OpenCloudOS-Kernel/drivers/atm/nicstar.c

2765 lines
73 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* nicstar.c
*
* Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
*
* IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
* It was taken from the frle-0.22 device driver.
* As the file doesn't have a copyright notice, in the file
* nicstarmac.copyright I put the copyright notice from the
* frle-0.22 device driver.
* Some code is based on the nicstar driver by M. Welsh.
*
* Author: Rui Prior (rprior@inescn.pt)
* PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
*
*
* (C) INESC 1999
*/
/*
* IMPORTANT INFORMATION
*
* There are currently three types of spinlocks:
*
* 1 - Per card interrupt spinlock (to protect structures and such)
* 2 - Per SCQ scq spinlock
* 3 - Per card resource spinlock (to access registers, etc.)
*
* These must NEVER be grabbed in reverse order.
*
*/
/* Header files */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/atmdev.h>
#include <linux/atm.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/idr.h>
#include <asm/io.h>
#include <linux/uaccess.h>
#include <linux/atomic.h>
#include <linux/etherdevice.h>
#include "nicstar.h"
#ifdef CONFIG_ATM_NICSTAR_USE_SUNI
#include "suni.h"
#endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
#ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
#include "idt77105.h"
#endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
/* Additional code */
#include "nicstarmac.c"
/* Configurable parameters */
#undef PHY_LOOPBACK
#undef TX_DEBUG
#undef RX_DEBUG
#undef GENERAL_DEBUG
#undef EXTRA_DEBUG
/* Do not touch these */
#ifdef TX_DEBUG
#define TXPRINTK(args...) printk(args)
#else
#define TXPRINTK(args...)
#endif /* TX_DEBUG */
#ifdef RX_DEBUG
#define RXPRINTK(args...) printk(args)
#else
#define RXPRINTK(args...)
#endif /* RX_DEBUG */
#ifdef GENERAL_DEBUG
#define PRINTK(args...) printk(args)
#else
#define PRINTK(args...) do {} while (0)
#endif /* GENERAL_DEBUG */
#ifdef EXTRA_DEBUG
#define XPRINTK(args...) printk(args)
#else
#define XPRINTK(args...)
#endif /* EXTRA_DEBUG */
/* Macros */
#define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
#define NS_DELAY mdelay(1)
#define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b)))
#ifndef ATM_SKB
#define ATM_SKB(s) (&(s)->atm)
#endif
#define scq_virt_to_bus(scq, p) \
(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
/* Function declarations */
static u32 ns_read_sram(ns_dev * card, u32 sram_address);
static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
int count);
static int ns_init_card(int i, struct pci_dev *pcidev);
static void ns_init_card_error(ns_dev * card, int error);
static scq_info *get_scq(ns_dev *card, int size, u32 scd);
static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
static void push_rxbufs(ns_dev *, struct sk_buff *);
static irqreturn_t ns_irq_handler(int irq, void *dev_id);
static int ns_open(struct atm_vcc *vcc);
static void ns_close(struct atm_vcc *vcc);
static void fill_tst(ns_dev * card, int n, vc_map * vc);
static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb);
static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
struct sk_buff *skb, bool may_sleep);
static void process_tsq(ns_dev * card);
static void drain_scq(ns_dev * card, scq_info * scq, int pos);
static void process_rsq(ns_dev * card);
static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
#ifdef EXTRA_DEBUG
static void which_list(ns_dev * card, struct sk_buff *skb);
#endif
static void ns_poll(struct timer_list *unused);
static void ns_phy_put(struct atm_dev *dev, unsigned char value,
unsigned long addr);
static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
/* Global variables */
static struct ns_dev *cards[NS_MAX_CARDS];
static unsigned num_cards;
static const struct atmdev_ops atm_ops = {
.open = ns_open,
.close = ns_close,
.ioctl = ns_ioctl,
.send = ns_send,
.send_bh = ns_send_bh,
.phy_put = ns_phy_put,
.phy_get = ns_phy_get,
.proc_read = ns_proc_read,
.owner = THIS_MODULE,
};
static struct timer_list ns_timer;
static char *mac[NS_MAX_CARDS];
module_param_array(mac, charp, NULL, 0);
MODULE_LICENSE("GPL");
/* Functions */
static int nicstar_init_one(struct pci_dev *pcidev,
const struct pci_device_id *ent)
{
static int index = -1;
unsigned int error;
index++;
cards[index] = NULL;
error = ns_init_card(index, pcidev);
if (error) {
cards[index--] = NULL; /* don't increment index */
goto err_out;
}
return 0;
err_out:
return -ENODEV;
}
static void nicstar_remove_one(struct pci_dev *pcidev)
{
int i, j;
ns_dev *card = pci_get_drvdata(pcidev);
struct sk_buff *hb;
struct sk_buff *iovb;
struct sk_buff *lb;
struct sk_buff *sb;
i = card->index;
if (cards[i] == NULL)
return;
if (card->atmdev->phy && card->atmdev->phy->stop)
card->atmdev->phy->stop(card->atmdev);
/* Stop everything */
writel(0x00000000, card->membase + CFG);
/* De-register device */
atm_dev_deregister(card->atmdev);
/* Disable PCI device */
pci_disable_device(pcidev);
/* Free up resources */
j = 0;
PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
dev_kfree_skb_any(hb);
j++;
}
PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
j = 0;
PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
card->iovpool.count);
while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
dev_kfree_skb_any(iovb);
j++;
}
PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
dev_kfree_skb_any(lb);
while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
dev_kfree_skb_any(sb);
free_scq(card, card->scq0, NULL);
for (j = 0; j < NS_FRSCD_NUM; j++) {
if (card->scd2vc[j] != NULL)
free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
}
idr_destroy(&card->idr);
dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
card->rsq.org, card->rsq.dma);
dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
card->tsq.org, card->tsq.dma);
free_irq(card->pcidev->irq, card);
iounmap(card->membase);
kfree(card);
}
static const struct pci_device_id nicstar_pci_tbl[] = {
{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
{0,} /* terminate list */
};
MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
static struct pci_driver nicstar_driver = {
.name = "nicstar",
.id_table = nicstar_pci_tbl,
.probe = nicstar_init_one,
.remove = nicstar_remove_one,
};
static int __init nicstar_init(void)
{
unsigned error = 0; /* Initialized to remove compile warning */
XPRINTK("nicstar: nicstar_init() called.\n");
error = pci_register_driver(&nicstar_driver);
TXPRINTK("nicstar: TX debug enabled.\n");
RXPRINTK("nicstar: RX debug enabled.\n");
PRINTK("nicstar: General debug enabled.\n");
#ifdef PHY_LOOPBACK
printk("nicstar: using PHY loopback.\n");
#endif /* PHY_LOOPBACK */
XPRINTK("nicstar: nicstar_init() returned.\n");
if (!error) {
timer_setup(&ns_timer, ns_poll, 0);
ns_timer.expires = jiffies + NS_POLL_PERIOD;
add_timer(&ns_timer);
}
return error;
}
static void __exit nicstar_cleanup(void)
{
XPRINTK("nicstar: nicstar_cleanup() called.\n");
del_timer_sync(&ns_timer);
pci_unregister_driver(&nicstar_driver);
XPRINTK("nicstar: nicstar_cleanup() returned.\n");
}
static u32 ns_read_sram(ns_dev * card, u32 sram_address)
{
unsigned long flags;
u32 data;
sram_address <<= 2;
sram_address &= 0x0007FFFC; /* address must be dword aligned */
sram_address |= 0x50000000; /* SRAM read command */
spin_lock_irqsave(&card->res_lock, flags);
while (CMD_BUSY(card)) ;
writel(sram_address, card->membase + CMD);
while (CMD_BUSY(card)) ;
data = readl(card->membase + DR0);
spin_unlock_irqrestore(&card->res_lock, flags);
return data;
}
static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
int count)
{
unsigned long flags;
int i, c;
count--; /* count range now is 0..3 instead of 1..4 */
c = count;
c <<= 2; /* to use increments of 4 */
spin_lock_irqsave(&card->res_lock, flags);
while (CMD_BUSY(card)) ;
for (i = 0; i <= c; i += 4)
writel(*(value++), card->membase + i);
/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
so card->membase + DR0 == card->membase */
sram_address <<= 2;
sram_address &= 0x0007FFFC;
sram_address |= (0x40000000 | count);
writel(sram_address, card->membase + CMD);
spin_unlock_irqrestore(&card->res_lock, flags);
}
static int ns_init_card(int i, struct pci_dev *pcidev)
{
int j;
struct ns_dev *card = NULL;
