OpenCloudOS-Kernel/drivers/serial/sh-sci.c

1693 lines
40 KiB
C

/*
* drivers/serial/sh-sci.c
*
* SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
*
* Copyright (C) 2002, 2003, 2004 Paul Mundt
*
* based off of the old drivers/char/sh-sci.c by:
*
* Copyright (C) 1999, 2000 Niibe Yutaka
* Copyright (C) 2000 Sugioka Toshinobu
* Modified to support multiple serial ports. Stuart Menefy (May 2000).
* Modified to support SecureEdge. David McCullough (2002)
* Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#undef DEBUG
#include <linux/config.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/sysrq.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/console.h>
#include <linux/bitops.h>
#ifdef CONFIG_CPU_FREQ
#include <linux/notifier.h>
#include <linux/cpufreq.h>
#endif
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/generic_serial.h>
#ifdef CONFIG_SH_STANDARD_BIOS
#include <asm/sh_bios.h>
#endif
#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include "sh-sci.h"
#ifdef CONFIG_SH_KGDB
#include <asm/kgdb.h>
static int kgdb_get_char(struct sci_port *port);
static void kgdb_put_char(struct sci_port *port, char c);
static void kgdb_handle_error(struct sci_port *port);
static struct sci_port *kgdb_sci_port;
#endif /* CONFIG_SH_KGDB */
#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
static struct sci_port *serial_console_port = 0;
#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
/* Function prototypes */
static void sci_stop_tx(struct uart_port *port, unsigned int tty_stop);
static void sci_start_tx(struct uart_port *port, unsigned int tty_start);
static void sci_start_rx(struct uart_port *port, unsigned int tty_start);
static void sci_stop_rx(struct uart_port *port);
static int sci_request_irq(struct sci_port *port);
static void sci_free_irq(struct sci_port *port);
static struct sci_port sci_ports[SCI_NPORTS];
static struct uart_driver sci_uart_driver;
#if defined(CONFIG_SH_STANDARD_BIOS) || defined(CONFIG_SH_KGDB)
static void handle_error(struct uart_port *port)
{ /* Clear error flags */
sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
}
static int get_char(struct uart_port *port)
{
unsigned long flags;
unsigned short status;
int c;
local_irq_save(flags);
do {
status = sci_in(port, SCxSR);
if (status & SCxSR_ERRORS(port)) {
handle_error(port);
continue;
}
} while (!(status & SCxSR_RDxF(port)));
c = sci_in(port, SCxRDR);
sci_in(port, SCxSR); /* Dummy read */
sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
local_irq_restore(flags);
return c;
}
/* Taken from sh-stub.c of GDB 4.18 */
static const char hexchars[] = "0123456789abcdef";
static __inline__ char highhex(int x)
{
return hexchars[(x >> 4) & 0xf];
}
static __inline__ char lowhex(int x)
{
return hexchars[x & 0xf];
}
#endif /* CONFIG_SH_STANDARD_BIOS || CONFIG_SH_KGDB */
/*
* Send the packet in buffer. The host gets one chance to read it.
* This routine does not wait for a positive acknowledge.
*/
#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
static void put_char(struct uart_port *port, char c)
{
unsigned long flags;
unsigned short status;
local_irq_save(flags);
do {
status = sci_in(port, SCxSR);
} while (!(status & SCxSR_TDxE(port)));
sci_out(port, SCxTDR, c);
sci_in(port, SCxSR); /* Dummy read */
sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
local_irq_restore(flags);
}
static void put_string(struct sci_port *sci_port, const char *buffer, int count)
{
struct uart_port *port = &sci_port->port;
const unsigned char *p = buffer;
int i;
#if defined(CONFIG_SH_STANDARD_BIOS) || defined(CONFIG_SH_KGDB)
int checksum;
int usegdb=0;
#ifdef CONFIG_SH_STANDARD_BIOS
/* This call only does a trap the first time it is
* called, and so is safe to do here unconditionally
*/
usegdb |= sh_bios_in_gdb_mode();
#endif
#ifdef CONFIG_SH_KGDB
usegdb |= (kgdb_in_gdb_mode && (port == kgdb_sci_port));
#endif
if (usegdb) {
/* $<packet info>#<checksum>. */
do {
unsigned char c;
put_char(port, '$');
put_char(port, 'O'); /* 'O'utput to console */
checksum = 'O';
for (i=0; i<count; i++) { /* Don't use run length encoding */
int h, l;
c = *p++;
h = highhex(c);
l = lowhex(c);
put_char(port, h);
put_char(port, l);
checksum += h + l;
}
put_char(port, '#');
put_char(port, highhex(checksum));
put_char(port, lowhex(checksum));
} while (get_char(port) != '+');
} else
