR_BITS || rxlen > DM9051_PKT_MAX) {
netdev_dbg(ndev, "rxhdr-byte (%02x)\n",
db->rxhdr.headbyte);
if (db->rxhdr.status & RSR_ERR_BITS) {
db->bc.status_err_counter++;
netdev_dbg(ndev, "check rxstatus-error (%02x)\n",
db->rxhdr.status);
} else {
db->bc.large_err_counter++;
netdev_dbg(ndev, "check rxlen large-error (%d > %d)\n",
rxlen, DM9051_PKT_MAX);
}
return dm9051_all_restart(db);
}
skb = dev_alloc_skb(rxlen);
if (!skb) {
ret = dm9051_dumpblk(db, DM_SPI_MRCMD, rxlen);
if (ret)
return ret;
return scanrr;
}
rdptr = skb_put(skb, rxlen - 4);
ret = dm9051_read_mem(db, DM_SPI_MRCMD, rdptr, rxlen);
if (ret) {
db->bc.rx_err_counter++;
dev_kfree_skb(skb);
return ret;
}
ret = dm9051_stop_mrcmd(db);
if (ret)
return ret;
skb->protocol = eth_type_trans(skb, db->ndev);
if (db->ndev->features & NETIF_F_RXCSUM)
skb_checksum_none_assert(skb);
netif_rx(skb);
db->ndev->stats.rx_bytes += rxlen;
db->ndev->stats.rx_packets++;
scanrr++;
} while (!ret);
return scanrr;
}
/* transmit a packet,
* return value,
* 0 - succeed
* -ETIMEDOUT - timeout error
*/
static int dm9051_single_tx(struct board_info *db, u8 *buff, unsigned int len)
{
int ret;
ret = dm9051_nsr_poll(db);
if (ret)
return ret;
ret = dm9051_write_mem(db, DM_SPI_MWCMD, buff, len);
if (ret)
return ret;
ret = dm9051_set_regs(db, DM9051_TXPLL, &len, 2);
if (ret < 0)
return ret;
return dm9051_set_reg(db, DM9051_TCR, TCR_TXREQ);
}
static int dm9051_loop_tx(struct board_info *db)
{
struct net_device *ndev = db->ndev;
int ntx = 0;
int ret;
while (!skb_queue_empty(&db->txq)) {
struct sk_buff *skb;
unsigned int len;
skb = skb_dequeue(&db->txq);
if (skb) {
ntx++;
ret = dm9051_single_tx(db, skb->data, skb->len);
len = skb->len;
dev_kfree_skb(skb);
if (ret < 0) {
db->bc.tx_err_counter++;
return 0;
}
ndev->stats.tx_bytes += len;
ndev->stats.tx_packets++;
}
if (netif_queue_stopped(ndev) &&
(skb_queue_len(&db->txq) < DM9051_TX_QUE_LO_WATER))
netif_wake_queue(ndev);
}
return ntx;
}
static irqreturn_t dm9051_rx_threaded_irq(int irq, void *pw)
{
struct board_info *db = pw;
int result, result_tx;
mutex_lock(&db->spi_lockm);
result = dm9051_disable_interrupt(db);
if (result)
goto out_unlock;
result = dm9051_clear_interrupt(db);
if (result)
goto out_unlock;
do {
result = dm9051_loop_rx(db); /* threaded irq rx */
if (result < 0)
goto out_unlock;
result_tx = dm9051_loop_tx(db); /* more tx better performance */
if (result_tx < 0)
goto out_unlock;
} while (result > 0);
dm9051_enable_interrupt(db);
/* To exit and has mutex unlock while rx or tx error
*/
out_unlock:
mutex_unlock(&db->spi_lockm);
return IRQ_HANDLED;
}
static void dm9051_tx_delay(struct work_struct *work)
{
struct board_info *db = container_of(work, struct board_info, tx_work);
int result;
mutex_lock(&db->spi_lockm);
result = dm9051_loop_tx(db);
if (result < 0)
netdev_err(db->ndev, "transmit packet error\n");
mutex_unlock(&db->spi_lockm);
}
static void dm9051_rxctl_delay(struct work_struct *work)
{
struct board_info *db = container_of(work, struct board_info, rxctrl_work);
struct net_device *ndev = db->ndev;
int result;
mutex_lock(&db->spi_lockm);
result = dm9051_set_regs(db, DM9051_PAR, ndev->dev_addr, sizeof(ndev->dev_addr));
if (result < 0)
goto out_unlock;
dm9051_set_recv(db);
/* To has mutex unlock and return from this function if regmap function fail
*/
out_unlock:
mutex_unlock(&db->spi_lockm);
}
/* Open network device
* Called when the network device is marked active, such as a user executing
* 'ifconfig up' on the device
*/
static int dm9051_open(struct net_device *ndev)
