OpenCloudOS-Kernel/drivers/spi/spi-mt65xx.c

1423 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015 MediaTek Inc.
* Author: Leilk Liu <leilk.liu@mediatek.com>
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/platform_data/spi-mt65xx.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/dma-mapping.h>
#define SPI_CFG0_REG 0x0000
#define SPI_CFG1_REG 0x0004
#define SPI_TX_SRC_REG 0x0008
#define SPI_RX_DST_REG 0x000c
#define SPI_TX_DATA_REG 0x0010
#define SPI_RX_DATA_REG 0x0014
#define SPI_CMD_REG 0x0018
#define SPI_STATUS0_REG 0x001c
#define SPI_PAD_SEL_REG 0x0024
#define SPI_CFG2_REG 0x0028
#define SPI_TX_SRC_REG_64 0x002c
#define SPI_RX_DST_REG_64 0x0030
#define SPI_CFG3_IPM_REG 0x0040
#define SPI_CFG0_SCK_HIGH_OFFSET 0
#define SPI_CFG0_SCK_LOW_OFFSET 8
#define SPI_CFG0_CS_HOLD_OFFSET 16
#define SPI_CFG0_CS_SETUP_OFFSET 24
#define SPI_ADJUST_CFG0_CS_HOLD_OFFSET 0
#define SPI_ADJUST_CFG0_CS_SETUP_OFFSET 16
#define SPI_CFG1_CS_IDLE_OFFSET 0
#define SPI_CFG1_PACKET_LOOP_OFFSET 8
#define SPI_CFG1_PACKET_LENGTH_OFFSET 16
#define SPI_CFG1_GET_TICK_DLY_OFFSET 29
#define SPI_CFG1_GET_TICK_DLY_OFFSET_V1 30
#define SPI_CFG1_GET_TICK_DLY_MASK 0xe0000000
#define SPI_CFG1_GET_TICK_DLY_MASK_V1 0xc0000000
#define SPI_CFG1_CS_IDLE_MASK 0xff
#define SPI_CFG1_PACKET_LOOP_MASK 0xff00
#define SPI_CFG1_PACKET_LENGTH_MASK 0x3ff0000
#define SPI_CFG1_IPM_PACKET_LENGTH_MASK GENMASK(31, 16)
#define SPI_CFG2_SCK_HIGH_OFFSET 0
#define SPI_CFG2_SCK_LOW_OFFSET 16
#define SPI_CMD_ACT BIT(0)
#define SPI_CMD_RESUME BIT(1)
#define SPI_CMD_RST BIT(2)
#define SPI_CMD_PAUSE_EN BIT(4)
#define SPI_CMD_DEASSERT BIT(5)
#define SPI_CMD_SAMPLE_SEL BIT(6)
#define SPI_CMD_CS_POL BIT(7)
#define SPI_CMD_CPHA BIT(8)
#define SPI_CMD_CPOL BIT(9)
#define SPI_CMD_RX_DMA BIT(10)
#define SPI_CMD_TX_DMA BIT(11)
#define SPI_CMD_TXMSBF BIT(12)
#define SPI_CMD_RXMSBF BIT(13)
#define SPI_CMD_RX_ENDIAN BIT(14)
#define SPI_CMD_TX_ENDIAN BIT(15)
#define SPI_CMD_FINISH_IE BIT(16)
#define SPI_CMD_PAUSE_IE BIT(17)
#define SPI_CMD_IPM_NONIDLE_MODE BIT(19)
#define SPI_CMD_IPM_SPIM_LOOP BIT(21)
#define SPI_CMD_IPM_GET_TICKDLY_OFFSET 22
#define SPI_CMD_IPM_GET_TICKDLY_MASK GENMASK(24, 22)
#define PIN_MODE_CFG(x) ((x) / 2)
#define SPI_CFG3_IPM_HALF_DUPLEX_DIR BIT(2)
#define SPI_CFG3_IPM_HALF_DUPLEX_EN BIT(3)
#define SPI_CFG3_IPM_XMODE_EN BIT(4)
#define SPI_CFG3_IPM_NODATA_FLAG BIT(5)
#define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET 8
#define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12
#define SPI_CFG3_IPM_CMD_PIN_MODE_MASK GENMASK(1, 0)
#define SPI_CFG3_IPM_CMD_BYTELEN_MASK GENMASK(11, 8)
#define SPI_CFG3_IPM_ADDR_BYTELEN_MASK GENMASK(15, 12)
#define MT8173_SPI_MAX_PAD_SEL 3
#define MTK_SPI_PAUSE_INT_STATUS 0x2
#define MTK_SPI_MAX_FIFO_SIZE 32U
#define MTK_SPI_PACKET_SIZE 1024
#define MTK_SPI_IPM_PACKET_SIZE SZ_64K
#define MTK_SPI_IPM_PACKET_LOOP SZ_256
#define MTK_SPI_IDLE 0
#define MTK_SPI_PAUSED 1
#define MTK_SPI_32BITS_MASK (0xffffffff)
#define DMA_ADDR_EXT_BITS (36)
#define DMA_ADDR_DEF_BITS (32)
/**
* struct mtk_spi_compatible - device data structure
* @need_pad_sel: Enable pad (pins) selection in SPI controller
* @must_tx: Must explicitly send dummy TX bytes to do RX only transfer
* @enhance_timing: Enable adjusting cfg register to enhance time accuracy
* @dma_ext: DMA address extension supported
* @no_need_unprepare: Don't unprepare the SPI clk during runtime
* @ipm_design: Adjust/extend registers to support IPM design IP features
*/
struct mtk_spi_compatible {
bool need_pad_sel;
bool must_tx;
bool enhance_timing;
bool dma_ext;
bool no_need_unprepare;
bool ipm_design;
};
/**
* struct mtk_spi - SPI driver instance
* @base: Start address of the SPI controller registers
* @state: SPI controller state
* @pad_num: Number of pad_sel entries
* @pad_sel: Groups of pins to select
* @parent_clk: Parent of sel_clk
* @sel_clk: SPI master mux clock
* @spi_clk: Peripheral clock
* @spi_hclk: AHB bus clock
* @cur_transfer: Currently processed SPI transfer
* @xfer_len: Number of bytes to transfer
* @num_xfered: Number of transferred bytes
* @tx_sgl: TX transfer scatterlist
* @rx_sgl: RX transfer scatterlist
* @tx_sgl_len: Size of TX DMA transfer
* @rx_sgl_len: Size of RX DMA transfer
* @dev_comp: Device data structure
* @spi_clk_hz: Current SPI clock in Hz
* @spimem_done: SPI-MEM operation completion
* @use_spimem: Enables SPI-MEM
* @dev: Device pointer
* @tx_dma: DMA start for SPI-MEM TX
