870 lines
24 KiB
C
870 lines
24 KiB
C
/*
|
|
* Performance events:
|
|
*
|
|
* Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
|
|
* Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
|
|
*
|
|
* Data type definitions, declarations, prototypes.
|
|
*
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
#ifndef _LINUX_PERF_EVENT_H
|
|
#define _LINUX_PERF_EVENT_H
|
|
|
|
#include <uapi/linux/perf_event.h>
|
|
|
|
/*
|
|
* Kernel-internal data types and definitions:
|
|
*/
|
|
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
# include <asm/perf_event.h>
|
|
# include <asm/local64.h>
|
|
#endif
|
|
|
|
struct perf_guest_info_callbacks {
|
|
int (*is_in_guest)(void);
|
|
int (*is_user_mode)(void);
|
|
unsigned long (*get_guest_ip)(void);
|
|
};
|
|
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
#include <asm/hw_breakpoint.h>
|
|
#endif
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/static_key.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/perf_regs.h>
|
|
#include <asm/local.h>
|
|
|
|
struct perf_callchain_entry {
|
|
__u64 nr;
|
|
__u64 ip[PERF_MAX_STACK_DEPTH];
|
|
};
|
|
|
|
struct perf_raw_record {
|
|
u32 size;
|
|
void *data;
|
|
};
|
|
|
|
/*
|
|
* single taken branch record layout:
|
|
*
|
|
* from: source instruction (may not always be a branch insn)
|
|
* to: branch target
|
|
* mispred: branch target was mispredicted
|
|
* predicted: branch target was predicted
|
|
*
|
|
* support for mispred, predicted is optional. In case it
|
|
* is not supported mispred = predicted = 0.
|
|
*
|
|
* in_tx: running in a hardware transaction
|
|
* abort: aborting a hardware transaction
|
|
*/
|
|
struct perf_branch_entry {
|
|
__u64 from;
|
|
__u64 to;
|
|
__u64 mispred:1, /* target mispredicted */
|
|
predicted:1,/* target predicted */
|
|
in_tx:1, /* in transaction */
|
|
abort:1, /* transaction abort */
|
|
reserved:60;
|
|
};
|
|
|
|
/*
|
|
* branch stack layout:
|
|
* nr: number of taken branches stored in entries[]
|
|
*
|
|
* Note that nr can vary from sample to sample
|
|
* branches (to, from) are stored from most recent
|
|
* to least recent, i.e., entries[0] contains the most
|
|
* recent branch.
|
|
*/
|
|
struct perf_branch_stack {
|
|
__u64 nr;
|
|
struct perf_branch_entry entries[0];
|
|
};
|
|
|
|
struct perf_regs_user {
|
|
__u64 abi;
|
|
struct pt_regs *regs;
|
|
};
|
|
|
|
struct task_struct;
|
|
|
|
/*
|
|
* extra PMU register associated with an event
|
|
*/
|
|
struct hw_perf_event_extra {
|
|
u64 config; /* register value */
|
|
unsigned int reg; /* register address or index */
|
|
int alloc; /* extra register already allocated */
|
|
int idx; /* index in shared_regs->regs[] */
|
|
};
|
|
|
|
struct event_constraint;
|
|
|
|
/**
|
|
* struct hw_perf_event - performance event hardware details:
|
|
*/
|
|
struct hw_perf_event {
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
union {
|
|
struct { /* hardware */
|
|
u64 config;
|
|
u64 last_tag;
|
|
unsigned long config_base;
|
|
unsigned long event_base;
|
|
int event_base_rdpmc;
|
|
int idx;
|
|
int last_cpu;
|
|
int flags;
|
|
|
|
struct hw_perf_event_extra extra_reg;
|
|
struct hw_perf_event_extra branch_reg;
|
|
|
|
struct event_constraint *constraint;
|
|
};
|
|
struct { /* software */
|
|
struct hrtimer hrtimer;
|
|
};
|
|
struct { /* tracepoint */
|
|
struct task_struct *tp_target;
|
|
/* for tp_event->class */
|
|
struct list_head tp_list;
|
|
};
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
struct { /* breakpoint */
|
|
/*
|
|
* Crufty hack to avoid the chicken and egg
|
|
* problem hw_breakpoint has with context
|
|
* creation and event initalization.