unsigned char pci_latency;
unsigned error;
u32 data;
u32 u32d[4];
u32 ns_cfg_rctsize;
int bcount;
unsigned long membase;
error = 0;
if (pci_enable_device(pcidev)) {
printk("nicstar%d: can't enable PCI device\n", i);
error = 2;
ns_init_card_error(card, error);
return error;
}
if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
printk(KERN_WARNING
"nicstar%d: No suitable DMA available.\n", i);
error = 2;
ns_init_card_error(card, error);
return error;
}
card = kmalloc(sizeof(*card), GFP_KERNEL);
if (!card) {
printk
("nicstar%d: can't allocate memory for device structure.\n",
i);
error = 2;
ns_init_card_error(card, error);
return error;
}
cards[i] = card;
spin_lock_init(&card->int_lock);
spin_lock_init(&card->res_lock);
pci_set_drvdata(pcidev, card);
card->index = i;
card->atmdev = NULL;
card->pcidev = pcidev;
membase = pci_resource_start(pcidev, 1);
card->membase = ioremap(membase, NS_IOREMAP_SIZE);
if (!card->membase) {
printk("nicstar%d: can't ioremap() membase.\n", i);
error = 3;
ns_init_card_error(card, error);
return error;
}
PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
pci_set_master(pcidev);
if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
printk("nicstar%d: can't read PCI latency timer.\n", i);
error = 6;
ns_init_card_error(card, error);
return error;
}
#ifdef NS_PCI_LATENCY
if (pci_latency < NS_PCI_LATENCY) {
PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
NS_PCI_LATENCY);
for (j = 1; j < 4; j++) {
if (pci_write_config_byte
(pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
break;
}
if (j == 4) {
printk
("nicstar%d: can't set PCI latency timer to %d.\n",
i, NS_PCI_LATENCY);
error = 7;
ns_init_card_error(card, error);
return error;
}
}
#endif /* NS_PCI_LATENCY */
/* Clear timer overflow */
data = readl(card->membase + STAT);
if (data & NS_STAT_TMROF)
writel(NS_STAT_TMROF, card->membase + STAT);
/* Software reset */
writel(NS_CFG_SWRST, card->membase + CFG);
NS_DELAY;
writel(0x00000000, card->membase + CFG);
/* PHY reset */
writel(0x00000008, card->membase + GP);
NS_DELAY;
writel(0x00000001, card->membase + GP);
NS_DELAY;
while (CMD_BUSY(card)) ;
writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */
NS_DELAY;
/* Detect PHY type */
while (CMD_BUSY(card)) ;
writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
while (CMD_BUSY(card)) ;
data = readl(card->membase + DR0);
switch (data) {
case 0x00000009:
printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
card->max_pcr = ATM_25_PCR;
while (CMD_BUSY(card)) ;
writel(0x00000008, card->membase + DR0);
writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
/* Clear an eventual pending interrupt */
writel(NS_STAT_SFBQF, card->membase + STAT);
#ifdef PHY_LOOPBACK
while (CMD_BUSY(card)) ;
writel(0x00000022, card->membase + DR0);
writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
#endif /* PHY_LOOPBACK */
break;
case 0x00000030:
case 0x00000031:
printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
card->max_pcr = ATM_OC3_PCR;
#ifdef PHY_LOOPBACK
while (CMD_BUSY(card)) ;
writel(0x00000002, card->membase + DR0);
writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
#endif /* PHY_LOOPBACK */
break;
default:
printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
error = 8;
ns_init_card_error(card, error);
return error;
}
writel(0x00000000, card->membase + GP);
/* Determine SRAM size */
data = 0x76543210;
ns_write_sram(card, 0x1C003, &data, 1);
data = 0x89ABCDEF;
ns_write_sram(card, 0x14003, &data, 1);
if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
ns_read_sram(card, 0x1C003) == 0x76543210)
card->sram_size = 128;
else
card->sram_size = 32;
PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
card->rct_size = NS_MAX_RCTSIZE;
#if (NS_MAX_RCTSIZE == 4096)
if (card->sram_size == 128)
printk
("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
i);
#elif (NS_MAX_RCTSIZE == 16384)
if (card->sram_size == 32) {
printk
("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
i);
card->rct_size = 4096;
}
#else
#error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
#endif
card->vpibits = NS_VPIBITS;
if (card->rct_size == 4096)
card->vcibits = 12 - NS_VPIBITS;
else /* card->rct_size == 16384 */
card->vcibits = 14 - NS_VPIBITS;
/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
if (mac[i] == NULL)
nicstar_init_eprom(card->membase);
/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
writel(0x00000000, card->membase + VPM);
card->intcnt = 0;
if (request_irq
(pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
pr_err("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
error = 9;
ns_init_card_error(card, error);
return error;
}
/* Initialize TSQ */
card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
NS_TSQSIZE + NS_TSQ_ALIGNMENT,
&card->tsq.dma, GFP_KERNEL);
if (card->tsq.org == NULL) {
printk("nicstar%d: can't allocate TSQ.\n", i);
error = 10;
ns_init_card_error(card, error);
return error;
}
card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
card->tsq.next = card->tsq.base;
card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
ns_tsi_init(card->tsq.base + j);
writel(0x00000000, card->membase + TSQH);
writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
/* Initialize RSQ */
card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
NS_RSQSIZE + NS_RSQ_ALIGNMENT,
&card->rsq.dma, GFP_KERNEL);
if (card->rsq.org == NULL) {
printk("nicstar%d: can't allocate RSQ.\n", i);
error = 11;
ns_init_card_error(card, error);
return error;
}
card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
card->rsq.next = card->rsq.base;
card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
ns_rsqe_init(card->rsq.base + j);
writel(0x00000000, card->membase + RSQH);
writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
/* Initialize SCQ0, the only VBR SCQ used */
card->scq1 = NULL;
card->scq2 = NULL;
card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
if (card->scq0 == NULL) {
printk("nicstar%d: can't get SCQ0.\n", i);
error = 12;
ns_init_card_error(card, error);
return error;
}
u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
u32d[1] = (u32) 0x00000000;
u32d[2] = (u32) 0xffffffff;
u32d[3] = (u32) 0x00000000;
ns_write_sram(card, NS_VRSCD0, u32d, 4);
ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */
ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */
card->scq0->scd = NS_VRSCD0;
PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
/* Initialize TSTs */
card->tst_addr = NS_TST0;
card->tst_free_entries = NS_TST_NUM_ENTRIES;
data = NS_TST_OPCODE_VARIABLE;
for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
ns_write_sram(card, NS_TST0 + j, &data, 1);
data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
ns_write_sram(card, NS_TST1 + j, &data, 1);
data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
card->tste2vc[j] = NULL;
writel(NS_TST0 << 2, card->membase + TSTB);
/* Initialize RCT. AAL type is set on opening the VC. */
#ifdef RCQ_SUPPORT
u32d[0] = NS_RCTE_RAWCELLINTEN;
#else
u32d[0] = 0x00000000;
#endif /* RCQ_SUPPORT */
u32d[1] = 0x00000000;
u32d[2] = 0x00000000;
u32d[3] = 0xFFFFFFFF;
for (j = 0; j < card->rct_size; j++)
ns_write_sram(card, j * 4, u32d, 4);
memset(card->vcmap, 0, sizeof(card->vcmap));
for (j = 0; j < NS_FRSCD_NUM; j++)
card->scd2vc[j] = NULL;
/* Initialize buffer levels */
card->sbnr.min = MIN_SB;
card->sbnr.init = NUM_SB;
card->sbnr.max = MAX_SB;
card->lbnr.min = MIN_LB;
card->lbnr.init = NUM_LB;
card->lbnr.max = MAX_LB;
card->iovnr.min = MIN_IOVB;
card->iovnr.init = NUM_IOVB;
card->iovnr.max = MAX_IOVB;
card->hbnr.min = MIN_HB;
card->hbnr.init = NUM_HB;
card->hbnr.max = MAX_HB;
card->sm_handle = NULL;
card->sm_addr = 0x00000000;
card->lg_handle = NULL;
card->lg_addr = 0x00000000;
card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */
idr_init(&card->idr);
/* Pre-allocate some huge buffers */
skb_queue_head_init(&card->hbpool.queue);
card->hbpool.count = 0;
for (j = 0; j < NUM_HB; j++) {
struct sk_buff *hb;
hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
if (hb == NULL) {
printk
("nicstar%d: can't allocate %dth of %d huge buffers.\n",
i, j, NUM_HB);
error = 13;
ns_init_card_error(card, error);
return error;
}
NS_PRV_BUFTYPE(hb) = BUF_NONE;
skb_queue_tail(&card->hbpool.queue, hb);
