OpenCloudOS-Kernel/arch/x86/kernel/ds.c

826 lines
18 KiB
C

/*
* Debug Store support
*
* This provides a low-level interface to the hardware's Debug Store
* feature that is used for branch trace store (BTS) and
* precise-event based sampling (PEBS).
*
* It manages:
* - per-thread and per-cpu allocation of BTS and PEBS
* - buffer overflow handling (to be done)
* - buffer access
*
* It assumes:
* - get_task_struct on all traced tasks
* - current is allowed to trace tasks
*
*
* Copyright (C) 2007-2008 Intel Corporation.
* Markus Metzger <markus.t.metzger@intel.com>, 2007-2008
*/
#include <asm/ds.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/kernel.h>
/*
* The configuration for a particular DS hardware implementation.
*/
struct ds_configuration {
/* the size of the DS structure in bytes */
unsigned char sizeof_ds;
/* the size of one pointer-typed field in the DS structure in bytes;
this covers the first 8 fields related to buffer management. */
unsigned char sizeof_field;
/* the size of a BTS/PEBS record in bytes */
unsigned char sizeof_rec[2];
};
static struct ds_configuration ds_cfg;
/*
* A BTS or PEBS tracer.
*
* This holds the configuration of the tracer and serves as a handle
* to identify tracers.
*/
struct ds_tracer {
/* the DS context (partially) owned by this tracer */
struct ds_context *context;
/* the buffer provided on ds_request() and its size in bytes */
void *buffer;
size_t size;
};
struct bts_tracer {
/* the common DS part */
struct ds_tracer ds;
/* buffer overflow notification function */
bts_ovfl_callback_t ovfl;
};
struct pebs_tracer {
/* the common DS part */
struct ds_tracer ds;
/* buffer overflow notification function */
pebs_ovfl_callback_t ovfl;
};
/*
* Debug Store (DS) save area configuration (see Intel64 and IA32
* Architectures Software Developer's Manual, section 18.5)
*
* The DS configuration consists of the following fields; different
* architetures vary in the size of those fields.
* - double-word aligned base linear address of the BTS buffer
* - write pointer into the BTS buffer
* - end linear address of the BTS buffer (one byte beyond the end of
* the buffer)
* - interrupt pointer into BTS buffer
* (interrupt occurs when write pointer passes interrupt pointer)
* - double-word aligned base linear address of the PEBS buffer
* - write pointer into the PEBS buffer
* - end linear address of the PEBS buffer (one byte beyond the end of
* the buffer)
* - interrupt pointer into PEBS buffer
* (interrupt occurs when write pointer passes interrupt pointer)
* - value to which counter is reset following counter overflow
*
* Later architectures use 64bit pointers throughout, whereas earlier
* architectures use 32bit pointers in 32bit mode.
*
*
* We compute the base address for the first 8 fields based on:
* - the field size stored in the DS configuration
* - the relative field position
* - an offset giving the start of the respective region
*
* This offset is further used to index various arrays holding
* information for BTS and PEBS at the respective index.
*
* On later 32bit processors, we only access the lower 32bit of the
* 64bit pointer fields. The upper halves will be zeroed out.
*/
enum ds_field {
ds_buffer_base = 0,
ds_index,
ds_absolute_maximum,
ds_interrupt_threshold,
};
enum ds_qualifier {
ds_bts = 0,
ds_pebs
};
static inline unsigned long ds_get(const unsigned char *base,
enum ds_qualifier qual, enum ds_field field)
{
base += (ds_cfg.sizeof_field * (field + (4 * qual)));
return *(unsigned long *)base;
}
static inline void ds_set(unsigned char *base, enum ds_qualifier qual,
enum ds_field field, unsigned long value)
{
base += (ds_cfg.sizeof_field * (field + (4 * qual)));
(*(unsigned long *)base) = value;
}
#define DS_ALIGNMENT (1 << 3) /* BTS and PEBS buffer alignment */
/*
* Locking is done only for allocating BTS or PEBS resources.