|
|
*/
|
|
struct task_struct *bp_target;
|
|
struct arch_hw_breakpoint info;
|
|
struct list_head bp_list;
|
|
};
|
|
#endif
|
|
};
|
|
int state;
|
|
local64_t prev_count;
|
|
u64 sample_period;
|
|
u64 last_period;
|
|
local64_t period_left;
|
|
u64 interrupts_seq;
|
|
u64 interrupts;
|
|
|
|
u64 freq_time_stamp;
|
|
u64 freq_count_stamp;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* hw_perf_event::state flags
|
|
*/
|
|
#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
|
|
#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
|
|
#define PERF_HES_ARCH 0x04
|
|
|
|
struct perf_event;
|
|
|
|
/*
|
|
* Common implementation detail of pmu::{start,commit,cancel}_txn
|
|
*/
|
|
#define PERF_EVENT_TXN 0x1
|
|
|
|
/**
|
|
* struct pmu - generic performance monitoring unit
|
|
*/
|
|
struct pmu {
|
|
struct list_head entry;
|
|
|
|
struct device *dev;
|
|
const struct attribute_group **attr_groups;
|
|
const char *name;
|
|
int type;
|
|
|
|
int * __percpu pmu_disable_count;
|
|
struct perf_cpu_context * __percpu pmu_cpu_context;
|
|
int task_ctx_nr;
|
|
int hrtimer_interval_ms;
|
|
|
|
/*
|
|
* Fully disable/enable this PMU, can be used to protect from the PMI
|
|
* as well as for lazy/batch writing of the MSRs.
|
|
*/
|
|
void (*pmu_enable) (struct pmu *pmu); /* optional */
|
|
void (*pmu_disable) (struct pmu *pmu); /* optional */
|
|
|
|
/*
|
|
* Try and initialize the event for this PMU.
|
|
* Should return -ENOENT when the @event doesn't match this PMU.
|
|
*/
|
|
int (*event_init) (struct perf_event *event);
|
|
|
|
#define PERF_EF_START 0x01 /* start the counter when adding */
|
|
#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
|
|
#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
|
|
|
|
/*
|
|
* Adds/Removes a counter to/from the PMU, can be done inside
|
|
* a transaction, see the ->*_txn() methods.
|
|
*/
|
|
int (*add) (struct perf_event *event, int flags);
|
|
void (*del) (struct perf_event *event, int flags);
|
|
|
|
/*
|
|
* Starts/Stops a counter present on the PMU. The PMI handler
|
|
* should stop the counter when perf_event_overflow() returns
|
|
* !0. ->start() will be used to continue.
|
|
*/
|
|
void (*start) (struct perf_event *event, int flags);
|
|
void (*stop) (struct perf_event *event, int flags);
|
|
|
|
/*
|
|
* Updates the counter value of the event.
|
|
*/
|
|
void (*read) (struct perf_event *event);
|
|
|
|
/*
|
|
* Group events scheduling is treated as a transaction, add
|
|
* group events as a whole and perform one schedulability test.
|
|
* If the test fails, roll back the whole group
|
|
*
|
|
* Start the transaction, after this ->add() doesn't need to
|
|
* do schedulability tests.
|
|
*/
|
|
void (*start_txn) (struct pmu *pmu); /* optional */
|
|
/*
|
|
* If ->start_txn() disabled the ->add() schedulability test
|
|
* then ->commit_txn() is required to perform one. On success
|
|
* the transaction is closed. On error the transaction is kept
|
|
* open until ->cancel_txn() is called.
|
|
*/
|
|
int (*commit_txn) (struct pmu *pmu); /* optional */
|
|
/*
|
|
* Will cancel the transaction, assumes ->del() is called
|
|
* for each successful ->add() during the transaction.
|
|
*/
|
|
void (*cancel_txn) (struct pmu *pmu); /* optional */
|
|
|
|
/*
|
|
* Will return the value for perf_event_mmap_page::index for this event,
|
|
* if no implementation is provided it will default to: event->hw.idx + 1.
