2415 lines
63 KiB
C
2415 lines
63 KiB
C
/*
|
|
* Copyright © 2003 Rick Bronson
|
|
*
|
|
* Derived from drivers/mtd/nand/autcpu12.c
|
|
* Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
|
|
*
|
|
* Derived from drivers/mtd/spia.c
|
|
* Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
|
|
*
|
|
*
|
|
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
|
|
* Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
|
|
*
|
|
* Derived from Das U-Boot source code
|
|
* (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
|
|
* © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
|
|
*
|
|
* Add Programmable Multibit ECC support for various AT91 SoC
|
|
* © Copyright 2012 ATMEL, Hong Xu
|
|
*
|
|
* Add Nand Flash Controller support for SAMA5 SoC
|
|
* © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/of_mtd.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/platform_data/atmel.h>
|
|
|
|
static int use_dma = 1;
|
|
module_param(use_dma, int, 0);
|
|
|
|
static int on_flash_bbt = 0;
|
|
module_param(on_flash_bbt, int, 0);
|
|
|
|
/* Register access macros */
|
|
#define ecc_readl(add, reg) \
|
|
__raw_readl(add + ATMEL_ECC_##reg)
|
|
#define ecc_writel(add, reg, value) \
|
|
__raw_writel((value), add + ATMEL_ECC_##reg)
|
|
|
|
#include "atmel_nand_ecc.h" /* Hardware ECC registers */
|
|
#include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
|
|
|
|
struct atmel_nand_caps {
|
|
bool pmecc_correct_erase_page;
|
|
};
|
|
|
|
/* oob layout for large page size
|
|
* bad block info is on bytes 0 and 1
|
|
* the bytes have to be consecutives to avoid
|
|
* several NAND_CMD_RNDOUT during read
|
|
*/
|
|
static struct nand_ecclayout atmel_oobinfo_large = {
|
|
.eccbytes = 4,
|
|
.eccpos = {60, 61, 62, 63},
|
|
.oobfree = {
|
|
{2, 58}
|
|
},
|
|
};
|
|
|
|
/* oob layout for small page size
|
|
* bad block info is on bytes 4 and 5
|
|
* the bytes have to be consecutives to avoid
|
|
* several NAND_CMD_RNDOUT during read
|
|
*/
|
|
static struct nand_ecclayout atmel_oobinfo_small = {
|
|
.eccbytes = 4,
|
|
.eccpos = {0, 1, 2, 3},
|
|
.oobfree = {
|
|
{6, 10}
|
|
},
|
|
};
|
|
|
|
struct atmel_nfc {
|
|
void __iomem *base_cmd_regs;
|
|
void __iomem *hsmc_regs;
|
|
void *sram_bank0;
|
|
dma_addr_t sram_bank0_phys;
|
|
bool use_nfc_sram;
|
|
bool write_by_sram;
|
|
|
|
struct clk *clk;
|
|
|
|
bool is_initialized;
|
|
struct completion comp_ready;
|
|
struct completion comp_cmd_done;
|
|
struct completion comp_xfer_done;
|
|
|
|
/* Point to the sram bank which include readed data via NFC */
|
|
void *data_in_sram;
|
|
bool will_write_sram;
|
|
};
|
|
static struct atmel_nfc nand_nfc;
|
|
|
|
struct atmel_nand_host {
|
|
struct nand_chip nand_chip;
|
|
void __iomem *io_base;
|
|
dma_addr_t io_phys;
|
|
struct atmel_nand_data board;
|
|
struct device *dev;
|
|
void __iomem *ecc;
|
|
|
|
struct completion comp;
|
|
struct dma_chan *dma_chan;
|
|
|
|
struct atmel_nfc *nfc;
|
|
|
|
const struct atmel_nand_caps *caps;
|
|
bool has_pmecc;
|
|
u8 pmecc_corr_cap;
|
|
u16 pmecc_sector_size;
|
|
bool has_no_lookup_table;
|
|
u32 pmecc_lookup_table_offset;
|
|
u32 pmecc_lookup_table_offset_512;
|
|
u32 pmecc_lookup_table_offset_1024;
|
|
|
|
int pmecc_degree; /* Degree of remainders */
|
|
int pmecc_cw_len; /* Length of codeword */
|
|
|
|
void __iomem *pmerrloc_base;
|
|
void __iomem *pmecc_rom_base;
|
|
|
|
/* lookup table for alpha_to and index_of */
|
|
void __iomem *pmecc_alpha_to;
|
|
void __iomem *pmecc_index_of;
|
|
|
|
/* data for pmecc computation */
|
|
int16_t *pmecc_partial_syn;
|
|
int16_t *pmecc_si;
|
|
int16_t *pmecc_smu; /* Sigma table */
|
|
int16_t *pmecc_lmu; /* polynomal order */
|
|
int *pmecc_mu;
|
|
int *pmecc_dmu;
|
|
int *pmecc_delta;
|
|
};
|
|
|
|
static struct nand_ecclayout atmel_pmecc_oobinfo;
|
|
|
|
/*
|
|
* Enable NAND.
|
|
*/
|
|
static void atmel_nand_enable(struct atmel_nand_host *host)
|
|
{
|
|
if (gpio_is_valid(host->board.enable_pin))
|
|
gpio_set_value(host->board.enable_pin, 0);
|
|
}
|
|
|
|
/*
|
|
* Disable NAND.
|
|
*/
|
|
static void atmel_nand_disable(struct atmel_nand_host *host)
|
|
{
|
|
if (gpio_is_valid(host->board.enable_pin))
|
|
gpio_set_value(host->board.enable_pin, 1);
|
|
}
|
|
|
|
/*
|
|
* Hardware specific access to control-lines
|
|
*/
|
|
static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
if (ctrl & NAND_CTRL_CHANGE) {
|
|
if (ctrl & NAND_NCE)
|
|
atmel_nand_enable(host);
|
|
else
|
|
atmel_nand_disable(host);
|
|
}
|
|
if (cmd == NAND_CMD_NONE)
|
|
return;
|
|
|
|
if (ctrl & NAND_CLE)
|
|
writeb(cmd, host->io_base + (1 << host->board.cle));
|
|
else
|
|
writeb(cmd, host->io_base + (1 << host->board.ale));
|
|
}
|
|
|
|
/*
|
|
* Read the Device Ready pin.
|
|
*/
|
|
static int atmel_nand_device_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
return gpio_get_value(host->board.rdy_pin) ^
|
|
!!host->board.rdy_pin_active_low;
|
|
}
|
|
|
|
/* Set up for hardware ready pin and enable pin. */
|
|
static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
int res = 0;
|
|
|
|
if (gpio_is_valid(host->board.rdy_pin)) {
|
|
res = devm_gpio_request(host->dev,
|
|
host->board.rdy_pin, "nand_rdy");
|
|
if (res < 0) {
|
|
dev_err(host->dev,
|
|
"can't request rdy gpio %d\n",
|
|
host->board.rdy_pin);
|
|
return res;
|
|
}
|
|
|
|
res = gpio_direction_input(host->board.rdy_pin);
|
|
if (res < 0) {
|
|
dev_err(host->dev,
|
|
"can't request input direction rdy gpio %d\n",
|
|
host->board.rdy_pin);
|
|
return res;
|
|
}
|
|
|
|
chip->dev_ready = atmel_nand_device_ready;
|
|
}
|
|
|
|
if (gpio_is_valid(host->board.enable_pin)) {
|
|
res = devm_gpio_request(host->dev,
|
|
host->board.enable_pin, "nand_enable");
|
|
if (res < 0) {
|
|
dev_err(host->dev,
|
|
"can't request enable gpio %d\n",
|
|
host->board.enable_pin);
|
|
return res;
|
|
}
|
|
|
|
res = gpio_direction_output(host->board.enable_pin, 1);
|
|
if (res < 0) {
|
|
dev_err(host->dev,
|
|
"can't request output direction enable gpio %d\n",
|
|
host->board.enable_pin);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Minimal-overhead PIO for data access.
