OpenCloudOS-Kernel/arch/x86/kernel/tlb_uv.c

870 lines
23 KiB
C

/*
* SGI UltraViolet TLB flush routines.
*
* (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
*
* This code is released under the GNU General Public License version 2 or
* later.
*/
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <asm/mmu_context.h>
#include <asm/uv/uv.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_bau.h>
#include <asm/apic.h>
#include <asm/idle.h>
#include <asm/tsc.h>
#include <asm/irq_vectors.h>
static struct bau_control **uv_bau_table_bases __read_mostly;
static int uv_bau_retry_limit __read_mostly;
/* position of pnode (which is nasid>>1): */
static int uv_nshift __read_mostly;
/* base pnode in this partition */
static int uv_partition_base_pnode __read_mostly;
static unsigned long uv_mmask __read_mostly;
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
/*
* Determine the first node on a blade.
*/
static int __init blade_to_first_node(int blade)
{
int node, b;
for_each_online_node(node) {
b = uv_node_to_blade_id(node);
if (blade == b)
return node;
}
return -1; /* shouldn't happen */
}
/*
* Determine the apicid of the first cpu on a blade.
*/
static int __init blade_to_first_apicid(int blade)
{
int cpu;
for_each_present_cpu(cpu)
if (blade == uv_cpu_to_blade_id(cpu))
return per_cpu(x86_cpu_to_apicid, cpu);
return -1;
}
/*
* Free a software acknowledge hardware resource by clearing its Pending
* bit. This will return a reply to the sender.
* If the message has timed out, a reply has already been sent by the
* hardware but the resource has not been released. In that case our
* clear of the Timeout bit (as well) will free the resource. No reply will
* be sent (the hardware will only do one reply per message).
*/
static void uv_reply_to_message(int resource,
struct bau_payload_queue_entry *msg,
struct bau_msg_status *msp)
{
unsigned long dw;
dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
msg->replied_to = 1;
msg->sw_ack_vector = 0;
if (msp)
msp->seen_by.bits = 0;
uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
}
/*
* Do all the things a cpu should do for a TLB shootdown message.
* Other cpu's may come here at the same time for this message.
*/
static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
int msg_slot, int sw_ack_slot)
{
unsigned long this_cpu_mask;
struct bau_msg_status *msp;
int cpu;
msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
cpu = uv_blade_processor_id();
msg->number_of_cpus =
uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
this_cpu_mask = 1UL << cpu;
if (msp->seen_by.bits & this_cpu_mask)
return;
atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
if (msg->replied_to == 1)
return;
if (msg->address == TLB_FLUSH_ALL) {
local_flush_tlb();
__get_cpu_var(ptcstats).alltlb++;
} else {
__flush_tlb_one(msg->address);
__get_cpu_var(ptcstats).onetlb++;
}
__get_cpu_var(ptcstats).requestee++;
atomic_inc_short(&msg->acknowledge_count);
if (msg->number_of_cpus == msg->acknowledge_count)
uv_reply_to_message(sw_ack_slot, msg, msp);
}
/*
* Examine the payload queue on one distribution node to see
* which messages have not been seen, and which cpu(s) have not seen them.
*
* Returns the number of cpu's that have not responded.
*/
static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
{
struct bau_payload_queue_entry *msg;
struct bau_msg_status *msp;
int count = 0;
int i;
int j;
for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
msg++, i++) {
if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
msp = bau_tablesp->msg_statuses + i;
printk(KERN_DEBUG
"blade %d: address:%#lx %d of %d, not cpu(s): ",
i, msg->address, msg->acknowledge_count,
msg->number_of_cpus);
for (j = 0; j < msg->number_of_cpus; j++) {
if (!((1L << j) & msp->seen_by.bits)) {
count++;
printk("%d ", j);
}
}
printk("\n");
}
}
return count;
}
/*
* Examine the payload queue on all the distribution nodes to see
* which messages have not been seen, and which cpu(s) have not seen them.
*
* Returns the number of cpu's that have not responded.