card->hbpool.count++;
}
/* Allocate large buffers */
skb_queue_head_init(&card->lbpool.queue);
card->lbpool.count = 0; /* Not used */
for (j = 0; j < NUM_LB; j++) {
struct sk_buff *lb;
lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
if (lb == NULL) {
printk
("nicstar%d: can't allocate %dth of %d large buffers.\n",
i, j, NUM_LB);
error = 14;
ns_init_card_error(card, error);
return error;
}
NS_PRV_BUFTYPE(lb) = BUF_LG;
skb_queue_tail(&card->lbpool.queue, lb);
skb_reserve(lb, NS_SMBUFSIZE);
push_rxbufs(card, lb);
/* Due to the implementation of push_rxbufs() this is 1, not 0 */
if (j == 1) {
card->rcbuf = lb;
card->rawcell = (struct ns_rcqe *) lb->data;
card->rawch = NS_PRV_DMA(lb);
}
}
/* Test for strange behaviour which leads to crashes */
if ((bcount =
ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
printk
("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
i, j, bcount);
error = 14;
ns_init_card_error(card, error);
return error;
}
/* Allocate small buffers */
skb_queue_head_init(&card->sbpool.queue);
card->sbpool.count = 0; /* Not used */
for (j = 0; j < NUM_SB; j++) {
struct sk_buff *sb;
sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
if (sb == NULL) {
printk
("nicstar%d: can't allocate %dth of %d small buffers.\n",
i, j, NUM_SB);
error = 15;
ns_init_card_error(card, error);
return error;
}
NS_PRV_BUFTYPE(sb) = BUF_SM;
skb_queue_tail(&card->sbpool.queue, sb);
skb_reserve(sb, NS_AAL0_HEADER);
push_rxbufs(card, sb);
}
/* Test for strange behaviour which leads to crashes */
if ((bcount =
ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
printk
("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
i, j, bcount);
error = 15;
ns_init_card_error(card, error);
return error;
}
/* Allocate iovec buffers */
skb_queue_head_init(&card->iovpool.queue);
card->iovpool.count = 0;
for (j = 0; j < NUM_IOVB; j++) {
struct sk_buff *iovb;
iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
if (iovb == NULL) {
printk
("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
i, j, NUM_IOVB);
error = 16;
ns_init_card_error(card, error);
return error;
}
NS_PRV_BUFTYPE(iovb) = BUF_NONE;
skb_queue_tail(&card->iovpool.queue, iovb);
card->iovpool.count++;
}
/* Configure NICStAR */
if (card->rct_size == 4096)
ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
else /* (card->rct_size == 16384) */
ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
card->efbie = 1;
/* Register device */
card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
-1, NULL);
if (card->atmdev == NULL) {
printk("nicstar%d: can't register device.\n", i);
error = 17;
ns_init_card_error(card, error);
return error;
}
if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
card->atmdev->esi, 6);
if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
nicstar_read_eprom(card->membase,
NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
card->atmdev->esi, 6);
}
}
printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
card->atmdev->dev_data = card;
card->atmdev->ci_range.vpi_bits = card->vpibits;
card->atmdev->ci_range.vci_bits = card->vcibits;
card->atmdev->link_rate = card->max_pcr;
card->atmdev->phy = NULL;
#ifdef CONFIG_ATM_NICSTAR_USE_SUNI
if (card->max_pcr == ATM_OC3_PCR)
suni_init(card->atmdev);
#endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
#ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
if (card->max_pcr == ATM_25_PCR)
idt77105_init(card->atmdev);
#endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
if (card->atmdev->phy && card->atmdev->phy->start)
card->atmdev->phy->start(card->atmdev);
writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */
NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */
NS_CFG_PHYIE, card->membase + CFG);
num_cards++;
return error;
}
static void ns_init_card_error(ns_dev *card, int error)
{
if (error >= 17) {
writel(0x00000000, card->membase + CFG);
}
if (error >= 16) {
struct sk_buff *iovb;
while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
dev_kfree_skb_any(iovb);
}
if (error >= 15) {
struct sk_buff *sb;
while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
dev_kfree_skb_any(sb);
free_scq(card, card->scq0, NULL);
}
if (error >= 14) {
struct sk_buff *lb;
while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
dev_kfree_skb_any(lb);
}
if (error >= 13) {
struct sk_buff *hb;
while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
dev_kfree_skb_any(hb);
}
if (error >= 12) {
dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
card->rsq.org, card->rsq.dma);
}
if (error >= 11) {
dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
card->tsq.org, card->tsq.dma);
}
if (error >= 10) {
free_irq(card->pcidev->irq, card);
}
if (error >= 4) {
iounmap(card->membase);
}
if (error >= 3) {
pci_disable_device(card->pcidev);
kfree(card);
}
}
static scq_info *get_scq(ns_dev *card, int size, u32 scd)
{
scq_info *scq;
int i;
if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
return NULL;
scq = kmalloc(sizeof(*scq), GFP_KERNEL);
if (!scq)
return NULL;
scq->org = dma_alloc_coherent(&card->pcidev->dev,
2 * size, &scq->dma, GFP_KERNEL);
if (!scq->org) {
kfree(scq);
return NULL;
}
scq->skb = kmalloc_array(size / NS_SCQE_SIZE,
sizeof(*scq->skb),
GFP_KERNEL);
if (!scq->skb) {
dma_free_coherent(&card->pcidev->dev,
2 * size, scq->org, scq->dma);
kfree(scq);
return NULL;
}
scq->num_entries = size / NS_SCQE_SIZE;
scq->base = PTR_ALIGN(scq->org, size);
scq->next = scq->base;
scq->last = scq->base + (scq->num_entries - 1);
scq->tail = scq->last;
scq->scd = scd;
scq->num_entries = size / NS_SCQE_SIZE;
scq->tbd_count = 0;
init_waitqueue_head(&scq->scqfull_waitq);
scq->full = 0;
spin_lock_init(&scq->lock);
for (i = 0; i < scq->num_entries; i++)
scq->skb[i] = NULL;
return scq;
}
/* For variable rate SCQ vcc must be NULL */
static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
{
int i;
if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
for (i = 0; i < scq->num_entries; i++) {
if (scq->skb[i] != NULL) {
vcc = ATM_SKB(scq->skb[i])->vcc;
if (vcc->pop != NULL)
vcc->pop(vcc, scq->skb[i]);
else
dev_kfree_skb_any(scq->skb[i]);
}
} else { /* vcc must be != NULL */
if (vcc == NULL) {
printk
("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
for (i = 0; i < scq->num_entries; i++)
dev_kfree_skb_any(scq->skb[i]);
} else
for (i = 0; i < scq->num_entries; i++) {
if (scq->skb[i] != NULL) {
if (vcc->pop != NULL)
vcc->pop(vcc, scq->skb[i]);
else
dev_kfree_skb_any(scq->skb[i]);
}
}
}
kfree(scq->skb);
dma_free_coherent(&card->pcidev->dev,
2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
VBR_SCQSIZE : CBR_SCQSIZE),
scq->org, scq->dma);
kfree(scq);
}
/* The handles passed must be pointers to the sk_buff containing the small
or large buffer(s) cast to u32. */
static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
{
struct sk_buff *handle1, *handle2;
int id1, id2;
u32 addr1, addr2;
u32 stat;
unsigned long flags;
/* *BARF* */
handle2 = NULL;
addr2 = 0;
handle1 = skb;
addr1 = dma_map_single(&card->pcidev->dev,
skb->data,
(NS_PRV_BUFTYPE(skb) == BUF_SM
? NS_SMSKBSIZE : NS_LGSKBSIZE),
DMA_TO_DEVICE);
NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
#ifdef GENERAL_DEBUG
if (!addr1)
printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
card->index);
#endif /* GENERAL_DEBUG */
stat = readl(card->membase + STAT);
card->sbfqc = ns_stat_sfbqc_get(stat);
card->lbfqc = ns_stat_lfbqc_get(stat);
if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
if (!addr2) {
if (card->sm_addr) {
addr2 = card->sm_addr;
handle2 = card->sm_handle;
card->sm_addr = 0x00000000;
card->sm_handle = NULL;
} else { /* (!sm_addr) */
card->sm_addr = addr1;
card->sm_handle = handle1;
}
}
} else { /* buf_type == BUF_LG */
if (!addr2) {
if (card->lg_addr) {
addr2 = card->lg_addr;
handle2 = card->lg_handle;
card->lg_addr = 0x00000000;
card->lg_handle = NULL;
} else { /* (!lg_addr) */
card->lg_addr = addr1;
card->lg_handle = handle1;
}
}
}
if (addr2) {
if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
if (card->sbfqc >= card->sbnr.max) {
skb_unlink(handle1, &card->sbpool.queue);
dev_kfree_skb_any(handle1);
skb_unlink(handle2, &card->sbpool.queue);
dev_kfree_skb_any(handle2);
return;
} else
card->sbfqc += 2;
} else { /* (buf_type == BUF_LG) */