|
|
*/
|
|
static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
|
|
memcpy(buf, host->nfc->data_in_sram, len);
|
|
host->nfc->data_in_sram += len;
|
|
} else {
|
|
__raw_readsb(nand_chip->IO_ADDR_R, buf, len);
|
|
}
|
|
}
|
|
|
|
static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
|
|
memcpy(buf, host->nfc->data_in_sram, len);
|
|
host->nfc->data_in_sram += len;
|
|
} else {
|
|
__raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
|
|
}
|
|
}
|
|
|
|
static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
|
|
__raw_writesb(nand_chip->IO_ADDR_W, buf, len);
|
|
}
|
|
|
|
static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
|
|
__raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
|
|
}
|
|
|
|
static void dma_complete_func(void *completion)
|
|
{
|
|
complete(completion);
|
|
}
|
|
|
|
static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
|
|
{
|
|
/* NFC only has two banks. Must be 0 or 1 */
|
|
if (bank > 1)
|
|
return -EINVAL;
|
|
|
|
if (bank) {
|
|
struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
|
|
|
|
/* Only for a 2k-page or lower flash, NFC can handle 2 banks */
|
|
if (mtd->writesize > 2048)
|
|
return -EINVAL;
|
|
nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
|
|
} else {
|
|
nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint nfc_get_sram_off(struct atmel_nand_host *host)
|
|
{
|
|
if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
|
|
return NFC_SRAM_BANK1_OFFSET;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
|
|
{
|
|
if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
|
|
return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
|
|
else
|
|
return host->nfc->sram_bank0_phys;
|
|
}
|
|
|
|
static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
|
|
int is_read)
|
|
{
|
|
struct dma_device *dma_dev;
|
|
enum dma_ctrl_flags flags;
|
|
dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
|
|
struct dma_async_tx_descriptor *tx = NULL;
|
|
dma_cookie_t cookie;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
void *p = buf;
|
|
int err = -EIO;
|
|
enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
|
|
struct atmel_nfc *nfc = host->nfc;
|
|
|
|
if (buf >= high_memory)
|
|
goto err_buf;
|
|
|
|
dma_dev = host->dma_chan->device;
|
|
|
|
flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
|
|
|
|
phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
|
|
if (dma_mapping_error(dma_dev->dev, phys_addr)) {
|
|
dev_err(host->dev, "Failed to dma_map_single\n");
|
|
goto err_buf;
|
|
}
|
|
|
|
if (is_read) {
|
|
if (nfc && nfc->data_in_sram)
|
|
dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
|
|
- (nfc->sram_bank0 + nfc_get_sram_off(host)));
|
|
else
|
|
dma_src_addr = host->io_phys;
|
|
|
|
dma_dst_addr = phys_addr;
|
|
} else {
|
|
dma_src_addr = phys_addr;
|
|
|
|
if (nfc && nfc->write_by_sram)
|
|
dma_dst_addr = nfc_sram_phys(host);
|
|
else
|
|
dma_dst_addr = host->io_phys;
|
|
}
|
|
|
|
tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
|
|
dma_src_addr, len, flags);
|
|
if (!tx) {
|
|
dev_err(host->dev, "Failed to prepare DMA memcpy\n");
|
|
goto err_dma;
|
|
}
|
|
|
|
init_completion(&host->comp);
|
|
tx->callback = dma_complete_func;
|
|
tx->callback_param = &host->comp;
|
|
|
|
cookie = tx->tx_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
dev_err(host->dev, "Failed to do DMA tx_submit\n");
|
|
goto err_dma;
|
|
}
|
|
|
|
dma_async_issue_pending(host->dma_chan);
|
|
wait_for_completion(&host->comp);
|
|
|
|
if (is_read && nfc && nfc->data_in_sram)
|
|
/* After read data from SRAM, need to increase the position */
|
|
nfc->data_in_sram += len;
|
|
|
|
err = 0;
|
|
|
|
err_dma:
|
|
dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
|
|
err_buf:
|
|
if (err != 0)
|
|
dev_dbg(host->dev, "Fall back to CPU I/O\n");
|
|
return err;
|
|
}
|
|
|
|
static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
|
|
if (use_dma && len > mtd->oobsize)
|
|
/* only use DMA for bigger than oob size: better performances */
|
|
if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
|
|
return;
|
|
|
|
if (host->board.bus_width_16)
|
|
atmel_read_buf16(mtd, buf, len);
|
|
else
|
|
atmel_read_buf8(mtd, buf, len);
|
|
}
|
|
|
|
static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
|
|
if (use_dma && len > mtd->oobsize)
|
|
/* only use DMA for bigger than oob size: better performances */
|
|
if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
|
|
return;
|
|
|
|
if (host->board.bus_width_16)
|
|
atmel_write_buf16(mtd, buf, len);
|
|
else
|
|
atmel_write_buf8(mtd, buf, len);
|
|
}
|
|
|
|
/*
|
|
* Return number of ecc bytes per sector according to sector size and
|
|
* correction capability
|
|
*
|
|
* Following table shows what at91 PMECC supported:
|
|
* Correction Capability Sector_512_bytes Sector_1024_bytes
|
|
* ===================== ================ =================
|
|
* 2-bits 4-bytes 4-bytes
|
|
* 4-bits 7-bytes 7-bytes
|
|
* 8-bits 13-bytes 14-bytes
|
|
* 12-bits 20-bytes 21-bytes
|
|
* 24-bits 39-bytes 42-bytes
|
|
*/
|
|
static int pmecc_get_ecc_bytes(int cap, int sector_size)
|
|
{
|
|
int m = 12 + sector_size / 512;
|
|
return (m * cap + 7) / 8;
|
|
}
|
|
|
|
static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
|
|
int oobsize, int ecc_len)
|
|
{
|
|
int i;
|
|
|
|
layout->eccbytes = ecc_len;
|
|
|
|
/* ECC will occupy the last ecc_len bytes continuously */
|
|
for (i = 0; i < ecc_len; i++)
|
|
layout->eccpos[i] = oobsize - ecc_len + i;
|
|
|
|
layout->oobfree[0].offset = PMECC_OOB_RESERVED_BYTES;
|
|
layout->oobfree[0].length =
|
|
oobsize - ecc_len - layout->oobfree[0].offset;
|
|
}
|
|
|
|
static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
|
|
{
|
|
int table_size;
|
|
|
|
table_size = host->pmecc_sector_size == 512 ?