#endif /* CONFIG_SH_STANDARD_BIOS || CONFIG_SH_KGDB */
for (i=0; i<count; i++) {
if (*p == 10)
put_char(port, '\r');
put_char(port, *p++);
}
}
#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
#ifdef CONFIG_SH_KGDB
/* Is the SCI ready, ie is there a char waiting? */
static int kgdb_is_char_ready(struct sci_port *port)
{
unsigned short status = sci_in(port, SCxSR);
if (status & (SCxSR_ERRORS(port) | SCxSR_BRK(port)))
kgdb_handle_error(port);
return (status & SCxSR_RDxF(port));
}
/* Write a char */
static void kgdb_put_char(struct sci_port *port, char c)
{
unsigned short status;
do
status = sci_in(port, SCxSR);
while (!(status & SCxSR_TDxE(port)));
sci_out(port, SCxTDR, c);
sci_in(port, SCxSR); /* Dummy read */
sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
}
/* Get a char if there is one, else ret -1 */
static int kgdb_get_char(struct sci_port *port)
{
int c;
if (kgdb_is_char_ready(port) == 0)
c = -1;
else {
c = sci_in(port, SCxRDR);
sci_in(port, SCxSR); /* Dummy read */
sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
}
return c;
}
/* Called from kgdbstub.c to get a character, i.e. is blocking */
static int kgdb_sci_getchar(void)
{
volatile int c;
/* Keep trying to read a character, this could be neater */
while ((c = kgdb_get_char(kgdb_sci_port)) < 0);
return c;
}
/* Called from kgdbstub.c to put a character, just a wrapper */
static void kgdb_sci_putchar(int c)
{
kgdb_put_char(kgdb_sci_port, c);
}
/* Clear any errors on the SCI */
static void kgdb_handle_error(struct sci_port *port)
{
sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); /* Clear error flags */
}
/* Breakpoint if there's a break sent on the serial port */
static void kgdb_break_interrupt(int irq, void *ptr, struct pt_regs *regs)
{
struct sci_port *port = ptr;
unsigned short status = sci_in(port, SCxSR);
if (status & SCxSR_BRK(port)) {
/* Break into the debugger if a break is detected */
BREAKPOINT();
/* Clear */
sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
}
}
#endif /* CONFIG_SH_KGDB */
#if defined(__H8300S__)
enum { sci_disable, sci_enable };
static void h8300_sci_enable(struct uart_port* port, unsigned int ctrl)
{
volatile unsigned char *mstpcrl=(volatile unsigned char *)MSTPCRL;
int ch = (port->mapbase - SMR0) >> 3;
unsigned char mask = 1 << (ch+1);
if (ctrl == sci_disable) {
*mstpcrl |= mask;
} else {
*mstpcrl &= ~mask;
}
}
#endif
#if defined(SCI_ONLY) || defined(SCI_AND_SCIF)
#if defined(__H8300H__) || defined(__H8300S__)
static void sci_init_pins_sci(struct uart_port* port, unsigned int cflag)
{
int ch = (port->mapbase - SMR0) >> 3;
/* set DDR regs */
H8300_GPIO_DDR(h8300_sci_pins[ch].port,h8300_sci_pins[ch].rx,H8300_GPIO_INPUT);
H8300_GPIO_DDR(h8300_sci_pins[ch].port,h8300_sci_pins[ch].tx,H8300_GPIO_OUTPUT);
/* tx mark output*/
H8300_SCI_DR(ch) |= h8300_sci_pins[ch].tx;
}
#else
static void sci_init_pins_sci(struct uart_port *port, unsigned int cflag)
{
}
#endif
#endif
#if defined(SCIF_ONLY) || defined(SCI_AND_SCIF)
#if defined(CONFIG_CPU_SH3)
/* For SH7705, SH7707, SH7709, SH7709A, SH7729, SH7300*/
static void sci_init_pins_scif(struct uart_port *port, unsigned int cflag)
{
unsigned int fcr_val = 0;
#if !defined(CONFIG_CPU_SUBTYPE_SH7300) /* SH7300 doesn't use RTS/CTS */
{
unsigned short data;
/* We need to set SCPCR to enable RTS/CTS */
data = ctrl_inw(SCPCR);
/* Clear out SCP7MD1,0, SCP6MD1,0, SCP4MD1,0*/
ctrl_outw(data&0x0fcf, SCPCR);
}
if (cflag & CRTSCTS)
fcr_val |= SCFCR_MCE;
else {
unsigned short data;
/* We need to set SCPCR to enable RTS/CTS */
data = ctrl_inw(SCPCR);
/* Clear out SCP7MD1,0, SCP4MD1,0,
Set SCP6MD1,0 = {01} (output) */
ctrl_outw((data&0x0fcf)|0x1000, SCPCR);
data = ctrl_inb(SCPDR);
/* Set /RTS2 (bit6) = 0 */
ctrl_outb(data&0xbf, SCPDR);
}
#endif
sci_out(port, SCFCR, fcr_val);
}
static void sci_init_pins_irda(struct uart_port *port, unsigned int cflag)
{
unsigned int fcr_val = 0;
if (cflag & CRTSCTS)
fcr_val |= SCFCR_MCE;
sci_out(port, SCFCR, fcr_val);
}
#else
/* For SH7750 */
static void sci_init_pins_scif(struct uart_port *port, unsigned int cflag)
{
unsigned int fcr_val = 0;
if (cflag & CRTSCTS) {
fcr_val |= SCFCR_MCE;
} else {
ctrl_outw(0x0080, SCSPTR2); /* Set RTS = 1 */
}
sci_out(port, SCFCR, fcr_val);
}
#endif
#endif /* SCIF_ONLY || SCI_AND_SCIF */
/* ********************************************************************** *