* @rx_dma: DMA start for SPI-MEM RX
*/
struct mtk_spi {
void __iomem *base;
u32 state;
int pad_num;
u32 *pad_sel;
struct clk *parent_clk, *sel_clk, *spi_clk, *spi_hclk;
struct spi_transfer *cur_transfer;
u32 xfer_len;
u32 num_xfered;
struct scatterlist *tx_sgl, *rx_sgl;
u32 tx_sgl_len, rx_sgl_len;
const struct mtk_spi_compatible *dev_comp;
u32 spi_clk_hz;
struct completion spimem_done;
bool use_spimem;
struct device *dev;
dma_addr_t tx_dma;
dma_addr_t rx_dma;
};
static const struct mtk_spi_compatible mtk_common_compat;
static const struct mtk_spi_compatible mt2712_compat = {
.must_tx = true,
};
static const struct mtk_spi_compatible mtk_ipm_compat = {
.enhance_timing = true,
.dma_ext = true,
.ipm_design = true,
};
static const struct mtk_spi_compatible mt6765_compat = {
.need_pad_sel = true,
.must_tx = true,
.enhance_timing = true,
.dma_ext = true,
};
static const struct mtk_spi_compatible mt7622_compat = {
.must_tx = true,
.enhance_timing = true,
};
static const struct mtk_spi_compatible mt8173_compat = {
.need_pad_sel = true,
.must_tx = true,
};
static const struct mtk_spi_compatible mt8183_compat = {
.need_pad_sel = true,
.must_tx = true,
.enhance_timing = true,
};
static const struct mtk_spi_compatible mt6893_compat = {
.need_pad_sel = true,
.must_tx = true,
.enhance_timing = true,
.dma_ext = true,
.no_need_unprepare = true,
};
/*
* A piece of default chip info unless the platform
* supplies it.
*/
static const struct mtk_chip_config mtk_default_chip_info = {
.sample_sel = 0,
.tick_delay = 0,
};
static const struct of_device_id mtk_spi_of_match[] = {
{ .compatible = "mediatek,spi-ipm",
.data = (void *)&mtk_ipm_compat,
},
{ .compatible = "mediatek,mt2701-spi",
.data = (void *)&mtk_common_compat,
},
{ .compatible = "mediatek,mt2712-spi",
.data = (void *)&mt2712_compat,
},
{ .compatible = "mediatek,mt6589-spi",
.data = (void *)&mtk_common_compat,
},
{ .compatible = "mediatek,mt6765-spi",
.data = (void *)&mt6765_compat,
},
{ .compatible = "mediatek,mt7622-spi",
.data = (void *)&mt7622_compat,
},
{ .compatible = "mediatek,mt7629-spi",
.data = (void *)&mt7622_compat,
},
{ .compatible = "mediatek,mt8135-spi",
.data = (void *)&mtk_common_compat,
},
{ .compatible = "mediatek,mt8173-spi",
.data = (void *)&mt8173_compat,
},
{ .compatible = "mediatek,mt8183-spi",
.data = (void *)&mt8183_compat,
},
{ .compatible = "mediatek,mt8192-spi",
.data = (void *)&mt6765_compat,
},
{ .compatible = "mediatek,mt6893-spi",
.data = (void *)&mt6893_compat,
},
{}
};
MODULE_DEVICE_TABLE(of, mtk_spi_of_match);
static void mtk_spi_reset(struct mtk_spi *mdata)
{
u32 reg_val;
/* set the software reset bit in SPI_CMD_REG. */
reg_val = readl(mdata->base + SPI_CMD_REG);
reg_val |= SPI_CMD_RST;
writel(reg_val, mdata->base + SPI_CMD_REG);
reg_val = readl(mdata->base + SPI_CMD_REG);
reg_val &= ~SPI_CMD_RST;
writel(reg_val, mdata->base + SPI_CMD_REG);
}
static int mtk_spi_set_hw_cs_timing(struct spi_device *spi)
{
struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
struct spi_delay *cs_setup = &spi->cs_setup;
struct spi_delay *cs_hold = &spi->cs_hold;
struct spi_delay *cs_inactive = &spi->cs_inactive;
u32 setup, hold, inactive;
u32 reg_val;
int delay;
delay = spi_delay_to_ns(cs_setup, NULL);
if (delay < 0)
return delay;
setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
delay = spi_delay_to_ns(cs_hold, NULL);
if (delay < 0)
return delay;
hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
delay = spi_delay_to_ns(cs_inactive, NULL);
if (delay < 0)
return delay;
inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
if (hold || setup) {
reg_val = readl(mdata->base + SPI_CFG0_REG);
if (mdata->dev_comp->enhance_timing) {
if (hold) {
hold = min_t(u32, hold, 0x10000);
reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
reg_val |= (((hold - 1) & 0xffff)
<< SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
}
if (setup) {
setup = min_t(u32, setup, 0x10000);
reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
reg_val |= (((setup - 1) & 0xffff)
<< SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
}
} else {
if (hold) {
hold = min_t(u32, hold, 0x100);
reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET);
reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET);
}
if (setup) {
setup = min_t(u32, setup, 0x100);
reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET);
reg_val |= (((setup - 1) & 0xff)
<< SPI_CFG0_CS_SETUP_OFFSET);
}
}
writel(reg_val, mdata->base + SPI_CFG0_REG);