|
|
PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
|
|
|
|
return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
|
|
table_size * sizeof(int16_t);
|
|
}
|
|
|
|
static int pmecc_data_alloc(struct atmel_nand_host *host)
|
|
{
|
|
const int cap = host->pmecc_corr_cap;
|
|
int size;
|
|
|
|
size = (2 * cap + 1) * sizeof(int16_t);
|
|
host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
|
|
host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
|
|
host->pmecc_lmu = devm_kzalloc(host->dev,
|
|
(cap + 1) * sizeof(int16_t), GFP_KERNEL);
|
|
host->pmecc_smu = devm_kzalloc(host->dev,
|
|
(cap + 2) * size, GFP_KERNEL);
|
|
|
|
size = (cap + 1) * sizeof(int);
|
|
host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
|
|
host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
|
|
host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
|
|
|
|
if (!host->pmecc_partial_syn ||
|
|
!host->pmecc_si ||
|
|
!host->pmecc_lmu ||
|
|
!host->pmecc_smu ||
|
|
!host->pmecc_mu ||
|
|
!host->pmecc_dmu ||
|
|
!host->pmecc_delta)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int i;
|
|
uint32_t value;
|
|
|
|
/* Fill odd syndromes */
|
|
for (i = 0; i < host->pmecc_corr_cap; i++) {
|
|
value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
|
|
if (i & 1)
|
|
value >>= 16;
|
|
value &= 0xffff;
|
|
host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
|
|
}
|
|
}
|
|
|
|
static void pmecc_substitute(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int16_t __iomem *alpha_to = host->pmecc_alpha_to;
|
|
int16_t __iomem *index_of = host->pmecc_index_of;
|
|
int16_t *partial_syn = host->pmecc_partial_syn;
|
|
const int cap = host->pmecc_corr_cap;
|
|
int16_t *si;
|
|
int i, j;
|
|
|
|
/* si[] is a table that holds the current syndrome value,
|
|
* an element of that table belongs to the field
|
|
*/
|
|
si = host->pmecc_si;
|
|
|
|
memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
|
|
|
|
/* Computation 2t syndromes based on S(x) */
|
|
/* Odd syndromes */
|
|
for (i = 1; i < 2 * cap; i += 2) {
|
|
for (j = 0; j < host->pmecc_degree; j++) {
|
|
if (partial_syn[i] & ((unsigned short)0x1 << j))
|
|
si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
|
|
}
|
|
}
|
|
/* Even syndrome = (Odd syndrome) ** 2 */
|
|
for (i = 2, j = 1; j <= cap; i = ++j << 1) {
|
|
if (si[j] == 0) {
|
|
si[i] = 0;
|
|
} else {
|
|
int16_t tmp;
|
|
|
|
tmp = readw_relaxed(index_of + si[j]);
|
|
tmp = (tmp * 2) % host->pmecc_cw_len;
|
|
si[i] = readw_relaxed(alpha_to + tmp);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void pmecc_get_sigma(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
int16_t *lmu = host->pmecc_lmu;
|
|
int16_t *si = host->pmecc_si;
|
|
int *mu = host->pmecc_mu;
|
|
int *dmu = host->pmecc_dmu; /* Discrepancy */
|
|
int *delta = host->pmecc_delta; /* Delta order */
|
|
int cw_len = host->pmecc_cw_len;
|
|
const int16_t cap = host->pmecc_corr_cap;
|
|
const int num = 2 * cap + 1;
|
|
int16_t __iomem *index_of = host->pmecc_index_of;
|
|
int16_t __iomem *alpha_to = host->pmecc_alpha_to;
|
|
int i, j, k;
|
|
uint32_t dmu_0_count, tmp;
|
|
int16_t *smu = host->pmecc_smu;
|
|
|
|
/* index of largest delta */
|
|
int ro;
|
|
int largest;
|
|
int diff;
|
|
|
|
dmu_0_count = 0;
|
|
|
|
/* First Row */
|
|
|
|
/* Mu */
|
|
mu[0] = -1;
|
|
|
|
memset(smu, 0, sizeof(int16_t) * num);
|
|
smu[0] = 1;
|
|
|
|
/* discrepancy set to 1 */
|
|
dmu[0] = 1;
|
|
/* polynom order set to 0 */
|
|
lmu[0] = 0;
|
|
delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
|
|
|
|
/* Second Row */
|
|
|
|
/* Mu */
|
|
mu[1] = 0;
|
|
/* Sigma(x) set to 1 */
|
|
memset(&smu[num], 0, sizeof(int16_t) * num);
|
|
smu[num] = 1;
|
|
|
|
/* discrepancy set to S1 */
|
|
dmu[1] = si[1];
|
|
|
|
/* polynom order set to 0 */
|
|
lmu[1] = 0;
|
|
|
|
delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
|
|
|
|
/* Init the Sigma(x) last row */
|
|
memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
|
|
|
|
for (i = 1; i <= cap; i++) {
|
|
mu[i + 1] = i << 1;
|
|
/* Begin Computing Sigma (Mu+1) and L(mu) */
|
|
/* check if discrepancy is set to 0 */
|
|
if (dmu[i] == 0) {
|
|
dmu_0_count++;
|
|
|
|
tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
|
|
if ((cap - (lmu[i] >> 1) - 1) & 0x1)
|
|
tmp += 2;
|
|
else
|
|
tmp += 1;
|
|
|
|
if (dmu_0_count == tmp) {
|
|
for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
|
|
smu[(cap + 1) * num + j] =
|
|
smu[i * num + j];
|
|
|
|
lmu[cap + 1] = lmu[i];
|
|
return;
|
|
}
|
|
|
|
/* copy polynom */
|
|
for (j = 0; j <= lmu[i] >> 1; j++)
|
|
smu[(i + 1) * num + j] = smu[i * num + j];
|
|
|
|
/* copy previous polynom order to the next */
|
|
lmu[i + 1] = lmu[i];
|
|
} else {
|
|
ro = 0;
|
|
largest = -1;
|
|
/* find largest delta with dmu != 0 */
|
|
for (j = 0; j < i; j++) {
|
|
if ((dmu[j]) && (delta[j] > largest)) {
|
|
largest = delta[j];
|
|
ro = j;
|
|
}
|
|
}
|
|
|
|
/* compute difference */
|
|
diff = (mu[i] - mu[ro]);
|
|
|
|
/* Compute degree of the new smu polynomial */
|
|
if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
|
|
lmu[i + 1] = lmu[i];
|
|
else
|
|
lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
|
|
|
|
/* Init smu[i+1] with 0 */
|
|
for (k = 0; k < num; k++)
|
|
smu[(i + 1) * num + k] = 0;
|
|
|
|
/* Compute smu[i+1] */
|
|
for (k = 0; k <= lmu[ro] >> 1; k++) {
|
|
int16_t a, b, c;
|
|
|
|
if (!(smu[ro * num + k] && dmu[i]))
|
|
continue;
|
|
a = readw_relaxed(index_of + dmu[i]);
|
|
b = readw_relaxed(index_of + dmu[ro]);
|
|
c = readw_relaxed(index_of + smu[ro * num + k]);
|
|
tmp = a + (cw_len - b) + c;
|
|
a = readw_relaxed(alpha_to + tmp % cw_len);
|
|
smu[(i + 1) * num + (k + diff)] = a;
|
|
}
|
|
|
|
for (k = 0; k <= lmu[i] >> 1; k++)
|
|
smu[(i + 1) * num + k] ^= smu[i * num + k];
|
|
}
|
|
|
|
/* End Computing Sigma (Mu+1) and L(mu) */
|
|
/* In either case compute delta */
|
|
delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
|
|
|
|
/* Do not compute discrepancy for the last iteration */
|
|
if (i >= cap)
|
|
continue;
|
|
|
|
for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
|
|