* the interrupt related routines *
* ********************************************************************** */
static void sci_transmit_chars(struct uart_port *port)
{
struct circ_buf *xmit = &port->info->xmit;
unsigned int stopped = uart_tx_stopped(port);
unsigned long flags;
unsigned short status;
unsigned short ctrl;
int count, txroom;
status = sci_in(port, SCxSR);
if (!(status & SCxSR_TDxE(port))) {
local_irq_save(flags);
ctrl = sci_in(port, SCSCR);
if (uart_circ_empty(xmit)) {
ctrl &= ~SCI_CTRL_FLAGS_TIE;
} else {
ctrl |= SCI_CTRL_FLAGS_TIE;
}
sci_out(port, SCSCR, ctrl);
local_irq_restore(flags);
return;
}
#if !defined(SCI_ONLY)
if (port->type == PORT_SCIF) {
txroom = SCIF_TXROOM_MAX - (sci_in(port, SCFDR)>>8);
} else {
txroom = (sci_in(port, SCxSR) & SCI_TDRE)?1:0;
}
#else
txroom = (sci_in(port, SCxSR) & SCI_TDRE)?1:0;
#endif
count = txroom;
do {
unsigned char c;
if (port->x_char) {
c = port->x_char;
port->x_char = 0;
} else if (!uart_circ_empty(xmit) && !stopped) {
c = xmit->buf[xmit->tail];
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
} else {
break;
}
sci_out(port, SCxTDR, c);
port->icount.tx++;
} while (--count > 0);
sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (uart_circ_empty(xmit)) {
sci_stop_tx(port, 0);
} else {
local_irq_save(flags);
ctrl = sci_in(port, SCSCR);
#if !defined(SCI_ONLY)
if (port->type == PORT_SCIF) {
sci_in(port, SCxSR); /* Dummy read */
sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
}
#endif
ctrl |= SCI_CTRL_FLAGS_TIE;
sci_out(port, SCSCR, ctrl);
local_irq_restore(flags);
}
}
/* On SH3, SCIF may read end-of-break as a space->mark char */
#define STEPFN(c) ({int __c=(c); (((__c-1)|(__c)) == -1); })
static inline void sci_receive_chars(struct uart_port *port,
struct pt_regs *regs)
{
struct tty_struct *tty = port->info->tty;
int i, count, copied = 0;
unsigned short status;
status = sci_in(port, SCxSR);
if (!(status & SCxSR_RDxF(port)))
return;
while (1) {
#if !defined(SCI_ONLY)
if (port->type == PORT_SCIF) {
count = sci_in(port, SCFDR)&SCIF_RFDC_MASK ;
} else {
count = (sci_in(port, SCxSR)&SCxSR_RDxF(port))?1:0;
}
#else
count = (sci_in(port, SCxSR)&SCxSR_RDxF(port))?1:0;
#endif
/* Don't copy more bytes than there is room for in the buffer */
if (tty->flip.count + count > TTY_FLIPBUF_SIZE)
count = TTY_FLIPBUF_SIZE - tty->flip.count;
/* If for any reason we can't copy more data, we're done! */
if (count == 0)
break;
if (port->type == PORT_SCI) {
char c = sci_in(port, SCxRDR);
if(((struct sci_port *)port)->break_flag
|| uart_handle_sysrq_char(port, c, regs)) {
count = 0;
} else {
tty->flip.char_buf_ptr[0] = c;
tty->flip.flag_buf_ptr[0] = TTY_NORMAL;
}
} else {
for (i=0; i<count; i++) {
char c = sci_in(port, SCxRDR);
status = sci_in(port, SCxSR);
#if defined(CONFIG_CPU_SH3)
/* Skip "chars" during break */
if (((struct sci_port *)port)->break_flag) {
if ((c == 0) &&
(status & SCxSR_FER(port))) {
count--; i--;
continue;
}
/* Nonzero => end-of-break */
pr_debug("scif: debounce<%02x>\n", c);
((struct sci_port *)port)->break_flag = 0;
if (STEPFN(c)) {
count--; i--;
continue;
}
}
#endif /* CONFIG_CPU_SH3 */
if (uart_handle_sysrq_char(port, c, regs)) {
count--; i--;
continue;
}
/* Store data and status */
tty->flip.char_buf_ptr[i] = c;
if (status&SCxSR_FER(port)) {
tty->flip.flag_buf_ptr[i] = TTY_FRAME;
pr_debug("sci: frame error\n");
} else if (status&SCxSR_PER(port)) {
tty->flip.flag_buf_ptr[i] = TTY_PARITY;
pr_debug("sci: parity error\n");
} else {
tty->flip.flag_buf_ptr[i] = TTY_NORMAL;
}
}
}
sci_in(port, SCxSR); /* dummy read */
sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
/* Update the kernel buffer end */
tty->flip.count += count;
tty->flip.char_buf_ptr += count;
tty->flip.flag_buf_ptr += count;
copied += count;
port->icount.rx += count;
}
if (copied) {
/* Tell the rest of the system the news. New characters! */
tty_flip_buffer_push(tty);
} else {
sci_in(port, SCxSR); /* dummy read */
sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
}
}
#define SCI_BREAK_JIFFIES (HZ/20)
/* The sci generates interrupts during the break,
* 1 per millisecond or so during the break period, for 9600 baud.
* So dont bother disabling interrupts.
* But dont want more than 1 break event.
* Use a kernel timer to periodically poll the rx line until
* the break is finished.