*/
static spinlock_t ds_lock = __SPIN_LOCK_UNLOCKED(ds_lock);
/*
* We either support (system-wide) per-cpu or per-thread allocation.
* We distinguish the two based on the task_struct pointer, where a
* NULL pointer indicates per-cpu allocation for the current cpu.
*
* Allocations are use-counted. As soon as resources are allocated,
* further allocations must be of the same type (per-cpu or
* per-thread). We model this by counting allocations (i.e. the number
* of tracers of a certain type) for one type negatively:
* =0 no tracers
* >0 number of per-thread tracers
* <0 number of per-cpu tracers
*
* The below functions to get and put tracers and to check the
* allocation type require the ds_lock to be held by the caller.
*
* Tracers essentially gives the number of ds contexts for a certain
* type of allocation.
*/
static long tracers;
static inline void get_tracer(struct task_struct *task)
{
tracers += (task ? 1 : -1);
}
static inline void put_tracer(struct task_struct *task)
{
tracers -= (task ? 1 : -1);
}
static inline int check_tracer(struct task_struct *task)
{
return (task ? (tracers >= 0) : (tracers <= 0));
}
/*
* The DS context is either attached to a thread or to a cpu:
* - in the former case, the thread_struct contains a pointer to the
* attached context.
* - in the latter case, we use a static array of per-cpu context
* pointers.
*
* Contexts are use-counted. They are allocated on first access and
* deallocated when the last user puts the context.
*/
static DEFINE_PER_CPU(struct ds_context *, system_context);
#define this_system_context per_cpu(system_context, smp_processor_id())
static inline struct ds_context *ds_get_context(struct task_struct *task)
{
struct ds_context **p_context =
(task ? &task->thread.ds_ctx : &this_system_context);
struct ds_context *context = *p_context;
unsigned long irq;
if (!context) {
context = kzalloc(sizeof(*context), GFP_KERNEL);
if (!context)
return NULL;
spin_lock_irqsave(&ds_lock, irq);
if (*p_context) {
kfree(context);
context = *p_context;
} else {
*p_context = context;
context->this = p_context;
context->task = task;
if (task)
set_tsk_thread_flag(task, TIF_DS_AREA_MSR);
if (!task || (task == current))
wrmsrl(MSR_IA32_DS_AREA,
(unsigned long)context->ds);
}
spin_unlock_irqrestore(&ds_lock, irq);
}
context->count++;
return context;
}
static inline void ds_put_context(struct ds_context *context)
{
unsigned long irq;
if (!context)
return;
spin_lock_irqsave(&ds_lock, irq);
if (--context->count)
goto out;
*(context->this) = NULL;
if (context->task)
clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR);
if (!context->task || (context->task == current))
wrmsrl(MSR_IA32_DS_AREA, 0);
kfree(context);
out:
spin_unlock_irqrestore(&ds_lock, irq);
}
/*
* Handle a buffer overflow
*
* context: the ds context
* qual: the buffer type
*/
static void ds_overflow(struct ds_context *context, enum ds_qualifier qual)
{
switch (qual) {
case ds_bts: {
struct bts_tracer *tracer =
container_of(context->owner[qual],
struct bts_tracer, ds);
if (tracer->ovfl)
tracer->ovfl(tracer);
}
break;
case ds_pebs: {
struct pebs_tracer *tracer =
container_of(context->owner[qual],
struct pebs_tracer, ds);
if (tracer->ovfl)
tracer->ovfl(tracer);
}
break;
}
}
static void ds_install_ds_config(struct ds_context *context,
enum ds_qualifier qual,
void *base, size_t size, size_t ith)
{
unsigned long buffer, adj;
/* adjust the buffer address and size to meet alignment
* constraints:
* - buffer is double-word aligned
* - size is multiple of record size
*
* We checked the size at the very beginning; we have enough
* space to do the adjustment.