tmp = 2 * (i - 1);
|
|
if (k == 0) {
|
|
dmu[i + 1] = si[tmp + 3];
|
|
} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
|
|
int16_t a, b, c;
|
|
a = readw_relaxed(index_of +
|
|
smu[(i + 1) * num + k]);
|
|
b = si[2 * (i - 1) + 3 - k];
|
|
c = readw_relaxed(index_of + b);
|
|
tmp = a + c;
|
|
tmp %= cw_len;
|
|
dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
|
|
dmu[i + 1];
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int pmecc_err_location(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
unsigned long end_time;
|
|
const int cap = host->pmecc_corr_cap;
|
|
const int num = 2 * cap + 1;
|
|
int sector_size = host->pmecc_sector_size;
|
|
int err_nbr = 0; /* number of error */
|
|
int roots_nbr; /* number of roots */
|
|
int i;
|
|
uint32_t val;
|
|
int16_t *smu = host->pmecc_smu;
|
|
|
|
pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
|
|
|
|
for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
|
|
pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
|
|
smu[(cap + 1) * num + i]);
|
|
err_nbr++;
|
|
}
|
|
|
|
val = (err_nbr - 1) << 16;
|
|
if (sector_size == 1024)
|
|
val |= 1;
|
|
|
|
pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
|
|
pmerrloc_writel(host->pmerrloc_base, ELEN,
|
|
sector_size * 8 + host->pmecc_degree * cap);
|
|
|
|
end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
|
|
while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
|
|
& PMERRLOC_CALC_DONE)) {
|
|
if (unlikely(time_after(jiffies, end_time))) {
|
|
dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
|
|
return -1;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
|
|
roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
|
|
& PMERRLOC_ERR_NUM_MASK) >> 8;
|
|
/* Number of roots == degree of smu hence <= cap */
|
|
if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
|
|
return err_nbr - 1;
|
|
|
|
/* Number of roots does not match the degree of smu
|
|
* unable to correct error */
|
|
return -1;
|
|
}
|
|
|
|
static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
|
|
int sector_num, int extra_bytes, int err_nbr)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int i = 0;
|
|
int byte_pos, bit_pos, sector_size, pos;
|
|
uint32_t tmp;
|
|
uint8_t err_byte;
|
|
|
|
sector_size = host->pmecc_sector_size;
|
|
|
|
while (err_nbr) {
|
|
tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
|
|
byte_pos = tmp / 8;
|
|
bit_pos = tmp % 8;
|
|
|
|
if (byte_pos >= (sector_size + extra_bytes))
|
|
BUG(); /* should never happen */
|
|
|
|
if (byte_pos < sector_size) {
|
|
err_byte = *(buf + byte_pos);
|
|
*(buf + byte_pos) ^= (1 << bit_pos);
|
|
|
|
pos = sector_num * host->pmecc_sector_size + byte_pos;
|
|
dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
|
|
pos, bit_pos, err_byte, *(buf + byte_pos));
|
|
} else {
|
|
/* Bit flip in OOB area */
|
|
tmp = sector_num * nand_chip->ecc.bytes
|
|
+ (byte_pos - sector_size);
|
|
err_byte = ecc[tmp];
|
|
ecc[tmp] ^= (1 << bit_pos);
|
|
|
|
pos = tmp + nand_chip->ecc.layout->eccpos[0];
|
|
dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
|
|
pos, bit_pos, err_byte, ecc[tmp]);
|
|
}
|
|
|
|
i++;
|
|
err_nbr--;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
|
|
u8 *ecc)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
int i, err_nbr;
|
|
uint8_t *buf_pos;
|
|
int max_bitflips = 0;
|
|
|
|
/* If can correct bitfilps from erased page, do the normal check */
|
|
if (host->caps->pmecc_correct_erase_page)
|
|
goto normal_check;
|
|
|
|
for (i = 0; i < nand_chip->ecc.total; i++)
|
|
if (ecc[i] != 0xff)
|
|
goto normal_check;
|
|
/* Erased page, return OK */
|
|
return 0;
|
|
|
|
normal_check:
|
|
for (i = 0; i < nand_chip->ecc.steps; i++) {
|
|
err_nbr = 0;
|
|
if (pmecc_stat & 0x1) {
|
|
buf_pos = buf + i * host->pmecc_sector_size;
|
|
|
|
pmecc_gen_syndrome(mtd, i);
|
|
pmecc_substitute(mtd);
|
|
pmecc_get_sigma(mtd);
|
|
|
|
err_nbr = pmecc_err_location(mtd);
|
|
if (err_nbr == -1) {
|
|
dev_err(host->dev, "PMECC: Too many errors\n");
|
|
mtd->ecc_stats.failed++;
|
|
return -EIO;
|
|
} else {
|
|
pmecc_correct_data(mtd, buf_pos, ecc, i,
|
|
nand_chip->ecc.bytes, err_nbr);
|
|
mtd->ecc_stats.corrected += err_nbr;
|
|
max_bitflips = max_t(int, max_bitflips, err_nbr);
|
|
}
|
|
}
|
|
pmecc_stat >>= 1;
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
|
|
{
|
|
u32 val;
|
|
|
|
if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
|
|
dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
|
|
return;
|
|
}
|
|
|
|
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
|
|
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
|
|
val = pmecc_readl_relaxed(host->ecc, CFG);
|
|
|
|
if (ecc_op == NAND_ECC_READ)
|
|
pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
|
|
| PMECC_CFG_AUTO_ENABLE);
|
|
else
|
|
pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
|
|
& ~PMECC_CFG_AUTO_ENABLE);
|
|
|
|
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
|
|
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
|
|
}
|
|
|
|
static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
int eccsize = chip->ecc.size * chip->ecc.steps;
|
|
uint8_t *oob = chip->oob_poi;
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
uint32_t stat;
|
|
unsigned long end_time;
|
|
int bitflips = 0;
|
|
|
|
if (!host->nfc || !host->nfc->use_nfc_sram)
|
|
pmecc_enable(host, NAND_ECC_READ);
|
|
|
|
chip->read_buf(mtd, buf, eccsize);
|
|
chip->read_buf(mtd, oob, mtd->oobsize);
|
|
|
|
end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
|
|
while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
|
|
if (unlikely(time_after(jiffies, end_time))) {
|
|
dev_err(host->dev, "PMECC: Timeout to get error status.\n");
|
|
return -EIO;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
|
|
stat = pmecc_readl_relaxed(host->ecc, ISR);
|
|
if (stat != 0) {
|
|
bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
|
|
if (bitflips < 0)
|
|
/* uncorrectable errors */
|
|
return 0;
|
|
}
|
|
|
|
return bitflips;
|
|
}
|
|
|
|
static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip, const uint8_t *buf, int oob_required,
