OpenCloudOS-Kernel/drivers/s390/crypto/zcrypt_ccamisc.c

1980 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright IBM Corp. 2019
* Author(s): Harald Freudenberger <freude@linux.ibm.com>
* Ingo Franzki <ifranzki@linux.ibm.com>
*
* Collection of CCA misc functions used by zcrypt and pkey
*/
#define KMSG_COMPONENT "zcrypt"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <asm/zcrypt.h>
#include <asm/pkey.h>
#include "ap_bus.h"
#include "zcrypt_api.h"
#include "zcrypt_debug.h"
#include "zcrypt_msgtype6.h"
#include "zcrypt_ccamisc.h"
#define DEBUG_DBG(...) ZCRYPT_DBF(DBF_DEBUG, ##__VA_ARGS__)
#define DEBUG_INFO(...) ZCRYPT_DBF(DBF_INFO, ##__VA_ARGS__)
#define DEBUG_WARN(...) ZCRYPT_DBF(DBF_WARN, ##__VA_ARGS__)
#define DEBUG_ERR(...) ZCRYPT_DBF(DBF_ERR, ##__VA_ARGS__)
/* Size of parameter block used for all cca requests/replies */
#define PARMBSIZE 512
/* Size of vardata block used for some of the cca requests/replies */
#define VARDATASIZE 4096
struct cca_info_list_entry {
struct list_head list;
u16 cardnr;
u16 domain;
struct cca_info info;
};
/* a list with cca_info_list_entry entries */
static LIST_HEAD(cca_info_list);
static DEFINE_SPINLOCK(cca_info_list_lock);
/*
* Simple check if the token is a valid CCA secure AES data key
* token. If keybitsize is given, the bitsize of the key is
* also checked. Returns 0 on success or errno value on failure.
*/
int cca_check_secaeskeytoken(debug_info_t *dbg, int dbflvl,
const u8 *token, int keybitsize)
{
struct secaeskeytoken *t = (struct secaeskeytoken *) token;
#define DBF(...) debug_sprintf_event(dbg, dbflvl, ##__VA_ARGS__)
if (t->type != TOKTYPE_CCA_INTERNAL) {
if (dbg)
DBF("%s token check failed, type 0x%02x != 0x%02x\n",
__func__, (int) t->type, TOKTYPE_CCA_INTERNAL);
return -EINVAL;
}
if (t->version != TOKVER_CCA_AES) {
if (dbg)
DBF("%s token check failed, version 0x%02x != 0x%02x\n",
__func__, (int) t->version, TOKVER_CCA_AES);
return -EINVAL;
}
if (keybitsize > 0 && t->bitsize != keybitsize) {
if (dbg)
DBF("%s token check failed, bitsize %d != %d\n",
__func__, (int) t->bitsize, keybitsize);
return -EINVAL;
}
#undef DBF
return 0;
}
EXPORT_SYMBOL(cca_check_secaeskeytoken);
/*
* Simple check if the token is a valid CCA secure AES cipher key
* token. If keybitsize is given, the bitsize of the key is
* also checked. If checkcpacfexport is enabled, the key is also
* checked for the export flag to allow CPACF export.
* Returns 0 on success or errno value on failure.
*/
int cca_check_secaescipherkey(debug_info_t *dbg, int dbflvl,
const u8 *token, int keybitsize,
int checkcpacfexport)
{
struct cipherkeytoken *t = (struct cipherkeytoken *) token;
bool keybitsizeok = true;
#define DBF(...) debug_sprintf_event(dbg, dbflvl, ##__VA_ARGS__)
if (t->type != TOKTYPE_CCA_INTERNAL) {
if (dbg)
DBF("%s token check failed, type 0x%02x != 0x%02x\n",
__func__, (int) t->type, TOKTYPE_CCA_INTERNAL);
return -EINVAL;
}
if (t->version != TOKVER_CCA_VLSC) {
if (dbg)
DBF("%s token check failed, version 0x%02x != 0x%02x\n",
__func__, (int) t->version, TOKVER_CCA_VLSC);
return -EINVAL;
}
if (t->algtype != 0x02) {
if (dbg)
DBF("%s token check failed, algtype 0x%02x != 0x02\n",
__func__, (int) t->algtype);
return -EINVAL;
}
if (t->keytype != 0x0001) {
if (dbg)
DBF("%s token check failed, keytype 0x%04x != 0x0001\n",
__func__, (int) t->keytype);
return -EINVAL;
}
if (t->plfver != 0x00 && t->plfver != 0x01) {
if (dbg)
DBF("%s token check failed, unknown plfver 0x%02x\n",
__func__, (int) t->plfver);
return -EINVAL;
}
if (t->wpllen != 512 && t->wpllen != 576 && t->wpllen != 640) {
if (dbg)
DBF("%s token check failed, unknown wpllen %d\n",
__func__, (int) t->wpllen);
return -EINVAL;
}
if (keybitsize > 0) {
switch (keybitsize) {
case 128:
if (t->wpllen != (t->plfver ? 640 : 512))
keybitsizeok = false;
break;
case 192:
if (t->wpllen != (t->plfver ? 640 : 576))
keybitsizeok = false;
break;
case 256:
if (t->wpllen != 640)
keybitsizeok = false;
break;
default:
keybitsizeok = false;
break;
}
if (!keybitsizeok) {
if (dbg)
DBF("%s token check failed, bitsize %d\n",
__func__, keybitsize);
return -EINVAL;
}
}
if (checkcpacfexport && !(t->kmf1 & KMF1_XPRT_CPAC)) {
if (dbg)
DBF("%s token check failed, XPRT_CPAC bit is 0\n",
__func__);
return -EINVAL;
}
#undef DBF
return 0;
}
EXPORT_SYMBOL(cca_check_secaescipherkey);
/*
* Simple check if the token is a valid CCA secure ECC private
* key token. Returns 0 on success or errno value on failure.
*/
int cca_check_sececckeytoken(debug_info_t *dbg, int dbflvl,
const u8 *token, size_t keysize,
int checkcpacfexport)
{
struct eccprivkeytoken *t = (struct eccprivkeytoken *) token;
#define DBF(...) debug_sprintf_event(dbg, dbflvl, ##__VA_ARGS__)
if (t->type != TOKTYPE_CCA_INTERNAL_PKA) {
if (dbg)
DBF("%s token check failed, type 0x%02x != 0x%02x\n",
__func__, (int) t->type, TOKTYPE_CCA_INTERNAL_PKA);
return -EINVAL;
}
if (t->len > keysize) {
if (dbg)
DBF("%s token check failed, len %d > keysize %zu\n",
__func__, (int) t->len, keysize);
return -EINVAL;
}
if (t->secid != 0x20) {
if (dbg)
DBF("%s token check failed, secid 0x%02x != 0x20\n",
__func__, (int) t->secid);
return -EINVAL;
}
if (checkcpacfexport && !(t->kutc & 0x01)) {
if (dbg)
DBF("%s token check failed, XPRTCPAC bit is 0\n",
__func__);
return -EINVAL;
}
#undef DBF
return 0;
}
EXPORT_SYMBOL(cca_check_sececckeytoken);
/*
* Allocate consecutive memory for request CPRB, request param
* block, reply CPRB and reply param block and fill in values
* for the common fields. Returns 0 on success or errno value
* on failure.
