OpenCloudOS-Kernel/drivers/s390/crypto/pkey_api.c

2113 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* pkey device driver
*
* Copyright IBM Corp. 2017,2019
* Author(s): Harald Freudenberger
*/
#define KMSG_COMPONENT "pkey"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kallsyms.h>
#include <linux/debugfs.h>
#include <linux/random.h>
#include <linux/cpufeature.h>
#include <asm/zcrypt.h>
#include <asm/cpacf.h>
#include <asm/pkey.h>
#include <crypto/aes.h>
#include "zcrypt_api.h"
#include "zcrypt_ccamisc.h"
#include "zcrypt_ep11misc.h"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("IBM Corporation");
MODULE_DESCRIPTION("s390 protected key interface");
#define KEYBLOBBUFSIZE 8192 /* key buffer size used for internal processing */
#define PROTKEYBLOBBUFSIZE 256 /* protected key buffer size used internal */
#define MAXAPQNSINLIST 64 /* max 64 apqns within a apqn list */
/*
* debug feature data and functions
*/
static debug_info_t *debug_info;
#define DEBUG_DBG(...) debug_sprintf_event(debug_info, 6, ##__VA_ARGS__)
#define DEBUG_INFO(...) debug_sprintf_event(debug_info, 5, ##__VA_ARGS__)
#define DEBUG_WARN(...) debug_sprintf_event(debug_info, 4, ##__VA_ARGS__)
#define DEBUG_ERR(...) debug_sprintf_event(debug_info, 3, ##__VA_ARGS__)
static void __init pkey_debug_init(void)
{
/* 5 arguments per dbf entry (including the format string ptr) */
debug_info = debug_register("pkey", 1, 1, 5 * sizeof(long));
debug_register_view(debug_info, &debug_sprintf_view);
debug_set_level(debug_info, 3);
}
static void __exit pkey_debug_exit(void)
{
debug_unregister(debug_info);
}
/* inside view of a protected key token (only type 0x00 version 0x01) */
struct protaeskeytoken {
u8 type; /* 0x00 for PAES specific key tokens */
u8 res0[3];
u8 version; /* should be 0x01 for protected AES key token */
u8 res1[3];
u32 keytype; /* key type, one of the PKEY_KEYTYPE values */
u32 len; /* bytes actually stored in protkey[] */
u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */
} __packed;
/* inside view of a clear key token (type 0x00 version 0x02) */
struct clearaeskeytoken {
u8 type; /* 0x00 for PAES specific key tokens */
u8 res0[3];
u8 version; /* 0x02 for clear AES key token */
u8 res1[3];
u32 keytype; /* key type, one of the PKEY_KEYTYPE values */
u32 len; /* bytes actually stored in clearkey[] */
u8 clearkey[]; /* clear key value */
} __packed;
/*
* Create a protected key from a clear key value.
*/
static int pkey_clr2protkey(u32 keytype,
const struct pkey_clrkey *clrkey,
struct pkey_protkey *protkey)
{
/* mask of available pckmo subfunctions */
static cpacf_mask_t pckmo_functions;
long fc;
int keysize;
u8 paramblock[64];
switch (keytype) {
case PKEY_KEYTYPE_AES_128:
keysize = 16;
fc = CPACF_PCKMO_ENC_AES_128_KEY;
break;
case PKEY_KEYTYPE_AES_192:
keysize = 24;
fc = CPACF_PCKMO_ENC_AES_192_KEY;
break;
case PKEY_KEYTYPE_AES_256:
keysize = 32;
fc = CPACF_PCKMO_ENC_AES_256_KEY;
break;
default:
DEBUG_ERR("%s unknown/unsupported keytype %d\n",
__func__, keytype);
return -EINVAL;
}
/* Did we already check for PCKMO ? */
if (!pckmo_functions.bytes[0]) {
/* no, so check now */
if (!cpacf_query(CPACF_PCKMO, &pckmo_functions))
return -ENODEV;
}
/* check for the pckmo subfunction we need now */
if (!cpacf_test_func(&pckmo_functions, fc)) {
DEBUG_ERR("%s pckmo functions not available\n", __func__);
return -ENODEV;
}
/* prepare param block */
memset(paramblock, 0, sizeof(paramblock));
memcpy(paramblock, clrkey->clrkey, keysize);
/* call the pckmo instruction */
cpacf_pckmo(fc, paramblock);
/* copy created protected key */
protkey->type = keytype;
protkey->len = keysize + 32;
memcpy(protkey->protkey, paramblock, keysize + 32);
return 0;
}
/*
* Find card and transform secure key into protected key.
*/
static int pkey_skey2pkey(const u8 *key, struct pkey_protkey *pkey)
{
int rc, verify;
u16 cardnr, domain;
struct keytoken_header *hdr = (struct keytoken_header *)key;
zcrypt_wait_api_operational();
/*
* The cca_xxx2protkey call may fail when a card has been
* addressed where the master key was changed after last fetch
* of the mkvp into the cache. Try 3 times: First witout verify
* then with verify and last round with verify and old master
* key verification pattern match not ignored.
*/
for (verify = 0; verify < 3; verify++) {
rc = cca_findcard(key, &cardnr, &domain, verify);
if (rc < 0)
continue;
if (rc > 0 && verify < 2)
continue;
switch (hdr->version) {
case TOKVER_CCA_AES:
rc = cca_sec2protkey(cardnr, domain,
key, pkey->protkey,
&pkey->len, &pkey->type);
break;
case TOKVER_CCA_VLSC:
rc = cca_cipher2protkey(cardnr, domain,
key, pkey->protkey,
&pkey->len, &pkey->type);
break;
default:
return -EINVAL;
}
if (rc == 0)
break;
}
if (rc)
DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
return rc;
}
/*
* Construct EP11 key with given clear key value.
*/
static int pkey_clr2ep11key(const u8 *clrkey, size_t clrkeylen,
u8 *keybuf, size_t *keybuflen)
{
int i, rc;
u16 card, dom;
u32 nr_apqns, *apqns = NULL;
zcrypt_wait_api_operational();
/* build a list of apqns suitable for ep11 keys with cpacf support */
rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, NULL);
if (rc)
goto out;
/* go through the list of apqns and try to bild an ep11 key */
for (rc = -ENODEV, i = 0; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = ep11_clr2keyblob(card, dom, clrkeylen * 8,
0, clrkey, keybuf, keybuflen);
if (rc == 0)
break;
}
out:
kfree(apqns);
if (rc)
DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
return rc;
}
/*
* Find card and transform EP11 secure key into protected key.
*/
static int pkey_ep11key2pkey(const u8 *key, struct pkey_protkey *pkey)
{
int i, rc;
u16 card, dom;
u32 nr_apqns, *apqns = NULL;
struct ep11keyblob *kb = (struct ep11keyblob *) key;
zcrypt_wait_api_operational();
/* build a list of apqns suitable for this key */
rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, kb->wkvp);
if (rc)
goto out;
/* go through the list of apqns and try to derive an pkey */
for (rc = -ENODEV, i = 0; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
pkey->len = sizeof(pkey->protkey);
rc = ep11_kblob2protkey(card, dom, key, kb->head.len,
pkey->protkey, &pkey->len, &pkey->type);
if (rc == 0)
break;
}
out:
kfree(apqns);
if (rc)
DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
return rc;
}
/*
* Verify key and give back some info about the key.