|
|
int page)
|
|
{
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
int i, j;
|
|
unsigned long end_time;
|
|
|
|
if (!host->nfc || !host->nfc->write_by_sram) {
|
|
pmecc_enable(host, NAND_ECC_WRITE);
|
|
chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
|
|
}
|
|
|
|
end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
|
|
while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
|
|
if (unlikely(time_after(jiffies, end_time))) {
|
|
dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
|
|
return -EIO;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
for (j = 0; j < chip->ecc.bytes; j++) {
|
|
int pos;
|
|
|
|
pos = i * chip->ecc.bytes + j;
|
|
chip->oob_poi[eccpos[pos]] =
|
|
pmecc_readb_ecc_relaxed(host->ecc, i, j);
|
|
}
|
|
}
|
|
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void atmel_pmecc_core_init(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
uint32_t val = 0;
|
|
struct nand_ecclayout *ecc_layout;
|
|
|
|
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
|
|
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
|
|
|
|
switch (host->pmecc_corr_cap) {
|
|
case 2:
|
|
val = PMECC_CFG_BCH_ERR2;
|
|
break;
|
|
case 4:
|
|
val = PMECC_CFG_BCH_ERR4;
|
|
break;
|
|
case 8:
|
|
val = PMECC_CFG_BCH_ERR8;
|
|
break;
|
|
case 12:
|
|
val = PMECC_CFG_BCH_ERR12;
|
|
break;
|
|
case 24:
|
|
val = PMECC_CFG_BCH_ERR24;
|
|
break;
|
|
}
|
|
|
|
if (host->pmecc_sector_size == 512)
|
|
val |= PMECC_CFG_SECTOR512;
|
|
else if (host->pmecc_sector_size == 1024)
|
|
val |= PMECC_CFG_SECTOR1024;
|
|
|
|
switch (nand_chip->ecc.steps) {
|
|
case 1:
|
|
val |= PMECC_CFG_PAGE_1SECTOR;
|
|
break;
|
|
case 2:
|
|
val |= PMECC_CFG_PAGE_2SECTORS;
|
|
break;
|
|
case 4:
|
|
val |= PMECC_CFG_PAGE_4SECTORS;
|
|
break;
|
|
case 8:
|
|
val |= PMECC_CFG_PAGE_8SECTORS;
|
|
break;
|
|
}
|
|
|
|
val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
|
|
| PMECC_CFG_AUTO_DISABLE);
|
|
pmecc_writel(host->ecc, CFG, val);
|
|
|
|
ecc_layout = nand_chip->ecc.layout;
|
|
pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
|
|
pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
|
|
pmecc_writel(host->ecc, EADDR,
|
|
ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
|
|
/* See datasheet about PMECC Clock Control Register */
|
|
pmecc_writel(host->ecc, CLK, 2);
|
|
pmecc_writel(host->ecc, IDR, 0xff);
|
|
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
|
|
}
|
|
|
|
/*
|
|
* Get minimum ecc requirements from NAND.
|
|
* If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
|
|
* will set them according to minimum ecc requirement. Otherwise, use the
|
|
* value in DTS file.
|
|
* return 0 if success. otherwise return error code.
|
|
*/
|
|
static int pmecc_choose_ecc(struct atmel_nand_host *host,
|
|
int *cap, int *sector_size)
|
|
{
|
|
/* Get minimum ECC requirements */
|
|
if (host->nand_chip.ecc_strength_ds) {
|
|
*cap = host->nand_chip.ecc_strength_ds;
|
|
*sector_size = host->nand_chip.ecc_step_ds;
|
|
dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
|
|
*cap, *sector_size);
|
|
} else {
|
|
*cap = 2;
|
|
*sector_size = 512;
|
|
dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
|
|
}
|
|
|
|
/* If device tree doesn't specify, use NAND's minimum ECC parameters */
|
|
if (host->pmecc_corr_cap == 0) {
|
|
/* use the most fitable ecc bits (the near bigger one ) */
|
|
if (*cap <= 2)
|
|
host->pmecc_corr_cap = 2;
|
|
else if (*cap <= 4)
|
|
host->pmecc_corr_cap = 4;
|
|
else if (*cap <= 8)
|
|
host->pmecc_corr_cap = 8;
|
|
else if (*cap <= 12)
|
|
host->pmecc_corr_cap = 12;
|
|
else if (*cap <= 24)
|
|
host->pmecc_corr_cap = 24;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
if (host->pmecc_sector_size == 0) {
|
|
/* use the most fitable sector size (the near smaller one ) */
|
|
if (*sector_size >= 1024)
|
|
host->pmecc_sector_size = 1024;
|
|
else if (*sector_size >= 512)
|
|
host->pmecc_sector_size = 512;
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int deg(unsigned int poly)
|
|
{
|
|
/* polynomial degree is the most-significant bit index */
|
|
return fls(poly) - 1;
|
|
}
|
|
|
|
static int build_gf_tables(int mm, unsigned int poly,
|
|
int16_t *index_of, int16_t *alpha_to)
|
|
{
|
|
unsigned int i, x = 1;
|
|
const unsigned int k = 1 << deg(poly);
|
|
unsigned int nn = (1 << mm) - 1;
|
|
|
|
/* primitive polynomial must be of degree m */
|
|
if (k != (1u << mm))
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < nn; i++) {
|
|
alpha_to[i] = x;
|
|
index_of[x] = i;
|
|
if (i && (x == 1))
|
|
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
|
|
return -EINVAL;
|
|
x <<= 1;
|
|
if (x & k)
|
|
x ^= poly;
|
|
}
|
|
alpha_to[nn] = 1;
|
|
index_of[0] = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t *create_lookup_table(struct device *dev, int sector_size)
|
|
{
|
|
int degree = (sector_size == 512) ?
|
|
PMECC_GF_DIMENSION_13 :
|
|
PMECC_GF_DIMENSION_14;
|
|
unsigned int poly = (sector_size == 512) ?
|
|
PMECC_GF_13_PRIMITIVE_POLY :
|
|
PMECC_GF_14_PRIMITIVE_POLY;
|
|
int table_size = (sector_size == 512) ?
|
|
PMECC_LOOKUP_TABLE_SIZE_512 :
|
|
PMECC_LOOKUP_TABLE_SIZE_1024;
|
|
|
|
int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
|
|
GFP_KERNEL);
|
|
if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
|
|
return NULL;
|
|
|
|
return addr;
|
|
}
|
|
|
|
static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
|
|
struct atmel_nand_host *host)
|
|
{
|
|
struct nand_chip *nand_chip = &host->nand_chip;
|
|
struct mtd_info *mtd = nand_to_mtd(nand_chip);
|
|
struct resource *regs, *regs_pmerr, *regs_rom;
|
|
uint16_t *galois_table;
|
|
int cap, sector_size, err_no;
|
|
|
|
err_no = pmecc_choose_ecc(host, &cap, §or_size);
|
|
if (err_no) {
|
|
dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
|
|
return err_no;
|
|
}
|
|
|
|
if (cap > host->pmecc_corr_cap ||
|
|
sector_size != host->pmecc_sector_size)
|
|
dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
|
|
|
|
cap = host->pmecc_corr_cap;
|
|
sector_size = host->pmecc_sector_size;
|
|
host->pmecc_lookup_table_offset = (sector_size == 512) ?