*/
static void sci_schedule_break_timer(struct sci_port *port)
{
port->break_timer.expires = jiffies + SCI_BREAK_JIFFIES;
add_timer(&port->break_timer);
}
/* Ensure that two consecutive samples find the break over. */
static void sci_break_timer(unsigned long data)
{
struct sci_port * port = (struct sci_port *)data;
if(sci_rxd_in(&port->port) == 0) {
port->break_flag = 1;
sci_schedule_break_timer(port);
} else if(port->break_flag == 1){
/* break is over. */
port->break_flag = 2;
sci_schedule_break_timer(port);
} else port->break_flag = 0;
}
static inline int sci_handle_errors(struct uart_port *port)
{
int copied = 0;
unsigned short status = sci_in(port, SCxSR);
struct tty_struct *tty = port->info->tty;
if (status&SCxSR_ORER(port) && tty->flip.count<TTY_FLIPBUF_SIZE) {
/* overrun error */
copied++;
*tty->flip.flag_buf_ptr++ = TTY_OVERRUN;
pr_debug("sci: overrun error\n");
}
if (status&SCxSR_FER(port) && tty->flip.count<TTY_FLIPBUF_SIZE) {
if (sci_rxd_in(port) == 0) {
/* Notify of BREAK */
struct sci_port * sci_port = (struct sci_port *)port;
if(!sci_port->break_flag) {
sci_port->break_flag = 1;
sci_schedule_break_timer((struct sci_port *)port);
/* Do sysrq handling. */
if(uart_handle_break(port)) {
return 0;
}
pr_debug("sci: BREAK detected\n");
copied++;
*tty->flip.flag_buf_ptr++ = TTY_BREAK;
}
}
else {
/* frame error */
copied++;
*tty->flip.flag_buf_ptr++ = TTY_FRAME;
pr_debug("sci: frame error\n");
}
}
if (status&SCxSR_PER(port) && tty->flip.count<TTY_FLIPBUF_SIZE) {
/* parity error */
copied++;
*tty->flip.flag_buf_ptr++ = TTY_PARITY;
pr_debug("sci: parity error\n");
}
if (copied) {
tty->flip.count += copied;
tty_flip_buffer_push(tty);
}
return copied;
}
static inline int sci_handle_breaks(struct uart_port *port)
{
int copied = 0;
unsigned short status = sci_in(port, SCxSR);
struct tty_struct *tty = port->info->tty;
struct sci_port *s = &sci_ports[port->line];
if (!s->break_flag && status & SCxSR_BRK(port) &&
tty->flip.count < TTY_FLIPBUF_SIZE) {
#if defined(CONFIG_CPU_SH3)
/* Debounce break */
s->break_flag = 1;
#endif
/* Notify of BREAK */
copied++;
*tty->flip.flag_buf_ptr++ = TTY_BREAK;
pr_debug("sci: BREAK detected\n");
}
#if defined(SCIF_ORER)
/* XXX: Handle SCIF overrun error */
if (port->type == PORT_SCIF && (sci_in(port, SCLSR) & SCIF_ORER) != 0) {
sci_out(port, SCLSR, 0);
if(tty->flip.count<TTY_FLIPBUF_SIZE) {
copied++;
*tty->flip.flag_buf_ptr++ = TTY_OVERRUN;
pr_debug("sci: overrun error\n");
}
}
#endif
if (copied) {
tty->flip.count += copied;
tty_flip_buffer_push(tty);
}
return copied;
}
static irqreturn_t sci_rx_interrupt(int irq, void *ptr, struct pt_regs *regs)
{
struct uart_port *port = ptr;
/* I think sci_receive_chars has to be called irrespective
* of whether the I_IXOFF is set, otherwise, how is the interrupt
* to be disabled?
*/
sci_receive_chars(port, regs);
return IRQ_HANDLED;
}
static irqreturn_t sci_tx_interrupt(int irq, void *ptr, struct pt_regs *regs)
{
struct uart_port *port = ptr;
sci_transmit_chars(port);
return IRQ_HANDLED;
}
static irqreturn_t sci_er_interrupt(int irq, void *ptr, struct pt_regs *regs)
{
struct uart_port *port = ptr;
/* Handle errors */
if (port->type == PORT_SCI) {
if (sci_handle_errors(port)) {
/* discard character in rx buffer */
sci_in(port, SCxSR);
sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
}
} else {
#if defined(SCIF_ORER)
if((sci_in(port, SCLSR) & SCIF_ORER) != 0) {
struct tty_struct *tty = port->info->tty;
sci_out(port, SCLSR, 0);
if(tty->flip.count<TTY_FLIPBUF_SIZE) {
*tty->flip.flag_buf_ptr++ = TTY_OVERRUN;
tty->flip.count++;
tty_flip_buffer_push(tty);
pr_debug("scif: overrun error\n");
}
}
#endif
sci_rx_interrupt(irq, ptr, regs);
}
sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
/* Kick the transmission */
sci_tx_interrupt(irq, ptr, regs);
return IRQ_HANDLED;
}
static irqreturn_t sci_br_interrupt(int irq, void *ptr, struct pt_regs *regs)
{
struct uart_port *port = ptr;
/* Handle BREAKs */
sci_handle_breaks(port);
sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
return IRQ_HANDLED;
}
static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr, struct pt_regs *regs)
{
unsigned short ssr_status, scr_status;
struct uart_port *port = ptr;
ssr_status = sci_in(port,SCxSR);
scr_status = sci_in(port,SCSCR);
/* Tx Interrupt */
if ((ssr_status&0x0020) && (scr_status&0x0080))
sci_tx_interrupt(irq, ptr, regs);
/* Rx Interrupt */
if ((ssr_status&0x0002) && (scr_status&0x0040))
sci_rx_interrupt(irq, ptr, regs);
/* Error Interrupt */
if ((ssr_status&0x0080) && (scr_status&0x0400))
sci_er_interrupt(irq, ptr, regs);
/* Break Interrupt */
if ((ssr_status&0x0010) && (scr_status&0x0200))
sci_br_interrupt(irq, ptr, regs);
return IRQ_HANDLED;
}
#ifdef CONFIG_CPU_FREQ
/*
* Here we define a transistion notifier so that we can update all of our
* ports' baud rate when the peripheral clock changes.
*/
static int sci_notifier(struct notifier_block *self, unsigned long phase, void *p)
{
struct cpufreq_freqs *freqs = p;
int i;
if ((phase == CPUFREQ_POSTCHANGE) ||
(phase == CPUFREQ_RESUMECHANGE)){
for (i = 0; i < SCI_NPORTS; i++) {
struct uart_port *port = &sci_ports[i].port;
/*
* Update the uartclk per-port if frequency has
* changed, since it will no longer necessarily be
* consistent with the old frequency.
*
* Really we want to be able to do something like
* uart_change_speed() or something along those lines
* here to implicitly reset the per-port baud rate..