*/
buffer = (unsigned long)base;
adj = ALIGN(buffer, DS_ALIGNMENT) - buffer;
buffer += adj;
size -= adj;
size /= ds_cfg.sizeof_rec[qual];
size *= ds_cfg.sizeof_rec[qual];
ds_set(context->ds, qual, ds_buffer_base, buffer);
ds_set(context->ds, qual, ds_index, buffer);
ds_set(context->ds, qual, ds_absolute_maximum, buffer + size);
/* The value for 'no threshold' is -1, which will set the
* threshold outside of the buffer, just like we want it.
*/
ds_set(context->ds, qual,
ds_interrupt_threshold, buffer + size - ith);
}
static int ds_request(struct ds_tracer *tracer, enum ds_qualifier qual,
struct task_struct *task,
void *base, size_t size, size_t th)
{
struct ds_context *context;
unsigned long irq;
int error;
error = -EOPNOTSUPP;
if (!ds_cfg.sizeof_ds)
goto out;
error = -EINVAL;
if (!base)
goto out;
/* we require some space to do alignment adjustments below */
error = -EINVAL;
if (size < (DS_ALIGNMENT + ds_cfg.sizeof_rec[qual]))
goto out;
if (th != (size_t)-1) {
th *= ds_cfg.sizeof_rec[qual];
error = -EINVAL;
if (size <= th)
goto out;
}
tracer->buffer = base;
tracer->size = size;
error = -ENOMEM;
context = ds_get_context(task);
if (!context)
goto out;
tracer->context = context;
spin_lock_irqsave(&ds_lock, irq);
error = -EPERM;
if (!check_tracer(task))
goto out_unlock;
get_tracer(task);
error = -EPERM;
if (context->owner[qual])
goto out_put_tracer;
context->owner[qual] = tracer;
spin_unlock_irqrestore(&ds_lock, irq);
ds_install_ds_config(context, qual, base, size, th);
return 0;
out_put_tracer:
put_tracer(task);
out_unlock:
spin_unlock_irqrestore(&ds_lock, irq);
ds_put_context(context);
tracer->context = NULL;
out:
return error;
}
struct bts_tracer *ds_request_bts(struct task_struct *task,
void *base, size_t size,
bts_ovfl_callback_t ovfl, size_t th)
{
struct bts_tracer *tracer;
int error;
/* buffer overflow notification is not yet implemented */
error = -EOPNOTSUPP;
if (ovfl)
goto out;
error = -ENOMEM;
tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
if (!tracer)
goto out;
tracer->ovfl = ovfl;
error = ds_request(&tracer->ds, ds_bts, task, base, size, th);
if (error < 0)
goto out_tracer;
return tracer;
out_tracer:
kfree(tracer);
out:
return ERR_PTR(error);
}
struct pebs_tracer *ds_request_pebs(struct task_struct *task,
void *base, size_t size,
pebs_ovfl_callback_t ovfl, size_t th)
{
struct pebs_tracer *tracer;
int error;
/* buffer overflow notification is not yet implemented */
error = -EOPNOTSUPP;
if (ovfl)
goto out;
error = -ENOMEM;
tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
if (!tracer)
goto out;
tracer->ovfl = ovfl;
error = ds_request(&tracer->ds, ds_pebs, task, base, size, th);
if (error < 0)
goto out_tracer;
return tracer;
out_tracer:
kfree(tracer);
out:
return ERR_PTR(error);
}
static void ds_release(struct ds_tracer *tracer, enum ds_qualifier qual)
{
BUG_ON(tracer->context->owner[qual] != tracer);