|
|
host->pmecc_lookup_table_offset_512 :
|
|
host->pmecc_lookup_table_offset_1024;
|
|
|
|
dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
|
|
cap, sector_size);
|
|
|
|
regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
|
|
if (!regs) {
|
|
dev_warn(host->dev,
|
|
"Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
|
|
nand_chip->ecc.mode = NAND_ECC_SOFT;
|
|
return 0;
|
|
}
|
|
|
|
host->ecc = devm_ioremap_resource(&pdev->dev, regs);
|
|
if (IS_ERR(host->ecc)) {
|
|
err_no = PTR_ERR(host->ecc);
|
|
goto err;
|
|
}
|
|
|
|
regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
|
|
host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
|
|
if (IS_ERR(host->pmerrloc_base)) {
|
|
err_no = PTR_ERR(host->pmerrloc_base);
|
|
goto err;
|
|
}
|
|
|
|
if (!host->has_no_lookup_table) {
|
|
regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
|
|
host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev,
|
|
regs_rom);
|
|
if (IS_ERR(host->pmecc_rom_base)) {
|
|
dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
|
|
host->has_no_lookup_table = true;
|
|
}
|
|
}
|
|
|
|
if (host->has_no_lookup_table) {
|
|
/* Build the look-up table in runtime */
|
|
galois_table = create_lookup_table(host->dev, sector_size);
|
|
if (!galois_table) {
|
|
dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
|
|
err_no = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
host->pmecc_rom_base = (void __iomem *)galois_table;
|
|
host->pmecc_lookup_table_offset = 0;
|
|
}
|
|
|
|
nand_chip->ecc.size = sector_size;
|
|
|
|
/* set ECC page size and oob layout */
|
|
switch (mtd->writesize) {
|
|
case 512:
|
|
case 1024:
|
|
case 2048:
|
|
case 4096:
|
|
case 8192:
|
|
if (sector_size > mtd->writesize) {
|
|
dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
|
|
err_no = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
host->pmecc_degree = (sector_size == 512) ?
|
|
PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
|
|
host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
|
|
host->pmecc_alpha_to = pmecc_get_alpha_to(host);
|
|
host->pmecc_index_of = host->pmecc_rom_base +
|
|
host->pmecc_lookup_table_offset;
|
|
|
|
nand_chip->ecc.strength = cap;
|
|
nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
|
|
nand_chip->ecc.steps = mtd->writesize / sector_size;
|
|
nand_chip->ecc.total = nand_chip->ecc.bytes *
|
|
nand_chip->ecc.steps;
|
|
if (nand_chip->ecc.total >
|
|
mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
|
|
dev_err(host->dev, "No room for ECC bytes\n");
|
|
err_no = -EINVAL;
|
|
goto err;
|
|
}
|
|
pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
|
|
mtd->oobsize,
|
|
nand_chip->ecc.total);
|
|
|
|
nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
|
|
break;
|
|
default:
|
|
dev_warn(host->dev,
|
|
"Unsupported page size for PMECC, use Software ECC\n");
|
|
/* page size not handled by HW ECC */
|
|
/* switching back to soft ECC */
|
|
nand_chip->ecc.mode = NAND_ECC_SOFT;
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate data for PMECC computation */
|
|
err_no = pmecc_data_alloc(host);
|
|
if (err_no) {
|
|
dev_err(host->dev,
|
|
"Cannot allocate memory for PMECC computation!\n");
|
|
goto err;
|
|
}
|
|
|
|
nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
|
|
nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
|
|
|
|
atmel_pmecc_core_init(mtd);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
return err_no;
|
|
}
|
|
|
|
/*
|
|
* Calculate HW ECC
|
|
*
|
|
* function called after a write
|
|
*
|
|
* mtd: MTD block structure
|
|
* dat: raw data (unused)
|
|
* ecc_code: buffer for ECC
|
|
*/
|
|
static int atmel_nand_calculate(struct mtd_info *mtd,
|
|
const u_char *dat, unsigned char *ecc_code)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
unsigned int ecc_value;
|
|
|
|
/* get the first 2 ECC bytes */
|
|
ecc_value = ecc_readl(host->ecc, PR);
|
|
|
|
ecc_code[0] = ecc_value & 0xFF;
|
|
ecc_code[1] = (ecc_value >> 8) & 0xFF;
|
|
|
|
/* get the last 2 ECC bytes */
|
|
ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
|
|
|
|
ecc_code[2] = ecc_value & 0xFF;
|
|
ecc_code[3] = (ecc_value >> 8) & 0xFF;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* HW ECC read page function
|
|
*
|
|
* mtd: mtd info structure
|
|
* chip: nand chip info structure
|
|
* buf: buffer to store read data
|
|
* oob_required: caller expects OOB data read to chip->oob_poi
|
|
*/
|
|
static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
uint32_t *eccpos = chip->ecc.layout->eccpos;
|
|
uint8_t *p = buf;
|
|
uint8_t *oob = chip->oob_poi;
|
|
uint8_t *ecc_pos;
|
|
int stat;
|
|
unsigned int max_bitflips = 0;
|
|
|
|
/*
|
|
* Errata: ALE is incorrectly wired up to the ECC controller
|
|
* on the AP7000, so it will include the address cycles in the
|
|
* ECC calculation.
|
|
*
|
|
* Workaround: Reset the parity registers before reading the
|
|
* actual data.
|
|
*/
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
if (host->board.need_reset_workaround)
|
|
ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
|
|
|
|
/* read the page */
|
|
chip->read_buf(mtd, p, eccsize);
|
|
|
|
/* move to ECC position if needed */
|
|
if (eccpos[0] != 0) {
|
|
/* This only works on large pages
|
|
* because the ECC controller waits for
|
|
* NAND_CMD_RNDOUTSTART after the
|
|
* NAND_CMD_RNDOUT.
|
|
* anyway, for small pages, the eccpos[0] == 0
|
|
*/
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
|
|
mtd->writesize + eccpos[0], -1);
|
|
}
|
|
|
|
/* the ECC controller needs to read the ECC just after the data */
|
|
ecc_pos = oob + eccpos[0];
|
|
chip->read_buf(mtd, ecc_pos, eccbytes);
|
|
|
|
/* check if there's an error */
|
|
stat = chip->ecc.correct(mtd, p, oob, NULL);
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
|
|
/* get back to oob start (end of page) */
|
|
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
|
|
|
|
/* read the oob */
|
|
chip->read_buf(mtd, oob, mtd->oobsize);
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/*
|
|
* HW ECC Correction
|
|
*
|
|
* function called after a read
|
|
*
|
|
* mtd: MTD block structure
|
|
* dat: raw data read from the chip
|
|
* read_ecc: ECC from the chip (unused)
|
|
* isnull: unused
|
|
*
|
|
* Detect and correct a 1 bit error for a page
|
|
*/
|
|
static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *isnull)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
unsigned int ecc_status;
|
|
unsigned int ecc_word, ecc_bit;
|
|
|
|
/* get the status from the Status Register */
|
|
ecc_status = ecc_readl(host->ecc, SR);
|
|
|
|
/* if there's no error */
|
|
if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
|
|
return 0;
|
|
|
|
/* get error bit offset (4 bits) */
|
|
ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
|
|
/* get word address (12 bits) */
|
|
ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
|
|
ecc_word >>= 4;
|
|
|
|
/* if there are multiple errors */
|
|
if (ecc_status & ATMEL_ECC_MULERR) {
|
|
/* check if it is a freshly erased block
|
|
* (filled with 0xff) */
|
|
if ((ecc_bit == ATMEL_ECC_BITADDR)
|
|
&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
|
|
/* the block has just been erased, return OK */
|
|
return 0;
|
|
}
|
|
/* it doesn't seems to be a freshly
|
|
* erased block.