*
* Clean this up later..
*/
port->uartclk = current_cpu_data.module_clock * 16;
}
printk("%s: got a postchange notification for cpu %d (old %d, new %d)\n",
__FUNCTION__, freqs->cpu, freqs->old, freqs->new);
}
return NOTIFY_OK;
}
static struct notifier_block sci_nb = { &sci_notifier, NULL, 0 };
#endif /* CONFIG_CPU_FREQ */
static int sci_request_irq(struct sci_port *port)
{
int i;
irqreturn_t (*handlers[4])(int irq, void *ptr, struct pt_regs *regs) = {
sci_er_interrupt, sci_rx_interrupt, sci_tx_interrupt,
sci_br_interrupt,
};
const char *desc[] = { "SCI Receive Error", "SCI Receive Data Full",
"SCI Transmit Data Empty", "SCI Break" };
if (port->irqs[0] == port->irqs[1]) {
if (!port->irqs[0]) {
printk(KERN_ERR "sci: Cannot allocate irq.(IRQ=0)\n");
return -ENODEV;
}
if (request_irq(port->irqs[0], sci_mpxed_interrupt, SA_INTERRUPT,
"sci", port)) {
printk(KERN_ERR "sci: Cannot allocate irq.\n");
return -ENODEV;
}
} else {
for (i = 0; i < ARRAY_SIZE(handlers); i++) {
if (!port->irqs[i])
continue;
if (request_irq(port->irqs[i], handlers[i], SA_INTERRUPT,
desc[i], port)) {
printk(KERN_ERR "sci: Cannot allocate irq.\n");
return -ENODEV;
}
}
}
return 0;
}
static void sci_free_irq(struct sci_port *port)
{
int i;
if (port->irqs[0] == port->irqs[1]) {
if (!port->irqs[0])
printk("sci: sci_free_irq error\n");
else
free_irq(port->irqs[0], port);
} else {
for (i = 0; i < ARRAY_SIZE(port->irqs); i++) {
if (!port->irqs[i])
continue;
free_irq(port->irqs[i], port);
}
}
}
static unsigned int sci_tx_empty(struct uart_port *port)
{
/* Can't detect */
return TIOCSER_TEMT;
}
static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
/* This routine is used for seting signals of: DTR, DCD, CTS/RTS */
/* We use SCIF's hardware for CTS/RTS, so don't need any for that. */
/* If you have signals for DTR and DCD, please implement here. */
}
static unsigned int sci_get_mctrl(struct uart_port *port)
{
/* This routine is used for geting signals of: DTR, DCD, DSR, RI,
and CTS/RTS */
return TIOCM_DTR | TIOCM_RTS | TIOCM_DSR;
}
static void sci_start_tx(struct uart_port *port, unsigned int tty_start)
{
struct sci_port *s = &sci_ports[port->line];
disable_irq(s->irqs[SCIx_TXI_IRQ]);
sci_transmit_chars(port);
enable_irq(s->irqs[SCIx_TXI_IRQ]);
}
static void sci_stop_tx(struct uart_port *port, unsigned int tty_stop)
{
unsigned long flags;
unsigned short ctrl;
/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
local_irq_save(flags);
ctrl = sci_in(port, SCSCR);
ctrl &= ~SCI_CTRL_FLAGS_TIE;
sci_out(port, SCSCR, ctrl);
local_irq_restore(flags);
}
static void sci_start_rx(struct uart_port *port, unsigned int tty_start)
{
unsigned long flags;
unsigned short ctrl;
/* Set RIE (Receive Interrupt Enable) bit in SCSCR */
local_irq_save(flags);
ctrl = sci_in(port, SCSCR);
ctrl |= SCI_CTRL_FLAGS_RIE | SCI_CTRL_FLAGS_REIE;
sci_out(port, SCSCR, ctrl);
local_irq_restore(flags);
}
static void sci_stop_rx(struct uart_port *port)
{
unsigned long flags;
unsigned short ctrl;
/* Clear RIE (Receive Interrupt Enable) bit in SCSCR */
local_irq_save(flags);
ctrl = sci_in(port, SCSCR);
ctrl &= ~(SCI_CTRL_FLAGS_RIE | SCI_CTRL_FLAGS_REIE);
sci_out(port, SCSCR, ctrl);
local_irq_restore(flags);
}
static void sci_enable_ms(struct uart_port *port)
{
/* Nothing here yet .. */
}
static void sci_break_ctl(struct uart_port *port, int break_state)
{
/* Nothing here yet .. */
}
static int sci_startup(struct uart_port *port)
{
struct sci_port *s = &sci_ports[port->line];
#if defined(__H8300S__)
h8300_sci_enable(port, sci_enable);
#endif
sci_request_irq(s);
sci_start_tx(port, 1);
sci_start_rx(port, 1);
return 0;
}
static void sci_shutdown(struct uart_port *port)
{
struct sci_port *s = &sci_ports[port->line];
sci_stop_rx(port);
sci_stop_tx(port, 1);
sci_free_irq(s);
#if defined(__H8300S__)
h8300_sci_enable(port, sci_disable);
#endif
}
static void sci_set_termios(struct uart_port *port, struct termios *termios,
struct termios *old)
{
struct sci_port *s = &sci_ports[port->line];
unsigned int status, baud, smr_val;
unsigned long flags;
int t;
baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/16);
spin_lock_irqsave(&port->lock, flags);
do {
status = sci_in(port, SCxSR);
} while (!(status & SCxSR_TEND(port)));
sci_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */
#if !defined(SCI_ONLY)
if (port->type == PORT_SCIF) {
sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
}
#endif
smr_val = sci_in(port, SCSMR) & 3;