*/
static int pkey_verifykey(const struct pkey_seckey *seckey,
u16 *pcardnr, u16 *pdomain,
u16 *pkeysize, u32 *pattributes)
{
struct secaeskeytoken *t = (struct secaeskeytoken *) seckey;
u16 cardnr, domain;
int rc;
/* check the secure key for valid AES secure key */
rc = cca_check_secaeskeytoken(debug_info, 3, (u8 *) seckey, 0);
if (rc)
goto out;
if (pattributes)
*pattributes = PKEY_VERIFY_ATTR_AES;
if (pkeysize)
*pkeysize = t->bitsize;
/* try to find a card which can handle this key */
rc = cca_findcard(seckey->seckey, &cardnr, &domain, 1);
if (rc < 0)
goto out;
if (rc > 0) {
/* key mkvp matches to old master key mkvp */
DEBUG_DBG("%s secure key has old mkvp\n", __func__);
if (pattributes)
*pattributes |= PKEY_VERIFY_ATTR_OLD_MKVP;
rc = 0;
}
if (pcardnr)
*pcardnr = cardnr;
if (pdomain)
*pdomain = domain;
out:
DEBUG_DBG("%s rc=%d\n", __func__, rc);
return rc;
}
/*
* Generate a random protected key
*/
static int pkey_genprotkey(u32 keytype, struct pkey_protkey *protkey)
{
struct pkey_clrkey clrkey;
int keysize;
int rc;
switch (keytype) {
case PKEY_KEYTYPE_AES_128:
keysize = 16;
break;
case PKEY_KEYTYPE_AES_192:
keysize = 24;
break;
case PKEY_KEYTYPE_AES_256:
keysize = 32;
break;
default:
DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__,
keytype);
return -EINVAL;
}
/* generate a dummy random clear key */
get_random_bytes(clrkey.clrkey, keysize);
/* convert it to a dummy protected key */
rc = pkey_clr2protkey(keytype, &clrkey, protkey);
if (rc)
return rc;
/* replace the key part of the protected key with random bytes */
get_random_bytes(protkey->protkey, keysize);
return 0;
}
/*
* Verify if a protected key is still valid
*/
static int pkey_verifyprotkey(const struct pkey_protkey *protkey)
{
unsigned long fc;
struct {
u8 iv[AES_BLOCK_SIZE];
u8 key[MAXPROTKEYSIZE];
} param;
u8 null_msg[AES_BLOCK_SIZE];
u8 dest_buf[AES_BLOCK_SIZE];
unsigned int k;
switch (protkey->type) {
case PKEY_KEYTYPE_AES_128:
fc = CPACF_KMC_PAES_128;
break;
case PKEY_KEYTYPE_AES_192:
fc = CPACF_KMC_PAES_192;
break;
case PKEY_KEYTYPE_AES_256:
fc = CPACF_KMC_PAES_256;
break;
default:
DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__,
protkey->type);
return -EINVAL;
}
memset(null_msg, 0, sizeof(null_msg));
memset(param.iv, 0, sizeof(param.iv));
memcpy(param.key, protkey->protkey, sizeof(param.key));
k = cpacf_kmc(fc | CPACF_ENCRYPT, &param, null_msg, dest_buf,
sizeof(null_msg));
if (k != sizeof(null_msg)) {
DEBUG_ERR("%s protected key is not valid\n", __func__);
return -EKEYREJECTED;
}
return 0;
}
/*
* Transform a non-CCA key token into a protected key
*/
static int pkey_nonccatok2pkey(const u8 *key, u32 keylen,
struct pkey_protkey *protkey)
{
int rc = -EINVAL;
u8 *tmpbuf = NULL;
struct keytoken_header *hdr = (struct keytoken_header *)key;
switch (hdr->version) {
case TOKVER_PROTECTED_KEY: {
struct protaeskeytoken *t;
if (keylen != sizeof(struct protaeskeytoken))
goto out;
t = (struct protaeskeytoken *)key;
protkey->len = t->len;
protkey->type = t->keytype;
memcpy(protkey->protkey, t->protkey,
sizeof(protkey->protkey));
rc = pkey_verifyprotkey(protkey);
break;
}
case TOKVER_CLEAR_KEY: {
struct clearaeskeytoken *t;
struct pkey_clrkey ckey;
union u_tmpbuf {
u8 skey[SECKEYBLOBSIZE];
u8 ep11key[MAXEP11AESKEYBLOBSIZE];
};
size_t tmpbuflen = sizeof(union u_tmpbuf);
if (keylen < sizeof(struct clearaeskeytoken))
goto out;
t = (struct clearaeskeytoken *)key;
if (keylen != sizeof(*t) + t->len)
goto out;
if ((t->keytype == PKEY_KEYTYPE_AES_128 && t->len == 16)
|| (t->keytype == PKEY_KEYTYPE_AES_192 && t->len == 24)
|| (t->keytype == PKEY_KEYTYPE_AES_256 && t->len == 32))
memcpy(ckey.clrkey, t->clearkey, t->len);
else
goto out;
/* alloc temp key buffer space */
tmpbuf = kmalloc(tmpbuflen, GFP_ATOMIC);
if (!tmpbuf) {
rc = -ENOMEM;
goto out;
}
/* try direct way with the PCKMO instruction */
rc = pkey_clr2protkey(t->keytype, &ckey, protkey);
if (rc == 0)
break;
/* PCKMO failed, so try the CCA secure key way */
zcrypt_wait_api_operational();
rc = cca_clr2seckey(0xFFFF, 0xFFFF, t->keytype,
ckey.clrkey, tmpbuf);
if (rc == 0)
rc = pkey_skey2pkey(tmpbuf, protkey);
if (rc == 0)
break;
/* if the CCA way also failed, let's try via EP11 */
rc = pkey_clr2ep11key(ckey.clrkey, t->len,
tmpbuf, &tmpbuflen);
if (rc == 0)
rc = pkey_ep11key2pkey(tmpbuf, protkey);
/* now we should really have an protected key */
DEBUG_ERR("%s unable to build protected key from clear",
__func__);
break;
}
case TOKVER_EP11_AES: {
/* check ep11 key for exportable as protected key */
rc = ep11_check_aes_key(debug_info, 3, key, keylen, 1);
if (rc)
goto out;
rc = pkey_ep11key2pkey(key, protkey);
break;
}
case TOKVER_EP11_AES_WITH_HEADER:
/* check ep11 key with header for exportable as protected key */
rc = ep11_check_aes_key_with_hdr(debug_info, 3, key, keylen, 1);
if (rc)
goto out;
rc = pkey_ep11key2pkey(key + sizeof(struct ep11kblob_header),
protkey);
break;
default:
DEBUG_ERR("%s unknown/unsupported non-CCA token version %d\n",
__func__, hdr->version);
rc = -EINVAL;
}
out:
kfree(tmpbuf);
return rc;
}
/*
* Transform a CCA internal key token into a protected key
*/
static int pkey_ccainttok2pkey(const u8 *key, u32 keylen,
struct pkey_protkey *protkey)
{
struct keytoken_header *hdr = (struct keytoken_header *)key;
switch (hdr->version) {
case TOKVER_CCA_AES:
if (keylen != sizeof(struct secaeskeytoken))
return -EINVAL;
break;
case TOKVER_CCA_VLSC:
if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE)
return -EINVAL;
break;
default:
DEBUG_ERR("%s unknown/unsupported CCA internal token version %d\n",
__func__, hdr->version);
return -EINVAL;
}
return pkey_skey2pkey(key, protkey);
}
/*
* Transform a key blob (of any type) into a protected key
*/
int pkey_keyblob2pkey(const u8 *key, u32 keylen,
struct pkey_protkey *protkey)
{
int rc;
struct keytoken_header *hdr = (struct keytoken_header *)key;
if (keylen < sizeof(struct keytoken_header)) {
DEBUG_ERR("%s invalid keylen %d\n", __func__, keylen);
return -EINVAL;
}
switch (hdr->type) {
case TOKTYPE_NON_CCA:
rc = pkey_nonccatok2pkey(key, keylen, protkey);
break;
case TOKTYPE_CCA_INTERNAL:
rc = pkey_ccainttok2pkey(key, keylen, protkey);
break;
default:
DEBUG_ERR("%s unknown/unsupported blob type %d\n",
__func__, hdr->type);
return -EINVAL;
}
DEBUG_DBG("%s rc=%d\n", __func__, rc);
return rc;
}
EXPORT_SYMBOL(pkey_keyblob2pkey);
static int pkey_genseckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
enum pkey_key_type ktype, enum pkey_key_size ksize,
u32 kflags, u8 *keybuf, size_t *keybufsize)
{
int i, card, dom, rc;
/* check for at least one apqn given */
if (!apqns || !nr_apqns)
return -EINVAL;
/* check key type and size */
switch (ktype) {
case PKEY_TYPE_CCA_DATA:
case PKEY_TYPE_CCA_CIPHER:
if (*keybufsize < SECKEYBLOBSIZE)
return -EINVAL;
break;
case PKEY_TYPE_EP11:
if (*keybufsize < MINEP11AESKEYBLOBSIZE)
return -EINVAL;
break;
default:
return -EINVAL;
}
switch (ksize) {
case PKEY_SIZE_AES_128:
case PKEY_SIZE_AES_192:
case PKEY_SIZE_AES_256:
break;
default:
return -EINVAL;
}
/* simple try all apqns from the list */
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i].card;
dom = apqns[i].domain;
if (ktype == PKEY_TYPE_EP11) {
rc = ep11_genaeskey(card, dom, ksize, kflags,
keybuf, keybufsize);
} else if (ktype == PKEY_TYPE_CCA_DATA) {
rc = cca_genseckey(card, dom, ksize, keybuf);
*keybufsize = (rc ? 0 : SECKEYBLOBSIZE);
} else /* TOKVER_CCA_VLSC */
rc = cca_gencipherkey(card, dom, ksize, kflags,
keybuf, keybufsize);
if (rc == 0)
break;
}
return rc;
}
static int pkey_clr2seckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
enum pkey_key_type ktype, enum pkey_key_size ksize,
u32 kflags, const u8 *clrkey,
u8 *keybuf, size_t *keybufsize)
{
int i, card, dom, rc;
/* check for at least one apqn given */
if (!apqns || !nr_apqns)
return -EINVAL;
/* check key type and size */
switch (ktype) {
case PKEY_TYPE_CCA_DATA:
case PKEY_TYPE_CCA_CIPHER:
if (*keybufsize < SECKEYBLOBSIZE)
return -EINVAL;
break;
case PKEY_TYPE_EP11:
if (*keybufsize < MINEP11AESKEYBLOBSIZE)
return -EINVAL;
break;
default:
return -EINVAL;
}
switch (ksize) {
case PKEY_SIZE_AES_128:
case PKEY_SIZE_AES_192:
case PKEY_SIZE_AES_256:
break;
default:
return -EINVAL;
}
zcrypt_wait_api_operational();
/* simple try all apqns from the list */
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i].card;
dom = apqns[i].domain;
if (ktype == PKEY_TYPE_EP11) {
rc = ep11_clr2keyblob(card, dom, ksize, kflags,
clrkey, keybuf, keybufsize);
} else if (ktype == PKEY_TYPE_CCA_DATA) {
rc = cca_clr2seckey(card, dom, ksize,
clrkey, keybuf);
*keybufsize = (rc ? 0 : SECKEYBLOBSIZE);
} else /* TOKVER_CCA_VLSC */
rc = cca_clr2cipherkey(card, dom, ksize, kflags,
clrkey, keybuf, keybufsize);
if (rc == 0)
break;
}
return rc;
}
static int pkey_verifykey2(const u8 *key, size_t keylen,
u16 *cardnr, u16 *domain,
enum pkey_key_type *ktype,
enum pkey_key_size *ksize, u32 *flags)
{
int rc;
u32 _nr_apqns, *_apqns = NULL;
struct keytoken_header *hdr = (struct keytoken_header *)key;
if (keylen < sizeof(struct keytoken_header))
return -EINVAL;
if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_AES) {
struct secaeskeytoken *t = (struct secaeskeytoken *)key;
rc = cca_check_secaeskeytoken(debug_info, 3, key, 0);
if (rc)
goto out;
if (ktype)
*ktype = PKEY_TYPE_CCA_DATA;
if (ksize)
*ksize = (enum pkey_key_size) t->bitsize;
rc = cca_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
ZCRYPT_CEX3C, AES_MK_SET, t->mkvp, 0, 1);
if (rc == 0 && flags)
*flags = PKEY_FLAGS_MATCH_CUR_MKVP;
if (rc == -ENODEV) {
rc = cca_findcard2(&_apqns, &_nr_apqns,
*cardnr, *domain,
ZCRYPT_CEX3C, AES_MK_SET,
0, t->mkvp, 1);
if (rc == 0 && flags)
*flags = PKEY_FLAGS_MATCH_ALT_MKVP;
}
if (rc)
goto out;
*cardnr = ((struct pkey_apqn *)_apqns)->card;
*domain = ((struct pkey_apqn *)_apqns)->domain;
} else if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_VLSC) {
struct cipherkeytoken *t = (struct cipherkeytoken *)key;
rc = cca_check_secaescipherkey(debug_info, 3, key, 0, 1);
if (rc)
goto out;
if (ktype)
*ktype = PKEY_TYPE_CCA_CIPHER;
if (ksize) {
*ksize = PKEY_SIZE_UNKNOWN;
if (!t->plfver && t->wpllen == 512)
*ksize = PKEY_SIZE_AES_128;
else if (!t->plfver && t->wpllen == 576)
*ksize = PKEY_SIZE_AES_192;
else if (!t->plfver && t->wpllen == 640)
*ksize = PKEY_SIZE_AES_256;
}
rc = cca_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
ZCRYPT_CEX6, AES_MK_SET, t->mkvp0, 0, 1);
if (rc == 0 && flags)
*flags = PKEY_FLAGS_MATCH_CUR_MKVP;
if (rc == -ENODEV) {
rc = cca_findcard2(&_apqns, &_nr_apqns,
*cardnr, *domain,
ZCRYPT_CEX6, AES_MK_SET,
0, t->mkvp0, 1);
if (rc == 0 && flags)
*flags = PKEY_FLAGS_MATCH_ALT_MKVP;
}
if (rc)
goto out;
*cardnr = ((struct pkey_apqn *)_apqns)->card;
*domain = ((struct pkey_apqn *)_apqns)->domain;
} else if (hdr->type == TOKTYPE_NON_CCA
&& hdr->version == TOKVER_EP11_AES) {
struct ep11keyblob *kb = (struct ep11keyblob *)key;
rc = ep11_check_aes_key(debug_info, 3, key, keylen, 1);
if (rc)
goto out;
if (ktype)
*ktype = PKEY_TYPE_EP11;
if (ksize)
*ksize = kb->head.keybitlen;
rc = ep11_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
ZCRYPT_CEX7, EP11_API_V, kb->wkvp);
if (rc)
goto out;
if (flags)
*flags = PKEY_FLAGS_MATCH_CUR_MKVP;
*cardnr = ((struct pkey_apqn *)_apqns)->card;
*domain = ((struct pkey_apqn *)_apqns)->domain;
} else
rc = -EINVAL;
out:
kfree(_apqns);
return rc;
}
static int pkey_keyblob2pkey2(const struct pkey_apqn *apqns, size_t nr_apqns,
const u8 *key, size_t keylen,
struct pkey_protkey *pkey)
{
int i, card, dom, rc;
struct keytoken_header *hdr = (struct keytoken_header *)key;
/* check for at least one apqn given */
if (!apqns || !nr_apqns)
return -EINVAL;
if (keylen < sizeof(struct keytoken_header))
return -EINVAL;
if (hdr->type == TOKTYPE_CCA_INTERNAL) {
if (hdr->version == TOKVER_CCA_AES) {
if (keylen != sizeof(struct secaeskeytoken))
return -EINVAL;
if (cca_check_secaeskeytoken(debug_info, 3, key, 0))
return -EINVAL;
} else if (hdr->version == TOKVER_CCA_VLSC) {
if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE)