|
|
* We can't correct so many errors */
|
|
dev_dbg(host->dev, "atmel_nand : multiple errors detected."
|
|
" Unable to correct.\n");
|
|
return -EBADMSG;
|
|
}
|
|
|
|
/* if there's a single bit error : we can correct it */
|
|
if (ecc_status & ATMEL_ECC_ECCERR) {
|
|
/* there's nothing much to do here.
|
|
* the bit error is on the ECC itself.
|
|
*/
|
|
dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
|
|
" Nothing to correct\n");
|
|
return 0;
|
|
}
|
|
|
|
dev_dbg(host->dev, "atmel_nand : one bit error on data."
|
|
" (word offset in the page :"
|
|
" 0x%x bit offset : 0x%x)\n",
|
|
ecc_word, ecc_bit);
|
|
/* correct the error */
|
|
if (nand_chip->options & NAND_BUSWIDTH_16) {
|
|
/* 16 bits words */
|
|
((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
|
|
} else {
|
|
/* 8 bits words */
|
|
dat[ecc_word] ^= (1 << ecc_bit);
|
|
}
|
|
dev_dbg(host->dev, "atmel_nand : error corrected\n");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Enable HW ECC : unused on most chips
|
|
*/
|
|
static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
if (host->board.need_reset_workaround)
|
|
ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
|
|
}
|
|
|
|
static const struct of_device_id atmel_nand_dt_ids[];
|
|
|
|
static int atmel_of_init_port(struct atmel_nand_host *host,
|
|
struct device_node *np)
|
|
{
|
|
u32 val;
|
|
u32 offset[2];
|
|
int ecc_mode;
|
|
struct atmel_nand_data *board = &host->board;
|
|
enum of_gpio_flags flags = 0;
|
|
|
|
host->caps = (struct atmel_nand_caps *)
|
|
of_match_device(atmel_nand_dt_ids, host->dev)->data;
|
|
|
|
if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
|
|
if (val >= 32) {
|
|
dev_err(host->dev, "invalid addr-offset %u\n", val);
|
|
return -EINVAL;
|
|
}
|
|
board->ale = val;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
|
|
if (val >= 32) {
|
|
dev_err(host->dev, "invalid cmd-offset %u\n", val);
|
|
return -EINVAL;
|
|
}
|
|
board->cle = val;
|
|
}
|
|
|
|
ecc_mode = of_get_nand_ecc_mode(np);
|
|
|
|
board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
|
|
|
|
board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
|
|
|
|
board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
|
|
|
|
if (of_get_nand_bus_width(np) == 16)
|
|
board->bus_width_16 = 1;
|
|
|
|
board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
|
|
board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
|
|
|
|
board->enable_pin = of_get_gpio(np, 1);
|
|
board->det_pin = of_get_gpio(np, 2);
|
|
|
|
host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
|
|
|
|
/* load the nfc driver if there is */
|
|
of_platform_populate(np, NULL, NULL, host->dev);
|
|
|
|
if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
|
|
return 0; /* Not using PMECC */
|
|
|
|
/* use PMECC, get correction capability, sector size and lookup
|
|
* table offset.
|
|
* If correction bits and sector size are not specified, then find
|
|
* them from NAND ONFI parameters.
|
|
*/
|
|
if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
|
|
if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
|
|
(val != 24)) {
|
|
dev_err(host->dev,
|
|
"Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
|
|
val);
|
|
return -EINVAL;
|
|
}
|
|
host->pmecc_corr_cap = (u8)val;
|
|
}
|
|
|
|
if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
|
|
if ((val != 512) && (val != 1024)) {
|
|
dev_err(host->dev,
|
|
"Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
|
|
val);
|
|
return -EINVAL;
|
|
}
|
|
host->pmecc_sector_size = (u16)val;
|
|
}
|
|
|
|
if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
|
|
offset, 2) != 0) {
|
|
dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
|
|
host->has_no_lookup_table = true;
|
|
/* Will build a lookup table and initialize the offset later */
|
|
return 0;
|
|
}
|
|
if (!offset[0] && !offset[1]) {
|
|
dev_err(host->dev, "Invalid PMECC lookup table offset\n");
|
|
return -EINVAL;
|
|
}
|
|
host->pmecc_lookup_table_offset_512 = offset[0];
|
|
host->pmecc_lookup_table_offset_1024 = offset[1];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_hw_nand_init_params(struct platform_device *pdev,
|
|
struct atmel_nand_host *host)
|
|
{
|
|
struct nand_chip *nand_chip = &host->nand_chip;
|
|
struct mtd_info *mtd = nand_to_mtd(nand_chip);
|
|
struct resource *regs;
|
|
|
|
regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
|
|
if (!regs) {
|
|
dev_err(host->dev,
|
|
"Can't get I/O resource regs, use software ECC\n");
|
|
nand_chip->ecc.mode = NAND_ECC_SOFT;
|
|
return 0;
|
|
}
|
|
|
|
host->ecc = devm_ioremap_resource(&pdev->dev, regs);
|
|
if (IS_ERR(host->ecc))
|
|
return PTR_ERR(host->ecc);
|
|
|
|
/* ECC is calculated for the whole page (1 step) */
|
|
nand_chip->ecc.size = mtd->writesize;
|
|
|
|
/* set ECC page size and oob layout */
|
|
switch (mtd->writesize) {
|
|
case 512:
|
|
nand_chip->ecc.layout = &atmel_oobinfo_small;
|
|
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
|
|
break;
|
|
case 1024:
|
|
nand_chip->ecc.layout = &atmel_oobinfo_large;
|
|
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
|
|
break;
|
|
case 2048:
|
|
nand_chip->ecc.layout = &atmel_oobinfo_large;
|
|
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
|
|
break;
|
|
case 4096:
|
|
nand_chip->ecc.layout = &atmel_oobinfo_large;
|
|
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
|
|
break;
|
|
default:
|
|
/* page size not handled by HW ECC */
|
|
/* switching back to soft ECC */
|
|
nand_chip->ecc.mode = NAND_ECC_SOFT;
|
|
return 0;
|
|
}
|
|
|
|
/* set up for HW ECC */
|
|
nand_chip->ecc.calculate = atmel_nand_calculate;
|
|
nand_chip->ecc.correct = atmel_nand_correct;
|
|
nand_chip->ecc.hwctl = atmel_nand_hwctl;
|
|
nand_chip->ecc.read_page = atmel_nand_read_page;
|
|
nand_chip->ecc.bytes = 4;
|
|
nand_chip->ecc.strength = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 nfc_read_status(struct atmel_nand_host *host)
|
|
{
|
|
u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
|
|
u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
|
|
|
|
if (unlikely(nfc_status & err_flags)) {
|
|
if (nfc_status & NFC_SR_DTOE)
|
|
dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
|
|
else if (nfc_status & NFC_SR_UNDEF)
|
|
dev_err(host->dev, "NFC: Access Undefined Area Error\n");
|
|
else if (nfc_status & NFC_SR_AWB)
|
|
dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