if ((termios->c_cflag & CSIZE) == CS7)
smr_val |= 0x40;
if (termios->c_cflag & PARENB)
smr_val |= 0x20;
if (termios->c_cflag & PARODD)
smr_val |= 0x30;
if (termios->c_cflag & CSTOPB)
smr_val |= 0x08;
uart_update_timeout(port, termios->c_cflag, baud);
sci_out(port, SCSMR, smr_val);
switch (baud) {
case 0: t = -1; break;
case 2400: t = BPS_2400; break;
case 4800: t = BPS_4800; break;
case 9600: t = BPS_9600; break;
case 19200: t = BPS_19200; break;
case 38400: t = BPS_38400; break;
case 57600: t = BPS_57600; break;
case 115200: t = BPS_115200; break;
default: t = SCBRR_VALUE(baud); break;
}
if (t > 0) {
if(t >= 256) {
sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1);
t >>= 2;
} else {
sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3);
}
sci_out(port, SCBRR, t);
udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
}
s->init_pins(port, termios->c_cflag);
sci_out(port, SCSCR, SCSCR_INIT(port));
if ((termios->c_cflag & CREAD) != 0)
sci_start_rx(port,0);
spin_unlock_irqrestore(&port->lock, flags);
}
static const char *sci_type(struct uart_port *port)
{
switch (port->type) {
case PORT_SCI: return "sci";
case PORT_SCIF: return "scif";
case PORT_IRDA: return "irda";
}
return 0;
}
static void sci_release_port(struct uart_port *port)
{
/* Nothing here yet .. */
}
static int sci_request_port(struct uart_port *port)
{
/* Nothing here yet .. */
return 0;
}
static void sci_config_port(struct uart_port *port, int flags)
{
struct sci_port *s = &sci_ports[port->line];
port->type = s->type;
#if defined(CONFIG_CPU_SUBTYPE_SH5_101) || defined(CONFIG_CPU_SUBTYPE_SH5_103)
if (port->mapbase == 0)
port->mapbase = onchip_remap(SCIF_ADDR_SH5, 1024, "SCIF");
port->membase = (void *)port->mapbase;
#endif
}
static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
{
struct sci_port *s = &sci_ports[port->line];
if (ser->irq != s->irqs[SCIx_TXI_IRQ] || ser->irq > NR_IRQS)
return -EINVAL;
if (ser->baud_base < 2400)
/* No paper tape reader for Mitch.. */
return -EINVAL;
return 0;
}
static struct uart_ops sci_uart_ops = {
.tx_empty = sci_tx_empty,
.set_mctrl = sci_set_mctrl,
.get_mctrl = sci_get_mctrl,
.start_tx = sci_start_tx,
.stop_tx = sci_stop_tx,
.stop_rx = sci_stop_rx,
.enable_ms = sci_enable_ms,
.break_ctl = sci_break_ctl,
.startup = sci_startup,
.shutdown = sci_shutdown,
.set_termios = sci_set_termios,
.type = sci_type,
.release_port = sci_release_port,
.request_port = sci_request_port,
.config_port = sci_config_port,
.verify_port = sci_verify_port,
};
static struct sci_port sci_ports[SCI_NPORTS] = {
#if defined(CONFIG_CPU_SUBTYPE_SH7708)
{
.port = {
.membase = (void *)0xfffffe80,
.mapbase = 0xfffffe80,
.iotype = SERIAL_IO_MEM,
.irq = 25,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCI,
.irqs = SCI_IRQS,
.init_pins = sci_init_pins_sci,
},
#elif defined(CONFIG_CPU_SUBTYPE_SH7705)
{
.port = {
.membase = (void *)SCIF0,
.mapbase = SCIF0,
.iotype = SERIAL_IO_MEM,
.irq = 55,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCIF,
.irqs = SH3_IRDA_IRQS,
.init_pins = sci_init_pins_scif,
},
{
.port = {
.membase = (void *)SCIF2,
.mapbase = SCIF2,
.iotype = SERIAL_IO_MEM,
.irq = 59,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 1,
},
.type = PORT_SCIF,
.irqs = SH3_SCIF_IRQS,
.init_pins = sci_init_pins_scif,
}
#elif defined(CONFIG_CPU_SUBTYPE_SH7707) || defined(CONFIG_CPU_SUBTYPE_SH7709)
{
.port = {
.membase = (void *)0xfffffe80,
.mapbase = 0xfffffe80,
.iotype = SERIAL_IO_MEM,
.irq = 25,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCI,
.irqs = SCI_IRQS,
.init_pins = sci_init_pins_sci,
},
{
.port = {
.membase = (void *)0xa4000150,
.mapbase = 0xa4000150,
.iotype = SERIAL_IO_MEM,
.irq = 59,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 1,
},
.type = PORT_SCIF,
.irqs = SH3_SCIF_IRQS,
.init_pins = sci_init_pins_scif,
},
{
.port = {
.membase = (void *)0xa4000140,
.mapbase = 0xa4000140,
.iotype = SERIAL_IO_MEM,
.irq = 55,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 2,
},
.type = PORT_IRDA,
.irqs = SH3_IRDA_IRQS,
.init_pins = sci_init_pins_irda,
}
#elif defined(CONFIG_CPU_SUBTYPE_SH7300)
{
.port = {
.membase = (void *)0xA4430000,
.mapbase = 0xA4430000,
.iotype = SERIAL_IO_MEM,
.irq = 25,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCIF,
.irqs = SH7300_SCIF0_IRQS,
.init_pins = sci_init_pins_scif,
},
#elif defined(CONFIG_CPU_SUBTYPE_SH73180)
{
.port = {
.membase = (void *)0xffe00000,
.mapbase = 0xffe00000,