*/
static int alloc_and_prep_cprbmem(size_t paramblen,
u8 **pcprbmem,
struct CPRBX **preqCPRB,
struct CPRBX **prepCPRB)
{
u8 *cprbmem;
size_t cprbplusparamblen = sizeof(struct CPRBX) + paramblen;
struct CPRBX *preqcblk, *prepcblk;
/*
* allocate consecutive memory for request CPRB, request param
* block, reply CPRB and reply param block
*/
cprbmem = kcalloc(2, cprbplusparamblen, GFP_KERNEL);
if (!cprbmem)
return -ENOMEM;
preqcblk = (struct CPRBX *) cprbmem;
prepcblk = (struct CPRBX *) (cprbmem + cprbplusparamblen);
/* fill request cprb struct */
preqcblk->cprb_len = sizeof(struct CPRBX);
preqcblk->cprb_ver_id = 0x02;
memcpy(preqcblk->func_id, "T2", 2);
preqcblk->rpl_msgbl = cprbplusparamblen;
if (paramblen) {
preqcblk->req_parmb =
((u8 __user *) preqcblk) + sizeof(struct CPRBX);
preqcblk->rpl_parmb =
((u8 __user *) prepcblk) + sizeof(struct CPRBX);
}
*pcprbmem = cprbmem;
*preqCPRB = preqcblk;
*prepCPRB = prepcblk;
return 0;
}
/*
* Free the cprb memory allocated with the function above.
* If the scrub value is not zero, the memory is filled
* with zeros before freeing (useful if there was some
* clear key material in there).
*/
static void free_cprbmem(void *mem, size_t paramblen, int scrub)
{
if (scrub)
memzero_explicit(mem, 2 * (sizeof(struct CPRBX) + paramblen));
kfree(mem);
}
/*
* Helper function to prepare the xcrb struct
*/
static inline void prep_xcrb(struct ica_xcRB *pxcrb,
u16 cardnr,
struct CPRBX *preqcblk,
struct CPRBX *prepcblk)
{
memset(pxcrb, 0, sizeof(*pxcrb));
pxcrb->agent_ID = 0x4341; /* 'CA' */
pxcrb->user_defined = (cardnr == 0xFFFF ? AUTOSELECT : cardnr);
pxcrb->request_control_blk_length =
preqcblk->cprb_len + preqcblk->req_parml;
pxcrb->request_control_blk_addr = (void __user *) preqcblk;
pxcrb->reply_control_blk_length = preqcblk->rpl_msgbl;
pxcrb->reply_control_blk_addr = (void __user *) prepcblk;
}
/*
* Generate (random) CCA AES DATA secure key.
*/
int cca_genseckey(u16 cardnr, u16 domain,
u32 keybitsize, u8 seckey[SECKEYBLOBSIZE])
{
int i, rc, keysize;
int seckeysize;
u8 *mem, *ptr;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct kgreqparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct lv1 {
u16 len;
char key_form[8];
char key_length[8];
char key_type1[8];
char key_type2[8];
} lv1;
struct lv2 {
u16 len;
struct keyid {
u16 len;
u16 attr;
u8 data[SECKEYBLOBSIZE];
} keyid[6];
} lv2;
} __packed * preqparm;
struct kgrepparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct lv3 {
u16 len;
u16 keyblocklen;
struct {
u16 toklen;
u16 tokattr;
u8 tok[0];
/* ... some more data ... */
} keyblock;
} lv3;
} __packed * prepparm;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
/* fill request cprb param block with KG request */
preqparm = (struct kgreqparm __force *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "KG", 2);
preqparm->rule_array_len = sizeof(preqparm->rule_array_len);
preqparm->lv1.len = sizeof(struct lv1);
memcpy(preqparm->lv1.key_form, "OP ", 8);
switch (keybitsize) {
case PKEY_SIZE_AES_128:
case PKEY_KEYTYPE_AES_128: /* older ioctls used this */
keysize = 16;
memcpy(preqparm->lv1.key_length, "KEYLN16 ", 8);
break;
case PKEY_SIZE_AES_192:
case PKEY_KEYTYPE_AES_192: /* older ioctls used this */
keysize = 24;
memcpy(preqparm->lv1.key_length, "KEYLN24 ", 8);
break;
case PKEY_SIZE_AES_256:
case PKEY_KEYTYPE_AES_256: /* older ioctls used this */
keysize = 32;
memcpy(preqparm->lv1.key_length, "KEYLN32 ", 8);
break;
default:
DEBUG_ERR("%s unknown/unsupported keybitsize %d\n",
__func__, keybitsize);
rc = -EINVAL;
goto out;
}
memcpy(preqparm->lv1.key_type1, "AESDATA ", 8);
preqparm->lv2.len = sizeof(struct lv2);
for (i = 0; i < 6; i++) {
preqparm->lv2.keyid[i].len = sizeof(struct keyid);
preqparm->lv2.keyid[i].attr = (i == 2 ? 0x30 : 0x10);
}
preqcblk->req_parml = sizeof(struct kgreqparm);
/* fill xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR("%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, errno %d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR("%s secure key generate failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
rc = -EIO;
goto out;
}
/* process response cprb param block */
ptr = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepcblk->rpl_parmb = (u8 __user *) ptr;
prepparm = (struct kgrepparm *) ptr;
/* check length of the returned secure key token */
seckeysize = prepparm->lv3.keyblock.toklen
- sizeof(prepparm->lv3.keyblock.toklen)
- sizeof(prepparm->lv3.keyblock.tokattr);
if (seckeysize != SECKEYBLOBSIZE) {
DEBUG_ERR("%s secure token size mismatch %d != %d bytes\n",
__func__, seckeysize, SECKEYBLOBSIZE);
rc = -EIO;
goto out;
}
/* check secure key token */
rc = cca_check_secaeskeytoken(zcrypt_dbf_info, DBF_ERR,
prepparm->lv3.keyblock.tok, 8*keysize);
if (rc) {
rc = -EIO;
goto out;
}
/* copy the generated secure key token */
memcpy(seckey, prepparm->lv3.keyblock.tok, SECKEYBLOBSIZE);
out:
free_cprbmem(mem, PARMBSIZE, 0);
return rc;
}
EXPORT_SYMBOL(cca_genseckey);
/*
* Generate an CCA AES DATA secure key with given key value.