tracer->context->owner[qual] = NULL;
put_tracer(tracer->context->task);
ds_put_context(tracer->context);
}
int ds_release_bts(struct bts_tracer *tracer)
{
if (!tracer)
return -EINVAL;
ds_release(&tracer->ds, ds_bts);
kfree(tracer);
return 0;
}
int ds_release_pebs(struct pebs_tracer *tracer)
{
if (!tracer)
return -EINVAL;
ds_release(&tracer->ds, ds_pebs);
kfree(tracer);
return 0;
}
static size_t ds_get_index(struct ds_context *context, enum ds_qualifier qual)
{
unsigned long base, index;
base = ds_get(context->ds, qual, ds_buffer_base);
index = ds_get(context->ds, qual, ds_index);
return (index - base) / ds_cfg.sizeof_rec[qual];
}
int ds_get_bts_index(struct bts_tracer *tracer, size_t *pos)
{
if (!tracer)
return -EINVAL;
if (!pos)
return -EINVAL;
*pos = ds_get_index(tracer->ds.context, ds_bts);
return 0;
}
int ds_get_pebs_index(struct pebs_tracer *tracer, size_t *pos)
{
if (!tracer)
return -EINVAL;
if (!pos)
return -EINVAL;
*pos = ds_get_index(tracer->ds.context, ds_pebs);
return 0;
}
static size_t ds_get_end(struct ds_context *context, enum ds_qualifier qual)
{
unsigned long base, max;
base = ds_get(context->ds, qual, ds_buffer_base);
max = ds_get(context->ds, qual, ds_absolute_maximum);
return (max - base) / ds_cfg.sizeof_rec[qual];
}
int ds_get_bts_end(struct bts_tracer *tracer, size_t *pos)
{
if (!tracer)
return -EINVAL;
if (!pos)
return -EINVAL;
*pos = ds_get_end(tracer->ds.context, ds_bts);
return 0;
}
int ds_get_pebs_end(struct pebs_tracer *tracer, size_t *pos)
{
if (!tracer)
return -EINVAL;
if (!pos)
return -EINVAL;
*pos = ds_get_end(tracer->ds.context, ds_pebs);
return 0;
}
static int ds_access(struct ds_context *context, enum ds_qualifier qual,
size_t index, const void **record)
{
unsigned long base, idx;
if (!record)
return -EINVAL;
base = ds_get(context->ds, qual, ds_buffer_base);
idx = base + (index * ds_cfg.sizeof_rec[qual]);
if (idx > ds_get(context->ds, qual, ds_absolute_maximum))
return -EINVAL;
*record = (const void *)idx;
return ds_cfg.sizeof_rec[qual];
}
int ds_access_bts(struct bts_tracer *tracer, size_t index,
const void **record)
{
if (!tracer)
return -EINVAL;
return ds_access(tracer->ds.context, ds_bts, index, record);
}
int ds_access_pebs(struct pebs_tracer *tracer, size_t index,
const void **record)
{
if (!tracer)
return -EINVAL;
return ds_access(tracer->ds.context, ds_pebs, index, record);
}
static int ds_write(struct ds_context *context, enum ds_qualifier qual,
const void *record, size_t size)
{
int bytes_written = 0;
if (!record)
return -EINVAL;
while (size) {
unsigned long base, index, end, write_end, int_th;
unsigned long write_size, adj_write_size;
/*
* write as much as possible without producing an
* overflow interrupt.
*
* interrupt_threshold must either be
* - bigger than absolute_maximum or
* - point to a record between buffer_base and absolute_maximum
*
* index points to a valid record.