.iotype = SERIAL_IO_MEM,
.irq = 25,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCIF,
.irqs = SH73180_SCIF_IRQS,
.init_pins = sci_init_pins_scif,
},
#elif defined(CONFIG_SH_RTS7751R2D)
{
.port = {
.membase = (void *)0xffe80000,
.mapbase = 0xffe80000,
.iotype = SERIAL_IO_MEM,
.irq = 43,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCIF,
.irqs = SH4_SCIF_IRQS,
.init_pins = sci_init_pins_scif,
},
#elif defined(CONFIG_CPU_SUBTYPE_SH7750) || defined(CONFIG_CPU_SUBTYPE_SH7751)
{
.port = {
.membase = (void *)0xffe00000,
.mapbase = 0xffe00000,
.iotype = SERIAL_IO_MEM,
.irq = 25,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCI,
.irqs = SCI_IRQS,
.init_pins = sci_init_pins_sci,
},
{
.port = {
.membase = (void *)0xffe80000,
.mapbase = 0xffe80000,
.iotype = SERIAL_IO_MEM,
.irq = 43,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 1,
},
.type = PORT_SCIF,
.irqs = SH4_SCIF_IRQS,
.init_pins = sci_init_pins_scif,
},
#elif defined(CONFIG_CPU_SUBTYPE_SH7760)
{
.port = {
.membase = (void *)0xfe600000,
.mapbase = 0xfe600000,
.iotype = SERIAL_IO_MEM,
.irq = 55,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCIF,
.irqs = SH7760_SCIF0_IRQS,
.init_pins = sci_init_pins_scif,
},
{
.port = {
.membase = (void *)0xfe610000,
.mapbase = 0xfe610000,
.iotype = SERIAL_IO_MEM,
.irq = 75,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 1,
},
.type = PORT_SCIF,
.irqs = SH7760_SCIF1_IRQS,
.init_pins = sci_init_pins_scif,
},
{
.port = {
.membase = (void *)0xfe620000,
.mapbase = 0xfe620000,
.iotype = SERIAL_IO_MEM,
.irq = 79,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 2,
},
.type = PORT_SCIF,
.irqs = SH7760_SCIF2_IRQS,
.init_pins = sci_init_pins_scif,
},
#elif defined(CONFIG_CPU_SUBTYPE_SH4_202)
{
.port = {
.membase = (void *)0xffe80000,
.mapbase = 0xffe80000,
.iotype = SERIAL_IO_MEM,
.irq = 43,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCIF,
.irqs = SH4_SCIF_IRQS,
.init_pins = sci_init_pins_scif,
},
#elif defined(CONFIG_CPU_SUBTYPE_ST40STB1)
{
.port = {
.membase = (void *)0xffe00000,
.mapbase = 0xffe00000,
.iotype = SERIAL_IO_MEM,
.irq = 26,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCIF,
.irqs = STB1_SCIF1_IRQS,
.init_pins = sci_init_pins_scif,
},
{
.port = {
.membase = (void *)0xffe80000,
.mapbase = 0xffe80000,
.iotype = SERIAL_IO_MEM,
.irq = 43,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 1,
},
.type = PORT_SCIF,
.irqs = SH4_SCIF_IRQS,
.init_pins = sci_init_pins_scif,
},
#elif defined(CONFIG_CPU_SUBTYPE_SH5_101) || defined(CONFIG_CPU_SUBTYPE_SH5_103)
{
.port = {
.iotype = SERIAL_IO_MEM,
.irq = 42,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCIF,
.irqs = SH5_SCIF_IRQS,
.init_pins = sci_init_pins_scif,
},
#elif defined(CONFIG_H83007) || defined(CONFIG_H83068)
{
.port = {
.membase = (void *)0x00ffffb0,
.mapbase = 0x00ffffb0,
.iotype = SERIAL_IO_MEM,
.irq = 54,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCI,
.irqs = H8300H_SCI_IRQS0,
.init_pins = sci_init_pins_sci,
},
{
.port = {
.membase = (void *)0x00ffffb8,
.mapbase = 0x00ffffb8,
.iotype = SERIAL_IO_MEM,
.irq = 58,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 1,
},
.type = PORT_SCI,
.irqs = H8300H_SCI_IRQS1,
.init_pins = sci_init_pins_sci,
},
{
.port = {
.membase = (void *)0x00ffffc0,
.mapbase = 0x00ffffc0,
.iotype = SERIAL_IO_MEM,
.irq = 62,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 2,
},
.type = PORT_SCI,
.irqs = H8300H_SCI_IRQS2,
.init_pins = sci_init_pins_sci,
},
#elif defined(CONFIG_H8S2678)
{
.port = {
.membase = (void *)0x00ffff78,
.mapbase = 0x00ffff78,
.iotype = SERIAL_IO_MEM,
.irq = 90,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 0,
},
.type = PORT_SCI,
.irqs = H8S_SCI_IRQS0,
.init_pins = sci_init_pins_sci,
},
{
.port = {
.membase = (void *)0x00ffff80,
.mapbase = 0x00ffff80,
.iotype = SERIAL_IO_MEM,
.irq = 94,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 1,
},
.type = PORT_SCI,
.irqs = H8S_SCI_IRQS1,
.init_pins = sci_init_pins_sci,
},
{
.port = {
.membase = (void *)0x00ffff88,
.mapbase = 0x00ffff88,
.iotype = SERIAL_IO_MEM,
.irq = 98,
.ops = &sci_uart_ops,
.flags = ASYNC_BOOT_AUTOCONF,
.line = 2,
},
.type = PORT_SCI,
.irqs = H8S_SCI_IRQS2,
.init_pins = sci_init_pins_sci,
},
#else
#error "CPU subtype not defined"
#endif
};
#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
/*
* Print a string to the serial port trying not to disturb
* any possible real use of the port...