*/
static int uv_examine_destinations(struct bau_target_nodemask *distribution)
{
int sender;
int i;
int count = 0;
sender = smp_processor_id();
for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
if (!bau_node_isset(i, distribution))
continue;
count += uv_examine_destination(uv_bau_table_bases[i], sender);
}
return count;
}
/*
* wait for completion of a broadcast message
*
* return COMPLETE, RETRY or GIVEUP
*/
static int uv_wait_completion(struct bau_desc *bau_desc,
unsigned long mmr_offset, int right_shift)
{
int exams = 0;
long destination_timeouts = 0;
long source_timeouts = 0;
unsigned long descriptor_status;
while ((descriptor_status = (((unsigned long)
uv_read_local_mmr(mmr_offset) >>
right_shift) & UV_ACT_STATUS_MASK)) !=
DESC_STATUS_IDLE) {
if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
source_timeouts++;
if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
source_timeouts = 0;
__get_cpu_var(ptcstats).s_retry++;
return FLUSH_RETRY;
}
/*
* spin here looking for progress at the destinations
*/
if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
destination_timeouts++;
if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
/*
* returns number of cpus not responding
*/
if (uv_examine_destinations
(&bau_desc->distribution) == 0) {
__get_cpu_var(ptcstats).d_retry++;
return FLUSH_RETRY;
}
exams++;
if (exams >= uv_bau_retry_limit) {
printk(KERN_DEBUG
"uv_flush_tlb_others");
printk("giving up on cpu %d\n",
smp_processor_id());
return FLUSH_GIVEUP;
}
/*
* delays can hang the simulator
udelay(1000);
*/
destination_timeouts = 0;
}
}
cpu_relax();
}
return FLUSH_COMPLETE;
}
/**
* uv_flush_send_and_wait
*
* Send a broadcast and wait for a broadcast message to complete.
*
* The flush_mask contains the cpus the broadcast was sent to.
*
* Returns NULL if all remote flushing was done. The mask is zeroed.
* Returns @flush_mask if some remote flushing remains to be done. The
* mask will have some bits still set.
*/
const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
struct bau_desc *bau_desc,
struct cpumask *flush_mask)
{
int completion_status = 0;
int right_shift;
int tries = 0;
int pnode;
int bit;
unsigned long mmr_offset;
unsigned long index;
cycles_t time1;
cycles_t time2;
if (cpu < UV_CPUS_PER_ACT_STATUS) {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
right_shift = cpu * UV_ACT_STATUS_SIZE;
} else {
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
right_shift =
((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
}
time1 = get_cycles();
do {
tries++;
index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
cpu;
uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
completion_status = uv_wait_completion(bau_desc, mmr_offset,
right_shift);
} while (completion_status == FLUSH_RETRY);
time2 = get_cycles();
__get_cpu_var(ptcstats).sflush += (time2 - time1);
if (tries > 1)
__get_cpu_var(ptcstats).retriesok++;
if (completion_status == FLUSH_GIVEUP) {
/*
* Cause the caller to do an IPI-style TLB shootdown on
* the cpu's, all of which are still in the mask.
*/
__get_cpu_var(ptcstats).ptc_i++;
return flush_mask;
}
/*
* Success, so clear the remote cpu's from the mask so we don't
* use the IPI method of shootdown on them.
*/
for_each_cpu(bit, flush_mask) {
pnode = uv_cpu_to_pnode(bit);
if (pnode == this_pnode)
continue;
cpumask_clear_cpu(bit, flush_mask);
}
if (!cpumask_empty(flush_mask))
return flush_mask;
return NULL;
}
static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
/**
* uv_flush_tlb_others - globally purge translation cache of a virtual
* address or all TLB's
* @cpumask: mask of all cpu's in which the address is to be removed
* @mm: mm_struct containing virtual address range
* @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
* @cpu: the current cpu
*
* This is the entry point for initiating any UV global TLB shootdown.
*
* Purges the translation caches of all specified processors of the given
* virtual address, or purges all TLB's on specified processors.
*
* The caller has derived the cpumask from the mm_struct. This function
* is called only if there are bits set in the mask. (e.g. flush_tlb_page())
*
* The cpumask is converted into a nodemask of the nodes containing
* the cpus.
*
* Note that this function should be called with preemption disabled.
*
* Returns NULL if all remote flushing was done.
* Returns pointer to cpumask if some remote flushing remains to be
* done. The returned pointer is valid till preemption is re-enabled.