}
if (inactive) {
inactive = min_t(u32, inactive, 0x100);
reg_val = readl(mdata->base + SPI_CFG1_REG);
reg_val &= ~SPI_CFG1_CS_IDLE_MASK;
reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET);
writel(reg_val, mdata->base + SPI_CFG1_REG);
}
return 0;
}
static int mtk_spi_hw_init(struct spi_master *master,
struct spi_device *spi)
{
u16 cpha, cpol;
u32 reg_val;
struct mtk_chip_config *chip_config = spi->controller_data;
struct mtk_spi *mdata = spi_master_get_devdata(master);
cpha = spi->mode & SPI_CPHA ? 1 : 0;
cpol = spi->mode & SPI_CPOL ? 1 : 0;
reg_val = readl(mdata->base + SPI_CMD_REG);
if (mdata->dev_comp->ipm_design) {
/* SPI transfer without idle time until packet length done */
reg_val |= SPI_CMD_IPM_NONIDLE_MODE;
if (spi->mode & SPI_LOOP)
reg_val |= SPI_CMD_IPM_SPIM_LOOP;
else
reg_val &= ~SPI_CMD_IPM_SPIM_LOOP;
}
if (cpha)
reg_val |= SPI_CMD_CPHA;
else
reg_val &= ~SPI_CMD_CPHA;
if (cpol)
reg_val |= SPI_CMD_CPOL;
else
reg_val &= ~SPI_CMD_CPOL;
/* set the mlsbx and mlsbtx */
if (spi->mode & SPI_LSB_FIRST) {
reg_val &= ~SPI_CMD_TXMSBF;
reg_val &= ~SPI_CMD_RXMSBF;
} else {
reg_val |= SPI_CMD_TXMSBF;
reg_val |= SPI_CMD_RXMSBF;
}
/* set the tx/rx endian */
#ifdef __LITTLE_ENDIAN
reg_val &= ~SPI_CMD_TX_ENDIAN;
reg_val &= ~SPI_CMD_RX_ENDIAN;
#else
reg_val |= SPI_CMD_TX_ENDIAN;
reg_val |= SPI_CMD_RX_ENDIAN;
#endif
if (mdata->dev_comp->enhance_timing) {
/* set CS polarity */
if (spi->mode & SPI_CS_HIGH)
reg_val |= SPI_CMD_CS_POL;
else
reg_val &= ~SPI_CMD_CS_POL;
if (chip_config->sample_sel)
reg_val |= SPI_CMD_SAMPLE_SEL;
else
reg_val &= ~SPI_CMD_SAMPLE_SEL;
}
/* set finish and pause interrupt always enable */
reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE;
/* disable dma mode */
reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA);
/* disable deassert mode */
reg_val &= ~SPI_CMD_DEASSERT;
writel(reg_val, mdata->base + SPI_CMD_REG);
/* pad select */
if (mdata->dev_comp->need_pad_sel)
writel(mdata->pad_sel[spi->chip_select],
mdata->base + SPI_PAD_SEL_REG);
/* tick delay */
if (mdata->dev_comp->enhance_timing) {
if (mdata->dev_comp->ipm_design) {
reg_val = readl(mdata->base + SPI_CMD_REG);
reg_val &= ~SPI_CMD_IPM_GET_TICKDLY_MASK;
reg_val |= ((chip_config->tick_delay & 0x7)
<< SPI_CMD_IPM_GET_TICKDLY_OFFSET);
writel(reg_val, mdata->base + SPI_CMD_REG);
} else {
reg_val = readl(mdata->base + SPI_CFG1_REG);
reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK;
reg_val |= ((chip_config->tick_delay & 0x7)
<< SPI_CFG1_GET_TICK_DLY_OFFSET);
writel(reg_val, mdata->base + SPI_CFG1_REG);
}
} else {
reg_val = readl(mdata->base + SPI_CFG1_REG);
reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK_V1;
reg_val |= ((chip_config->tick_delay & 0x3)
<< SPI_CFG1_GET_TICK_DLY_OFFSET_V1);
writel(reg_val, mdata->base + SPI_CFG1_REG);
}
/* set hw cs timing */
mtk_spi_set_hw_cs_timing(spi);
return 0;
}
static int mtk_spi_prepare_message(struct spi_master *master,
struct spi_message *msg)
{
return mtk_spi_hw_init(master, msg->spi);
}
static void mtk_spi_set_cs(struct spi_device *spi, bool enable)
{
u32 reg_val;
struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
if (spi->mode & SPI_CS_HIGH)
enable = !enable;
reg_val = readl(mdata->base + SPI_CMD_REG);
if (!enable) {
reg_val |= SPI_CMD_PAUSE_EN;
writel(reg_val, mdata->base + SPI_CMD_REG);
} else {
reg_val &= ~SPI_CMD_PAUSE_EN;
writel(reg_val, mdata->base + SPI_CMD_REG);
mdata->state = MTK_SPI_IDLE;
mtk_spi_reset(mdata);
}
}
static void mtk_spi_prepare_transfer(struct spi_master *master,
u32 speed_hz)
{
u32 div, sck_time, reg_val;
struct mtk_spi *mdata = spi_master_get_devdata(master);
if (speed_hz < mdata->spi_clk_hz / 2)
div = DIV_ROUND_UP(mdata->spi_clk_hz, speed_hz);
else
div = 1;
sck_time = (div + 1) / 2;
if (mdata->dev_comp->enhance_timing) {
reg_val = readl(mdata->base + SPI_CFG2_REG);
reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET);
reg_val |= (((sck_time - 1) & 0xffff)
<< SPI_CFG2_SCK_HIGH_OFFSET);
reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET);
reg_val |= (((sck_time - 1) & 0xffff)
<< SPI_CFG2_SCK_LOW_OFFSET);
writel(reg_val, mdata->base + SPI_CFG2_REG);
} else {
reg_val = readl(mdata->base + SPI_CFG0_REG);
reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET);
reg_val |= (((sck_time - 1) & 0xff)
<< SPI_CFG0_SCK_HIGH_OFFSET);
reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET);
reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET);