if (card->lbfqc >= card->lbnr.max) {
skb_unlink(handle1, &card->lbpool.queue);
dev_kfree_skb_any(handle1);
skb_unlink(handle2, &card->lbpool.queue);
dev_kfree_skb_any(handle2);
return;
} else
card->lbfqc += 2;
}
id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
if (id1 < 0)
goto out;
id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
if (id2 < 0)
goto out;
spin_lock_irqsave(&card->res_lock, flags);
while (CMD_BUSY(card)) ;
writel(addr2, card->membase + DR3);
writel(id2, card->membase + DR2);
writel(addr1, card->membase + DR1);
writel(id1, card->membase + DR0);
writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
card->membase + CMD);
spin_unlock_irqrestore(&card->res_lock, flags);
XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
card->index,
(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
addr1, addr2);
}
if (!card->efbie && card->sbfqc >= card->sbnr.min &&
card->lbfqc >= card->lbnr.min) {
card->efbie = 1;
writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
card->membase + CFG);
}
out:
return;
}
static irqreturn_t ns_irq_handler(int irq, void *dev_id)
{
u32 stat_r;
ns_dev *card;
struct atm_dev *dev;
unsigned long flags;
card = (ns_dev *) dev_id;
dev = card->atmdev;
card->intcnt++;
PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
spin_lock_irqsave(&card->int_lock, flags);
stat_r = readl(card->membase + STAT);
/* Transmit Status Indicator has been written to T. S. Queue */
if (stat_r & NS_STAT_TSIF) {
TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
process_tsq(card);
writel(NS_STAT_TSIF, card->membase + STAT);
}
/* Incomplete CS-PDU has been transmitted */
if (stat_r & NS_STAT_TXICP) {
writel(NS_STAT_TXICP, card->membase + STAT);
TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
card->index);
}
/* Transmit Status Queue 7/8 full */
if (stat_r & NS_STAT_TSQF) {
writel(NS_STAT_TSQF, card->membase + STAT);
PRINTK("nicstar%d: TSQ full.\n", card->index);
process_tsq(card);
}
/* Timer overflow */
if (stat_r & NS_STAT_TMROF) {
writel(NS_STAT_TMROF, card->membase + STAT);
PRINTK("nicstar%d: Timer overflow.\n", card->index);
}
/* PHY device interrupt signal active */
if (stat_r & NS_STAT_PHYI) {
writel(NS_STAT_PHYI, card->membase + STAT);
PRINTK("nicstar%d: PHY interrupt.\n", card->index);
if (dev->phy && dev->phy->interrupt) {
dev->phy->interrupt(dev);
}
}
/* Small Buffer Queue is full */
if (stat_r & NS_STAT_SFBQF) {
writel(NS_STAT_SFBQF, card->membase + STAT);
printk("nicstar%d: Small free buffer queue is full.\n",
card->index);
}
/* Large Buffer Queue is full */
if (stat_r & NS_STAT_LFBQF) {
writel(NS_STAT_LFBQF, card->membase + STAT);
printk("nicstar%d: Large free buffer queue is full.\n",
card->index);
}
/* Receive Status Queue is full */
if (stat_r & NS_STAT_RSQF) {
writel(NS_STAT_RSQF, card->membase + STAT);
printk("nicstar%d: RSQ full.\n", card->index);
process_rsq(card);
}
/* Complete CS-PDU received */
if (stat_r & NS_STAT_EOPDU) {
RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
process_rsq(card);
writel(NS_STAT_EOPDU, card->membase + STAT);
}
/* Raw cell received */
if (stat_r & NS_STAT_RAWCF) {
writel(NS_STAT_RAWCF, card->membase + STAT);
#ifndef RCQ_SUPPORT
printk("nicstar%d: Raw cell received and no support yet...\n",
card->index);
#endif /* RCQ_SUPPORT */
/* NOTE: the following procedure may keep a raw cell pending until the
next interrupt. As this preliminary support is only meant to
avoid buffer leakage, this is not an issue. */
while (readl(card->membase + RAWCT) != card->rawch) {
if (ns_rcqe_islast(card->rawcell)) {
struct sk_buff *oldbuf;
oldbuf = card->rcbuf;
card->rcbuf = idr_find(&card->idr,
ns_rcqe_nextbufhandle(card->rawcell));
card->rawch = NS_PRV_DMA(card->rcbuf);
card->rawcell = (struct ns_rcqe *)
card->rcbuf->data;
recycle_rx_buf(card, oldbuf);
} else {
card->rawch += NS_RCQE_SIZE;
card->rawcell++;
}
}
}
/* Small buffer queue is empty */
if (stat_r & NS_STAT_SFBQE) {
int i;
struct sk_buff *sb;
writel(NS_STAT_SFBQE, card->membase + STAT);
printk("nicstar%d: Small free buffer queue empty.\n",
card->index);
for (i = 0; i < card->sbnr.min; i++) {
sb = dev_alloc_skb(NS_SMSKBSIZE);
if (sb == NULL) {
writel(readl(card->membase + CFG) &
~NS_CFG_EFBIE, card->membase + CFG);
card->efbie = 0;
break;
}
NS_PRV_BUFTYPE(sb) = BUF_SM;
skb_queue_tail(&card->sbpool.queue, sb);
skb_reserve(sb, NS_AAL0_HEADER);
push_rxbufs(card, sb);
}
card->sbfqc = i;
process_rsq(card);
}
/* Large buffer queue empty */
if (stat_r & NS_STAT_LFBQE) {
int i;
struct sk_buff *lb;
writel(NS_STAT_LFBQE, card->membase + STAT);
printk("nicstar%d: Large free buffer queue empty.\n",
card->index);
for (i = 0; i < card->lbnr.min; i++) {
lb = dev_alloc_skb(NS_LGSKBSIZE);
if (lb == NULL) {
writel(readl(card->membase + CFG) &
~NS_CFG_EFBIE, card->membase + CFG);
card->efbie = 0;
break;
}
NS_PRV_BUFTYPE(lb) = BUF_LG;
skb_queue_tail(&card->lbpool.queue, lb);
skb_reserve(lb, NS_SMBUFSIZE);
push_rxbufs(card, lb);
}
card->lbfqc = i;
process_rsq(card);
}
/* Receive Status Queue is 7/8 full */
if (stat_r & NS_STAT_RSQAF) {
writel(NS_STAT_RSQAF, card->membase + STAT);
RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
process_rsq(card);
}
spin_unlock_irqrestore(&card->int_lock, flags);
PRINTK("nicstar%d: end of interrupt service\n", card->index);
return IRQ_HANDLED;
}
static int ns_open(struct atm_vcc *vcc)
{
ns_dev *card;
vc_map *vc;
unsigned long tmpl, modl;
int tcr, tcra; /* target cell rate, and absolute value */
int n = 0; /* Number of entries in the TST. Initialized to remove
the compiler warning. */
u32 u32d[4];
int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler
warning. How I wish compilers were clever enough to
tell which variables can truly be used
uninitialized... */
int inuse; /* tx or rx vc already in use by another vcc */
short vpi = vcc->vpi;
int vci = vcc->vci;
card = (ns_dev *) vcc->dev->dev_data;
PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
vci);
if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
PRINTK("nicstar%d: unsupported AAL.\n", card->index);
return -EINVAL;
}
vc = &(card->vcmap[vpi << card->vcibits | vci]);
vcc->dev_data = vc;
inuse = 0;
if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
inuse = 1;
if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
inuse += 2;
if (inuse) {
printk("nicstar%d: %s vci already in use.\n", card->index,
inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
return -EINVAL;
}
set_bit(ATM_VF_ADDR, &vcc->flags);
/* NOTE: You are not allowed to modify an open connection's QOS. To change
that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
needed to do that. */
if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
scq_info *scq;
set_bit(ATM_VF_PARTIAL, &vcc->flags);
if (vcc->qos.txtp.traffic_class == ATM_CBR) {
/* Check requested cell rate and availability of SCD */
if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
&& vcc->qos.txtp.min_pcr == 0) {
PRINTK
("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
card->index);
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
clear_bit(ATM_VF_ADDR, &vcc->flags);
return -EINVAL;
}
tcr = atm_pcr_goal(&(vcc->qos.txtp));
tcra = tcr >= 0 ? tcr : -tcr;
PRINTK("nicstar%d: target cell rate = %d.\n",
card->index, vcc->qos.txtp.max_pcr);
tmpl =
(unsigned long)tcra *(unsigned long)
NS_TST_NUM_ENTRIES;
modl = tmpl % card->max_pcr;
n = (int)(tmpl / card->max_pcr);
if (tcr > 0) {
if (modl > 0)
n++;
} else if (tcr == 0) {
if ((n =
(card->tst_free_entries -
NS_TST_RESERVED)) <= 0) {
PRINTK
("nicstar%d: no CBR bandwidth free.\n",
card->index);
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
clear_bit(ATM_VF_ADDR, &vcc->flags);
return -EINVAL;
}
}
if (n == 0) {
printk
("nicstar%d: selected bandwidth < granularity.\n",
card->index);
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
clear_bit(ATM_VF_ADDR, &vcc->flags);
return -EINVAL;
}
if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
PRINTK
("nicstar%d: not enough free CBR bandwidth.\n",
card->index);
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
clear_bit(ATM_VF_ADDR, &vcc->flags);
return -EINVAL;
} else
card->tst_free_entries -= n;
XPRINTK("nicstar%d: writing %d tst entries.\n",
card->index, n);
for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