*/
int cca_clr2seckey(u16 cardnr, u16 domain, u32 keybitsize,
const u8 *clrkey, u8 seckey[SECKEYBLOBSIZE])
{
int rc, keysize, seckeysize;
u8 *mem, *ptr;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct cmreqparm {
u8 subfunc_code[2];
u16 rule_array_len;
char rule_array[8];
struct lv1 {
u16 len;
u8 clrkey[0];
} lv1;
struct lv2 {
u16 len;
struct keyid {
u16 len;
u16 attr;
u8 data[SECKEYBLOBSIZE];
} keyid;
} lv2;
} __packed * preqparm;
struct lv2 *plv2;
struct cmrepparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct lv3 {
u16 len;
u16 keyblocklen;
struct {
u16 toklen;
u16 tokattr;
u8 tok[0];
/* ... some more data ... */
} keyblock;
} lv3;
} __packed * prepparm;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
/* fill request cprb param block with CM request */
preqparm = (struct cmreqparm __force *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "CM", 2);
memcpy(preqparm->rule_array, "AES ", 8);
preqparm->rule_array_len =
sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array);
switch (keybitsize) {
case PKEY_SIZE_AES_128:
case PKEY_KEYTYPE_AES_128: /* older ioctls used this */
keysize = 16;
break;
case PKEY_SIZE_AES_192:
case PKEY_KEYTYPE_AES_192: /* older ioctls used this */
keysize = 24;
break;
case PKEY_SIZE_AES_256:
case PKEY_KEYTYPE_AES_256: /* older ioctls used this */
keysize = 32;
break;
default:
DEBUG_ERR("%s unknown/unsupported keybitsize %d\n",
__func__, keybitsize);
rc = -EINVAL;
goto out;
}
preqparm->lv1.len = sizeof(struct lv1) + keysize;
memcpy(preqparm->lv1.clrkey, clrkey, keysize);
plv2 = (struct lv2 *) (((u8 *) &preqparm->lv2) + keysize);
plv2->len = sizeof(struct lv2);
plv2->keyid.len = sizeof(struct keyid);
plv2->keyid.attr = 0x30;
preqcblk->req_parml = sizeof(struct cmreqparm) + keysize;
/* fill xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR("%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR("%s clear key import failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
rc = -EIO;
goto out;
}
/* process response cprb param block */
ptr = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepcblk->rpl_parmb = (u8 __user *) ptr;
prepparm = (struct cmrepparm *) ptr;
/* check length of the returned secure key token */
seckeysize = prepparm->lv3.keyblock.toklen
- sizeof(prepparm->lv3.keyblock.toklen)
- sizeof(prepparm->lv3.keyblock.tokattr);
if (seckeysize != SECKEYBLOBSIZE) {
DEBUG_ERR("%s secure token size mismatch %d != %d bytes\n",
__func__, seckeysize, SECKEYBLOBSIZE);
rc = -EIO;
goto out;
}
/* check secure key token */
rc = cca_check_secaeskeytoken(zcrypt_dbf_info, DBF_ERR,
prepparm->lv3.keyblock.tok, 8*keysize);
if (rc) {
rc = -EIO;
goto out;
}
/* copy the generated secure key token */
if (seckey)
memcpy(seckey, prepparm->lv3.keyblock.tok, SECKEYBLOBSIZE);
out:
free_cprbmem(mem, PARMBSIZE, 1);
return rc;
}
EXPORT_SYMBOL(cca_clr2seckey);
/*
* Derive proteced key from an CCA AES DATA secure key.
*/
int cca_sec2protkey(u16 cardnr, u16 domain,
const u8 seckey[SECKEYBLOBSIZE],
u8 *protkey, u32 *protkeylen, u32 *protkeytype)
{
int rc;
u8 *mem, *ptr;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct uskreqparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct lv1 {
u16 len;
u16 attr_len;
u16 attr_flags;
} lv1;
struct lv2 {
u16 len;
u16 attr_len;
u16 attr_flags;
u8 token[0]; /* cca secure key token */
} lv2;
} __packed * preqparm;
struct uskrepparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct lv3 {
u16 len;
u16 attr_len;
u16 attr_flags;
struct cpacfkeyblock {
u8 version; /* version of this struct */
u8 flags[2];
u8 algo;
u8 form;
u8 pad1[3];
u16 len;
u8 key[64]; /* the key (len bytes) */
u16 keyattrlen;
u8 keyattr[32];
u8 pad2[1];
u8 vptype;
u8 vp[32]; /* verification pattern */
} ckb;
} lv3;
} __packed * prepparm;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
/* fill request cprb param block with USK request */
preqparm = (struct uskreqparm __force *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "US", 2);
preqparm->rule_array_len = sizeof(preqparm->rule_array_len);
preqparm->lv1.len = sizeof(struct lv1);
preqparm->lv1.attr_len = sizeof(struct lv1) - sizeof(preqparm->lv1.len);
preqparm->lv1.attr_flags = 0x0001;
preqparm->lv2.len = sizeof(struct lv2) + SECKEYBLOBSIZE;
preqparm->lv2.attr_len = sizeof(struct lv2)
- sizeof(preqparm->lv2.len) + SECKEYBLOBSIZE;
preqparm->lv2.attr_flags = 0x0000;
memcpy(preqparm->lv2.token, seckey, SECKEYBLOBSIZE);
preqcblk->req_parml = sizeof(struct uskreqparm) + SECKEYBLOBSIZE;
/* fill xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR("%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR("%s unwrap secure key failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
if (prepcblk->ccp_rtcode == 8 && prepcblk->ccp_rscode == 2290)
rc = -EAGAIN;
else
rc = -EIO;
goto out;
}
if (prepcblk->ccp_rscode != 0) {
DEBUG_WARN("%s unwrap secure key warning, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
}
/* process response cprb param block */
ptr = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepcblk->rpl_parmb = (u8 __user *) ptr;
prepparm = (struct uskrepparm *) ptr;
/* check the returned keyblock */
if (prepparm->lv3.ckb.version != 0x01 &&
prepparm->lv3.ckb.version != 0x02) {
DEBUG_ERR("%s reply param keyblock version mismatch 0x%02x\n",
__func__, (int) prepparm->lv3.ckb.version);
rc = -EIO;
goto out;
}
/* copy the tanslated protected key */
switch (prepparm->lv3.ckb.len) {
case 16+32:
/* AES 128 protected key */
if (protkeytype)
*protkeytype = PKEY_KEYTYPE_AES_128;
break;
case 24+32:
/* AES 192 protected key */
if (protkeytype)
*protkeytype = PKEY_KEYTYPE_AES_192;
break;
case 32+32:
/* AES 256 protected key */
if (protkeytype)
*protkeytype = PKEY_KEYTYPE_AES_256;
break;
default:
DEBUG_ERR("%s unknown/unsupported keylen %d\n",
__func__, prepparm->lv3.ckb.len);
rc = -EIO;
goto out;
}
memcpy(protkey, prepparm->lv3.ckb.key, prepparm->lv3.ckb.len);
if (protkeylen)
*protkeylen = prepparm->lv3.ckb.len;
out:
free_cprbmem(mem, PARMBSIZE, 0);
return rc;
}
EXPORT_SYMBOL(cca_sec2protkey);
/*
* AES cipher key skeleton created with CSNBKTB2 with these flags:
* INTERNAL, NO-KEY, AES, CIPHER, ANY-MODE, NOEX-SYM, NOEXAASY,
* NOEXUASY, XPRTCPAC, NOEX-RAW, NOEX-DES, NOEX-AES, NOEX-RSA
* used by cca_gencipherkey() and cca_clr2cipherkey().
*/
static const u8 aes_cipher_key_skeleton[] = {
0x01, 0x00, 0x00, 0x38, 0x05, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x02, 0x00, 0x01, 0x02, 0xc0, 0x00, 0xff,
0x00, 0x03, 0x08, 0xc8, 0x00, 0x00, 0x00, 0x00 };
#define SIZEOF_SKELETON (sizeof(aes_cipher_key_skeleton))
/*
* Generate (random) CCA AES CIPHER secure key.