|
|
*/
|
|
int (*event_idx) (struct perf_event *event); /*optional */
|
|
|
|
/*
|
|
* flush branch stack on context-switches (needed in cpu-wide mode)
|
|
*/
|
|
void (*flush_branch_stack) (void);
|
|
};
|
|
|
|
/**
|
|
* enum perf_event_active_state - the states of a event
|
|
*/
|
|
enum perf_event_active_state {
|
|
PERF_EVENT_STATE_ERROR = -2,
|
|
PERF_EVENT_STATE_OFF = -1,
|
|
PERF_EVENT_STATE_INACTIVE = 0,
|
|
PERF_EVENT_STATE_ACTIVE = 1,
|
|
};
|
|
|
|
struct file;
|
|
struct perf_sample_data;
|
|
|
|
typedef void (*perf_overflow_handler_t)(struct perf_event *,
|
|
struct perf_sample_data *,
|
|
struct pt_regs *regs);
|
|
|
|
enum perf_group_flag {
|
|
PERF_GROUP_SOFTWARE = 0x1,
|
|
};
|
|
|
|
#define SWEVENT_HLIST_BITS 8
|
|
#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
|
|
|
|
struct swevent_hlist {
|
|
struct hlist_head heads[SWEVENT_HLIST_SIZE];
|
|
struct rcu_head rcu_head;
|
|
};
|
|
|
|
#define PERF_ATTACH_CONTEXT 0x01
|
|
#define PERF_ATTACH_GROUP 0x02
|
|
#define PERF_ATTACH_TASK 0x04
|
|
|
|
struct perf_cgroup;
|
|
struct ring_buffer;
|
|
|
|
/**
|
|
* struct perf_event - performance event kernel representation:
|
|
*/
|
|
struct perf_event {
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
struct list_head group_entry;
|
|
struct list_head event_entry;
|
|
struct list_head sibling_list;
|
|
struct hlist_node hlist_entry;
|
|
int nr_siblings;
|
|
int group_flags;
|
|
struct perf_event *group_leader;
|
|
struct pmu *pmu;
|
|
|
|
enum perf_event_active_state state;
|
|
unsigned int attach_state;
|
|
local64_t count;
|
|
atomic64_t child_count;
|
|
|
|
/*
|
|
* These are the total time in nanoseconds that the event
|
|
* has been enabled (i.e. eligible to run, and the task has
|
|
* been scheduled in, if this is a per-task event)
|
|
* and running (scheduled onto the CPU), respectively.
|
|
*
|
|
* They are computed from tstamp_enabled, tstamp_running and
|
|
* tstamp_stopped when the event is in INACTIVE or ACTIVE state.
|
|
*/
|
|
u64 total_time_enabled;
|
|
u64 total_time_running;
|
|
|
|
/*
|
|
* These are timestamps used for computing total_time_enabled
|
|
* and total_time_running when the event is in INACTIVE or
|
|
* ACTIVE state, measured in nanoseconds from an arbitrary point
|
|
* in time.
|
|
* tstamp_enabled: the notional time when the event was enabled
|
|
* tstamp_running: the notional time when the event was scheduled on
|
|
* tstamp_stopped: in INACTIVE state, the notional time when the
|
|
* event was scheduled off.
|
|
*/
|
|
u64 tstamp_enabled;
|
|
u64 tstamp_running;
|
|
u64 tstamp_stopped;
|
|
|
|
/*
|
|
* timestamp shadows the actual context timing but it can
|
|
* be safely used in NMI interrupt context. It reflects the
|
|
* context time as it was when the event was last scheduled in.
|
|
*
|
|
* ctx_time already accounts for ctx->timestamp. Therefore to
|
|
* compute ctx_time for a sample, simply add perf_clock().
|
|
*/
|
|
u64 shadow_ctx_time;
|
|
|
|
struct perf_event_attr attr;
|
|
u16 header_size;
|
|
u16 id_header_size;
|
|
u16 read_size;
|
|
struct hw_perf_event hw;
|
|
|
|
struct perf_event_context *ctx;
|
|
atomic_long_t refcount;
|
|
|
|
/*
|
|
* These accumulate total time (in nanoseconds) that children
|
|
* events have been enabled and running, respectively.