writel(reg_val, mdata->base + SPI_CFG0_REG);
}
}
static void mtk_spi_setup_packet(struct spi_master *master)
{
u32 packet_size, packet_loop, reg_val;
struct mtk_spi *mdata = spi_master_get_devdata(master);
if (mdata->dev_comp->ipm_design)
packet_size = min_t(u32,
mdata->xfer_len,
MTK_SPI_IPM_PACKET_SIZE);
else
packet_size = min_t(u32,
mdata->xfer_len,
MTK_SPI_PACKET_SIZE);
packet_loop = mdata->xfer_len / packet_size;
reg_val = readl(mdata->base + SPI_CFG1_REG);
if (mdata->dev_comp->ipm_design)
reg_val &= ~SPI_CFG1_IPM_PACKET_LENGTH_MASK;
else
reg_val &= ~SPI_CFG1_PACKET_LENGTH_MASK;
reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET;
reg_val &= ~SPI_CFG1_PACKET_LOOP_MASK;
reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET;
writel(reg_val, mdata->base + SPI_CFG1_REG);
}
static void mtk_spi_enable_transfer(struct spi_master *master)
{
u32 cmd;
struct mtk_spi *mdata = spi_master_get_devdata(master);
cmd = readl(mdata->base + SPI_CMD_REG);
if (mdata->state == MTK_SPI_IDLE)
cmd |= SPI_CMD_ACT;
else
cmd |= SPI_CMD_RESUME;
writel(cmd, mdata->base + SPI_CMD_REG);
}
static int mtk_spi_get_mult_delta(struct mtk_spi *mdata, u32 xfer_len)
{
u32 mult_delta = 0;
if (mdata->dev_comp->ipm_design) {
if (xfer_len > MTK_SPI_IPM_PACKET_SIZE)
mult_delta = xfer_len % MTK_SPI_IPM_PACKET_SIZE;
} else {
if (xfer_len > MTK_SPI_PACKET_SIZE)
mult_delta = xfer_len % MTK_SPI_PACKET_SIZE;
}
return mult_delta;
}
static void mtk_spi_update_mdata_len(struct spi_master *master)
{
int mult_delta;
struct mtk_spi *mdata = spi_master_get_devdata(master);
if (mdata->tx_sgl_len && mdata->rx_sgl_len) {
if (mdata->tx_sgl_len > mdata->rx_sgl_len) {
mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len);
mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
mdata->rx_sgl_len = mult_delta;
mdata->tx_sgl_len -= mdata->xfer_len;
} else {
mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len);
mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
mdata->tx_sgl_len = mult_delta;
mdata->rx_sgl_len -= mdata->xfer_len;
}
} else if (mdata->tx_sgl_len) {
mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len);
mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
mdata->tx_sgl_len = mult_delta;
} else if (mdata->rx_sgl_len) {
mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len);
mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
mdata->rx_sgl_len = mult_delta;
}
}
static void mtk_spi_setup_dma_addr(struct spi_master *master,
struct spi_transfer *xfer)
{
struct mtk_spi *mdata = spi_master_get_devdata(master);
if (mdata->tx_sgl) {
writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK),
mdata->base + SPI_TX_SRC_REG);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (mdata->dev_comp->dma_ext)
writel((u32)(xfer->tx_dma >> 32),
mdata->base + SPI_TX_SRC_REG_64);
#endif
}
if (mdata->rx_sgl) {
writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK),
mdata->base + SPI_RX_DST_REG);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (mdata->dev_comp->dma_ext)
writel((u32)(xfer->rx_dma >> 32),
mdata->base + SPI_RX_DST_REG_64);
#endif
}
}
static int mtk_spi_fifo_transfer(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
int cnt, remainder;
u32 reg_val;
struct mtk_spi *mdata = spi_master_get_devdata(master);
mdata->cur_transfer = xfer;
mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len);
mdata->num_xfered = 0;
mtk_spi_prepare_transfer(master, xfer->speed_hz);
mtk_spi_setup_packet(master);
if (xfer->tx_buf) {
cnt = xfer->len / 4;
iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt);
remainder = xfer->len % 4;
if (remainder > 0) {
reg_val = 0;
memcpy(&reg_val, xfer->tx_buf + (cnt * 4), remainder);
writel(reg_val, mdata->base + SPI_TX_DATA_REG);
}
}
mtk_spi_enable_transfer(master);
return 1;
}
static int mtk_spi_dma_transfer(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
int cmd;
struct mtk_spi *mdata = spi_master_get_devdata(master);
mdata->tx_sgl = NULL;
mdata->rx_sgl = NULL;
mdata->tx_sgl_len = 0;
mdata->rx_sgl_len = 0;
mdata->cur_transfer = xfer;
mdata->num_xfered = 0;
mtk_spi_prepare_transfer(master, xfer->speed_hz);
cmd = readl(mdata->base + SPI_CMD_REG);
if (xfer->tx_buf)
cmd |= SPI_CMD_TX_DMA;
if (xfer->rx_buf)
cmd |= SPI_CMD_RX_DMA;
writel(cmd, mdata->base + SPI_CMD_REG);
if (xfer->tx_buf)
mdata->tx_sgl = xfer->tx_sg.sgl;
if (xfer->rx_buf)
mdata->rx_sgl = xfer->rx_sg.sgl;
if (mdata->tx_sgl) {
xfer->tx_dma = sg_dma_address(mdata->tx_sgl);
mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
}
if (mdata->rx_sgl) {
xfer->rx_dma = sg_dma_address(mdata->rx_sgl);
mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
}
mtk_spi_update_mdata_len(master);
mtk_spi_setup_packet(master);
mtk_spi_setup_dma_addr(master, xfer);
mtk_spi_enable_transfer(master);
return 1;
}
static int mtk_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
u32 reg_val = 0;
/* prepare xfer direction and duplex mode */
if (mdata->dev_comp->ipm_design) {
if (!xfer->tx_buf || !xfer->rx_buf) {
reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
if (xfer->rx_buf)
reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
}
writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
}
if (master->can_dma(master, spi, xfer))
return mtk_spi_dma_transfer(master, spi, xfer);
else
return mtk_spi_fifo_transfer(master, spi, xfer);
}
static bool mtk_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
/* Buffers for DMA transactions must be 4-byte aligned */
return (xfer->len > MTK_SPI_MAX_FIFO_SIZE &&
(unsigned long)xfer->tx_buf % 4 == 0 &&
(unsigned long)xfer->rx_buf % 4 == 0);
}
static int mtk_spi_setup(struct spi_device *spi)
{
struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
if (!spi->controller_data)
spi->controller_data = (void *)&mtk_default_chip_info;
if (mdata->dev_comp->need_pad_sel && spi->cs_gpiod)
/* CS de-asserted, gpiolib will handle inversion */
gpiod_direction_output(spi->cs_gpiod, 0);
return 0;
}
static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id)
{
u32 cmd, reg_val, cnt, remainder, len;
struct spi_master *master = dev_id;
struct mtk_spi *mdata = spi_master_get_devdata(master);
struct spi_transfer *trans = mdata->cur_transfer;
reg_val = readl(mdata->base + SPI_STATUS0_REG);
if (reg_val & MTK_SPI_PAUSE_INT_STATUS)
mdata->state = MTK_SPI_PAUSED;
else
mdata->state = MTK_SPI_IDLE;
/* SPI-MEM ops */
if (mdata->use_spimem) {
complete(&mdata->spimem_done);
return IRQ_HANDLED;
}
if (!master->can_dma(master, NULL, trans)) {
if (trans->rx_buf) {
cnt = mdata->xfer_len / 4;
ioread32_rep(mdata->base + SPI_RX_DATA_REG,
trans->rx_buf + mdata->num_xfered, cnt);
remainder = mdata->xfer_len % 4;
if (remainder > 0) {
reg_val = readl(mdata->base + SPI_RX_DATA_REG);
memcpy(trans->rx_buf +
mdata->num_xfered +
(cnt * 4),
&reg_val,
remainder);
}
}
mdata->num_xfered += mdata->xfer_len;
if (mdata->num_xfered == trans->len) {
spi_finalize_current_transfer(master);
return IRQ_HANDLED;
}
len = trans->len - mdata->num_xfered;
mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len);
mtk_spi_setup_packet(master);
cnt = mdata->xfer_len / 4;
iowrite32_rep(mdata->base + SPI_TX_DATA_REG,
trans->tx_buf + mdata->num_xfered, cnt);
remainder = mdata->xfer_len % 4;
if (remainder > 0) {
reg_val = 0;
memcpy(&reg_val,
trans->tx_buf + (cnt * 4) + mdata->num_xfered,
remainder);
writel(reg_val, mdata->base + SPI_TX_DATA_REG);
}
mtk_spi_enable_transfer(master);
return IRQ_HANDLED;
}
if (mdata->tx_sgl)
trans->tx_dma += mdata->xfer_len;
if (mdata->rx_sgl)
trans->rx_dma += mdata->xfer_len;
if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) {
mdata->tx_sgl = sg_next(mdata->tx_sgl);
if (mdata->tx_sgl) {
trans->tx_dma = sg_dma_address(mdata->tx_sgl);
mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
}
}
if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) {
mdata->rx_sgl = sg_next(mdata->rx_sgl);
if (mdata->rx_sgl) {
trans->rx_dma = sg_dma_address(mdata->rx_sgl);
mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
}
}
if (!mdata->tx_sgl && !mdata->rx_sgl) {
/* spi disable dma */
cmd = readl(mdata->base + SPI_CMD_REG);
cmd &= ~SPI_CMD_TX_DMA;
cmd &= ~SPI_CMD_RX_DMA;
writel(cmd, mdata->base + SPI_CMD_REG);
spi_finalize_current_transfer(master);
return IRQ_HANDLED;
}
mtk_spi_update_mdata_len(master);
mtk_spi_setup_packet(master);
mtk_spi_setup_dma_addr(master, trans);
mtk_spi_enable_transfer(master);
return IRQ_HANDLED;
}
static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem,
struct spi_mem_op *op)
{
int opcode_len;
if (op->data.dir != SPI_MEM_NO_DATA) {
opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes;
if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len;
/* force data buffer dma-aligned. */
op->data.nbytes -= op->data.nbytes % 4;
}
}
return 0;
}
static bool mtk_spi_mem_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if (op->addr.nbytes && op->dummy.nbytes &&
op->addr.buswidth != op->dummy.buswidth)
return false;