*/
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
struct mm_struct *mm,
unsigned long va, unsigned int cpu)
{
struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask);
int i;
int bit;
int pnode;
int uv_cpu;
int this_pnode;
int locals = 0;
struct bau_desc *bau_desc;
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
uv_cpu = uv_blade_processor_id();
this_pnode = uv_hub_info->pnode;
bau_desc = __get_cpu_var(bau_control).descriptor_base;
bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
i = 0;
for_each_cpu(bit, flush_mask) {
pnode = uv_cpu_to_pnode(bit);
BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
if (pnode == this_pnode) {
locals++;
continue;
}
bau_node_set(pnode - uv_partition_base_pnode,
&bau_desc->distribution);
i++;
}
if (i == 0) {
/*
* no off_node flushing; return status for local node
*/
if (locals)
return flush_mask;
else
return NULL;
}
__get_cpu_var(ptcstats).requestor++;
__get_cpu_var(ptcstats).ntargeted += i;
bau_desc->payload.address = va;
bau_desc->payload.sending_cpu = cpu;
return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
}
/*
* The BAU message interrupt comes here. (registered by set_intr_gate)
* See entry_64.S
*
* We received a broadcast assist message.
*
* Interrupts may have been disabled; this interrupt could represent
* the receipt of several messages.
*
* All cores/threads on this node get this interrupt.
* The last one to see it does the s/w ack.
* (the resource will not be freed until noninterruptable cpus see this
* interrupt; hardware will timeout the s/w ack and reply ERROR)
*/
void uv_bau_message_interrupt(struct pt_regs *regs)
{
struct bau_payload_queue_entry *va_queue_first;
struct bau_payload_queue_entry *va_queue_last;
struct bau_payload_queue_entry *msg;
struct pt_regs *old_regs = set_irq_regs(regs);
cycles_t time1;
cycles_t time2;
int msg_slot;
int sw_ack_slot;
int fw;
int count = 0;
unsigned long local_pnode;
ack_APIC_irq();
exit_idle();
irq_enter();
time1 = get_cycles();
local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
va_queue_first = __get_cpu_var(bau_control).va_queue_first;
va_queue_last = __get_cpu_var(bau_control).va_queue_last;
msg = __get_cpu_var(bau_control).bau_msg_head;
while (msg->sw_ack_vector) {
count++;
fw = msg->sw_ack_vector;
msg_slot = msg - va_queue_first;
sw_ack_slot = ffs(fw) - 1;
uv_bau_process_message(msg, msg_slot, sw_ack_slot);
msg++;
if (msg > va_queue_last)
msg = va_queue_first;
__get_cpu_var(bau_control).bau_msg_head = msg;
}
if (!count)
__get_cpu_var(ptcstats).nomsg++;
else if (count > 1)
__get_cpu_var(ptcstats).multmsg++;
time2 = get_cycles();
__get_cpu_var(ptcstats).dflush += (time2 - time1);
irq_exit();
set_irq_regs(old_regs);
}
/*
* uv_enable_timeouts
*
* Each target blade (i.e. blades that have cpu's) needs to have
* shootdown message timeouts enabled. The timeout does not cause
* an interrupt, but causes an error message to be returned to
* the sender.
*/
static void uv_enable_timeouts(void)
{
int blade;
int nblades;
int pnode;
unsigned long mmr_image;
nblades = uv_num_possible_blades();
for (blade = 0; blade < nblades; blade++) {
if (!uv_blade_nr_possible_cpus(blade))
continue;
pnode = uv_blade_to_pnode(blade);
mmr_image =
uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
/*
* Set the timeout period and then lock it in, in three
* steps; captures and locks in the period.
*
* To program the period, the SOFT_ACK_MODE must be off.
*/
mmr_image &= ~((unsigned long)1 <<
UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
/*
* Set the 4-bit period.
*/
mmr_image &= ~((unsigned long)0xf <<
UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
/*
* Subsequent reversals of the timebase bit (3) cause an
* immediate timeout of one or all INTD resources as
* indicated in bits 2:0 (7 causes all of them to timeout).