|
|
*/
|
|
atomic64_t child_total_time_enabled;
|
|
atomic64_t child_total_time_running;
|
|
|
|
/*
|
|
* Protect attach/detach and child_list:
|
|
*/
|
|
struct mutex child_mutex;
|
|
struct list_head child_list;
|
|
struct perf_event *parent;
|
|
|
|
int oncpu;
|
|
int cpu;
|
|
|
|
struct list_head owner_entry;
|
|
struct task_struct *owner;
|
|
|
|
/* mmap bits */
|
|
struct mutex mmap_mutex;
|
|
atomic_t mmap_count;
|
|
|
|
struct ring_buffer *rb;
|
|
struct list_head rb_entry;
|
|
|
|
/* poll related */
|
|
wait_queue_head_t waitq;
|
|
struct fasync_struct *fasync;
|
|
|
|
/* delayed work for NMIs and such */
|
|
int pending_wakeup;
|
|
int pending_kill;
|
|
int pending_disable;
|
|
struct irq_work pending;
|
|
|
|
atomic_t event_limit;
|
|
|
|
void (*destroy)(struct perf_event *);
|
|
struct rcu_head rcu_head;
|
|
|
|
struct pid_namespace *ns;
|
|
u64 id;
|
|
|
|
perf_overflow_handler_t overflow_handler;
|
|
void *overflow_handler_context;
|
|
|
|
#ifdef CONFIG_EVENT_TRACING
|
|
struct ftrace_event_call *tp_event;
|
|
struct event_filter *filter;
|
|
#ifdef CONFIG_FUNCTION_TRACER
|
|
struct ftrace_ops ftrace_ops;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_CGROUP_PERF
|
|
struct perf_cgroup *cgrp; /* cgroup event is attach to */
|
|
int cgrp_defer_enabled;
|
|
#endif
|
|
|
|
#endif /* CONFIG_PERF_EVENTS */
|
|
};
|
|
|
|
enum perf_event_context_type {
|
|
task_context,
|
|
cpu_context,
|
|
};
|
|
|
|
/**
|
|
* struct perf_event_context - event context structure
|
|
*
|
|
* Used as a container for task events and CPU events as well:
|
|
*/
|
|
struct perf_event_context {
|
|
struct pmu *pmu;
|
|
enum perf_event_context_type type;
|
|
/*
|
|
* Protect the states of the events in the list,
|
|
* nr_active, and the list:
|
|
*/
|
|
raw_spinlock_t lock;
|
|
/*
|
|
* Protect the list of events. Locking either mutex or lock
|
|
* is sufficient to ensure the list doesn't change; to change
|
|
* the list you need to lock both the mutex and the spinlock.
|
|
*/
|
|
struct mutex mutex;
|
|
|
|
struct list_head pinned_groups;
|
|
struct list_head flexible_groups;
|
|
struct list_head event_list;
|
|
int nr_events;
|
|
int nr_active;
|
|
int is_active;
|
|
int nr_stat;
|
|
int nr_freq;
|
|
int rotate_disable;
|
|
atomic_t refcount;
|
|
struct task_struct *task;
|
|
|
|
/*
|
|
* Context clock, runs when context enabled.
|
|
*/
|
|
u64 time;
|
|
u64 timestamp;
|
|
|
|
/*
|
|
* These fields let us detect when two contexts have both
|
|
* been cloned (inherited) from a common ancestor.
|
|
*/
|
|
struct perf_event_context *parent_ctx;
|
|
u64 parent_gen;
|
|
u64 generation;
|
|
int pin_count;
|
|
int nr_cgroups; /* cgroup evts */
|
|
int nr_branch_stack; /* branch_stack evt */
|
|
struct rcu_head rcu_head;
|
|
};
|
|
|
|
/*
|
|
* Number of contexts where an event can trigger:
|
|
* task, softirq, hardirq, nmi.