*/
static void serial_console_write(struct console *co, const char *s,
unsigned count)
{
put_string(serial_console_port, s, count);
}
static int __init serial_console_setup(struct console *co, char *options)
{
struct uart_port *port;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
int ret;
if (co->index >= SCI_NPORTS)
co->index = 0;
serial_console_port = &sci_ports[co->index];
port = &serial_console_port->port;
port->type = serial_console_port->type;
#ifdef CONFIG_SUPERH64
/* This is especially needed on sh64 to remap the SCIF */
sci_config_port(port, 0);
#endif
/*
* We need to set the initial uartclk here, since otherwise it will
* only ever be setup at sci_init() time.
*/
#if !defined(__H8300H__) && !defined(__H8300S__)
port->uartclk = current_cpu_data.module_clock * 16;
#else
port->uartclk = CONFIG_CPU_CLOCK;
#endif
#if defined(__H8300S__)
h8300_sci_enable(port, sci_enable);
#endif
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
ret = uart_set_options(port, co, baud, parity, bits, flow);
#if defined(__H8300H__) || defined(__H8300S__)
/* disable rx interrupt */
if (ret == 0)
sci_stop_rx(port);
#endif
return ret;
}
static struct console serial_console = {
.name = "ttySC",
.device = uart_console_device,
.write = serial_console_write,
.setup = serial_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &sci_uart_driver,
};
static int __init sci_console_init(void)
{
register_console(&serial_console);
return 0;
}
console_initcall(sci_console_init);
#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
#ifdef CONFIG_SH_KGDB
/*
* FIXME: Most of this can go away.. at the moment, we rely on
* arch/sh/kernel/setup.c to do the command line parsing for kgdb, though
* most of that can easily be done here instead.
*
* For the time being, just accept the values that were parsed earlier..
*/
static void __init kgdb_console_get_options(struct uart_port *port, int *baud,
int *parity, int *bits)
{
*baud = kgdb_baud;
*parity = tolower(kgdb_parity);
*bits = kgdb_bits - '0';
}
/*
* The naming here is somewhat misleading, since kgdb_console_setup() takes
* care of the early-on initialization for kgdb, regardless of whether we
* actually use kgdb as a console or not.
*
* On the plus side, this lets us kill off the old kgdb_sci_setup() nonsense.
*/
int __init kgdb_console_setup(struct console *co, char *options)
{
struct uart_port *port = &sci_ports[kgdb_portnum].port;
int baud = 38400;
int bits = 8;
int parity = 'n';
int flow = 'n';
if (co->index >= SCI_NPORTS || co->index != kgdb_portnum)
co->index = kgdb_portnum;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
else
kgdb_console_get_options(port, &baud, &parity, &bits);
kgdb_getchar = kgdb_sci_getchar;
kgdb_putchar = kgdb_sci_putchar;
return uart_set_options(port, co, baud, parity, bits, flow);
}
#endif /* CONFIG_SH_KGDB */
#ifdef CONFIG_SH_KGDB_CONSOLE
static struct console kgdb_console = {
.name = "ttySC",
.write = kgdb_console_write,
.setup = kgdb_console_setup,
.flags = CON_PRINTBUFFER | CON_ENABLED,
.index = -1,
.data = &sci_uart_driver,
};
/* Register the KGDB console so we get messages (d'oh!) */
static int __init kgdb_console_init(void)
{
register_console(&kgdb_console);
return 0;
}
console_initcall(kgdb_console_init);
#endif /* CONFIG_SH_KGDB_CONSOLE */
#if defined(CONFIG_SH_KGDB_CONSOLE)
#define SCI_CONSOLE &kgdb_console
#elif defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
#define SCI_CONSOLE &serial_console
#else
#define SCI_CONSOLE 0
#endif
static char banner[] __initdata =
KERN_INFO "SuperH SCI(F) driver initialized\n";
static struct uart_driver sci_uart_driver = {
.owner = THIS_MODULE,
.driver_name = "sci",
#ifdef CONFIG_DEVFS_FS
.devfs_name = "ttsc/",
#endif
.dev_name = "ttySC",
.major = SCI_MAJOR,
.minor = SCI_MINOR_START,
.nr = SCI_NPORTS,
.cons = SCI_CONSOLE,
};
static int __init sci_init(void)
{
int chan, ret;
printk("%s", banner);
ret = uart_register_driver(&sci_uart_driver);
if (ret == 0) {
for (chan = 0; chan < SCI_NPORTS; chan++) {
struct sci_port *sciport = &sci_ports[chan];
#if !defined(__H8300H__) && !defined(__H8300S__)
sciport->port.uartclk = (current_cpu_data.module_clock * 16);
#else
sciport->port.uartclk = CONFIG_CPU_CLOCK;
#endif
uart_add_one_port(&sci_uart_driver, &sciport->port);
sciport->break_timer.data = (unsigned long)sciport;
sciport->break_timer.function = sci_break_timer;
init_timer(&sciport->break_timer);
}
}
#ifdef CONFIG_CPU_FREQ
cpufreq_register_notifier(&sci_nb, CPUFREQ_TRANSITION_NOTIFIER);
printk("sci: CPU frequency notifier registered\n");
#endif
#ifdef CONFIG_SH_STANDARD_BIOS
sh_bios_gdb_detach();
#endif
return ret;
}
static void __exit sci_exit(void)
{
int chan;
for (chan = 0; chan < SCI_NPORTS; chan++)
uart_remove_one_port(&sci_uart_driver, &sci_ports[chan].port);
uart_unregister_driver(&sci_uart_driver);
}
module_init(sci_init);
module_exit(sci_exit);