*/
mmr_image |= ((unsigned long)1 <<
UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
}
}
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
{
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
{
(*offset)++;
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
{
}
/*
* Display the statistics thru /proc
* data points to the cpu number
*/
static int uv_ptc_seq_show(struct seq_file *file, void *data)
{
struct ptc_stats *stat;
int cpu;
cpu = *(loff_t *)data;
if (!cpu) {
seq_printf(file,
"# cpu requestor requestee one all sretry dretry ptc_i ");
seq_printf(file,
"sw_ack sflush dflush sok dnomsg dmult starget\n");
}
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
stat = &per_cpu(ptcstats, cpu);
seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
cpu, stat->requestor,
stat->requestee, stat->onetlb, stat->alltlb,
stat->s_retry, stat->d_retry, stat->ptc_i);
seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
stat->sflush, stat->dflush,
stat->retriesok, stat->nomsg,
stat->multmsg, stat->ntargeted);
}
return 0;
}
/*
* 0: display meaning of the statistics
* >0: retry limit
*/
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
size_t count, loff_t *data)
{
long newmode;
char optstr[64];
if (count == 0 || count > sizeof(optstr))
return -EINVAL;
if (copy_from_user(optstr, user, count))
return -EFAULT;
optstr[count - 1] = '\0';
if (strict_strtoul(optstr, 10, &newmode) < 0) {
printk(KERN_DEBUG "%s is invalid\n", optstr);
return -EINVAL;
}
if (newmode == 0) {
printk(KERN_DEBUG "# cpu: cpu number\n");
printk(KERN_DEBUG
"requestor: times this cpu was the flush requestor\n");
printk(KERN_DEBUG
"requestee: times this cpu was requested to flush its TLBs\n");
printk(KERN_DEBUG
"one: times requested to flush a single address\n");
printk(KERN_DEBUG
"all: times requested to flush all TLB's\n");
printk(KERN_DEBUG
"sretry: number of retries of source-side timeouts\n");
printk(KERN_DEBUG
"dretry: number of retries of destination-side timeouts\n");
printk(KERN_DEBUG
"ptc_i: times UV fell through to IPI-style flushes\n");
printk(KERN_DEBUG
"sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
printk(KERN_DEBUG
"sflush_us: cycles spent in uv_flush_tlb_others()\n");
printk(KERN_DEBUG
"dflush_us: cycles spent in handling flush requests\n");
printk(KERN_DEBUG "sok: successes on retry\n");
printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
printk(KERN_DEBUG
"dmult: interrupts with multiple messages\n");
printk(KERN_DEBUG "starget: nodes targeted\n");
} else {
uv_bau_retry_limit = newmode;
printk(KERN_DEBUG "timeout retry limit:%d\n",
uv_bau_retry_limit);
}
return count;
}
static const struct seq_operations uv_ptc_seq_ops = {
.start = uv_ptc_seq_start,
.next = uv_ptc_seq_next,
.stop = uv_ptc_seq_stop,
.show = uv_ptc_seq_show
};
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
{
return seq_open(file, &uv_ptc_seq_ops);
}
static const struct file_operations proc_uv_ptc_operations = {
.open = uv_ptc_proc_open,
.read = seq_read,
.write = uv_ptc_proc_write,
.llseek = seq_lseek,
.release = seq_release,
};
static int __init uv_ptc_init(void)
{
struct proc_dir_entry *proc_uv_ptc;
if (!is_uv_system())
return 0;
proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
if (!proc_uv_ptc) {
printk(KERN_ERR "unable to create %s proc entry\n",
UV_PTC_BASENAME);
return -EINVAL;
}
proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
return 0;
}
/*
* begin the initialization of the per-blade control structures
*/
static struct bau_control * __init uv_table_bases_init(int blade, int node)
{
int i;
struct bau_msg_status *msp;
struct bau_control *bau_tabp;
bau_tabp =
kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
BUG_ON(!bau_tabp);
bau_tabp->msg_statuses =
kmalloc_node(sizeof(struct bau_msg_status) *
DEST_Q_SIZE, GFP_KERNEL, node);
BUG_ON(!bau_tabp->msg_statuses);
for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
bau_cpubits_clear(&msp->seen_by, (int)
uv_blade_nr_possible_cpus(blade));
uv_bau_table_bases[blade] = bau_tabp;
return bau_tabp;
}
/*
* finish the initialization of the per-blade control structures
*/
static void __init
uv_table_bases_finish(int blade,
struct bau_control *bau_tablesp,
struct bau_desc *adp)
{
struct bau_control *bcp;
int cpu;
for_each_present_cpu(cpu) {
if (blade != uv_cpu_to_blade_id(cpu))
continue;
bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
bcp->bau_msg_head = bau_tablesp->va_queue_first;
bcp->va_queue_first = bau_tablesp->va_queue_first;
bcp->va_queue_last = bau_tablesp->va_queue_last;
bcp->msg_statuses = bau_tablesp->msg_statuses;
bcp->descriptor_base = adp;
}
}
/*
* initialize the sending side's sending buffers
*/
static struct bau_desc * __init
uv_activation_descriptor_init(int node, int pnode)
{
int i;
unsigned long pa;
unsigned long m;
unsigned long n;
struct bau_desc *adp;
struct bau_desc *ad2;
/*
* each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
* per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade
*/
adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
BUG_ON(!adp);
pa = uv_gpa(adp); /* need the real nasid*/
n = pa >> uv_nshift;
m = pa & uv_mmask;
uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
(n << UV_DESC_BASE_PNODE_SHIFT | m));
/*
* initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
* cpu even though we only use the first one; one descriptor can
* describe a broadcast to 256 nodes.