{
struct board_info *db = to_dm9051_board(ndev);
struct spi_device *spi = db->spidev;
int ret;
db->imr_all = IMR_PAR | IMR_PRM;
db->lcr_all = LMCR_MODE1;
db->rctl.rcr_all = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
memset(db->rctl.hash_table, 0, sizeof(db->rctl.hash_table));
ndev->irq = spi->irq; /* by dts */
ret = request_threaded_irq(spi->irq, NULL, dm9051_rx_threaded_irq,
dm9051_irq_flag(db) | IRQF_ONESHOT,
ndev->name, db);
if (ret < 0) {
netdev_err(ndev, "failed to get irq\n");
return ret;
}
phy_support_sym_pause(db->phydev);
phy_start(db->phydev);
/* flow control parameters init */
db->pause.rx_pause = true;
db->pause.tx_pause = true;
db->pause.autoneg = AUTONEG_DISABLE;
if (db->phydev->autoneg)
db->pause.autoneg = AUTONEG_ENABLE;
ret = dm9051_all_start(db);
if (ret) {
phy_stop(db->phydev);
free_irq(spi->irq, db);
return ret;
}
netif_wake_queue(ndev);
return 0;
}
/* Close network device
* Called to close down a network device which has been active. Cancel any
* work, shutdown the RX and TX process and then place the chip into a low
* power state while it is not being used
*/
static int dm9051_stop(struct net_device *ndev)
{
struct board_info *db = to_dm9051_board(ndev);
int ret;
ret = dm9051_all_stop(db);
if (ret)
return ret;
flush_work(&db->tx_work);
flush_work(&db->rxctrl_work);
phy_stop(db->phydev);
free_irq(db->spidev->irq, db);
netif_stop_queue(ndev);
skb_queue_purge(&db->txq);
return 0;
}
/* event: play a schedule starter in condition
*/
static netdev_tx_t dm9051_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct board_info *db = to_dm9051_board(ndev);
skb_queue_tail(&db->txq, skb);
if (skb_queue_len(&db->txq) > DM9051_TX_QUE_HI_WATER)
netif_stop_queue(ndev); /* enforce limit queue size */
schedule_work(&db->tx_work);
return NETDEV_TX_OK;
}
/* event: play with a schedule starter
*/
static void dm9051_set_rx_mode(struct net_device *ndev)
{
struct board_info *db = to_dm9051_board(ndev);
struct dm9051_rxctrl rxctrl;
struct netdev_hw_addr *ha;
u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
u32 hash_val;
memset(&rxctrl, 0, sizeof(rxctrl));
/* rx control */
if (ndev->flags & IFF_PROMISC) {
rcr |= RCR_PRMSC;
netdev_dbg(ndev, "set_multicast rcr |= RCR_PRMSC, rcr= %02x\n", rcr);
}
if (ndev->flags & IFF_ALLMULTI) {
rcr |= RCR_ALL;
netdev_dbg(ndev, "set_multicast rcr |= RCR_ALLMULTI, rcr= %02x\n", rcr);
}
rxctrl.rcr_all = rcr;
/* broadcast address */
rxctrl.hash_table[0] = 0;
rxctrl.hash_table[1] = 0;
rxctrl.hash_table[2] = 0;
rxctrl.hash_table[3] = 0x8000;
/* the multicast address in Hash Table : 64 bits */
netdev_for_each_mc_addr(ha, ndev) {
hash_val = ether_crc_le(ETH_ALEN, ha->addr) & GENMASK(5, 0);
rxctrl.hash_table[hash_val / 16] |= BIT(0) << (hash_val % 16);
}
/* schedule work to do the actual set of the data if needed */
if (memcmp(&db->rctl, &rxctrl, sizeof(rxctrl))) {
memcpy(&db->rctl, &rxctrl, sizeof(rxctrl));
schedule_work(&db->rxctrl_work);
}
}
/* event: write into the mac registers and eeprom directly
*/
static int dm9051_set_mac_address(struct net_device *ndev, void *p)
{
struct board_info *db = to_dm9051_board(ndev);
int ret;
ret = eth_prepare_mac_addr_change(ndev, p);
if (ret < 0)
return ret;
eth_commit_mac_addr_change(ndev, p);
return dm9051_set_regs(db, DM9051_PAR, ndev->dev_addr, sizeof(ndev->dev_addr));
}
static const struct net_device_ops dm9051_netdev_ops = {
.ndo_open = dm9051_open,
.ndo_stop = dm9051_stop,
.ndo_start_xmit = dm9051_start_xmit,