if (card->scd2vc[frscdi] == NULL) {
card->scd2vc[frscdi] = vc;
break;
}
}
if (frscdi == NS_FRSCD_NUM) {
PRINTK
("nicstar%d: no SCD available for CBR channel.\n",
card->index);
card->tst_free_entries += n;
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
clear_bit(ATM_VF_ADDR, &vcc->flags);
return -EBUSY;
}
vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
if (scq == NULL) {
PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
card->index);
card->scd2vc[frscdi] = NULL;
card->tst_free_entries += n;
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
clear_bit(ATM_VF_ADDR, &vcc->flags);
return -ENOMEM;
}
vc->scq = scq;
u32d[0] = scq_virt_to_bus(scq, scq->base);
u32d[1] = (u32) 0x00000000;
u32d[2] = (u32) 0xffffffff;
u32d[3] = (u32) 0x00000000;
ns_write_sram(card, vc->cbr_scd, u32d, 4);
fill_tst(card, n, vc);
} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
vc->cbr_scd = 0x00000000;
vc->scq = card->scq0;
}
if (vcc->qos.txtp.traffic_class != ATM_NONE) {
vc->tx = 1;
vc->tx_vcc = vcc;
vc->tbd_count = 0;
}
if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
u32 status;
vc->rx = 1;
vc->rx_vcc = vcc;
vc->rx_iov = NULL;
/* Open the connection in hardware */
if (vcc->qos.aal == ATM_AAL5)
status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
else /* vcc->qos.aal == ATM_AAL0 */
status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
#ifdef RCQ_SUPPORT
status |= NS_RCTE_RAWCELLINTEN;
#endif /* RCQ_SUPPORT */
ns_write_sram(card,
NS_RCT +
(vpi << card->vcibits | vci) *
NS_RCT_ENTRY_SIZE, &status, 1);
}
}
set_bit(ATM_VF_READY, &vcc->flags);
return 0;
}
static void ns_close(struct atm_vcc *vcc)
{
vc_map *vc;
ns_dev *card;
u32 data;
int i;
vc = vcc->dev_data;
card = vcc->dev->dev_data;
PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
(int)vcc->vpi, vcc->vci);
clear_bit(ATM_VF_READY, &vcc->flags);
if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
u32 addr;
unsigned long flags;
addr =
NS_RCT +
(vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
spin_lock_irqsave(&card->res_lock, flags);
while (CMD_BUSY(card)) ;
writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
card->membase + CMD);
spin_unlock_irqrestore(&card->res_lock, flags);
vc->rx = 0;
if (vc->rx_iov != NULL) {
struct sk_buff *iovb;
u32 stat;
stat = readl(card->membase + STAT);
card->sbfqc = ns_stat_sfbqc_get(stat);
card->lbfqc = ns_stat_lfbqc_get(stat);
PRINTK
("nicstar%d: closing a VC with pending rx buffers.\n",
card->index);
iovb = vc->rx_iov;
recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
NS_PRV_IOVCNT(iovb));
NS_PRV_IOVCNT(iovb) = 0;
spin_lock_irqsave(&card->int_lock, flags);
recycle_iov_buf(card, iovb);
spin_unlock_irqrestore(&card->int_lock, flags);
vc->rx_iov = NULL;
}
}
if (vcc->qos.txtp.traffic_class != ATM_NONE) {
vc->tx = 0;
}
if (vcc->qos.txtp.traffic_class == ATM_CBR) {
unsigned long flags;
ns_scqe *scqep;
scq_info *scq;
scq = vc->scq;
for (;;) {
spin_lock_irqsave(&scq->lock, flags);
scqep = scq->next;
if (scqep == scq->base)
scqep = scq->last;
else
scqep--;
if (scqep == scq->tail) {
spin_unlock_irqrestore(&scq->lock, flags);
break;
}
/* If the last entry is not a TSR, place one in the SCQ in order to
be able to completely drain it and then close. */
if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
ns_scqe tsr;
u32 scdi, scqi;
u32 data;
int index;
tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
scqi = scq->next - scq->base;
tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
tsr.word_3 = 0x00000000;
tsr.word_4 = 0x00000000;
*scq->next = tsr;
index = (int)scqi;
scq->skb[index] = NULL;
if (scq->next == scq->last)
scq->next = scq->base;
else
scq->next++;
data = scq_virt_to_bus(scq, scq->next);
ns_write_sram(card, scq->scd, &data, 1);
}
spin_unlock_irqrestore(&scq->lock, flags);
schedule();
}
/* Free all TST entries */
data = NS_TST_OPCODE_VARIABLE;
for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
if (card->tste2vc[i] == vc) {
ns_write_sram(card, card->tst_addr + i, &data,
1);
card->tste2vc[i] = NULL;
card->tst_free_entries++;
}
}
card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
free_scq(card, vc->scq, vcc);
}
/* remove all references to vcc before deleting it */
if (vcc->qos.txtp.traffic_class != ATM_NONE) {
unsigned long flags;
scq_info *scq = card->scq0;
spin_lock_irqsave(&scq->lock, flags);
for (i = 0; i < scq->num_entries; i++) {
if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
ATM_SKB(scq->skb[i])->vcc = NULL;
atm_return(vcc, scq->skb[i]->truesize);
PRINTK
("nicstar: deleted pending vcc mapping\n");
}
}
spin_unlock_irqrestore(&scq->lock, flags);
}
vcc->dev_data = NULL;
clear_bit(ATM_VF_PARTIAL, &vcc->flags);
clear_bit(ATM_VF_ADDR, &vcc->flags);
#ifdef RX_DEBUG
{
u32 stat, cfg;
stat = readl(card->membase + STAT);
cfg = readl(card->membase + CFG);
printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg);
printk
("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n",
card->tsq.base, card->tsq.next,
card->tsq.last, readl(card->membase + TSQT));
printk
("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n",
card->rsq.base, card->rsq.next,
card->rsq.last, readl(card->membase + RSQT));
printk("Empty free buffer queue interrupt %s \n",
card->efbie ? "enabled" : "disabled");
printk("SBCNT = %d count = %d LBCNT = %d count = %d \n",
ns_stat_sfbqc_get(stat), card->sbpool.count,
ns_stat_lfbqc_get(stat), card->lbpool.count);
printk("hbpool.count = %d iovpool.count = %d \n",
card->hbpool.count, card->iovpool.count);
}
#endif /* RX_DEBUG */
}
static void fill_tst(ns_dev * card, int n, vc_map * vc)
{
u32 new_tst;
unsigned long cl;
int e, r;
u32 data;
/* It would be very complicated to keep the two TSTs synchronized while
assuring that writes are only made to the inactive TST. So, for now I
will use only one TST. If problems occur, I will change this again */
new_tst = card->tst_addr;
/* Fill procedure */
for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
if (card->tste2vc[e] == NULL)
break;
}
if (e == NS_TST_NUM_ENTRIES) {
printk("nicstar%d: No free TST entries found. \n", card->index);
return;
}
r = n;
cl = NS_TST_NUM_ENTRIES;
data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
while (r > 0) {
if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
card->tste2vc[e] = vc;
ns_write_sram(card, new_tst + e, &data, 1);
cl -= NS_TST_NUM_ENTRIES;
r--;
}
if (++e == NS_TST_NUM_ENTRIES) {
e = 0;
}
cl += n;
}
/* End of fill procedure */
data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
card->tst_addr = new_tst;
}
static int _ns_send(struct atm_vcc *vcc, struct sk_buff *skb, bool may_sleep)
{
ns_dev *card;
vc_map *vc;
scq_info *scq;
unsigned long buflen;
ns_scqe scqe;
u32 flags; /* TBD flags, not CPU flags */
card = vcc->dev->dev_data;
TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
if ((vc = (vc_map *) vcc->dev_data) == NULL) {
printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
card->index);
atomic_inc(&vcc->stats->tx_err);
dev_kfree_skb_any(skb);
return -EINVAL;
}
if (!vc->tx) {
printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
card->index);
atomic_inc(&vcc->stats->tx_err);
dev_kfree_skb_any(skb);
return -EINVAL;
}
if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
card->index);
atomic_inc(&vcc->stats->tx_err);
dev_kfree_skb_any(skb);
return -EINVAL;
}
if (skb_shinfo(skb)->nr_frags != 0) {
printk("nicstar%d: No scatter-gather yet.\n", card->index);
atomic_inc(&vcc->stats->tx_err);
dev_kfree_skb_any(skb);
return -EINVAL;
}
ATM_SKB(skb)->vcc = vcc;
NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
skb->len, DMA_TO_DEVICE);
if (vcc->qos.aal == ATM_AAL5) {
buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */
flags = NS_TBD_AAL5;
scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
scqe.word_3 = cpu_to_le32(skb->len);
scqe.word_4 =
ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
ATM_SKB(skb)->
atm_options & ATM_ATMOPT_CLP ? 1 : 0);
flags |= NS_TBD_EOPDU;
} else { /* (vcc->qos.aal == ATM_AAL0) */
buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */
flags = NS_TBD_AAL0;
scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
scqe.word_3 = cpu_to_le32(0x00000000);
if (*skb->data & 0x02) /* Payload type 1 - end of pdu */
flags |= NS_TBD_EOPDU;
scqe.word_4 =
cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
/* Force the VPI/VCI to be the same as in VCC struct */
scqe.word_4 |=
cpu_to_le32((((u32) vcc->
vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
vci) <<
NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
}
if (vcc->qos.txtp.traffic_class == ATM_CBR) {
scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
scq = ((vc_map *) vcc->dev_data)->scq;
} else {
scqe.word_1 =
ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
scq = card->scq0;
}
if (push_scqe(card, vc, scq, &scqe, skb, may_sleep) != 0) {
atomic_inc(&vcc->stats->tx_err);
dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len,
DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
return -EIO;
}
atomic_inc(&vcc->stats->tx);
return 0;
}
static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
{
return _ns_send(vcc, skb, true);
}
static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb)
{
return _ns_send(vcc, skb, false);
}
static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
struct sk_buff *skb, bool may_sleep)
{
unsigned long flags;
ns_scqe tsr;
u32 scdi, scqi;
int scq_is_vbr;
u32 data;
int index;
spin_lock_irqsave(&scq->lock, flags);
while (scq->tail == scq->next) {
if (!may_sleep) {
spin_unlock_irqrestore(&scq->lock, flags);
printk("nicstar%d: Error pushing TBD.\n", card->index);
return 1;
}
scq->full = 1;
wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
scq->tail != scq->next,
scq->lock,
SCQFULL_TIMEOUT);
if (scq->full) {
spin_unlock_irqrestore(&scq->lock, flags);
printk("nicstar%d: Timeout pushing TBD.\n",
card->index);
return 1;
}
}
*scq->next = *tbd;
index = (int)(scq->next - scq->base);
scq->skb[index] = skb;
XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
card->index, skb, index);
XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
scq->next);
if (scq->next == scq->last)
scq->next = scq->base;
else
scq->next++;
vc->tbd_count++;
if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
scq->tbd_count++;
scq_is_vbr = 1;
} else
scq_is_vbr = 0;
if (vc->tbd_count >= MAX_TBD_PER_VC
|| scq->tbd_count >= MAX_TBD_PER_SCQ) {
int has_run = 0;
while (scq->tail == scq->next) {
if (!may_sleep) {
data = scq_virt_to_bus(scq, scq->next);
ns_write_sram(card, scq->scd, &data, 1);
spin_unlock_irqrestore(&scq->lock, flags);
printk("nicstar%d: Error pushing TSR.\n",
card->index);
return 0;
}
scq->full = 1;
if (has_run++)
break;
wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
scq->tail != scq->next,
scq->lock,
SCQFULL_TIMEOUT);
}
if (!scq->full) {
tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
if (scq_is_vbr)
scdi = NS_TSR_SCDISVBR;
else
scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
scqi = scq->next - scq->base;
tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
tsr.word_3 = 0x00000000;
tsr.word_4 = 0x00000000;
*scq->next = tsr;
index = (int)scqi;
scq->skb[index] = NULL;
XPRINTK
("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
card->index, le32_to_cpu(tsr.word_1),
le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
le32_to_cpu(tsr.word_4), scq->next);
if (scq->next == scq->last)
scq->next = scq->base;
else
scq->next++;
vc->tbd_count = 0;
scq->tbd_count = 0;
} else
PRINTK("nicstar%d: Timeout pushing TSR.\n",
card->index);
}
data = scq_virt_to_bus(scq, scq->next);
ns_write_sram(card, scq->scd, &data, 1);
spin_unlock_irqrestore(&scq->lock, flags);
return 0;
}
static void process_tsq(ns_dev * card)
{
u32 scdi;
scq_info *scq;
ns_tsi *previous = NULL, *one_ahead, *two_ahead;
int serviced_entries; /* flag indicating at least on entry was serviced */
serviced_entries = 0;
if (card->tsq.next == card->tsq.last)
one_ahead = card->tsq.base;
else
one_ahead = card->tsq.next + 1;
if (one_ahead == card->tsq.last)
two_ahead = card->tsq.base;
else
two_ahead = one_ahead + 1;
while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
!ns_tsi_isempty(two_ahead))
/* At most two empty, as stated in the 77201 errata */
{
serviced_entries = 1;
/* Skip the one or two possible empty entries */
while (ns_tsi_isempty(card->tsq.next)) {
if (card->tsq.next == card->tsq.last)
card->tsq.next = card->tsq.base;
else
card->tsq.next++;
}
if (!ns_tsi_tmrof(card->tsq.next)) {
scdi = ns_tsi_getscdindex(card->tsq.next);
if (scdi == NS_TSI_SCDISVBR)
scq = card->scq0;
else {
if (card->scd2vc[scdi] == NULL) {
printk
("nicstar%d: could not find VC from SCD index.\n",
card->index);
ns_tsi_init(card->tsq.next);
return;
}
scq = card->scd2vc[scdi]->scq;
}
drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
scq->full = 0;
wake_up_interruptible(&(scq->scqfull_waitq));
}
ns_tsi_init(card->tsq.next);
previous = card->tsq.next;
if (card->tsq.next == card->tsq.last)
card->tsq.next = card->tsq.base;
else
card->tsq.next++;
if (card->tsq.next == card->tsq.last)
one_ahead = card->tsq.base;
else
one_ahead = card->tsq.next + 1;
if (one_ahead == card->tsq.last)
two_ahead = card->tsq.base;
else
two_ahead = one_ahead + 1;
}
if (serviced_entries)
writel(PTR_DIFF(previous, card->tsq.base),
card->membase + TSQH);
}
static void drain_scq(ns_dev * card, scq_info * scq, int pos)
{
struct atm_vcc *vcc;
struct sk_buff *skb;
int i;
unsigned long flags;
XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
card->index, scq, pos);
if (pos >= scq->num_entries) {
printk("nicstar%d: Bad index on drain_scq().\n", card->index);
return;
}
spin_lock_irqsave(&scq->lock, flags);
i = (int)(scq->tail - scq->base);
if (++i == scq->num_entries)
i = 0;
while (i != pos) {
skb = scq->skb[i];
XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
card->index, skb, i);
if (skb != NULL) {
dma_unmap_single(&card->pcidev->dev,
NS_PRV_DMA(skb),
skb->len,
DMA_TO_DEVICE);
vcc = ATM_SKB(skb)->vcc;
if (vcc && vcc->pop != NULL) {
vcc->pop(vcc, skb);
} else {
dev_kfree_skb_irq(skb);
}
scq->skb[i] = NULL;
}
if (++i == scq->num_entries)
i = 0;
}
scq->tail = scq->base + pos;
spin_unlock_irqrestore(&scq->lock, flags);
}
static void process_rsq(ns_dev * card)
{
ns_rsqe *previous;
if (!ns_rsqe_valid(card->rsq.next))
return;
do {
dequeue_rx(card, card->rsq.next);
ns_rsqe_init(card->rsq.next);
previous = card->rsq.next;
if (card->rsq.next == card->rsq.last)
card->rsq.next = card->rsq.base;
else
card->rsq.next++;
} while (ns_rsqe_valid(card->rsq.next));
writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
}
static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
{
u32 vpi, vci;
vc_map *vc;
struct sk_buff *iovb;
struct iovec *iov;
struct atm_vcc *vcc;
struct sk_buff *skb;
unsigned short aal5_len;
int len;
u32 stat;
u32 id;
stat = readl(card->membase + STAT);
card->sbfqc = ns_stat_sfbqc_get(stat);
card->lbfqc = ns_stat_lfbqc_get(stat);
id = le32_to_cpu(rsqe->buffer_handle);
skb = idr_remove(&card->idr, id);
if (!skb) {
RXPRINTK(KERN_ERR
"nicstar%d: skb not found!\n", card->index);
return;
}
dma_sync_single_for_cpu(&card->pcidev->dev,
NS_PRV_DMA(skb),
(NS_PRV_BUFTYPE(skb) == BUF_SM
? NS_SMSKBSIZE : NS_LGSKBSIZE),
DMA_FROM_DEVICE);
dma_unmap_single(&card->pcidev->dev,
NS_PRV_DMA(skb),
(NS_PRV_BUFTYPE(skb) == BUF_SM
? NS_SMSKBSIZE : NS_LGSKBSIZE),
DMA_FROM_DEVICE);
vpi = ns_rsqe_vpi(rsqe);
vci = ns_rsqe_vci(rsqe);
if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
card->index, vpi, vci);
recycle_rx_buf(card, skb);
return;
}
vc = &(card->vcmap[vpi << card->vcibits | vci]);
if (!vc->rx) {
RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
card->index, vpi, vci);
recycle_rx_buf(card, skb);
return;
}
vcc = vc->rx_vcc;
if (vcc->qos.aal == ATM_AAL0) {
struct sk_buff *sb;
unsigned char *cell;
int i;
cell = skb->data;
for (i = ns_rsqe_cellcount(rsqe); i; i--) {
sb = dev_alloc_skb(NS_SMSKBSIZE);
if (!sb) {
printk
("nicstar%d: Can't allocate buffers for aal0.\n",
card->index);
atomic_add(i, &vcc->stats->rx_drop);
break;
}
if (!atm_charge(vcc, sb->truesize)) {
RXPRINTK
("nicstar%d: atm_charge() dropped aal0 packets.\n",
card->index);
atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */
dev_kfree_skb_any(sb);
break;
}
/* Rebuild the header */
*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
(ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
if (i == 1 && ns_rsqe_eopdu(rsqe))
*((u32 *) sb->data) |= 0x00000002;
skb_put(sb, NS_AAL0_HEADER);
memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