*/
for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
i++, ad2++) {
memset(ad2, 0, sizeof(struct bau_desc));
ad2->header.sw_ack_flag = 1;
/*
* base_dest_nodeid is the first node in the partition, so
* the bit map will indicate partition-relative node numbers.
* note that base_dest_nodeid is actually a nasid.
*/
ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
ad2->header.dest_subnodeid = 0x10; /* the LB */
ad2->header.command = UV_NET_ENDPOINT_INTD;
ad2->header.int_both = 1;
/*
* all others need to be set to zero:
* fairness chaining multilevel count replied_to
*/
}
return adp;
}
/*
* initialize the destination side's receiving buffers
*/
static struct bau_payload_queue_entry * __init
uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
{
struct bau_payload_queue_entry *pqp;
unsigned long pa;
int pn;
char *cp;
pqp = (struct bau_payload_queue_entry *) kmalloc_node(
(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
GFP_KERNEL, node);
BUG_ON(!pqp);
cp = (char *)pqp + 31;
pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
bau_tablesp->va_queue_first = pqp;
/*
* need the pnode of where the memory was really allocated
*/
pa = uv_gpa(pqp);
pn = pa >> uv_nshift;
uv_write_global_mmr64(pnode,
UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
uv_physnodeaddr(pqp));
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
uv_physnodeaddr(pqp));
bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
(unsigned long)
uv_physnodeaddr(bau_tablesp->va_queue_last));
memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
return pqp;
}
/*
* Initialization of each UV blade's structures
*/
static int __init uv_init_blade(int blade)
{
int node;
int pnode;
unsigned long pa;
unsigned long apicid;
struct bau_desc *adp;
struct bau_payload_queue_entry *pqp;
struct bau_control *bau_tablesp;
node = blade_to_first_node(blade);
bau_tablesp = uv_table_bases_init(blade, node);
pnode = uv_blade_to_pnode(blade);
adp = uv_activation_descriptor_init(node, pnode);
pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
uv_table_bases_finish(blade, bau_tablesp, adp);
/*
* the below initialization can't be in firmware because the
* messaging IRQ will be determined by the OS
*/
apicid = blade_to_first_apicid(blade);
pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
if ((pa & 0xff) != UV_BAU_MESSAGE) {
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
((apicid << 32) | UV_BAU_MESSAGE));
}
return 0;
}
/*
* Initialization of BAU-related structures
*/
static int __init uv_bau_init(void)
{
int blade;
int nblades;
int cur_cpu;
if (!is_uv_system())
return 0;
for_each_possible_cpu(cur_cpu)
zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
GFP_KERNEL, cpu_to_node(cur_cpu));
uv_bau_retry_limit = 1;
uv_nshift = uv_hub_info->n_val;
uv_mmask = (1UL << uv_hub_info->n_val) - 1;
nblades = uv_num_possible_blades();
uv_bau_table_bases = (struct bau_control **)
kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
BUG_ON(!uv_bau_table_bases);
uv_partition_base_pnode = 0x7fffffff;
for (blade = 0; blade < nblades; blade++)
if (uv_blade_nr_possible_cpus(blade) &&
(uv_blade_to_pnode(blade) < uv_partition_base_pnode))
uv_partition_base_pnode = uv_blade_to_pnode(blade);
for (blade = 0; blade < nblades; blade++)
if (uv_blade_nr_possible_cpus(blade))
uv_init_blade(blade);
alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
uv_enable_timeouts();
return 0;
}
__initcall(uv_bau_init);
__initcall(uv_ptc_init);