return -EINVAL;
if (cca_check_secaescipherkey(debug_info, 3, key, 0, 1))
return -EINVAL;
} else {
DEBUG_ERR("%s unknown CCA internal token version %d\n",
__func__, hdr->version);
return -EINVAL;
}
} else if (hdr->type == TOKTYPE_NON_CCA) {
if (hdr->version == TOKVER_EP11_AES) {
if (keylen < sizeof(struct ep11keyblob))
return -EINVAL;
if (ep11_check_aes_key(debug_info, 3, key, keylen, 1))
return -EINVAL;
} else {
return pkey_nonccatok2pkey(key, keylen, pkey);
}
} else {
DEBUG_ERR("%s unknown/unsupported blob type %d\n",
__func__, hdr->type);
return -EINVAL;
}
zcrypt_wait_api_operational();
/* simple try all apqns from the list */
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i].card;
dom = apqns[i].domain;
if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_AES)
rc = cca_sec2protkey(card, dom, key, pkey->protkey,
&pkey->len, &pkey->type);
else if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_VLSC)
rc = cca_cipher2protkey(card, dom, key, pkey->protkey,
&pkey->len, &pkey->type);
else { /* EP11 AES secure key blob */
struct ep11keyblob *kb = (struct ep11keyblob *) key;
pkey->len = sizeof(pkey->protkey);
rc = ep11_kblob2protkey(card, dom, key, kb->head.len,
pkey->protkey, &pkey->len,
&pkey->type);
}
if (rc == 0)
break;
}
return rc;
}
static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
struct pkey_apqn *apqns, size_t *nr_apqns)
{
int rc;
u32 _nr_apqns, *_apqns = NULL;
struct keytoken_header *hdr = (struct keytoken_header *)key;
if (keylen < sizeof(struct keytoken_header) || flags == 0)
return -EINVAL;
zcrypt_wait_api_operational();
if (hdr->type == TOKTYPE_NON_CCA
&& (hdr->version == TOKVER_EP11_AES_WITH_HEADER
|| hdr->version == TOKVER_EP11_ECC_WITH_HEADER)
&& is_ep11_keyblob(key + sizeof(struct ep11kblob_header))) {
int minhwtype = 0, api = 0;
struct ep11keyblob *kb = (struct ep11keyblob *)
(key + sizeof(struct ep11kblob_header));
if (flags != PKEY_FLAGS_MATCH_CUR_MKVP)
return -EINVAL;
if (kb->attr & EP11_BLOB_PKEY_EXTRACTABLE) {
minhwtype = ZCRYPT_CEX7;
api = EP11_API_V;
}
rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
minhwtype, api, kb->wkvp);
if (rc)
goto out;
} else if (hdr->type == TOKTYPE_NON_CCA
&& hdr->version == TOKVER_EP11_AES
&& is_ep11_keyblob(key)) {
int minhwtype = 0, api = 0;
struct ep11keyblob *kb = (struct ep11keyblob *) key;
if (flags != PKEY_FLAGS_MATCH_CUR_MKVP)
return -EINVAL;
if (kb->attr & EP11_BLOB_PKEY_EXTRACTABLE) {
minhwtype = ZCRYPT_CEX7;
api = EP11_API_V;
}
rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
minhwtype, api, kb->wkvp);
if (rc)
goto out;
} else if (hdr->type == TOKTYPE_CCA_INTERNAL) {
int minhwtype = ZCRYPT_CEX3C;
u64 cur_mkvp = 0, old_mkvp = 0;
if (hdr->version == TOKVER_CCA_AES) {
struct secaeskeytoken *t = (struct secaeskeytoken *)key;
if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
cur_mkvp = t->mkvp;
if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
old_mkvp = t->mkvp;
} else if (hdr->version == TOKVER_CCA_VLSC) {
struct cipherkeytoken *t = (struct cipherkeytoken *)key;
minhwtype = ZCRYPT_CEX6;
if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
cur_mkvp = t->mkvp0;
if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
old_mkvp = t->mkvp0;
} else {
/* unknown cca internal token type */
return -EINVAL;
}
rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
minhwtype, AES_MK_SET,
cur_mkvp, old_mkvp, 1);
if (rc)
goto out;
} else if (hdr->type == TOKTYPE_CCA_INTERNAL_PKA) {
u64 cur_mkvp = 0, old_mkvp = 0;
struct eccprivkeytoken *t = (struct eccprivkeytoken *)key;
if (t->secid == 0x20) {
if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
cur_mkvp = t->mkvp;
if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
old_mkvp = t->mkvp;
} else {
/* unknown cca internal 2 token type */
return -EINVAL;
}
rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, APKA_MK_SET,
cur_mkvp, old_mkvp, 1);
if (rc)
goto out;
} else
return -EINVAL;
if (apqns) {
if (*nr_apqns < _nr_apqns)
rc = -ENOSPC;
else
memcpy(apqns, _apqns, _nr_apqns * sizeof(u32));
}
*nr_apqns = _nr_apqns;
out:
kfree(_apqns);
return rc;
}
static int pkey_apqns4keytype(enum pkey_key_type ktype,
u8 cur_mkvp[32], u8 alt_mkvp[32], u32 flags,
struct pkey_apqn *apqns, size_t *nr_apqns)
{
int rc;
u32 _nr_apqns, *_apqns = NULL;
zcrypt_wait_api_operational();
if (ktype == PKEY_TYPE_CCA_DATA || ktype == PKEY_TYPE_CCA_CIPHER) {
u64 cur_mkvp = 0, old_mkvp = 0;
int minhwtype = ZCRYPT_CEX3C;
if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
cur_mkvp = *((u64 *) cur_mkvp);
if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
old_mkvp = *((u64 *) alt_mkvp);
if (ktype == PKEY_TYPE_CCA_CIPHER)
minhwtype = ZCRYPT_CEX6;
rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
minhwtype, AES_MK_SET,
cur_mkvp, old_mkvp, 1);
if (rc)
goto out;
} else if (ktype == PKEY_TYPE_CCA_ECC) {
u64 cur_mkvp = 0, old_mkvp = 0;
if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
cur_mkvp = *((u64 *) cur_mkvp);
if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
old_mkvp = *((u64 *) alt_mkvp);
rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, APKA_MK_SET,
cur_mkvp, old_mkvp, 1);
if (rc)
goto out;
} else if (ktype == PKEY_TYPE_EP11 ||
ktype == PKEY_TYPE_EP11_AES ||
ktype == PKEY_TYPE_EP11_ECC) {
u8 *wkvp = NULL;
if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
wkvp = cur_mkvp;
rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, wkvp);
if (rc)
goto out;
} else
return -EINVAL;
if (apqns) {
if (*nr_apqns < _nr_apqns)
rc = -ENOSPC;
else
memcpy(apqns, _apqns, _nr_apqns * sizeof(u32));
}
*nr_apqns = _nr_apqns;
out:
kfree(_apqns);
return rc;
}
static int pkey_keyblob2pkey3(const struct pkey_apqn *apqns, size_t nr_apqns,
const u8 *key, size_t keylen, u32 *protkeytype,
u8 *protkey, u32 *protkeylen)
{
int i, card, dom, rc;
struct keytoken_header *hdr = (struct keytoken_header *)key;
/* check for at least one apqn given */
if (!apqns || !nr_apqns)
return -EINVAL;
if (keylen < sizeof(struct keytoken_header))
return -EINVAL;
if (hdr->type == TOKTYPE_NON_CCA