skb_put(sb, ATM_CELL_PAYLOAD);
ATM_SKB(sb)->vcc = vcc;
__net_timestamp(sb);
vcc->push(vcc, sb);
atomic_inc(&vcc->stats->rx);
cell += ATM_CELL_PAYLOAD;
}
recycle_rx_buf(card, skb);
return;
}
/* To reach this point, the AAL layer can only be AAL5 */
if ((iovb = vc->rx_iov) == NULL) {
iovb = skb_dequeue(&(card->iovpool.queue));
if (iovb == NULL) { /* No buffers in the queue */
iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
if (iovb == NULL) {
printk("nicstar%d: Out of iovec buffers.\n",
card->index);
atomic_inc(&vcc->stats->rx_drop);
recycle_rx_buf(card, skb);
return;
}
NS_PRV_BUFTYPE(iovb) = BUF_NONE;
} else if (--card->iovpool.count < card->iovnr.min) {
struct sk_buff *new_iovb;
if ((new_iovb =
alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
NS_PRV_BUFTYPE(iovb) = BUF_NONE;
skb_queue_tail(&card->iovpool.queue, new_iovb);
card->iovpool.count++;
}
}
vc->rx_iov = iovb;
NS_PRV_IOVCNT(iovb) = 0;
iovb->len = 0;
iovb->data = iovb->head;
skb_reset_tail_pointer(iovb);
/* IMPORTANT: a pointer to the sk_buff containing the small or large
buffer is stored as iovec base, NOT a pointer to the
small or large buffer itself. */
} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
atomic_inc(&vcc->stats->rx_err);
recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
NS_MAX_IOVECS);
NS_PRV_IOVCNT(iovb) = 0;
iovb->len = 0;
iovb->data = iovb->head;
skb_reset_tail_pointer(iovb);
}
iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
iov->iov_base = (void *)skb;
iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
iovb->len += iov->iov_len;
#ifdef EXTRA_DEBUG
if (NS_PRV_IOVCNT(iovb) == 1) {
if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
printk
("nicstar%d: Expected a small buffer, and this is not one.\n",
card->index);
which_list(card, skb);
atomic_inc(&vcc->stats->rx_err);
recycle_rx_buf(card, skb);
vc->rx_iov = NULL;
recycle_iov_buf(card, iovb);
return;
}
} else { /* NS_PRV_IOVCNT(iovb) >= 2 */
if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
printk
("nicstar%d: Expected a large buffer, and this is not one.\n",
card->index);
which_list(card, skb);
atomic_inc(&vcc->stats->rx_err);
recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
NS_PRV_IOVCNT(iovb));
vc->rx_iov = NULL;
recycle_iov_buf(card, iovb);
return;
}
}
#endif /* EXTRA_DEBUG */
if (ns_rsqe_eopdu(rsqe)) {
/* This works correctly regardless of the endianness of the host */
unsigned char *L1L2 = (unsigned char *)
(skb->data + iov->iov_len - 6);
aal5_len = L1L2[0] << 8 | L1L2[1];
len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
if (ns_rsqe_crcerr(rsqe) ||
len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
printk("nicstar%d: AAL5 CRC error", card->index);
if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
printk(" - PDU size mismatch.\n");
else
printk(".\n");
atomic_inc(&vcc->stats->rx_err);
recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
NS_PRV_IOVCNT(iovb));
vc->rx_iov = NULL;
recycle_iov_buf(card, iovb);
return;
}
/* By this point we (hopefully) have a complete SDU without errors. */
if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */
/* skb points to a small buffer */
if (!atm_charge(vcc, skb->truesize)) {
push_rxbufs(card, skb);
atomic_inc(&vcc->stats->rx_drop);
} else {
skb_put(skb, len);
dequeue_sm_buf(card, skb);
ATM_SKB(skb)->vcc = vcc;
__net_timestamp(skb);
vcc->push(vcc, skb);
atomic_inc(&vcc->stats->rx);
}
} else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */
struct sk_buff *sb;
sb = (struct sk_buff *)(iov - 1)->iov_base;
/* skb points to a large buffer */
if (len <= NS_SMBUFSIZE) {
if (!atm_charge(vcc, sb->truesize)) {
push_rxbufs(card, sb);
atomic_inc(&vcc->stats->rx_drop);
} else {
skb_put(sb, len);
dequeue_sm_buf(card, sb);
ATM_SKB(sb)->vcc = vcc;
__net_timestamp(sb);
vcc->push(vcc, sb);
atomic_inc(&vcc->stats->rx);
}
push_rxbufs(card, skb);
} else { /* len > NS_SMBUFSIZE, the usual case */
if (!atm_charge(vcc, skb->truesize)) {
push_rxbufs(card, skb);
atomic_inc(&vcc->stats->rx_drop);
} else {
dequeue_lg_buf(card, skb);
skb_push(skb, NS_SMBUFSIZE);
skb_copy_from_linear_data(sb, skb->data,
NS_SMBUFSIZE);
skb_put(skb, len - NS_SMBUFSIZE);
ATM_SKB(skb)->vcc = vcc;
__net_timestamp(skb);
vcc->push(vcc, skb);
atomic_inc(&vcc->stats->rx);
}
push_rxbufs(card, sb);
}
} else { /* Must push a huge buffer */
struct sk_buff *hb, *sb, *lb;
int remaining, tocopy;
int j;
hb = skb_dequeue(&(card->hbpool.queue));
if (hb == NULL) { /* No buffers in the queue */
hb = dev_alloc_skb(NS_HBUFSIZE);
if (hb == NULL) {
printk
("nicstar%d: Out of huge buffers.\n",
card->index);
atomic_inc(&vcc->stats->rx_drop);
recycle_iovec_rx_bufs(card,
(struct iovec *)
iovb->data,
NS_PRV_IOVCNT(iovb));
vc->rx_iov = NULL;
recycle_iov_buf(card, iovb);
return;
} else if (card->hbpool.count < card->hbnr.min) {
struct sk_buff *new_hb;
if ((new_hb =
dev_alloc_skb(NS_HBUFSIZE)) !=
NULL) {
skb_queue_tail(&card->hbpool.
queue, new_hb);
card->hbpool.count++;
}
}
NS_PRV_BUFTYPE(hb) = BUF_NONE;
} else if (--card->hbpool.count < card->hbnr.min) {
struct sk_buff *new_hb;
if ((new_hb =
dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
skb_queue_tail(&card->hbpool.queue,
new_hb);
card->hbpool.count++;
}
if (card->hbpool.count < card->hbnr.min) {
if ((new_hb =
dev_alloc_skb(NS_HBUFSIZE)) !=
NULL) {
NS_PRV_BUFTYPE(new_hb) =
BUF_NONE;
skb_queue_tail(&card->hbpool.
queue, new_hb);
card->hbpool.count++;
}
}
}
iov = (struct iovec *)iovb->data;
if (!atm_charge(vcc, hb->truesize)) {
recycle_iovec_rx_bufs(card, iov,
NS_PRV_IOVCNT(iovb));
if (card->hbpool.count < card->hbnr.max) {
skb_queue_tail(&card->hbpool.queue, hb);
card->hbpool.count++;
} else
dev_kfree_skb_any(hb);
atomic_inc(&vcc->stats->rx_drop);
} else {
/* Copy the small buffer to the huge buffer */
sb = (struct sk_buff *)iov->iov_base;
skb_copy_from_linear_data(sb, hb->data,
iov->iov_len);
skb_put(hb, iov->iov_len);
remaining = len - iov->iov_len;
iov++;
/* Free the small buffer */
push_rxbufs(card, sb);
/* Copy all large buffers to the huge buffer and free them */
for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
lb = (struct sk_buff *)iov->iov_base;
tocopy =
min_t(int, remaining, iov->iov_len);
skb_copy_from_linear_data(lb,
skb_tail_pointer
(hb), tocopy);
skb_put(hb, tocopy);
iov++;
remaining -= tocopy;
push_rxbufs(card, lb);
}
#ifdef EXTRA_DEBUG
if (remaining != 0 || hb->len != len)
printk
("nicstar%d: Huge buffer len mismatch.\n",
card->index);
#endif /* EXTRA_DEBUG */
ATM_SKB(hb)->vcc = vcc;
__net_timestamp(hb);
vcc->push(vcc, hb);
atomic_inc(&vcc->stats->rx);
}
}
vc->rx_iov = NULL;
recycle_iov_buf(card, iovb);
}
}
static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
{
if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
printk("nicstar%d: What kind of rx buffer is this?\n",
card->index);
dev_kfree_skb_any(skb);
} else
push_rxbufs(card, skb);
}
static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
{
while (count-- > 0)
recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
}
static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
{
if (card->iovpool.count < card->iovnr.max) {
skb_queue_tail(&card->iovpool.queue, iovb);
card->iovpool.count++;
} else
dev_kfree_skb_any(iovb);
}
static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
{
skb_unlink(sb, &card->sbpool.queue);
if (card->sbfqc < card->sbnr.init) {
struct sk_buff *new_sb;
if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
NS_PRV_BUFTYPE(new_sb) = BUF_SM;
skb_queue_tail(&card->sbpool.queue, new_sb);
skb_reserve(new_sb, NS_AAL0_HEADER);
push_rxbufs(card, new_sb);
}
}
if (card->sbfqc < card->sbnr.init)
{
struct sk_buff *new_sb;
if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
NS_PRV_BUFTYPE(new_sb) = BUF_SM;
skb_queue_tail(&card->sbpool.queue, new_sb);
skb_reserve(new_sb, NS_AAL0_HEADER);
push_rxbufs(card, new_sb);
}
}
}
static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
{
skb_unlink(lb, &card->lbpool.queue);
if (card->lbfqc < card->lbnr.init) {
struct sk_buff *new_lb;
if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
NS_PRV_BUFTYPE(new_lb) = BUF_LG;
skb_queue_tail(&card->lbpool.queue, new_lb);
skb_reserve(new_lb, NS_SMBUFSIZE);
push_rxbufs(card, new_lb);
}
}
if (card->lbfqc < card->lbnr.init)
{
struct sk_buff *new_lb;