if (op->addr.nbytes + op->dummy.nbytes > 16)
return false;
if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE >
MTK_SPI_IPM_PACKET_LOOP ||
op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0)
return false;
}
return true;
}
static void mtk_spi_mem_setup_dma_xfer(struct spi_master *master,
const struct spi_mem_op *op)
{
struct mtk_spi *mdata = spi_master_get_devdata(master);
writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK),
mdata->base + SPI_TX_SRC_REG);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (mdata->dev_comp->dma_ext)
writel((u32)(mdata->tx_dma >> 32),
mdata->base + SPI_TX_SRC_REG_64);
#endif
if (op->data.dir == SPI_MEM_DATA_IN) {
writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK),
mdata->base + SPI_RX_DST_REG);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (mdata->dev_comp->dma_ext)
writel((u32)(mdata->rx_dma >> 32),
mdata->base + SPI_RX_DST_REG_64);
#endif
}
}
static int mtk_spi_transfer_wait(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master);
/*
* For each byte we wait for 8 cycles of the SPI clock.
* Since speed is defined in Hz and we want milliseconds,
* so it should be 8 * 1000.
*/
u64 ms = 8000LL;
if (op->data.dir == SPI_MEM_NO_DATA)
ms *= 32; /* prevent we may get 0 for short transfers. */
else
ms *= op->data.nbytes;
ms = div_u64(ms, mem->spi->max_speed_hz);
ms += ms + 1000; /* 1s tolerance */
if (ms > UINT_MAX)
ms = UINT_MAX;
if (!wait_for_completion_timeout(&mdata->spimem_done,
msecs_to_jiffies(ms))) {
dev_err(mdata->dev, "spi-mem transfer timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int mtk_spi_mem_exec_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master);
u32 reg_val, nio, tx_size;
char *tx_tmp_buf, *rx_tmp_buf;
int ret = 0;
mdata->use_spimem = true;
reinit_completion(&mdata->spimem_done);
mtk_spi_reset(mdata);
mtk_spi_hw_init(mem->spi->master, mem->spi);
mtk_spi_prepare_transfer(mem->spi->master, mem->spi->max_speed_hz);
reg_val = readl(mdata->base + SPI_CFG3_IPM_REG);
/* opcode byte len */
reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK;
reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET;
/* addr & dummy byte len */
reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK;
if (op->addr.nbytes || op->dummy.nbytes)
reg_val |= (op->addr.nbytes + op->dummy.nbytes) <<
SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET;
/* data byte len */
if (op->data.dir == SPI_MEM_NO_DATA) {
reg_val |= SPI_CFG3_IPM_NODATA_FLAG;
writel(0, mdata->base + SPI_CFG1_REG);
} else {
reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG;
mdata->xfer_len = op->data.nbytes;
mtk_spi_setup_packet(mem->spi->master);
}
if (op->addr.nbytes || op->dummy.nbytes) {
if (op->addr.buswidth == 1 || op->dummy.buswidth == 1)
reg_val |= SPI_CFG3_IPM_XMODE_EN;
else
reg_val &= ~SPI_CFG3_IPM_XMODE_EN;
}
if (op->addr.buswidth == 2 ||
op->dummy.buswidth == 2 ||
op->data.buswidth == 2)
nio = 2;
else if (op->addr.buswidth == 4 ||
op->dummy.buswidth == 4 ||
op->data.buswidth == 4)
nio = 4;
else
nio = 1;
reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK;
reg_val |= PIN_MODE_CFG(nio);
reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
if (op->data.dir == SPI_MEM_DATA_IN)
reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
else
reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR;
writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
tx_size = 1 + op->addr.nbytes + op->dummy.nbytes;
if (op->data.dir == SPI_MEM_DATA_OUT)
tx_size += op->data.nbytes;
tx_size = max_t(u32, tx_size, 32);
tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA);
if (!tx_tmp_buf) {
mdata->use_spimem = false;
return -ENOMEM;
}
tx_tmp_buf[0] = op->cmd.opcode;
if (op->addr.nbytes) {
int i;
for (i = 0; i < op->addr.nbytes; i++)
tx_tmp_buf[i + 1] = op->addr.val >>
(8 * (op->addr.nbytes - i - 1));
}
if (op->dummy.nbytes)
memset(tx_tmp_buf + op->addr.nbytes + 1,
0xff,
op->dummy.nbytes);
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1,
op->data.buf.out,
op->data.nbytes);
mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf,
tx_size, DMA_TO_DEVICE);
if (dma_mapping_error(mdata->dev, mdata->tx_dma)) {
ret = -ENOMEM;
goto err_exit;
}
if (op->data.dir == SPI_MEM_DATA_IN) {
if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) {
rx_tmp_buf = kzalloc(op->data.nbytes,
GFP_KERNEL | GFP_DMA);
if (!rx_tmp_buf) {
ret = -ENOMEM;
goto unmap_tx_dma;
}
} else {
rx_tmp_buf = op->data.buf.in;
}