&& hdr->version == TOKVER_EP11_AES_WITH_HEADER
&& is_ep11_keyblob(key + sizeof(struct ep11kblob_header))) {
/* EP11 AES key blob with header */
if (ep11_check_aes_key_with_hdr(debug_info, 3, key, keylen, 1))
return -EINVAL;
} else if (hdr->type == TOKTYPE_NON_CCA
&& hdr->version == TOKVER_EP11_ECC_WITH_HEADER
&& is_ep11_keyblob(key + sizeof(struct ep11kblob_header))) {
/* EP11 ECC key blob with header */
if (ep11_check_ecc_key_with_hdr(debug_info, 3, key, keylen, 1))
return -EINVAL;
} else if (hdr->type == TOKTYPE_NON_CCA
&& hdr->version == TOKVER_EP11_AES
&& is_ep11_keyblob(key)) {
/* EP11 AES key blob with header in session field */
if (ep11_check_aes_key(debug_info, 3, key, keylen, 1))
return -EINVAL;
} else if (hdr->type == TOKTYPE_CCA_INTERNAL) {
if (hdr->version == TOKVER_CCA_AES) {
/* CCA AES data key */
if (keylen != sizeof(struct secaeskeytoken))
return -EINVAL;
if (cca_check_secaeskeytoken(debug_info, 3, key, 0))
return -EINVAL;
} else if (hdr->version == TOKVER_CCA_VLSC) {
/* CCA AES cipher key */
if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE)
return -EINVAL;
if (cca_check_secaescipherkey(debug_info, 3, key, 0, 1))
return -EINVAL;
} else {
DEBUG_ERR("%s unknown CCA internal token version %d\n",
__func__, hdr->version);
return -EINVAL;
}
} else if (hdr->type == TOKTYPE_CCA_INTERNAL_PKA) {
/* CCA ECC (private) key */
if (keylen < sizeof(struct eccprivkeytoken))
return -EINVAL;
if (cca_check_sececckeytoken(debug_info, 3, key, keylen, 1))
return -EINVAL;
} else if (hdr->type == TOKTYPE_NON_CCA) {
struct pkey_protkey pkey;
rc = pkey_nonccatok2pkey(key, keylen, &pkey);
if (rc)
return rc;
memcpy(protkey, pkey.protkey, pkey.len);
*protkeylen = pkey.len;
*protkeytype = pkey.type;
return 0;
} else {
DEBUG_ERR("%s unknown/unsupported blob type %d\n",
__func__, hdr->type);
return -EINVAL;
}
/* simple try all apqns from the list */
for (rc = -ENODEV, i = 0; rc && i < nr_apqns; i++) {
card = apqns[i].card;
dom = apqns[i].domain;
if (hdr->type == TOKTYPE_NON_CCA
&& (hdr->version == TOKVER_EP11_AES_WITH_HEADER
|| hdr->version == TOKVER_EP11_ECC_WITH_HEADER)
&& is_ep11_keyblob(key + sizeof(struct ep11kblob_header)))
rc = ep11_kblob2protkey(card, dom, key, hdr->len,
protkey, protkeylen, protkeytype);
else if (hdr->type == TOKTYPE_NON_CCA
&& hdr->version == TOKVER_EP11_AES
&& is_ep11_keyblob(key))
rc = ep11_kblob2protkey(card, dom, key, hdr->len,
protkey, protkeylen, protkeytype);
else if (hdr->type == TOKTYPE_CCA_INTERNAL &&
hdr->version == TOKVER_CCA_AES)
rc = cca_sec2protkey(card, dom, key, protkey,
protkeylen, protkeytype);
else if (hdr->type == TOKTYPE_CCA_INTERNAL &&
hdr->version == TOKVER_CCA_VLSC)
rc = cca_cipher2protkey(card, dom, key, protkey,
protkeylen, protkeytype);
else if (hdr->type == TOKTYPE_CCA_INTERNAL_PKA)
rc = cca_ecc2protkey(card, dom, key, protkey,
protkeylen, protkeytype);
else
return -EINVAL;
}
return rc;
}
/*
* File io functions
*/
static void *_copy_key_from_user(void __user *ukey, size_t keylen)
{
if (!ukey || keylen < MINKEYBLOBSIZE || keylen > KEYBLOBBUFSIZE)
return ERR_PTR(-EINVAL);
return memdup_user(ukey, keylen);
}
static void *_copy_apqns_from_user(void __user *uapqns, size_t nr_apqns)
{
if (!uapqns || nr_apqns == 0)
return NULL;
return memdup_user(uapqns, nr_apqns * sizeof(struct pkey_apqn));
}
static long pkey_unlocked_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
int rc;
switch (cmd) {
case PKEY_GENSECK: {
struct pkey_genseck __user *ugs = (void __user *) arg;
struct pkey_genseck kgs;
if (copy_from_user(&kgs, ugs, sizeof(kgs)))
return -EFAULT;
rc = cca_genseckey(kgs.cardnr, kgs.domain,
kgs.keytype, kgs.seckey.seckey);
DEBUG_DBG("%s cca_genseckey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(ugs, &kgs, sizeof(kgs)))
return -EFAULT;
break;
}
case PKEY_CLR2SECK: {
struct pkey_clr2seck __user *ucs = (void __user *) arg;
struct pkey_clr2seck kcs;
if (copy_from_user(&kcs, ucs, sizeof(kcs)))
return -EFAULT;
rc = cca_clr2seckey(kcs.cardnr, kcs.domain, kcs.keytype,
kcs.clrkey.clrkey, kcs.seckey.seckey);
DEBUG_DBG("%s cca_clr2seckey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(ucs, &kcs, sizeof(kcs)))
return -EFAULT;
memzero_explicit(&kcs, sizeof(kcs));
break;
}
case PKEY_SEC2PROTK: {
struct pkey_sec2protk __user *usp = (void __user *) arg;
struct pkey_sec2protk ksp;
if (copy_from_user(&ksp, usp, sizeof(ksp)))
return -EFAULT;
rc = cca_sec2protkey(ksp.cardnr, ksp.domain,
ksp.seckey.seckey, ksp.protkey.protkey,
&ksp.protkey.len, &ksp.protkey.type);
DEBUG_DBG("%s cca_sec2protkey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(usp, &ksp, sizeof(ksp)))
return -EFAULT;
break;
}
case PKEY_CLR2PROTK: {
struct pkey_clr2protk __user *ucp = (void __user *) arg;
struct pkey_clr2protk kcp;
if (copy_from_user(&kcp, ucp, sizeof(kcp)))
return -EFAULT;
rc = pkey_clr2protkey(kcp.keytype,
&kcp.clrkey, &kcp.protkey);
DEBUG_DBG("%s pkey_clr2protkey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(ucp, &kcp, sizeof(kcp)))
return -EFAULT;
memzero_explicit(&kcp, sizeof(kcp));
break;
}
case PKEY_FINDCARD: {
struct pkey_findcard __user *ufc = (void __user *) arg;
struct pkey_findcard kfc;
if (copy_from_user(&kfc, ufc, sizeof(kfc)))
return -EFAULT;
rc = cca_findcard(kfc.seckey.seckey,
&kfc.cardnr, &kfc.domain, 1);
DEBUG_DBG("%s cca_findcard()=%d\n", __func__, rc);
if (rc < 0)
break;
if (copy_to_user(ufc, &kfc, sizeof(kfc)))
return -EFAULT;
break;
}
case PKEY_SKEY2PKEY: {
struct pkey_skey2pkey __user *usp = (void __user *) arg;
struct pkey_skey2pkey ksp;
if (copy_from_user(&ksp, usp, sizeof(ksp)))
return -EFAULT;
rc = pkey_skey2pkey(ksp.seckey.seckey, &ksp.protkey);
DEBUG_DBG("%s pkey_skey2pkey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(usp, &ksp, sizeof(ksp)))
return -EFAULT;
break;
}
case PKEY_VERIFYKEY: {
struct pkey_verifykey __user *uvk = (void __user *) arg;
struct pkey_verifykey kvk;
if (copy_from_user(&kvk, uvk, sizeof(kvk)))
return -EFAULT;
rc = pkey_verifykey(&kvk.seckey, &kvk.cardnr, &kvk.domain,