*/
int cca_gencipherkey(u16 cardnr, u16 domain, u32 keybitsize, u32 keygenflags,
u8 *keybuf, size_t *keybufsize)
{
int rc;
u8 *mem, *ptr;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct gkreqparm {
u8 subfunc_code[2];
u16 rule_array_len;
char rule_array[2*8];
struct {
u16 len;
u8 key_type_1[8];
u8 key_type_2[8];
u16 clear_key_bit_len;
u16 key_name_1_len;
u16 key_name_2_len;
u16 user_data_1_len;
u16 user_data_2_len;
u8 key_name_1[0];
u8 key_name_2[0];
u8 user_data_1[0];
u8 user_data_2[0];
} vud;
struct {
u16 len;
struct {
u16 len;
u16 flag;
u8 kek_id_1[0];
} tlv1;
struct {
u16 len;
u16 flag;
u8 kek_id_2[0];
} tlv2;
struct {
u16 len;
u16 flag;
u8 gen_key_id_1[SIZEOF_SKELETON];
} tlv3;
struct {
u16 len;
u16 flag;
u8 gen_key_id_1_label[0];
} tlv4;
struct {
u16 len;
u16 flag;
u8 gen_key_id_2[0];
} tlv5;
struct {
u16 len;
u16 flag;
u8 gen_key_id_2_label[0];
} tlv6;
} kb;
} __packed * preqparm;
struct gkrepparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct {
u16 len;
} vud;
struct {
u16 len;
struct {
u16 len;
u16 flag;
u8 gen_key[0]; /* 120-136 bytes */
} tlv1;
} kb;
} __packed * prepparm;
struct cipherkeytoken *t;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
preqcblk->req_parml = sizeof(struct gkreqparm);
/* prepare request param block with GK request */
preqparm = (struct gkreqparm __force *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "GK", 2);
preqparm->rule_array_len = sizeof(uint16_t) + 2 * 8;
memcpy(preqparm->rule_array, "AES OP ", 2*8);
/* prepare vud block */
preqparm->vud.len = sizeof(preqparm->vud);
switch (keybitsize) {
case 128:
case 192:
case 256:
break;
default:
DEBUG_ERR(
"%s unknown/unsupported keybitsize %d\n",
__func__, keybitsize);
rc = -EINVAL;
goto out;
}
preqparm->vud.clear_key_bit_len = keybitsize;
memcpy(preqparm->vud.key_type_1, "TOKEN ", 8);
memset(preqparm->vud.key_type_2, ' ', sizeof(preqparm->vud.key_type_2));
/* prepare kb block */
preqparm->kb.len = sizeof(preqparm->kb);
preqparm->kb.tlv1.len = sizeof(preqparm->kb.tlv1);
preqparm->kb.tlv1.flag = 0x0030;
preqparm->kb.tlv2.len = sizeof(preqparm->kb.tlv2);
preqparm->kb.tlv2.flag = 0x0030;
preqparm->kb.tlv3.len = sizeof(preqparm->kb.tlv3);
preqparm->kb.tlv3.flag = 0x0030;
memcpy(preqparm->kb.tlv3.gen_key_id_1,
aes_cipher_key_skeleton, SIZEOF_SKELETON);
preqparm->kb.tlv4.len = sizeof(preqparm->kb.tlv4);
preqparm->kb.tlv4.flag = 0x0030;
preqparm->kb.tlv5.len = sizeof(preqparm->kb.tlv5);
preqparm->kb.tlv5.flag = 0x0030;
preqparm->kb.tlv6.len = sizeof(preqparm->kb.tlv6);
preqparm->kb.tlv6.flag = 0x0030;
/* patch the skeleton key token export flags inside the kb block */
if (keygenflags) {
t = (struct cipherkeytoken *) preqparm->kb.tlv3.gen_key_id_1;
t->kmf1 |= (u16) (keygenflags & 0x0000FF00);
t->kmf1 &= (u16) ~(keygenflags & 0x000000FF);
}
/* prepare xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR(
"%s cipher key generate failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
rc = -EIO;
goto out;
}
/* process response cprb param block */
ptr = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepcblk->rpl_parmb = (u8 __user *) ptr;
prepparm = (struct gkrepparm *) ptr;
/* do some plausibility checks on the key block */
if (prepparm->kb.len < 120 + 5 * sizeof(uint16_t) ||
prepparm->kb.len > 136 + 5 * sizeof(uint16_t)) {
DEBUG_ERR("%s reply with invalid or unknown key block\n",
__func__);
rc = -EIO;
goto out;
}
/* and some checks on the generated key */
rc = cca_check_secaescipherkey(zcrypt_dbf_info, DBF_ERR,
prepparm->kb.tlv1.gen_key,
keybitsize, 1);
if (rc) {
rc = -EIO;
goto out;
}
/* copy the generated vlsc key token */
t = (struct cipherkeytoken *) prepparm->kb.tlv1.gen_key;
if (keybuf) {
if (*keybufsize >= t->len)
memcpy(keybuf, t, t->len);
else
rc = -EINVAL;
}
*keybufsize = t->len;
out:
free_cprbmem(mem, PARMBSIZE, 0);
return rc;
}
EXPORT_SYMBOL(cca_gencipherkey);
/*
* Helper function, does a the CSNBKPI2 CPRB.