mdata->rx_dma = dma_map_single(mdata->dev,
rx_tmp_buf,
op->data.nbytes,
DMA_FROM_DEVICE);
if (dma_mapping_error(mdata->dev, mdata->rx_dma)) {
ret = -ENOMEM;
goto kfree_rx_tmp_buf;
}
}
reg_val = readl(mdata->base + SPI_CMD_REG);
reg_val |= SPI_CMD_TX_DMA;
if (op->data.dir == SPI_MEM_DATA_IN)
reg_val |= SPI_CMD_RX_DMA;
writel(reg_val, mdata->base + SPI_CMD_REG);
mtk_spi_mem_setup_dma_xfer(mem->spi->master, op);
mtk_spi_enable_transfer(mem->spi->master);
/* Wait for the interrupt. */
ret = mtk_spi_transfer_wait(mem, op);
if (ret)
goto unmap_rx_dma;
/* spi disable dma */
reg_val = readl(mdata->base + SPI_CMD_REG);
reg_val &= ~SPI_CMD_TX_DMA;
if (op->data.dir == SPI_MEM_DATA_IN)
reg_val &= ~SPI_CMD_RX_DMA;
writel(reg_val, mdata->base + SPI_CMD_REG);
unmap_rx_dma:
if (op->data.dir == SPI_MEM_DATA_IN) {
dma_unmap_single(mdata->dev, mdata->rx_dma,
op->data.nbytes, DMA_FROM_DEVICE);
if (!IS_ALIGNED((size_t)op->data.buf.in, 4))
memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes);
}
kfree_rx_tmp_buf:
if (op->data.dir == SPI_MEM_DATA_IN &&
!IS_ALIGNED((size_t)op->data.buf.in, 4))
kfree(rx_tmp_buf);
unmap_tx_dma:
dma_unmap_single(mdata->dev, mdata->tx_dma,
tx_size, DMA_TO_DEVICE);
err_exit:
kfree(tx_tmp_buf);
mdata->use_spimem = false;
return ret;
}
static const struct spi_controller_mem_ops mtk_spi_mem_ops = {
.adjust_op_size = mtk_spi_mem_adjust_op_size,
.supports_op = mtk_spi_mem_supports_op,
.exec_op = mtk_spi_mem_exec_op,
};
static int mtk_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_master *master;
struct mtk_spi *mdata;
int i, irq, ret, addr_bits;
master = devm_spi_alloc_master(dev, sizeof(*mdata));
if (!master)
return dev_err_probe(dev, -ENOMEM, "failed to alloc spi master\n");
master->auto_runtime_pm = true;
master->dev.of_node = dev->of_node;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
master->set_cs = mtk_spi_set_cs;
master->prepare_message = mtk_spi_prepare_message;
master->transfer_one = mtk_spi_transfer_one;
master->can_dma = mtk_spi_can_dma;
master->setup = mtk_spi_setup;
master->set_cs_timing = mtk_spi_set_hw_cs_timing;
master->use_gpio_descriptors = true;
mdata = spi_master_get_devdata(master);
mdata->dev_comp = device_get_match_data(dev);
if (mdata->dev_comp->enhance_timing)
master->mode_bits |= SPI_CS_HIGH;
if (mdata->dev_comp->must_tx)
master->flags = SPI_MASTER_MUST_TX;
if (mdata->dev_comp->ipm_design)
master->mode_bits |= SPI_LOOP;
if (mdata->dev_comp->ipm_design) {
mdata->dev = dev;
master->mem_ops = &mtk_spi_mem_ops;
init_completion(&mdata->spimem_done);
}
if (mdata->dev_comp->need_pad_sel) {
mdata->pad_num = of_property_count_u32_elems(dev->of_node,
"mediatek,pad-select");
if (mdata->pad_num < 0)
return dev_err_probe(dev, -EINVAL,
"No 'mediatek,pad-select' property\n");
mdata->pad_sel = devm_kmalloc_array(dev, mdata->pad_num,
sizeof(u32), GFP_KERNEL);
if (!mdata->pad_sel)
return -ENOMEM;
for (i = 0; i < mdata->pad_num; i++) {
of_property_read_u32_index(dev->of_node,
"mediatek,pad-select",
i, &mdata->pad_sel[i]);
if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL)
return dev_err_probe(dev, -EINVAL,
"wrong pad-sel[%d]: %u\n",
i, mdata->pad_sel[i]);
}
}
platform_set_drvdata(pdev, master);
mdata->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mdata->base))
return PTR_ERR(mdata->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
if (!dev->dma_mask)
dev->dma_mask = &dev->coherent_dma_mask;
if (mdata->dev_comp->ipm_design)
dma_set_max_seg_size(dev, SZ_16M);
else
dma_set_max_seg_size(dev, SZ_256K);
mdata->parent_clk = devm_clk_get(dev, "parent-clk");
if (IS_ERR(mdata->parent_clk))
return dev_err_probe(dev, PTR_ERR(mdata->parent_clk),
"failed to get parent-clk\n");
mdata->sel_clk = devm_clk_get(dev, "sel-clk");
if (IS_ERR(mdata->sel_clk))
return dev_err_probe(dev, PTR_ERR(mdata->sel_clk), "failed to get sel-clk\n");
mdata->spi_clk = devm_clk_get(dev, "spi-clk");
if (IS_ERR(mdata->spi_clk))
return dev_err_probe(dev, PTR_ERR(mdata->spi_clk), "failed to get spi-clk\n");
mdata->spi_hclk = devm_clk_get_optional(dev, "hclk");
if (IS_ERR(mdata->spi_hclk))
return dev_err_probe(dev, PTR_ERR(mdata->spi_hclk), "failed to get hclk\n");
ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk);
if (ret < 0)
return dev_err_probe(dev, ret, "failed to clk_set_parent\n");
ret = clk_prepare_enable(mdata->spi_hclk);
if (ret < 0)
return dev_err_probe(dev, ret, "failed to enable hclk\n");
ret = clk_prepare_enable(mdata->spi_clk);
if (ret < 0) {