&kvk.keysize, &kvk.attributes);
DEBUG_DBG("%s pkey_verifykey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(uvk, &kvk, sizeof(kvk)))
return -EFAULT;
break;
}
case PKEY_GENPROTK: {
struct pkey_genprotk __user *ugp = (void __user *) arg;
struct pkey_genprotk kgp;
if (copy_from_user(&kgp, ugp, sizeof(kgp)))
return -EFAULT;
rc = pkey_genprotkey(kgp.keytype, &kgp.protkey);
DEBUG_DBG("%s pkey_genprotkey()=%d\n", __func__, rc);
if (rc)
break;
if (copy_to_user(ugp, &kgp, sizeof(kgp)))
return -EFAULT;
break;
}
case PKEY_VERIFYPROTK: {
struct pkey_verifyprotk __user *uvp = (void __user *) arg;
struct pkey_verifyprotk kvp;
if (copy_from_user(&kvp, uvp, sizeof(kvp)))
return -EFAULT;
rc = pkey_verifyprotkey(&kvp.protkey);
DEBUG_DBG("%s pkey_verifyprotkey()=%d\n", __func__, rc);
break;
}
case PKEY_KBLOB2PROTK: {
struct pkey_kblob2pkey __user *utp = (void __user *) arg;
struct pkey_kblob2pkey ktp;
u8 *kkey;
if (copy_from_user(&ktp, utp, sizeof(ktp)))
return -EFAULT;
kkey = _copy_key_from_user(ktp.key, ktp.keylen);
if (IS_ERR(kkey))
return PTR_ERR(kkey);
rc = pkey_keyblob2pkey(kkey, ktp.keylen, &ktp.protkey);
DEBUG_DBG("%s pkey_keyblob2pkey()=%d\n", __func__, rc);
kfree(kkey);
if (rc)
break;
if (copy_to_user(utp, &ktp, sizeof(ktp)))
return -EFAULT;
break;
}
case PKEY_GENSECK2: {
struct pkey_genseck2 __user *ugs = (void __user *) arg;
struct pkey_genseck2 kgs;
struct pkey_apqn *apqns;
size_t klen = KEYBLOBBUFSIZE;
u8 *kkey;
if (copy_from_user(&kgs, ugs, sizeof(kgs)))
return -EFAULT;
apqns = _copy_apqns_from_user(kgs.apqns, kgs.apqn_entries);
if (IS_ERR(apqns))
return PTR_ERR(apqns);
kkey = kmalloc(klen, GFP_KERNEL);
if (!kkey) {
kfree(apqns);
return -ENOMEM;
}
rc = pkey_genseckey2(apqns, kgs.apqn_entries,
kgs.type, kgs.size, kgs.keygenflags,
kkey, &klen);
DEBUG_DBG("%s pkey_genseckey2()=%d\n", __func__, rc);
kfree(apqns);
if (rc) {
kfree(kkey);
break;
}
if (kgs.key) {
if (kgs.keylen < klen) {
kfree(kkey);
return -EINVAL;
}
if (copy_to_user(kgs.key, kkey, klen)) {
kfree(kkey);
return -EFAULT;
}
}
kgs.keylen = klen;
if (copy_to_user(ugs, &kgs, sizeof(kgs)))
rc = -EFAULT;
kfree(kkey);
break;
}
case PKEY_CLR2SECK2: {
struct pkey_clr2seck2 __user *ucs = (void __user *) arg;
struct pkey_clr2seck2 kcs;
struct pkey_apqn *apqns;
size_t klen = KEYBLOBBUFSIZE;
u8 *kkey;
if (copy_from_user(&kcs, ucs, sizeof(kcs)))
return -EFAULT;
apqns = _copy_apqns_from_user(kcs.apqns, kcs.apqn_entries);
if (IS_ERR(apqns))
return PTR_ERR(apqns);
kkey = kmalloc(klen, GFP_KERNEL);
if (!kkey) {
kfree(apqns);
return -ENOMEM;
}
rc = pkey_clr2seckey2(apqns, kcs.apqn_entries,
kcs.type, kcs.size, kcs.keygenflags,
kcs.clrkey.clrkey, kkey, &klen);
DEBUG_DBG("%s pkey_clr2seckey2()=%d\n", __func__, rc);
kfree(apqns);
if (rc) {
kfree(kkey);
break;
}
if (kcs.key) {
if (kcs.keylen < klen) {
kfree(kkey);
return -EINVAL;
}
if (copy_to_user(kcs.key, kkey, klen)) {
kfree(kkey);
return -EFAULT;
}
}
kcs.keylen = klen;
if (copy_to_user(ucs, &kcs, sizeof(kcs)))
rc = -EFAULT;
memzero_explicit(&kcs, sizeof(kcs));
kfree(kkey);
break;
}
case PKEY_VERIFYKEY2: {
struct pkey_verifykey2 __user *uvk = (void __user *) arg;
struct pkey_verifykey2 kvk;
u8 *kkey;
if (copy_from_user(&kvk, uvk, sizeof(kvk)))
return -EFAULT;
kkey = _copy_key_from_user(kvk.key, kvk.keylen);
if (IS_ERR(kkey))
return PTR_ERR(kkey);
rc = pkey_verifykey2(kkey, kvk.keylen,
&kvk.cardnr, &kvk.domain,
&kvk.type, &kvk.size, &kvk.flags);
DEBUG_DBG("%s pkey_verifykey2()=%d\n", __func__, rc);
kfree(kkey);
if (rc)
break;
if (copy_to_user(uvk, &kvk, sizeof(kvk)))
return -EFAULT;
break;
}
case PKEY_KBLOB2PROTK2: {
struct pkey_kblob2pkey2 __user *utp = (void __user *) arg;
struct pkey_kblob2pkey2 ktp;
struct pkey_apqn *apqns = NULL;
u8 *kkey;
if (copy_from_user(&ktp, utp, sizeof(ktp)))
return -EFAULT;
apqns = _copy_apqns_from_user(ktp.apqns, ktp.apqn_entries);
if (IS_ERR(apqns))
return PTR_ERR(apqns);
kkey = _copy_key_from_user(ktp.key, ktp.keylen);
if (IS_ERR(kkey)) {
kfree(apqns);
return PTR_ERR(kkey);
}
rc = pkey_keyblob2pkey2(apqns, ktp.apqn_entries,
kkey, ktp.keylen, &ktp.protkey);
DEBUG_DBG("%s pkey_keyblob2pkey2()=%d\n", __func__, rc);
kfree(apqns);
kfree(kkey);
if (rc)
break;
if (copy_to_user(utp, &ktp, sizeof(ktp)))
return -EFAULT;
break;
}
case PKEY_APQNS4K: {
struct pkey_apqns4key __user *uak = (void __user *) arg;
struct pkey_apqns4key kak;
struct pkey_apqn *apqns = NULL;
size_t nr_apqns, len;
u8 *kkey;
if (copy_from_user(&kak, uak, sizeof(kak)))
return -EFAULT;
nr_apqns = kak.apqn_entries;
if (nr_apqns) {
apqns = kmalloc_array(nr_apqns,
sizeof(struct pkey_apqn),
GFP_KERNEL);
if (!apqns)
return -ENOMEM;
}
kkey = _copy_key_from_user(kak.key, kak.keylen);
if (IS_ERR(kkey)) {
kfree(apqns);
return PTR_ERR(kkey);
}
rc = pkey_apqns4key(kkey, kak.keylen, kak.flags,
apqns, &nr_apqns);
DEBUG_DBG("%s pkey_apqns4key()=%d\n", __func__, rc);
kfree(kkey);
if (rc && rc != -ENOSPC) {
kfree(apqns);
break;
}
if (!rc && kak.apqns) {
if (nr_apqns > kak.apqn_entries) {
kfree(apqns);
return -EINVAL;
}
len = nr_apqns * sizeof(struct pkey_apqn);
if (len) {
if (copy_to_user(kak.apqns, apqns, len)) {
kfree(apqns);
return -EFAULT;
}
}
}
kak.apqn_entries = nr_apqns;
if (copy_to_user(uak, &kak, sizeof(kak)))
rc = -EFAULT;
kfree(apqns);
break;
}
case PKEY_APQNS4KT: {
struct pkey_apqns4keytype __user *uat = (void __user *) arg;
struct pkey_apqns4keytype kat;
struct pkey_apqn *apqns = NULL;
size_t nr_apqns, len;
if (copy_from_user(&kat, uat, sizeof(kat)))
return -EFAULT;
nr_apqns = kat.apqn_entries;
if (nr_apqns) {
apqns = kmalloc_array(nr_apqns,
sizeof(struct pkey_apqn),
GFP_KERNEL);
if (!apqns)
return -ENOMEM;
}
rc = pkey_apqns4keytype(kat.type, kat.cur_mkvp, kat.alt_mkvp,
kat.flags, apqns, &nr_apqns);
DEBUG_DBG("%s pkey_apqns4keytype()=%d\n", __func__, rc);
if (rc && rc != -ENOSPC) {
kfree(apqns);
break;
}
if (!rc && kat.apqns) {
if (nr_apqns > kat.apqn_entries) {
kfree(apqns);
return -EINVAL;
}
len = nr_apqns * sizeof(struct pkey_apqn);
if (len) {
if (copy_to_user(kat.apqns, apqns, len)) {
kfree(apqns);