*/
static int _ip_cprb_helper(u16 cardnr, u16 domain,
const char *rule_array_1,
const char *rule_array_2,
const char *rule_array_3,
const u8 *clr_key_value,
int clr_key_bit_size,
u8 *key_token,
int *key_token_size)
{
int rc, n;
u8 *mem, *ptr;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct rule_array_block {
u8 subfunc_code[2];
u16 rule_array_len;
char rule_array[0];
} __packed * preq_ra_block;
struct vud_block {
u16 len;
struct {
u16 len;
u16 flag; /* 0x0064 */
u16 clr_key_bit_len;
} tlv1;
struct {
u16 len;
u16 flag; /* 0x0063 */
u8 clr_key[0]; /* clear key value bytes */
} tlv2;
} __packed * preq_vud_block;
struct key_block {
u16 len;
struct {
u16 len;
u16 flag; /* 0x0030 */
u8 key_token[0]; /* key skeleton */
} tlv1;
} __packed * preq_key_block;
struct iprepparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct {
u16 len;
} vud;
struct {
u16 len;
struct {
u16 len;
u16 flag; /* 0x0030 */
u8 key_token[0]; /* key token */
} tlv1;
} kb;
} __packed * prepparm;
struct cipherkeytoken *t;
int complete = strncmp(rule_array_2, "COMPLETE", 8) ? 0 : 1;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
preqcblk->req_parml = 0;
/* prepare request param block with IP request */
preq_ra_block = (struct rule_array_block __force *) preqcblk->req_parmb;
memcpy(preq_ra_block->subfunc_code, "IP", 2);
preq_ra_block->rule_array_len = sizeof(uint16_t) + 2 * 8;
memcpy(preq_ra_block->rule_array, rule_array_1, 8);
memcpy(preq_ra_block->rule_array + 8, rule_array_2, 8);
preqcblk->req_parml = sizeof(struct rule_array_block) + 2 * 8;
if (rule_array_3) {
preq_ra_block->rule_array_len += 8;
memcpy(preq_ra_block->rule_array + 16, rule_array_3, 8);
preqcblk->req_parml += 8;
}
/* prepare vud block */
preq_vud_block = (struct vud_block __force *)
(preqcblk->req_parmb + preqcblk->req_parml);
n = complete ? 0 : (clr_key_bit_size + 7) / 8;
preq_vud_block->len = sizeof(struct vud_block) + n;
preq_vud_block->tlv1.len = sizeof(preq_vud_block->tlv1);
preq_vud_block->tlv1.flag = 0x0064;
preq_vud_block->tlv1.clr_key_bit_len = complete ? 0 : clr_key_bit_size;
preq_vud_block->tlv2.len = sizeof(preq_vud_block->tlv2) + n;
preq_vud_block->tlv2.flag = 0x0063;
if (!complete)
memcpy(preq_vud_block->tlv2.clr_key, clr_key_value, n);
preqcblk->req_parml += preq_vud_block->len;
/* prepare key block */
preq_key_block = (struct key_block __force *)
(preqcblk->req_parmb + preqcblk->req_parml);
n = *key_token_size;
preq_key_block->len = sizeof(struct key_block) + n;
preq_key_block->tlv1.len = sizeof(preq_key_block->tlv1) + n;
preq_key_block->tlv1.flag = 0x0030;
memcpy(preq_key_block->tlv1.key_token, key_token, *key_token_size);
preqcblk->req_parml += preq_key_block->len;
/* prepare xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR(
"%s CSNBKPI2 failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
rc = -EIO;
goto out;
}
/* process response cprb param block */
ptr = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepcblk->rpl_parmb = (u8 __user *) ptr;
prepparm = (struct iprepparm *) ptr;
/* do some plausibility checks on the key block */
if (prepparm->kb.len < 120 + 3 * sizeof(uint16_t) ||
prepparm->kb.len > 136 + 3 * sizeof(uint16_t)) {
DEBUG_ERR("%s reply with invalid or unknown key block\n",
__func__);
rc = -EIO;
goto out;
}
/* do not check the key here, it may be incomplete */
/* copy the vlsc key token back */
t = (struct cipherkeytoken *) prepparm->kb.tlv1.key_token;
memcpy(key_token, t, t->len);
*key_token_size = t->len;
out:
free_cprbmem(mem, PARMBSIZE, 0);
return rc;
}
/*
* Build CCA AES CIPHER secure key with a given clear key value.
*/
int cca_clr2cipherkey(u16 card, u16 dom, u32 keybitsize, u32 keygenflags,
const u8 *clrkey, u8 *keybuf, size_t *keybufsize)
{
int rc;
u8 *token;
int tokensize;
u8 exorbuf[32];
struct cipherkeytoken *t;
/* fill exorbuf with random data */
get_random_bytes(exorbuf, sizeof(exorbuf));
/* allocate space for the key token to build */
token = kmalloc(MAXCCAVLSCTOKENSIZE, GFP_KERNEL);
if (!token)
return -ENOMEM;
/* prepare the token with the key skeleton */
tokensize = SIZEOF_SKELETON;
memcpy(token, aes_cipher_key_skeleton, tokensize);
/* patch the skeleton key token export flags */
if (keygenflags) {
t = (struct cipherkeytoken *) token;
t->kmf1 |= (u16) (keygenflags & 0x0000FF00);
t->kmf1 &= (u16) ~(keygenflags & 0x000000FF);
}
/*
* Do the key import with the clear key value in 4 steps:
* 1/4 FIRST import with only random data
* 2/4 EXOR the clear key
* 3/4 EXOR the very same random data again
* 4/4 COMPLETE the secure cipher key import
*/
rc = _ip_cprb_helper(card, dom, "AES ", "FIRST ", "MIN3PART",
exorbuf, keybitsize, token, &tokensize);
if (rc) {
DEBUG_ERR(
"%s clear key import 1/4 with CSNBKPI2 failed, rc=%d\n",
__func__, rc);
goto out;
}
rc = _ip_cprb_helper(card, dom, "AES ", "ADD-PART", NULL,
clrkey, keybitsize, token, &tokensize);
if (rc) {
DEBUG_ERR(
"%s clear key import 2/4 with CSNBKPI2 failed, rc=%d\n",
__func__, rc);
goto out;
}
rc = _ip_cprb_helper(card, dom, "AES ", "ADD-PART", NULL,
exorbuf, keybitsize, token, &tokensize);
if (rc) {
DEBUG_ERR(
"%s clear key import 3/4 with CSNBKPI2 failed, rc=%d\n",
__func__, rc);
goto out;
}
rc = _ip_cprb_helper(card, dom, "AES ", "COMPLETE", NULL,
NULL, keybitsize, token, &tokensize);
if (rc) {
DEBUG_ERR(
"%s clear key import 4/4 with CSNBKPI2 failed, rc=%d\n",
__func__, rc);
goto out;
}
/* copy the generated key token */
if (keybuf) {
if (tokensize > *keybufsize)
rc = -EINVAL;
else
memcpy(keybuf, token, tokensize);
}
*keybufsize = tokensize;
out:
kfree(token);
return rc;
}
EXPORT_SYMBOL(cca_clr2cipherkey);
/*
* Derive proteced key from CCA AES cipher secure key.
*/
int cca_cipher2protkey(u16 cardnr, u16 domain, const u8 *ckey,
u8 *protkey, u32 *protkeylen, u32 *protkeytype)
{
int rc;
u8 *mem, *ptr;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct aureqparm {
u8 subfunc_code[2];
u16 rule_array_len;
u8 rule_array[8];
struct {
u16 len;
u16 tk_blob_len;
u16 tk_blob_tag;
u8 tk_blob[66];
} vud;
struct {
u16 len;
u16 cca_key_token_len;
u16 cca_key_token_flags;
u8 cca_key_token[0]; // 64 or more
} kb;
} __packed * preqparm;
struct aurepparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct {
u16 len;
u16 sublen;
u16 tag;
struct cpacfkeyblock {
u8 version; /* version of this struct */
u8 flags[2];
u8 algo;
u8 form;
u8 pad1[3];
u16 keylen;
u8 key[64]; /* the key (keylen bytes) */
u16 keyattrlen;
u8 keyattr[32];
u8 pad2[1];
u8 vptype;
u8 vp[32]; /* verification pattern */
} ckb;
} vud;
struct {
u16 len;
} kb;
} __packed * prepparm;
int keytoklen = ((struct cipherkeytoken *)ckey)->len;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
/* fill request cprb param block with AU request */
preqparm = (struct aureqparm __force *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "AU", 2);
preqparm->rule_array_len =
sizeof(preqparm->rule_array_len)
+ sizeof(preqparm->rule_array);
memcpy(preqparm->rule_array, "EXPT-SK ", 8);
/* vud, tk blob */
preqparm->vud.len = sizeof(preqparm->vud);
preqparm->vud.tk_blob_len = sizeof(preqparm->vud.tk_blob)
+ 2 * sizeof(uint16_t);
preqparm->vud.tk_blob_tag = 0x00C2;
/* kb, cca token */
preqparm->kb.len = keytoklen + 3 * sizeof(uint16_t);
preqparm->kb.cca_key_token_len = keytoklen + 2 * sizeof(uint16_t);
memcpy(preqparm->kb.cca_key_token, ckey, keytoklen);
/* now fill length of param block into cprb */
preqcblk->req_parml = sizeof(struct aureqparm) + keytoklen;
/* fill xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR(
"%s unwrap secure key failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
if (prepcblk->ccp_rtcode == 8 && prepcblk->ccp_rscode == 2290)
rc = -EAGAIN;
else
rc = -EIO;
goto out;
}
if (prepcblk->ccp_rscode != 0) {
DEBUG_WARN(
"%s unwrap secure key warning, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
}
/* process response cprb param block */
ptr = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepcblk->rpl_parmb = (u8 __user *) ptr;
prepparm = (struct aurepparm *) ptr;
/* check the returned keyblock */
if (prepparm->vud.ckb.version != 0x01 &&
prepparm->vud.ckb.version != 0x02) {
DEBUG_ERR("%s reply param keyblock version mismatch 0x%02x\n",
__func__, (int) prepparm->vud.ckb.version);
rc = -EIO;
goto out;
}
if (prepparm->vud.ckb.algo != 0x02) {
DEBUG_ERR(
"%s reply param keyblock algo mismatch 0x%02x != 0x02\n",
__func__, (int) prepparm->vud.ckb.algo);
rc = -EIO;
goto out;
}
/* copy the translated protected key */
switch (prepparm->vud.ckb.keylen) {
case 16+32:
/* AES 128 protected key */
if (protkeytype)
*protkeytype = PKEY_KEYTYPE_AES_128;
break;
case 24+32:
/* AES 192 protected key */
if (protkeytype)
*protkeytype = PKEY_KEYTYPE_AES_192;
break;
case 32+32:
/* AES 256 protected key */
if (protkeytype)
*protkeytype = PKEY_KEYTYPE_AES_256;
break;
default:
DEBUG_ERR("%s unknown/unsupported keylen %d\n",
__func__, prepparm->vud.ckb.keylen);
rc = -EIO;
goto out;
}
memcpy(protkey, prepparm->vud.ckb.key, prepparm->vud.ckb.keylen);
if (protkeylen)
*protkeylen = prepparm->vud.ckb.keylen;
out:
free_cprbmem(mem, PARMBSIZE, 0);
return rc;
}
EXPORT_SYMBOL(cca_cipher2protkey);
/*
* Derive protected key from CCA ECC secure private key.