*/
base = ds_get(context->ds, qual, ds_buffer_base);
index = ds_get(context->ds, qual, ds_index);
end = ds_get(context->ds, qual, ds_absolute_maximum);
int_th = ds_get(context->ds, qual, ds_interrupt_threshold);
write_end = min(end, int_th);
/* if we are already beyond the interrupt threshold,
* we fill the entire buffer */
if (write_end <= index)
write_end = end;
if (write_end <= index)
break;
write_size = min((unsigned long) size, write_end - index);
memcpy((void *)index, record, write_size);
record = (const char *)record + write_size;
size -= write_size;
bytes_written += write_size;
adj_write_size = write_size / ds_cfg.sizeof_rec[qual];
adj_write_size *= ds_cfg.sizeof_rec[qual];
/* zero out trailing bytes */
memset((char *)index + write_size, 0,
adj_write_size - write_size);
index += adj_write_size;
if (index >= end)
index = base;
ds_set(context->ds, qual, ds_index, index);
if (index >= int_th)
ds_overflow(context, qual);
}
return bytes_written;
}
int ds_write_bts(struct bts_tracer *tracer, const void *record, size_t size)
{
if (!tracer)
return -EINVAL;
return ds_write(tracer->ds.context, ds_bts, record, size);
}
int ds_write_pebs(struct pebs_tracer *tracer, const void *record, size_t size)
{
if (!tracer)
return -EINVAL;
return ds_write(tracer->ds.context, ds_pebs, record, size);
}
static void ds_reset_or_clear(struct ds_context *context,
enum ds_qualifier qual, int clear)
{
unsigned long base, end;
base = ds_get(context->ds, qual, ds_buffer_base);
end = ds_get(context->ds, qual, ds_absolute_maximum);
if (clear)
memset((void *)base, 0, end - base);
ds_set(context->ds, qual, ds_index, base);
}
int ds_reset_bts(struct bts_tracer *tracer)
{
if (!tracer)
return -EINVAL;
ds_reset_or_clear(tracer->ds.context, ds_bts, /* clear = */ 0);
return 0;
}
int ds_reset_pebs(struct pebs_tracer *tracer)
{
if (!tracer)
return -EINVAL;
ds_reset_or_clear(tracer->ds.context, ds_pebs, /* clear = */ 0);
return 0;
}
int ds_clear_bts(struct bts_tracer *tracer)
{
if (!tracer)
return -EINVAL;
ds_reset_or_clear(tracer->ds.context, ds_bts, /* clear = */ 1);
return 0;
}
int ds_clear_pebs(struct pebs_tracer *tracer)
{
if (!tracer)
return -EINVAL;
ds_reset_or_clear(tracer->ds.context, ds_pebs, /* clear = */ 1);
return 0;
}
int ds_get_pebs_reset(struct pebs_tracer *tracer, u64 *value)
{
if (!tracer)
return -EINVAL;
if (!value)
return -EINVAL;
*value = *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8));
return 0;
}
int ds_set_pebs_reset(struct pebs_tracer *tracer, u64 value)
{
if (!tracer)
return -EINVAL;
*(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8)) = value;
return 0;
}
static const struct ds_configuration ds_cfg_var = {
.sizeof_ds = sizeof(long) * 12,
.sizeof_field = sizeof(long),
.sizeof_rec[ds_bts] = sizeof(long) * 3,
#ifdef __i386__
.sizeof_rec[ds_pebs] = sizeof(long) * 10
#else
.sizeof_rec[ds_pebs] = sizeof(long) * 18
#endif
};
static const struct ds_configuration ds_cfg_64 = {
.sizeof_ds = 8 * 12,
.sizeof_field = 8,
.sizeof_rec[ds_bts] = 8 * 3,
#ifdef __i386__
.sizeof_rec[ds_pebs] = 8 * 10
#else
.sizeof_rec[ds_pebs] = 8 * 18
#endif
};
static inline void
ds_configure(const struct ds_configuration *cfg)
{
ds_cfg = *cfg;
printk(KERN_INFO "DS available\n");
BUG_ON(MAX_SIZEOF_DS < ds_cfg.sizeof_ds);
}
void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
{
switch (c->x86) {
case 0x6:
switch (c->x86_model) {
case 0 ... 0xC:
/* sorry, don't know about them */
break;
case 0xD:
case 0xE: /* Pentium M */
ds_configure(&ds_cfg_var);
break;
default: /* Core2, Atom, ... */
ds_configure(&ds_cfg_64);
break;
}
break;
case 0xF:
switch (c->x86_model) {
case 0x0:
case 0x1:
case 0x2: /* Netburst */
ds_configure(&ds_cfg_var);
break;
default:
/* sorry, don't know about them */
break;
}
break;
default:
/* sorry, don't know about them */
break;
}
}
void ds_free(struct ds_context *context)
{
/* This is called when the task owning the parameter context
* is dying. There should not be any user of that context left
* to disturb us, anymore. */
unsigned long leftovers = context->count;
while (leftovers--) {
put_tracer(context->task);
ds_put_context(context);
}
}