return -EFAULT;
}
}
}
kat.apqn_entries = nr_apqns;
if (copy_to_user(uat, &kat, sizeof(kat)))
rc = -EFAULT;
kfree(apqns);
break;
}
case PKEY_KBLOB2PROTK3: {
struct pkey_kblob2pkey3 __user *utp = (void __user *) arg;
struct pkey_kblob2pkey3 ktp;
struct pkey_apqn *apqns = NULL;
u32 protkeylen = PROTKEYBLOBBUFSIZE;
u8 *kkey, *protkey;
if (copy_from_user(&ktp, utp, sizeof(ktp)))
return -EFAULT;
apqns = _copy_apqns_from_user(ktp.apqns, ktp.apqn_entries);
if (IS_ERR(apqns))
return PTR_ERR(apqns);
kkey = _copy_key_from_user(ktp.key, ktp.keylen);
if (IS_ERR(kkey)) {
kfree(apqns);
return PTR_ERR(kkey);
}
protkey = kmalloc(protkeylen, GFP_KERNEL);
if (!protkey) {
kfree(apqns);
kfree(kkey);
return -ENOMEM;
}
rc = pkey_keyblob2pkey3(apqns, ktp.apqn_entries, kkey,
ktp.keylen, &ktp.pkeytype,
protkey, &protkeylen);
DEBUG_DBG("%s pkey_keyblob2pkey3()=%d\n", __func__, rc);
kfree(apqns);
kfree(kkey);
if (rc) {
kfree(protkey);
break;
}
if (ktp.pkey && ktp.pkeylen) {
if (protkeylen > ktp.pkeylen) {
kfree(protkey);
return -EINVAL;
}
if (copy_to_user(ktp.pkey, protkey, protkeylen)) {
kfree(protkey);
return -EFAULT;
}
}
kfree(protkey);
ktp.pkeylen = protkeylen;
if (copy_to_user(utp, &ktp, sizeof(ktp)))
return -EFAULT;
break;
}
default:
/* unknown/unsupported ioctl cmd */
return -ENOTTY;
}
return rc;
}
/*
* Sysfs and file io operations
*/
/*
* Sysfs attribute read function for all protected key binary attributes.
* The implementation can not deal with partial reads, because a new random
* protected key blob is generated with each read. In case of partial reads
* (i.e. off != 0 or count < key blob size) -EINVAL is returned.
*/
static ssize_t pkey_protkey_aes_attr_read(u32 keytype, bool is_xts, char *buf,
loff_t off, size_t count)
{
struct protaeskeytoken protkeytoken;
struct pkey_protkey protkey;
int rc;
if (off != 0 || count < sizeof(protkeytoken))
return -EINVAL;
if (is_xts)
if (count < 2 * sizeof(protkeytoken))
return -EINVAL;
memset(&protkeytoken, 0, sizeof(protkeytoken));
protkeytoken.type = TOKTYPE_NON_CCA;
protkeytoken.version = TOKVER_PROTECTED_KEY;
protkeytoken.keytype = keytype;
rc = pkey_genprotkey(protkeytoken.keytype, &protkey);
if (rc)
return rc;
protkeytoken.len = protkey.len;
memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len);
memcpy(buf, &protkeytoken, sizeof(protkeytoken));
if (is_xts) {
rc = pkey_genprotkey(protkeytoken.keytype, &protkey);
if (rc)
return rc;
protkeytoken.len = protkey.len;
memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len);
memcpy(buf + sizeof(protkeytoken), &protkeytoken,
sizeof(protkeytoken));
return 2 * sizeof(protkeytoken);
}
return sizeof(protkeytoken);
}
static ssize_t protkey_aes_128_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf,
off, count);
}
static ssize_t protkey_aes_192_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf,
off, count);
}
static ssize_t protkey_aes_256_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf,
off, count);
}
static ssize_t protkey_aes_128_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf,
off, count);
}
static ssize_t protkey_aes_256_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf,
off, count);
}
static BIN_ATTR_RO(protkey_aes_128, sizeof(struct protaeskeytoken));
static BIN_ATTR_RO(protkey_aes_192, sizeof(struct protaeskeytoken));
static BIN_ATTR_RO(protkey_aes_256, sizeof(struct protaeskeytoken));
static BIN_ATTR_RO(protkey_aes_128_xts, 2 * sizeof(struct protaeskeytoken));
static BIN_ATTR_RO(protkey_aes_256_xts, 2 * sizeof(struct protaeskeytoken));
static struct bin_attribute *protkey_attrs[] = {
&bin_attr_protkey_aes_128,
&bin_attr_protkey_aes_192,
&bin_attr_protkey_aes_256,
&bin_attr_protkey_aes_128_xts,
&bin_attr_protkey_aes_256_xts,
NULL
};
static struct attribute_group protkey_attr_group = {
.name = "protkey",
.bin_attrs = protkey_attrs,
};
/*
* Sysfs attribute read function for all secure key ccadata binary attributes.
* The implementation can not deal with partial reads, because a new random
* protected key blob is generated with each read. In case of partial reads
* (i.e. off != 0 or count < key blob size) -EINVAL is returned.
*/
static ssize_t pkey_ccadata_aes_attr_read(u32 keytype, bool is_xts, char *buf,
loff_t off, size_t count)
{
int rc;
struct pkey_seckey *seckey = (struct pkey_seckey *) buf;
if (off != 0 || count < sizeof(struct secaeskeytoken))
return -EINVAL;
if (is_xts)
if (count < 2 * sizeof(struct secaeskeytoken))
return -EINVAL;
rc = cca_genseckey(-1, -1, keytype, seckey->seckey);
if (rc)
return rc;
if (is_xts) {
seckey++;
rc = cca_genseckey(-1, -1, keytype, seckey->seckey);
if (rc)
return rc;
return 2 * sizeof(struct secaeskeytoken);
}
return sizeof(struct secaeskeytoken);
}
static ssize_t ccadata_aes_128_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf,
off, count);
}
static ssize_t ccadata_aes_192_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf,
off, count);
}
static ssize_t ccadata_aes_256_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf,
off, count);
}
static ssize_t ccadata_aes_128_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf,
off, count);
}
static ssize_t ccadata_aes_256_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf,
off, count);
}
static BIN_ATTR_RO(ccadata_aes_128, sizeof(struct secaeskeytoken));
static BIN_ATTR_RO(ccadata_aes_192, sizeof(struct secaeskeytoken));
static BIN_ATTR_RO(ccadata_aes_256, sizeof(struct secaeskeytoken));
static BIN_ATTR_RO(ccadata_aes_128_xts, 2 * sizeof(struct secaeskeytoken));
static BIN_ATTR_RO(ccadata_aes_256_xts, 2 * sizeof(struct secaeskeytoken));
static struct bin_attribute *ccadata_attrs[] = {
&bin_attr_ccadata_aes_128,
&bin_attr_ccadata_aes_192,
&bin_attr_ccadata_aes_256,
&bin_attr_ccadata_aes_128_xts,
&bin_attr_ccadata_aes_256_xts,
NULL
};
static struct attribute_group ccadata_attr_group = {
.name = "ccadata",
.bin_attrs = ccadata_attrs,
};
#define CCACIPHERTOKENSIZE (sizeof(struct cipherkeytoken) + 80)
/*
* Sysfs attribute read function for all secure key ccacipher binary attributes.