|
|
*/
|
|
#define PERF_NR_CONTEXTS 4
|
|
|
|
/**
|
|
* struct perf_event_cpu_context - per cpu event context structure
|
|
*/
|
|
struct perf_cpu_context {
|
|
struct perf_event_context ctx;
|
|
struct perf_event_context *task_ctx;
|
|
int active_oncpu;
|
|
int exclusive;
|
|
struct hrtimer hrtimer;
|
|
ktime_t hrtimer_interval;
|
|
struct list_head rotation_list;
|
|
struct pmu *unique_pmu;
|
|
struct perf_cgroup *cgrp;
|
|
};
|
|
|
|
struct perf_output_handle {
|
|
struct perf_event *event;
|
|
struct ring_buffer *rb;
|
|
unsigned long wakeup;
|
|
unsigned long size;
|
|
void *addr;
|
|
int page;
|
|
};
|
|
|
|
#ifdef CONFIG_PERF_EVENTS
|
|
|
|
extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
|
|
extern void perf_pmu_unregister(struct pmu *pmu);
|
|
|
|
extern int perf_num_counters(void);
|
|
extern const char *perf_pmu_name(void);
|
|
extern void __perf_event_task_sched_in(struct task_struct *prev,
|
|
struct task_struct *task);
|
|
extern void __perf_event_task_sched_out(struct task_struct *prev,
|
|
struct task_struct *next);
|
|
extern int perf_event_init_task(struct task_struct *child);
|
|
extern void perf_event_exit_task(struct task_struct *child);
|
|
extern void perf_event_free_task(struct task_struct *task);
|
|
extern void perf_event_delayed_put(struct task_struct *task);
|
|
extern void perf_event_print_debug(void);
|
|
extern void perf_pmu_disable(struct pmu *pmu);
|
|
extern void perf_pmu_enable(struct pmu *pmu);
|
|
extern int perf_event_task_disable(void);
|
|
extern int perf_event_task_enable(void);
|
|
extern int perf_event_refresh(struct perf_event *event, int refresh);
|
|
extern void perf_event_update_userpage(struct perf_event *event);
|
|
extern int perf_event_release_kernel(struct perf_event *event);
|
|
extern struct perf_event *
|
|
perf_event_create_kernel_counter(struct perf_event_attr *attr,
|
|
int cpu,
|
|
struct task_struct *task,
|
|
perf_overflow_handler_t callback,
|
|
void *context);
|
|
extern void perf_pmu_migrate_context(struct pmu *pmu,
|
|
int src_cpu, int dst_cpu);
|
|
extern u64 perf_event_read_value(struct perf_event *event,
|
|
u64 *enabled, u64 *running);
|
|
|
|
|
|
struct perf_sample_data {
|
|
u64 type;
|
|
|
|
u64 ip;
|
|
struct {
|
|
u32 pid;
|
|
u32 tid;
|
|
} tid_entry;
|
|
u64 time;
|
|
u64 addr;
|
|
u64 id;
|
|
u64 stream_id;
|
|
struct {
|
|
u32 cpu;
|
|
u32 reserved;
|
|
} cpu_entry;
|
|
u64 period;
|
|
union perf_mem_data_src data_src;
|
|
struct perf_callchain_entry *callchain;
|
|
struct perf_raw_record *raw;
|
|
struct perf_branch_stack *br_stack;
|
|
struct perf_regs_user regs_user;
|
|
u64 stack_user_size;
|
|
u64 weight;
|
|
};
|
|
|
|
static inline void perf_sample_data_init(struct perf_sample_data *data,
|
|
u64 addr, u64 period)
|
|
{
|
|
/* remaining struct members initialized in perf_prepare_sample() */
|
|
data->addr = addr;
|
|
data->raw = NULL;
|
|
data->br_stack = NULL;
|
|
data->period = period;
|
|
data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
|
|
data->regs_user.regs = NULL;
|
|
data->stack_user_size = 0;
|
|
data->weight = 0;
|
|
data->data_src.val = 0;
|
|
}
|
|
|
|
extern void perf_output_sample(struct perf_output_handle *handle,
|
|
struct perf_event_header *header,
|
|
struct perf_sample_data *data,
|
|
struct perf_event *event);
|
|
extern void perf_prepare_sample(struct perf_event_header *header,
|
|
struct perf_sample_data *data,
|
|
struct perf_event *event,
|
|
struct pt_regs *regs);
|
|
|
|
extern int perf_event_overflow(struct perf_event *event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs);
|
|
|
|
static inline bool is_sampling_event(struct perf_event *event)
|
|
{
|
|
return event->attr.sample_period != 0;
|
|
}
|
|
|
|
/*
|
|
* Return 1 for a software event, 0 for a hardware event
|
|
*/
|
|
static inline int is_software_event(struct perf_event *event)
|
|
{
|
|
return event->pmu->task_ctx_nr == perf_sw_context;
|
|
}
|
|
|
|
extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
|
|
|
|
extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
|
|
|
|
#ifndef perf_arch_fetch_caller_regs
|
|