*/
int cca_ecc2protkey(u16 cardnr, u16 domain, const u8 *key,
u8 *protkey, u32 *protkeylen, u32 *protkeytype)
{
int rc;
u8 *mem, *ptr;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct aureqparm {
u8 subfunc_code[2];
u16 rule_array_len;
u8 rule_array[8];
struct {
u16 len;
u16 tk_blob_len;
u16 tk_blob_tag;
u8 tk_blob[66];
} vud;
struct {
u16 len;
u16 cca_key_token_len;
u16 cca_key_token_flags;
u8 cca_key_token[0];
} kb;
} __packed * preqparm;
struct aurepparm {
u8 subfunc_code[2];
u16 rule_array_len;
struct {
u16 len;
u16 sublen;
u16 tag;
struct cpacfkeyblock {
u8 version; /* version of this struct */
u8 flags[2];
u8 algo;
u8 form;
u8 pad1[3];
u16 keylen;
u8 key[0]; /* the key (keylen bytes) */
u16 keyattrlen;
u8 keyattr[32];
u8 pad2[1];
u8 vptype;
u8 vp[32]; /* verification pattern */
} ckb;
} vud;
struct {
u16 len;
} kb;
} __packed * prepparm;
int keylen = ((struct eccprivkeytoken *)key)->len;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
/* fill request cprb param block with AU request */
preqparm = (struct aureqparm __force *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "AU", 2);
preqparm->rule_array_len =
sizeof(preqparm->rule_array_len)
+ sizeof(preqparm->rule_array);
memcpy(preqparm->rule_array, "EXPT-SK ", 8);
/* vud, tk blob */
preqparm->vud.len = sizeof(preqparm->vud);
preqparm->vud.tk_blob_len = sizeof(preqparm->vud.tk_blob)
+ 2 * sizeof(uint16_t);
preqparm->vud.tk_blob_tag = 0x00C2;
/* kb, cca token */
preqparm->kb.len = keylen + 3 * sizeof(uint16_t);
preqparm->kb.cca_key_token_len = keylen + 2 * sizeof(uint16_t);
memcpy(preqparm->kb.cca_key_token, key, keylen);
/* now fill length of param block into cprb */
preqcblk->req_parml = sizeof(struct aureqparm) + keylen;
/* fill xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR(
"%s unwrap secure key failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
if (prepcblk->ccp_rtcode == 8 && prepcblk->ccp_rscode == 2290)
rc = -EAGAIN;
else
rc = -EIO;
goto out;
}
if (prepcblk->ccp_rscode != 0) {
DEBUG_WARN(
"%s unwrap secure key warning, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
}
/* process response cprb param block */
ptr = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepcblk->rpl_parmb = (u8 __user *) ptr;
prepparm = (struct aurepparm *) ptr;
/* check the returned keyblock */
if (prepparm->vud.ckb.version != 0x02) {
DEBUG_ERR("%s reply param keyblock version mismatch 0x%02x != 0x02\n",
__func__, (int) prepparm->vud.ckb.version);
rc = -EIO;
goto out;
}
if (prepparm->vud.ckb.algo != 0x81) {
DEBUG_ERR(
"%s reply param keyblock algo mismatch 0x%02x != 0x81\n",
__func__, (int) prepparm->vud.ckb.algo);
rc = -EIO;
goto out;
}
/* copy the translated protected key */
if (prepparm->vud.ckb.keylen > *protkeylen) {
DEBUG_ERR("%s prot keylen mismatch %d > buffersize %u\n",
__func__, prepparm->vud.ckb.keylen, *protkeylen);
rc = -EIO;
goto out;
}
memcpy(protkey, prepparm->vud.ckb.key, prepparm->vud.ckb.keylen);
*protkeylen = prepparm->vud.ckb.keylen;
if (protkeytype)
*protkeytype = PKEY_KEYTYPE_ECC;
out:
free_cprbmem(mem, PARMBSIZE, 0);
return rc;
}
EXPORT_SYMBOL(cca_ecc2protkey);
/*
* query cryptographic facility from CCA adapter
*/
int cca_query_crypto_facility(u16 cardnr, u16 domain,
const char *keyword,
u8 *rarray, size_t *rarraylen,
u8 *varray, size_t *varraylen)
{
int rc;
u16 len;
u8 *mem, *ptr;
struct CPRBX *preqcblk, *prepcblk;
struct ica_xcRB xcrb;
struct fqreqparm {
u8 subfunc_code[2];
u16 rule_array_len;
char rule_array[8];
struct lv1 {
u16 len;
u8 data[VARDATASIZE];
} lv1;
u16 dummylen;
} __packed * preqparm;
size_t parmbsize = sizeof(struct fqreqparm);
struct fqrepparm {
u8 subfunc_code[2];
u8 lvdata[0];
} __packed * prepparm;
/* get already prepared memory for 2 cprbs with param block each */
rc = alloc_and_prep_cprbmem(parmbsize, &mem, &preqcblk, &prepcblk);
if (rc)
return rc;
/* fill request cprb struct */
preqcblk->domain = domain;
/* fill request cprb param block with FQ request */
preqparm = (struct fqreqparm __force *) preqcblk->req_parmb;
memcpy(preqparm->subfunc_code, "FQ", 2);
memcpy(preqparm->rule_array, keyword, sizeof(preqparm->rule_array));
preqparm->rule_array_len =
sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array);
preqparm->lv1.len = sizeof(preqparm->lv1);
preqparm->dummylen = sizeof(preqparm->dummylen);
preqcblk->req_parml = parmbsize;
/* fill xcrb struct */
prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk);
/* forward xcrb with request CPRB and reply CPRB to zcrypt dd */
rc = zcrypt_send_cprb(&xcrb);
if (rc) {
DEBUG_ERR("%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
/* check response returncode and reasoncode */
if (prepcblk->ccp_rtcode != 0) {
DEBUG_ERR("%s unwrap secure key failure, card response %d/%d\n",