* The implementation can not deal with partial reads, because a new random
* secure key blob is generated with each read. In case of partial reads
* (i.e. off != 0 or count < key blob size) -EINVAL is returned.
*/
static ssize_t pkey_ccacipher_aes_attr_read(enum pkey_key_size keybits,
bool is_xts, char *buf, loff_t off,
size_t count)
{
int i, rc, card, dom;
u32 nr_apqns, *apqns = NULL;
size_t keysize = CCACIPHERTOKENSIZE;
if (off != 0 || count < CCACIPHERTOKENSIZE)
return -EINVAL;
if (is_xts)
if (count < 2 * CCACIPHERTOKENSIZE)
return -EINVAL;
/* build a list of apqns able to generate an cipher key */
rc = cca_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX6, 0, 0, 0, 0);
if (rc)
return rc;
memset(buf, 0, is_xts ? 2 * keysize : keysize);
/* simple try all apqns from the list */
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
break;
}
if (rc)
return rc;
if (is_xts) {
keysize = CCACIPHERTOKENSIZE;
buf += CCACIPHERTOKENSIZE;
rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
return 2 * CCACIPHERTOKENSIZE;
}
return CCACIPHERTOKENSIZE;
}
static ssize_t ccacipher_aes_128_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_128, false, buf,
off, count);
}
static ssize_t ccacipher_aes_192_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_192, false, buf,
off, count);
}
static ssize_t ccacipher_aes_256_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_256, false, buf,
off, count);
}
static ssize_t ccacipher_aes_128_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_128, true, buf,
off, count);
}
static ssize_t ccacipher_aes_256_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_256, true, buf,
off, count);
}
static BIN_ATTR_RO(ccacipher_aes_128, CCACIPHERTOKENSIZE);
static BIN_ATTR_RO(ccacipher_aes_192, CCACIPHERTOKENSIZE);
static BIN_ATTR_RO(ccacipher_aes_256, CCACIPHERTOKENSIZE);
static BIN_ATTR_RO(ccacipher_aes_128_xts, 2 * CCACIPHERTOKENSIZE);
static BIN_ATTR_RO(ccacipher_aes_256_xts, 2 * CCACIPHERTOKENSIZE);
static struct bin_attribute *ccacipher_attrs[] = {
&bin_attr_ccacipher_aes_128,
&bin_attr_ccacipher_aes_192,
&bin_attr_ccacipher_aes_256,
&bin_attr_ccacipher_aes_128_xts,
&bin_attr_ccacipher_aes_256_xts,
NULL
};
static struct attribute_group ccacipher_attr_group = {
.name = "ccacipher",
.bin_attrs = ccacipher_attrs,
};
/*
* Sysfs attribute read function for all ep11 aes key binary attributes.
* The implementation can not deal with partial reads, because a new random
* secure key blob is generated with each read. In case of partial reads
* (i.e. off != 0 or count < key blob size) -EINVAL is returned.
* This function and the sysfs attributes using it provide EP11 key blobs
* padded to the upper limit of MAXEP11AESKEYBLOBSIZE which is currently
* 320 bytes.
*/
static ssize_t pkey_ep11_aes_attr_read(enum pkey_key_size keybits,
bool is_xts, char *buf, loff_t off,
size_t count)
{
int i, rc, card, dom;
u32 nr_apqns, *apqns = NULL;
size_t keysize = MAXEP11AESKEYBLOBSIZE;
if (off != 0 || count < MAXEP11AESKEYBLOBSIZE)
return -EINVAL;
if (is_xts)
if (count < 2 * MAXEP11AESKEYBLOBSIZE)
return -EINVAL;
/* build a list of apqns able to generate an cipher key */
rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, NULL);
if (rc)
return rc;
memset(buf, 0, is_xts ? 2 * keysize : keysize);
/* simple try all apqns from the list */
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
break;
}
if (rc)
return rc;
if (is_xts) {
keysize = MAXEP11AESKEYBLOBSIZE;
buf += MAXEP11AESKEYBLOBSIZE;
rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
return 2 * MAXEP11AESKEYBLOBSIZE;
}
return MAXEP11AESKEYBLOBSIZE;
}
static ssize_t ep11_aes_128_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, false, buf,
off, count);
}
static ssize_t ep11_aes_192_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_192, false, buf,
off, count);
}
static ssize_t ep11_aes_256_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, false, buf,
off, count);
}
static ssize_t ep11_aes_128_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, true, buf,
off, count);
}
static ssize_t ep11_aes_256_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, true, buf,
off, count);
}
static BIN_ATTR_RO(ep11_aes_128, MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_192, MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_256, MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_128_xts, 2 * MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_256_xts, 2 * MAXEP11AESKEYBLOBSIZE);
static struct bin_attribute *ep11_attrs[] = {
&bin_attr_ep11_aes_128,
&bin_attr_ep11_aes_192,
&bin_attr_ep11_aes_256,
&bin_attr_ep11_aes_128_xts,
&bin_attr_ep11_aes_256_xts,
NULL
};
static struct attribute_group ep11_attr_group = {
.name = "ep11",
.bin_attrs = ep11_attrs,
};
static const struct attribute_group *pkey_attr_groups[] = {
&protkey_attr_group,
&ccadata_attr_group,
&ccacipher_attr_group,
&ep11_attr_group,
NULL,
};
static const struct file_operations pkey_fops = {
.owner = THIS_MODULE,
.open = nonseekable_open,
.llseek = no_llseek,
.unlocked_ioctl = pkey_unlocked_ioctl,
};
static struct miscdevice pkey_dev = {
.name = "pkey",
.minor = MISC_DYNAMIC_MINOR,
.mode = 0666,
.fops = &pkey_fops,
.groups = pkey_attr_groups,
};
/*
* Module init
*/
static int __init pkey_init(void)
{
cpacf_mask_t func_mask;
/*
* The pckmo instruction should be available - even if we don't
* actually invoke it. This instruction comes with MSA 3 which
* is also the minimum level for the kmc instructions which
* are able to work with protected keys.
*/
if (!cpacf_query(CPACF_PCKMO, &func_mask))
return -ENODEV;
/* check for kmc instructions available */
if (!cpacf_query(CPACF_KMC, &func_mask))
return -ENODEV;
if (!cpacf_test_func(&func_mask, CPACF_KMC_PAES_128) ||
!cpacf_test_func(&func_mask, CPACF_KMC_PAES_192) ||
!cpacf_test_func(&func_mask, CPACF_KMC_PAES_256))
return -ENODEV;
pkey_debug_init();
return misc_register(&pkey_dev);
}
/*
* Module exit
*/
static void __exit pkey_exit(void)
{
misc_deregister(&pkey_dev);
pkey_debug_exit();
}
module_cpu_feature_match(MSA, pkey_init);
module_exit(pkey_exit);