static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
|
|
#endif
|
|
|
|
/*
|
|
* Take a snapshot of the regs. Skip ip and frame pointer to
|
|
* the nth caller. We only need a few of the regs:
|
|
* - ip for PERF_SAMPLE_IP
|
|
* - cs for user_mode() tests
|
|
* - bp for callchains
|
|
* - eflags, for future purposes, just in case
|
|
*/
|
|
static inline void perf_fetch_caller_regs(struct pt_regs *regs)
|
|
{
|
|
memset(regs, 0, sizeof(*regs));
|
|
|
|
perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
|
|
}
|
|
|
|
static __always_inline void
|
|
perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
|
|
{
|
|
struct pt_regs hot_regs;
|
|
|
|
if (static_key_false(&perf_swevent_enabled[event_id])) {
|
|
if (!regs) {
|
|
perf_fetch_caller_regs(&hot_regs);
|
|
regs = &hot_regs;
|
|
}
|
|
__perf_sw_event(event_id, nr, regs, addr);
|
|
}
|
|
}
|
|
|
|
extern struct static_key_deferred perf_sched_events;
|
|
|
|
static inline void perf_event_task_sched_in(struct task_struct *prev,
|
|
struct task_struct *task)
|
|
{
|
|
if (static_key_false(&perf_sched_events.key))
|
|
__perf_event_task_sched_in(prev, task);
|
|
}
|
|
|
|
static inline void perf_event_task_sched_out(struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
|
|
|
|
if (static_key_false(&perf_sched_events.key))
|
|
__perf_event_task_sched_out(prev, next);
|
|
}
|
|
|
|
extern void perf_event_mmap(struct vm_area_struct *vma);
|
|
extern struct perf_guest_info_callbacks *perf_guest_cbs;
|
|
extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
|
|
extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
|
|
|
|
extern void perf_event_comm(struct task_struct *tsk);
|
|
extern void perf_event_fork(struct task_struct *tsk);
|
|
|
|
/* Callchains */
|
|
DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
|
|
|
|
extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
|
|
extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
|
|
|
|
static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
|
|
{
|
|
if (entry->nr < PERF_MAX_STACK_DEPTH)
|
|
entry->ip[entry->nr++] = ip;
|
|
}
|
|
|
|
extern int sysctl_perf_event_paranoid;
|
|
extern int sysctl_perf_event_mlock;
|
|
extern int sysctl_perf_event_sample_rate;
|
|
extern int sysctl_perf_cpu_time_max_percent;
|
|
|
|
extern void perf_sample_event_took(u64 sample_len_ns);
|
|
|
|
extern int perf_proc_update_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos);
|
|
extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos);
|
|
|
|
|
|
static inline bool perf_paranoid_tracepoint_raw(void)
|
|
{
|
|
return sysctl_perf_event_paranoid > -1;
|
|
}
|
|
|
|
static inline bool perf_paranoid_cpu(void)
|
|
{
|
|
return sysctl_perf_event_paranoid > 0;
|
|
}
|
|
|
|
static inline bool perf_paranoid_kernel(void)
|
|
{
|
|
return sysctl_perf_event_paranoid > 1;
|
|
}
|
|
|
|
extern void perf_event_init(void);
|
|
extern void perf_tp_event(u64 addr, u64 count, void *record,
|
|
int entry_size, struct pt_regs *regs,
|
|
struct hlist_head *head, int rctx,
|
|
struct task_struct *task);
|
|
extern void perf_bp_event(struct perf_event *event, void *data);
|
|
|
|
#ifndef perf_misc_flags
|
|
# define perf_misc_flags(regs) \
|
|
(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
|
|
# define perf_instruction_pointer(regs) instruction_pointer(regs)
|
|
#endif
|
|
|
|
static inline bool has_branch_stack(struct perf_event *event)
|
|
{
|
|
return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
|
|
}
|
|
|
|
extern int perf_output_begin(struct perf_output_handle *handle,
|
|
struct perf_event *event, unsigned int size);
|
|
extern void perf_output_end(struct perf_output_handle *handle);
|
|
extern unsigned int perf_output_copy(struct perf_output_handle *handle,
|
|
const void *buf, unsigned int len);
|
|
extern unsigned int perf_output_skip(struct perf_output_handle *handle,
|
|
unsigned int len);
|
|
extern int perf_swevent_get_recursion_context(void);
|
|
extern void perf_swevent_put_recursion_context(int rctx);
|
|
extern u64 perf_swevent_set_period(struct perf_event *event);
|
|
extern void perf_event_enable(struct perf_event *event);