if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
NS_PRV_BUFTYPE(new_lb) = BUF_LG;
skb_queue_tail(&card->lbpool.queue, new_lb);
skb_reserve(new_lb, NS_SMBUFSIZE);
push_rxbufs(card, new_lb);
}
}
}
static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
{
u32 stat;
ns_dev *card;
int left;
left = (int)*pos;
card = (ns_dev *) dev->dev_data;
stat = readl(card->membase + STAT);
if (!left--)
return sprintf(page, "Pool count min init max \n");
if (!left--)
return sprintf(page, "Small %5d %5d %5d %5d \n",
ns_stat_sfbqc_get(stat), card->sbnr.min,
card->sbnr.init, card->sbnr.max);
if (!left--)
return sprintf(page, "Large %5d %5d %5d %5d \n",
ns_stat_lfbqc_get(stat), card->lbnr.min,
card->lbnr.init, card->lbnr.max);
if (!left--)
return sprintf(page, "Huge %5d %5d %5d %5d \n",
card->hbpool.count, card->hbnr.min,
card->hbnr.init, card->hbnr.max);
if (!left--)
return sprintf(page, "Iovec %5d %5d %5d %5d \n",
card->iovpool.count, card->iovnr.min,
card->iovnr.init, card->iovnr.max);
if (!left--) {
int retval;
retval =
sprintf(page, "Interrupt counter: %u \n", card->intcnt);
card->intcnt = 0;
return retval;
}
#if 0
/* Dump 25.6 Mbps PHY registers */
/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
here just in case it's needed for debugging. */
if (card->max_pcr == ATM_25_PCR && !left--) {
u32 phy_regs[4];
u32 i;
for (i = 0; i < 4; i++) {
while (CMD_BUSY(card)) ;
writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
card->membase + CMD);
while (CMD_BUSY(card)) ;
phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
}
return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
phy_regs[0], phy_regs[1], phy_regs[2],
phy_regs[3]);
}
#endif /* 0 - Dump 25.6 Mbps PHY registers */
#if 0
/* Dump TST */
if (left-- < NS_TST_NUM_ENTRIES) {
if (card->tste2vc[left + 1] == NULL)
return sprintf(page, "%5d - VBR/UBR \n", left + 1);
else
return sprintf(page, "%5d - %d %d \n", left + 1,
card->tste2vc[left + 1]->tx_vcc->vpi,
card->tste2vc[left + 1]->tx_vcc->vci);
}
#endif /* 0 */
return 0;
}
static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
{
ns_dev *card;
pool_levels pl;
long btype;
unsigned long flags;
card = dev->dev_data;
switch (cmd) {
case NS_GETPSTAT:
if (get_user
(pl.buftype, &((pool_levels __user *) arg)->buftype))
return -EFAULT;
switch (pl.buftype) {
case NS_BUFTYPE_SMALL:
pl.count =
ns_stat_sfbqc_get(readl(card->membase + STAT));
pl.level.min = card->sbnr.min;
pl.level.init = card->sbnr.init;
pl.level.max = card->sbnr.max;
break;
case NS_BUFTYPE_LARGE:
pl.count =
ns_stat_lfbqc_get(readl(card->membase + STAT));
pl.level.min = card->lbnr.min;
pl.level.init = card->lbnr.init;
pl.level.max = card->lbnr.max;
break;
case NS_BUFTYPE_HUGE:
pl.count = card->hbpool.count;
pl.level.min = card->hbnr.min;
pl.level.init = card->hbnr.init;
pl.level.max = card->hbnr.max;
break;
case NS_BUFTYPE_IOVEC:
pl.count = card->iovpool.count;
pl.level.min = card->iovnr.min;
pl.level.init = card->iovnr.init;
pl.level.max = card->iovnr.max;
break;
default:
return -ENOIOCTLCMD;
}
if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
return (sizeof(pl));
else
return -EFAULT;
case NS_SETBUFLEV:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
return -EFAULT;
if (pl.level.min >= pl.level.init
|| pl.level.init >= pl.level.max)
return -EINVAL;
if (pl.level.min == 0)
return -EINVAL;
switch (pl.buftype) {
case NS_BUFTYPE_SMALL:
if (pl.level.max > TOP_SB)
return -EINVAL;
card->sbnr.min = pl.level.min;
card->sbnr.init = pl.level.init;
card->sbnr.max = pl.level.max;
break;
case NS_BUFTYPE_LARGE:
if (pl.level.max > TOP_LB)
return -EINVAL;
card->lbnr.min = pl.level.min;
card->lbnr.init = pl.level.init;
card->lbnr.max = pl.level.max;
break;
case NS_BUFTYPE_HUGE:
if (pl.level.max > TOP_HB)
return -EINVAL;
card->hbnr.min = pl.level.min;
card->hbnr.init = pl.level.init;
card->hbnr.max = pl.level.max;
break;
case NS_BUFTYPE_IOVEC:
if (pl.level.max > TOP_IOVB)
return -EINVAL;
card->iovnr.min = pl.level.min;
card->iovnr.init = pl.level.init;
card->iovnr.max = pl.level.max;
break;
default:
return -EINVAL;
}
return 0;
case NS_ADJBUFLEV:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
btype = (long)arg; /* a long is the same size as a pointer or bigger */
switch (btype) {
case NS_BUFTYPE_SMALL:
while (card->sbfqc < card->sbnr.init) {
struct sk_buff *sb;
sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
if (sb == NULL)
return -ENOMEM;
NS_PRV_BUFTYPE(sb) = BUF_SM;
skb_queue_tail(&card->sbpool.queue, sb);
skb_reserve(sb, NS_AAL0_HEADER);
push_rxbufs(card, sb);
}
break;
case NS_BUFTYPE_LARGE:
while (card->lbfqc < card->lbnr.init) {
struct sk_buff *lb;
lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
if (lb == NULL)
return -ENOMEM;
NS_PRV_BUFTYPE(lb) = BUF_LG;
skb_queue_tail(&card->lbpool.queue, lb);
skb_reserve(lb, NS_SMBUFSIZE);
push_rxbufs(card, lb);
}
break;
case NS_BUFTYPE_HUGE:
while (card->hbpool.count > card->hbnr.init) {
struct sk_buff *hb;
spin_lock_irqsave(&card->int_lock, flags);
hb = skb_dequeue(&card->hbpool.queue);
card->hbpool.count--;
spin_unlock_irqrestore(&card->int_lock, flags);
if (hb == NULL)
printk
("nicstar%d: huge buffer count inconsistent.\n",
card->index);
else
dev_kfree_skb_any(hb);
}
while (card->hbpool.count < card->hbnr.init) {
struct sk_buff *hb;
hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
if (hb == NULL)
return -ENOMEM;
NS_PRV_BUFTYPE(hb) = BUF_NONE;
spin_lock_irqsave(&card->int_lock, flags);
skb_queue_tail(&card->hbpool.queue, hb);
card->hbpool.count++;
spin_unlock_irqrestore(&card->int_lock, flags);
}
break;
case NS_BUFTYPE_IOVEC:
while (card->iovpool.count > card->iovnr.init) {
struct sk_buff *iovb;
spin_lock_irqsave(&card->int_lock, flags);
iovb = skb_dequeue(&card->iovpool.queue);
card->iovpool.count--;
spin_unlock_irqrestore(&card->int_lock, flags);
if (iovb == NULL)
printk
("nicstar%d: iovec buffer count inconsistent.\n",
card->index);
else
dev_kfree_skb_any(iovb);
}
while (card->iovpool.count < card->iovnr.init) {
struct sk_buff *iovb;
iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
if (iovb == NULL)
return -ENOMEM;
NS_PRV_BUFTYPE(iovb) = BUF_NONE;
spin_lock_irqsave(&card->int_lock, flags);
skb_queue_tail(&card->iovpool.queue, iovb);
card->iovpool.count++;
spin_unlock_irqrestore(&card->int_lock, flags);
}
break;
default:
return -EINVAL;
}
return 0;
default:
if (dev->phy && dev->phy->ioctl) {
return dev->phy->ioctl(dev, cmd, arg);
} else {
printk("nicstar%d: %s == NULL \n", card->index,
dev->phy ? "dev->phy->ioctl" : "dev->phy");
return -ENOIOCTLCMD;
}
}
}
#ifdef EXTRA_DEBUG
static void which_list(ns_dev * card, struct sk_buff *skb)
{
printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
}
#endif /* EXTRA_DEBUG */
static void ns_poll(struct timer_list *unused)
{
int i;
ns_dev *card;
unsigned long flags;
u32 stat_r, stat_w;
PRINTK("nicstar: Entering ns_poll().\n");
for (i = 0; i < num_cards; i++) {
card = cards[i];
if (!spin_trylock_irqsave(&card->int_lock, flags)) {
/* Probably it isn't worth spinning */
continue;
}
stat_w = 0;
stat_r = readl(card->membase + STAT);
if (stat_r & NS_STAT_TSIF)
stat_w |= NS_STAT_TSIF;
if (stat_r & NS_STAT_EOPDU)
stat_w |= NS_STAT_EOPDU;
process_tsq(card);
process_rsq(card);
writel(stat_w, card->membase + STAT);
spin_unlock_irqrestore(&card->int_lock, flags);
}
mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
PRINTK("nicstar: Leaving ns_poll().\n");
}
static void ns_phy_put(struct atm_dev *dev, unsigned char value,
unsigned long addr)
{
ns_dev *card;
unsigned long flags;
card = dev->dev_data;
spin_lock_irqsave(&card->res_lock, flags);
while (CMD_BUSY(card)) ;
writel((u32) value, card->membase + DR0);
writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
card->membase + CMD);
spin_unlock_irqrestore(&card->res_lock, flags);
}
static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
{
ns_dev *card;
unsigned long flags;
u32 data;
card = dev->dev_data;
spin_lock_irqsave(&card->res_lock, flags);
while (CMD_BUSY(card)) ;
writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
card->membase + CMD);
while (CMD_BUSY(card)) ;
data = readl(card->membase + DR0) & 0x000000FF;
spin_unlock_irqrestore(&card->res_lock, flags);
return (unsigned char)data;
}
module_init(nicstar_init);
module_exit(nicstar_cleanup);