clk_disable_unprepare(mdata->spi_hclk);
return dev_err_probe(dev, ret, "failed to enable spi_clk\n");
}
mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk);
if (mdata->dev_comp->no_need_unprepare) {
clk_disable(mdata->spi_clk);
clk_disable(mdata->spi_hclk);
} else {
clk_disable_unprepare(mdata->spi_clk);
clk_disable_unprepare(mdata->spi_hclk);
}
if (mdata->dev_comp->need_pad_sel) {
if (mdata->pad_num != master->num_chipselect)
return dev_err_probe(dev, -EINVAL,
"pad_num does not match num_chipselect(%d != %d)\n",
mdata->pad_num, master->num_chipselect);
if (!master->cs_gpiods && master->num_chipselect > 1)
return dev_err_probe(dev, -EINVAL,
"cs_gpios not specified and num_chipselect > 1\n");
}
if (mdata->dev_comp->dma_ext)
addr_bits = DMA_ADDR_EXT_BITS;
else
addr_bits = DMA_ADDR_DEF_BITS;
ret = dma_set_mask(dev, DMA_BIT_MASK(addr_bits));
if (ret)
dev_notice(dev, "SPI dma_set_mask(%d) failed, ret:%d\n",
addr_bits, ret);
pm_runtime_enable(dev);
ret = devm_spi_register_master(dev, master);
if (ret) {
pm_runtime_disable(dev);
return dev_err_probe(dev, ret, "failed to register master\n");
}
ret = devm_request_irq(dev, irq, mtk_spi_interrupt,
IRQF_TRIGGER_NONE, dev_name(dev), master);
if (ret) {
pm_runtime_disable(dev);
return dev_err_probe(dev, ret, "failed to register irq\n");
}
return 0;
}
static int mtk_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct mtk_spi *mdata = spi_master_get_devdata(master);
int ret;
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0)
return ret;
mtk_spi_reset(mdata);
if (mdata->dev_comp->no_need_unprepare) {
clk_unprepare(mdata->spi_clk);
clk_unprepare(mdata->spi_hclk);
}
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int mtk_spi_suspend(struct device *dev)
{
int ret;
struct spi_master *master = dev_get_drvdata(dev);
struct mtk_spi *mdata = spi_master_get_devdata(master);
ret = spi_master_suspend(master);
if (ret)
return ret;
if (!pm_runtime_suspended(dev)) {
clk_disable_unprepare(mdata->spi_clk);
clk_disable_unprepare(mdata->spi_hclk);
}
return ret;
}
static int mtk_spi_resume(struct device *dev)
{
int ret;
struct spi_master *master = dev_get_drvdata(dev);
struct mtk_spi *mdata = spi_master_get_devdata(master);
if (!pm_runtime_suspended(dev)) {
ret = clk_prepare_enable(mdata->spi_clk);
if (ret < 0) {
dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
return ret;
}
ret = clk_prepare_enable(mdata->spi_hclk);
if (ret < 0) {
dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
clk_disable_unprepare(mdata->spi_clk);
return ret;
}
}
ret = spi_master_resume(master);
if (ret < 0) {
clk_disable_unprepare(mdata->spi_clk);
clk_disable_unprepare(mdata->spi_hclk);
}
return ret;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM
static int mtk_spi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct mtk_spi *mdata = spi_master_get_devdata(master);
if (mdata->dev_comp->no_need_unprepare) {
clk_disable(mdata->spi_clk);
clk_disable(mdata->spi_hclk);
} else {
clk_disable_unprepare(mdata->spi_clk);
clk_disable_unprepare(mdata->spi_hclk);
}
return 0;
}
static int mtk_spi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct mtk_spi *mdata = spi_master_get_devdata(master);
int ret;
if (mdata->dev_comp->no_need_unprepare) {
ret = clk_enable(mdata->spi_clk);
if (ret < 0) {
dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
return ret;
}
ret = clk_enable(mdata->spi_hclk);
if (ret < 0) {
dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
clk_disable(mdata->spi_clk);
return ret;
}
} else {
ret = clk_prepare_enable(mdata->spi_clk);
if (ret < 0) {
dev_err(dev, "failed to prepare_enable spi_clk (%d)\n", ret);
return ret;
}
ret = clk_prepare_enable(mdata->spi_hclk);
if (ret < 0) {
dev_err(dev, "failed to prepare_enable spi_hclk (%d)\n", ret);
clk_disable_unprepare(mdata->spi_clk);
return ret;
}
}
return 0;
}
#endif /* CONFIG_PM */
static const struct dev_pm_ops mtk_spi_pm = {
SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume)
SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend,
mtk_spi_runtime_resume, NULL)
};
static struct platform_driver mtk_spi_driver = {
.driver = {
.name = "mtk-spi",
.pm = &mtk_spi_pm,
.of_match_table = mtk_spi_of_match,
},
.probe = mtk_spi_probe,
.remove = mtk_spi_remove,
};
module_platform_driver(mtk_spi_driver);
MODULE_DESCRIPTION("MTK SPI Controller driver");
MODULE_AUTHOR("Leilk Liu <leilk.liu@mediatek.com>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:mtk-spi");