|
|
extern void perf_event_disable(struct perf_event *event);
|
|
extern int __perf_event_disable(void *info);
|
|
extern void perf_event_task_tick(void);
|
|
#else
|
|
static inline void
|
|
perf_event_task_sched_in(struct task_struct *prev,
|
|
struct task_struct *task) { }
|
|
static inline void
|
|
perf_event_task_sched_out(struct task_struct *prev,
|
|
struct task_struct *next) { }
|
|
static inline int perf_event_init_task(struct task_struct *child) { return 0; }
|
|
static inline void perf_event_exit_task(struct task_struct *child) { }
|
|
static inline void perf_event_free_task(struct task_struct *task) { }
|
|
static inline void perf_event_delayed_put(struct task_struct *task) { }
|
|
static inline void perf_event_print_debug(void) { }
|
|
static inline int perf_event_task_disable(void) { return -EINVAL; }
|
|
static inline int perf_event_task_enable(void) { return -EINVAL; }
|
|
static inline int perf_event_refresh(struct perf_event *event, int refresh)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static inline void
|
|
perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
|
|
static inline void
|
|
perf_bp_event(struct perf_event *event, void *data) { }
|
|
|
|
static inline int perf_register_guest_info_callbacks
|
|
(struct perf_guest_info_callbacks *callbacks) { return 0; }
|
|
static inline int perf_unregister_guest_info_callbacks
|
|
(struct perf_guest_info_callbacks *callbacks) { return 0; }
|
|
|
|
static inline void perf_event_mmap(struct vm_area_struct *vma) { }
|
|
static inline void perf_event_comm(struct task_struct *tsk) { }
|
|
static inline void perf_event_fork(struct task_struct *tsk) { }
|
|
static inline void perf_event_init(void) { }
|
|
static inline int perf_swevent_get_recursion_context(void) { return -1; }
|
|
static inline void perf_swevent_put_recursion_context(int rctx) { }
|
|
static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
|
|
static inline void perf_event_enable(struct perf_event *event) { }
|
|
static inline void perf_event_disable(struct perf_event *event) { }
|
|
static inline int __perf_event_disable(void *info) { return -1; }
|
|
static inline void perf_event_task_tick(void) { }
|
|
#endif
|
|
|
|
#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
|
|
extern bool perf_event_can_stop_tick(void);
|
|
#else
|
|
static inline bool perf_event_can_stop_tick(void) { return true; }
|
|
#endif
|
|
|
|
#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
|
|
extern void perf_restore_debug_store(void);
|
|
#else
|
|
static inline void perf_restore_debug_store(void) { }
|
|
#endif
|
|
|
|
#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
|
|
|
|
/*
|
|
* This has to have a higher priority than migration_notifier in sched/core.c.
|
|
*/
|
|
#define perf_cpu_notifier(fn) \
|
|
do { \
|
|
static struct notifier_block fn##_nb __cpuinitdata = \
|
|
{ .notifier_call = fn, .priority = CPU_PRI_PERF }; \
|
|
unsigned long cpu = smp_processor_id(); \
|
|
unsigned long flags; \
|
|
fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
|
|
(void *)(unsigned long)cpu); \
|
|
local_irq_save(flags); \
|
|
fn(&fn##_nb, (unsigned long)CPU_STARTING, \
|
|
(void *)(unsigned long)cpu); \
|
|
local_irq_restore(flags); \
|
|
fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
|
|
(void *)(unsigned long)cpu); \
|
|
register_cpu_notifier(&fn##_nb); \
|
|
} while (0)
|
|
|
|
|
|
struct perf_pmu_events_attr {
|
|
struct device_attribute attr;
|
|
u64 id;
|
|
const char *event_str;
|
|
};
|
|
|
|
#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
|
|
static struct perf_pmu_events_attr _var = { \
|
|
.attr = __ATTR(_name, 0444, _show, NULL), \
|
|
.id = _id, \
|
|
};
|
|
|
|
#define PMU_FORMAT_ATTR(_name, _format) \
|
|
static ssize_t \
|
|
_name##_show(struct device *dev, \
|
|
struct device_attribute *attr, \
|
|
char *page) \
|
|
{ \
|
|
BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
|
|
return sprintf(page, _format "\n"); \
|
|
} \
|
|
\
|
|
static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
|
|
|
|
#endif /* _LINUX_PERF_EVENT_H */
|