__func__,
(int) prepcblk->ccp_rtcode,
(int) prepcblk->ccp_rscode);
rc = -EIO;
goto out;
}
/* process response cprb param block */
ptr = ((u8 *) prepcblk) + sizeof(struct CPRBX);
prepcblk->rpl_parmb = (u8 __user *) ptr;
prepparm = (struct fqrepparm *) ptr;
ptr = prepparm->lvdata;
/* check and possibly copy reply rule array */
len = *((u16 *) ptr);
if (len > sizeof(u16)) {
ptr += sizeof(u16);
len -= sizeof(u16);
if (rarray && rarraylen && *rarraylen > 0) {
*rarraylen = (len > *rarraylen ? *rarraylen : len);
memcpy(rarray, ptr, *rarraylen);
}
ptr += len;
}
/* check and possible copy reply var array */
len = *((u16 *) ptr);
if (len > sizeof(u16)) {
ptr += sizeof(u16);
len -= sizeof(u16);
if (varray && varraylen && *varraylen > 0) {
*varraylen = (len > *varraylen ? *varraylen : len);
memcpy(varray, ptr, *varraylen);
}
ptr += len;
}
out:
free_cprbmem(mem, parmbsize, 0);
return rc;
}
EXPORT_SYMBOL(cca_query_crypto_facility);
static int cca_info_cache_fetch(u16 cardnr, u16 domain, struct cca_info *ci)
{
int rc = -ENOENT;
struct cca_info_list_entry *ptr;
spin_lock_bh(&cca_info_list_lock);
list_for_each_entry(ptr, &cca_info_list, list) {
if (ptr->cardnr == cardnr && ptr->domain == domain) {
memcpy(ci, &ptr->info, sizeof(*ci));
rc = 0;
break;
}
}
spin_unlock_bh(&cca_info_list_lock);
return rc;
}
static void cca_info_cache_update(u16 cardnr, u16 domain,
const struct cca_info *ci)
{
int found = 0;
struct cca_info_list_entry *ptr;
spin_lock_bh(&cca_info_list_lock);
list_for_each_entry(ptr, &cca_info_list, list) {
if (ptr->cardnr == cardnr &&
ptr->domain == domain) {
memcpy(&ptr->info, ci, sizeof(*ci));
found = 1;
break;
}
}
if (!found) {
ptr = kmalloc(sizeof(*ptr), GFP_ATOMIC);
if (!ptr) {
spin_unlock_bh(&cca_info_list_lock);
return;
}
ptr->cardnr = cardnr;
ptr->domain = domain;
memcpy(&ptr->info, ci, sizeof(*ci));
list_add(&ptr->list, &cca_info_list);
}
spin_unlock_bh(&cca_info_list_lock);
}
static void cca_info_cache_scrub(u16 cardnr, u16 domain)
{
struct cca_info_list_entry *ptr;
spin_lock_bh(&cca_info_list_lock);
list_for_each_entry(ptr, &cca_info_list, list) {
if (ptr->cardnr == cardnr &&
ptr->domain == domain) {
list_del(&ptr->list);
kfree(ptr);
break;
}
}
spin_unlock_bh(&cca_info_list_lock);
}
static void __exit mkvp_cache_free(void)
{
struct cca_info_list_entry *ptr, *pnext;
spin_lock_bh(&cca_info_list_lock);
list_for_each_entry_safe(ptr, pnext, &cca_info_list, list) {
list_del(&ptr->list);
kfree(ptr);
}
spin_unlock_bh(&cca_info_list_lock);
}
/*
* Fetch cca_info values via query_crypto_facility from adapter.
*/
static int fetch_cca_info(u16 cardnr, u16 domain, struct cca_info *ci)
{
int rc, found = 0;
size_t rlen, vlen;
u8 *rarray, *varray, *pg;
struct zcrypt_device_status_ext devstat;
memset(ci, 0, sizeof(*ci));
/* get first info from zcrypt device driver about this apqn */
rc = zcrypt_device_status_ext(cardnr, domain, &devstat);
if (rc)
return rc;
ci->hwtype = devstat.hwtype;
/* prep page for rule array and var array use */
pg = (u8 *) __get_free_page(GFP_KERNEL);
if (!pg)
return -ENOMEM;
rarray = pg;
varray = pg + PAGE_SIZE/2;
rlen = vlen = PAGE_SIZE/2;
/* QF for this card/domain */
rc = cca_query_crypto_facility(cardnr, domain, "STATICSA",
rarray, &rlen, varray, &vlen);
if (rc == 0 && rlen >= 10*8 && vlen >= 204) {
memcpy(ci->serial, rarray, 8);
ci->new_aes_mk_state = (char) rarray[7*8];
ci->cur_aes_mk_state = (char) rarray[8*8];
ci->old_aes_mk_state = (char) rarray[9*8];
if (ci->old_aes_mk_state == '2')
memcpy(&ci->old_aes_mkvp, varray + 172, 8);
if (ci->cur_aes_mk_state == '2')
memcpy(&ci->cur_aes_mkvp, varray + 184, 8);
if (ci->new_aes_mk_state == '3')
memcpy(&ci->new_aes_mkvp, varray + 196, 8);
found++;
}
if (!found)
goto out;
rlen = vlen = PAGE_SIZE/2;
rc = cca_query_crypto_facility(cardnr, domain, "STATICSB",
rarray, &rlen, varray, &vlen);
if (rc == 0 && rlen >= 10*8 && vlen >= 240) {
ci->new_apka_mk_state = (char) rarray[7*8];
ci->cur_apka_mk_state = (char) rarray[8*8];
ci->old_apka_mk_state = (char) rarray[9*8];
if (ci->old_apka_mk_state == '2')
memcpy(&ci->old_apka_mkvp, varray + 208, 8);
if (ci->cur_apka_mk_state == '2')
memcpy(&ci->cur_apka_mkvp, varray + 220, 8);
if (ci->new_apka_mk_state == '3')
memcpy(&ci->new_apka_mkvp, varray + 232, 8);
found++;
}
out:
free_page((unsigned long) pg);
return found == 2 ? 0 : -ENOENT;
}
/*
* Fetch cca information about a CCA queue.
*/
int cca_get_info(u16 card, u16 dom, struct cca_info *ci, int verify)
{
int rc;
rc = cca_info_cache_fetch(card, dom, ci);
if (rc || verify) {
rc = fetch_cca_info(card, dom, ci);
if (rc == 0)
cca_info_cache_update(card, dom, ci);
}
return rc;
}
EXPORT_SYMBOL(cca_get_info);
/*
* Search for a matching crypto card based on the
* Master Key Verification Pattern given.