.ndo_set_rx_mode = dm9051_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = dm9051_set_mac_address,
};
static void dm9051_operation_clear(struct board_info *db)
{
db->bc.status_err_counter = 0;
db->bc.large_err_counter = 0;
db->bc.rx_err_counter = 0;
db->bc.tx_err_counter = 0;
db->bc.fifo_rst_counter = 0;
}
static int dm9051_mdio_register(struct board_info *db)
{
struct spi_device *spi = db->spidev;
int ret;
db->mdiobus = devm_mdiobus_alloc(&spi->dev);
if (!db->mdiobus)
return -ENOMEM;
db->mdiobus->priv = db;
db->mdiobus->read = dm9051_mdio_read;
db->mdiobus->write = dm9051_mdio_write;
db->mdiobus->name = "dm9051-mdiobus";
db->mdiobus->phy_mask = (u32)~BIT(1);
db->mdiobus->parent = &spi->dev;
snprintf(db->mdiobus->id, MII_BUS_ID_SIZE,
"dm9051-%s.%u", dev_name(&spi->dev), spi->chip_select);
ret = devm_mdiobus_register(&spi->dev, db->mdiobus);
if (ret)
dev_err(&spi->dev, "Could not register MDIO bus\n");
return ret;
}
static void dm9051_handle_link_change(struct net_device *ndev)
{
struct board_info *db = to_dm9051_board(ndev);
phy_print_status(db->phydev);
/* only write pause settings to mac. since mac and phy are integrated
* together, such as link state, speed and duplex are sync already
*/
if (db->phydev->link) {
if (db->phydev->pause) {
db->pause.rx_pause = true;
db->pause.tx_pause = true;
}
dm9051_update_fcr(db);
}
}
/* phy connect as poll mode
*/
static int dm9051_phy_connect(struct board_info *db)
{
char phy_id[MII_BUS_ID_SIZE + 3];
snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
db->mdiobus->id, DM9051_PHY_ADDR);
db->phydev = phy_connect(db->ndev, phy_id, dm9051_handle_link_change,
PHY_INTERFACE_MODE_MII);
if (IS_ERR(db->phydev))
return PTR_ERR_OR_ZERO(db->phydev);
return 0;
}
static int dm9051_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct net_device *ndev;
struct board_info *db;
int ret;
ndev = devm_alloc_etherdev(dev, sizeof(struct board_info));
if (!ndev)
return -ENOMEM;
SET_NETDEV_DEV(ndev, dev);
dev_set_drvdata(dev, ndev);
db = netdev_priv(ndev);
db->msg_enable = 0;
db->spidev = spi;
db->ndev = ndev;
ndev->netdev_ops = &dm9051_netdev_ops;
ndev->ethtool_ops = &dm9051_ethtool_ops;
mutex_init(&db->spi_lockm);
mutex_init(&db->reg_mutex);
INIT_WORK(&db->rxctrl_work, dm9051_rxctl_delay);
INIT_WORK(&db->tx_work, dm9051_tx_delay);
ret = dm9051_map_init(spi, db);
if (ret)
return ret;
ret = dm9051_map_chipid(db);
if (ret)
return ret;
ret = dm9051_map_etherdev_par(ndev, db);
if (ret < 0)
return ret;
ret = dm9051_mdio_register(db);
if (ret)
return ret;
ret = dm9051_phy_connect(db);
if (ret)
return ret;
dm9051_operation_clear(db);
skb_queue_head_init(&db->txq);
ret = devm_register_netdev(dev, ndev);
if (ret) {
phy_disconnect(db->phydev);
return dev_err_probe(dev, ret, "device register failed");
}
return 0;
}
static void dm9051_drv_remove(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct net_device *ndev = dev_get_drvdata(dev);
struct board_info *db = to_dm9051_board(ndev);
phy_disconnect(db->phydev);
}
static const struct of_device_id dm9051_match_table[] = {
{ .compatible = "davicom,dm9051" },
{}
};
static const struct spi_device_id dm9051_id_table[] = {
{ "dm9051", 0 },
{}
};
static struct spi_driver dm9051_driver = {
.driver = {
.name = DRVNAME_9051,
.of_match_table = dm9051_match_table,
},
.probe = dm9051_probe,
.remove = dm9051_drv_remove,
.id_table = dm9051_id_table,
};
module_spi_driver(dm9051_driver);
MODULE_AUTHOR("Joseph CHANG <joseph_chang@davicom.com.tw>");
MODULE_DESCRIPTION("Davicom DM9051 network SPI driver");
MODULE_LICENSE("GPL");