*/
static int findcard(u64 mkvp, u16 *pcardnr, u16 *pdomain,
int verify, int minhwtype)
{
struct zcrypt_device_status_ext *device_status;
u16 card, dom;
struct cca_info ci;
int i, rc, oi = -1;
/* mkvp must not be zero, minhwtype needs to be >= 0 */
if (mkvp == 0 || minhwtype < 0)
return -EINVAL;
/* fetch status of all crypto cards */
device_status = kvmalloc_array(MAX_ZDEV_ENTRIES_EXT,
sizeof(struct zcrypt_device_status_ext),
GFP_KERNEL);
if (!device_status)
return -ENOMEM;
zcrypt_device_status_mask_ext(device_status);
/* walk through all crypto cards */
for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) {
card = AP_QID_CARD(device_status[i].qid);
dom = AP_QID_QUEUE(device_status[i].qid);
if (device_status[i].online &&
device_status[i].functions & 0x04) {
/* enabled CCA card, check current mkvp from cache */
if (cca_info_cache_fetch(card, dom, &ci) == 0 &&
ci.hwtype >= minhwtype &&
ci.cur_aes_mk_state == '2' &&
ci.cur_aes_mkvp == mkvp) {
if (!verify)
break;
/* verify: refresh card info */
if (fetch_cca_info(card, dom, &ci) == 0) {
cca_info_cache_update(card, dom, &ci);
if (ci.hwtype >= minhwtype &&
ci.cur_aes_mk_state == '2' &&
ci.cur_aes_mkvp == mkvp)
break;
}
}
} else {
/* Card is offline and/or not a CCA card. */
/* del mkvp entry from cache if it exists */
cca_info_cache_scrub(card, dom);
}
}
if (i >= MAX_ZDEV_ENTRIES_EXT) {
/* nothing found, so this time without cache */
for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) {
if (!(device_status[i].online &&
device_status[i].functions & 0x04))
continue;
card = AP_QID_CARD(device_status[i].qid);
dom = AP_QID_QUEUE(device_status[i].qid);
/* fresh fetch mkvp from adapter */
if (fetch_cca_info(card, dom, &ci) == 0) {
cca_info_cache_update(card, dom, &ci);
if (ci.hwtype >= minhwtype &&
ci.cur_aes_mk_state == '2' &&
ci.cur_aes_mkvp == mkvp)
break;
if (ci.hwtype >= minhwtype &&
ci.old_aes_mk_state == '2' &&
ci.old_aes_mkvp == mkvp &&
oi < 0)
oi = i;
}
}
if (i >= MAX_ZDEV_ENTRIES_EXT && oi >= 0) {
/* old mkvp matched, use this card then */
card = AP_QID_CARD(device_status[oi].qid);
dom = AP_QID_QUEUE(device_status[oi].qid);
}
}
if (i < MAX_ZDEV_ENTRIES_EXT || oi >= 0) {
if (pcardnr)
*pcardnr = card;
if (pdomain)
*pdomain = dom;
rc = (i < MAX_ZDEV_ENTRIES_EXT ? 0 : 1);
} else
rc = -ENODEV;
kvfree(device_status);
return rc;
}
/*
* Search for a matching crypto card based on the Master Key
* Verification Pattern provided inside a secure key token.
*/
int cca_findcard(const u8 *key, u16 *pcardnr, u16 *pdomain, int verify)
{
u64 mkvp;
int minhwtype = 0;
const struct keytoken_header *hdr = (struct keytoken_header *) key;
if (hdr->type != TOKTYPE_CCA_INTERNAL)
return -EINVAL;
switch (hdr->version) {
case TOKVER_CCA_AES:
mkvp = ((struct secaeskeytoken *)key)->mkvp;
break;
case TOKVER_CCA_VLSC:
mkvp = ((struct cipherkeytoken *)key)->mkvp0;
minhwtype = AP_DEVICE_TYPE_CEX6;
break;
default:
return -EINVAL;
}
return findcard(mkvp, pcardnr, pdomain, verify, minhwtype);
}
EXPORT_SYMBOL(cca_findcard);
int cca_findcard2(u32 **apqns, u32 *nr_apqns, u16 cardnr, u16 domain,
int minhwtype, int mktype, u64 cur_mkvp, u64 old_mkvp,
int verify)
{
struct zcrypt_device_status_ext *device_status;
u32 *_apqns = NULL, _nr_apqns = 0;
int i, card, dom, curmatch, oldmatch, rc = 0;
struct cca_info ci;
/* fetch status of all crypto cards */
device_status = kvmalloc_array(MAX_ZDEV_ENTRIES_EXT,
sizeof(struct zcrypt_device_status_ext),
GFP_KERNEL);
if (!device_status)
return -ENOMEM;
zcrypt_device_status_mask_ext(device_status);
/* allocate 1k space for up to 256 apqns */
_apqns = kmalloc_array(256, sizeof(u32), GFP_KERNEL);
if (!_apqns) {
kvfree(device_status);
return -ENOMEM;
}
/* walk through all the crypto apqnss */
for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) {
card = AP_QID_CARD(device_status[i].qid);
dom = AP_QID_QUEUE(device_status[i].qid);
/* check online state */
if (!device_status[i].online)
continue;
/* check for cca functions */
if (!(device_status[i].functions & 0x04))
continue;
/* check cardnr */
if (cardnr != 0xFFFF && card != cardnr)
continue;
/* check domain */
if (domain != 0xFFFF && dom != domain)
continue;
/* get cca info on this apqn */
if (cca_get_info(card, dom, &ci, verify))
continue;
/* current master key needs to be valid */
if (mktype == AES_MK_SET && ci.cur_aes_mk_state != '2')
continue;
if (mktype == APKA_MK_SET && ci.cur_apka_mk_state != '2')
continue;
/* check min hardware type */
if (minhwtype > 0 && minhwtype > ci.hwtype)
continue;
if (cur_mkvp || old_mkvp) {
/* check mkvps */
curmatch = oldmatch = 0;
if (mktype == AES_MK_SET) {
if (cur_mkvp && cur_mkvp == ci.cur_aes_mkvp)
curmatch = 1;
if (old_mkvp && ci.old_aes_mk_state == '2' &&
old_mkvp == ci.old_aes_mkvp)
oldmatch = 1;
} else {
if (cur_mkvp && cur_mkvp == ci.cur_apka_mkvp)
curmatch = 1;
if (old_mkvp && ci.old_apka_mk_state == '2' &&
old_mkvp == ci.old_apka_mkvp)
oldmatch = 1;
}
if (curmatch + oldmatch < 1)
continue;
}
/* apqn passed all filtering criterons, add to the array */
if (_nr_apqns < 256)
_apqns[_nr_apqns++] = (((u16)card) << 16) | ((u16) dom);
}
/* nothing found ? */
if (!_nr_apqns) {
kfree(_apqns);
rc = -ENODEV;
} else {
/* no re-allocation, simple return the _apqns array */
*apqns = _apqns;
*nr_apqns = _nr_apqns;
rc = 0;
}
kvfree(device_status);
return rc;
}
EXPORT_SYMBOL(cca_findcard2);
void __exit zcrypt_ccamisc_exit(void)
{
mkvp_cache_free();
}