|
|
else if (nfc_status & NFC_SR_ASE)
|
|
dev_err(host->dev, "NFC: Access memory Size Error\n");
|
|
}
|
|
|
|
return nfc_status;
|
|
}
|
|
|
|
/* SMC interrupt service routine */
|
|
static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct atmel_nand_host *host = dev_id;
|
|
u32 status, mask, pending;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
status = nfc_read_status(host);
|
|
mask = nfc_readl(host->nfc->hsmc_regs, IMR);
|
|
pending = status & mask;
|
|
|
|
if (pending & NFC_SR_XFR_DONE) {
|
|
complete(&host->nfc->comp_xfer_done);
|
|
nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
if (pending & NFC_SR_RB_EDGE) {
|
|
complete(&host->nfc->comp_ready);
|
|
nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
if (pending & NFC_SR_CMD_DONE) {
|
|
complete(&host->nfc->comp_cmd_done);
|
|
nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* NFC(Nand Flash Controller) related functions */
|
|
static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
|
|
{
|
|
if (flag & NFC_SR_XFR_DONE)
|
|
init_completion(&host->nfc->comp_xfer_done);
|
|
|
|
if (flag & NFC_SR_RB_EDGE)
|
|
init_completion(&host->nfc->comp_ready);
|
|
|
|
if (flag & NFC_SR_CMD_DONE)
|
|
init_completion(&host->nfc->comp_cmd_done);
|
|
|
|
/* Enable interrupt that need to wait for */
|
|
nfc_writel(host->nfc->hsmc_regs, IER, flag);
|
|
}
|
|
|
|
static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
|
|
{
|
|
int i, index = 0;
|
|
struct completion *comp[3]; /* Support 3 interrupt completion */
|
|
|
|
if (flag & NFC_SR_XFR_DONE)
|
|
comp[index++] = &host->nfc->comp_xfer_done;
|
|
|
|
if (flag & NFC_SR_RB_EDGE)
|
|
comp[index++] = &host->nfc->comp_ready;
|
|
|
|
if (flag & NFC_SR_CMD_DONE)
|
|
comp[index++] = &host->nfc->comp_cmd_done;
|
|
|
|
if (index == 0) {
|
|
dev_err(host->dev, "Unknown interrupt flag: 0x%08x\n", flag);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < index; i++) {
|
|
if (wait_for_completion_timeout(comp[i],
|
|
msecs_to_jiffies(NFC_TIME_OUT_MS)))
|
|
continue; /* wait for next completion */
|
|
else
|
|
goto err_timeout;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_timeout:
|
|
dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
|
|
/* Disable the interrupt as it is not handled by interrupt handler */
|
|
nfc_writel(host->nfc->hsmc_regs, IDR, flag);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int nfc_send_command(struct atmel_nand_host *host,
|
|
unsigned int cmd, unsigned int addr, unsigned char cycle0)
|
|
{
|
|
unsigned long timeout;
|
|
u32 flag = NFC_SR_CMD_DONE;
|
|
flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
|
|
|
|
dev_dbg(host->dev,
|
|
"nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
|
|
cmd, addr, cycle0);
|
|
|
|
timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
|
|
while (nfc_readl(host->nfc->hsmc_regs, SR) & NFC_SR_BUSY) {
|
|
if (time_after(jiffies, timeout)) {
|
|
dev_err(host->dev,
|
|
"Time out to wait for NFC ready!\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
}
|
|
|
|
nfc_prepare_interrupt(host, flag);
|
|
nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
|
|
nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
|
|
return nfc_wait_interrupt(host, flag);
|
|
}
|
|
|
|
static int nfc_device_ready(struct mtd_info *mtd)
|
|
{
|
|
u32 status, mask;
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
status = nfc_read_status(host);
|
|
mask = nfc_readl(host->nfc->hsmc_regs, IMR);
|
|
|
|
/* The mask should be 0. If not we may lost interrupts */
|
|
if (unlikely(mask & status))
|
|
dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
|
|
mask & status);
|
|
|
|
return status & NFC_SR_RB_EDGE;
|
|
}
|
|
|
|
static void nfc_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
|
|
|
|
if (chip == -1)
|
|
nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
|
|
else
|
|
nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
|
|
}
|
|
|
|
static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
|
|
int page_addr, unsigned int *addr1234, unsigned int *cycle0)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
int acycle = 0;
|
|
unsigned char addr_bytes[8];
|
|
int index = 0, bit_shift;
|
|
|
|
BUG_ON(addr1234 == NULL || cycle0 == NULL);
|
|
|
|
*cycle0 = 0;
|
|
*addr1234 = 0;
|
|
|
|
if (column != -1) {
|
|
if (chip->options & NAND_BUSWIDTH_16 &&
|
|
!nand_opcode_8bits(command))
|
|
column >>= 1;
|
|
addr_bytes[acycle++] = column & 0xff;
|
|
if (mtd->writesize > 512)
|
|
addr_bytes[acycle++] = (column >> 8) & 0xff;
|
|
}
|
|
|
|
if (page_addr != -1) {
|
|
addr_bytes[acycle++] = page_addr & 0xff;
|
|
addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
|
|
if (chip->chipsize > (128 << 20))
|
|
addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
|
|
}
|
|
|
|
if (acycle > 4)
|
|
*cycle0 = addr_bytes[index++];
|
|
|
|
for (bit_shift = 0; index < acycle; bit_shift += 8)
|
|
*addr1234 += addr_bytes[index++] << bit_shift;
|
|
|
|
/* return acycle in cmd register */
|
|
return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
|
|
}
|
|
|
|
static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
|
|
int column, int page_addr)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
unsigned long timeout;
|
|
unsigned int nfc_addr_cmd = 0;
|
|
|
|
unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
|
|
|
|
/* Set default settings: no cmd2, no addr cycle. read from nand */
|
|
unsigned int cmd2 = 0;
|
|
unsigned int vcmd2 = 0;
|
|
int acycle = NFCADDR_CMD_ACYCLE_NONE;
|
|
int csid = NFCADDR_CMD_CSID_3;
|
|
int dataen = NFCADDR_CMD_DATADIS;
|
|
int nfcwr = NFCADDR_CMD_NFCRD;
|
|
unsigned int addr1234 = 0;
|
|
unsigned int cycle0 = 0;
|
|
bool do_addr = true;
|
|
host->nfc->data_in_sram = NULL;
|
|
|
|
dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
|
|
__func__, command, column, page_addr);
|
|
|
|
switch (command) {
|
|
case NAND_CMD_RESET:
|
|
nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
|
|
nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
|
|
udelay(chip->chip_delay);
|
|
|
|
nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
|
|
timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
|
|
while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
|
|
if (time_after(jiffies, timeout)) {
|
|
dev_err(host->dev,
|
|
"Time out to wait status ready!\n");
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case NAND_CMD_STATUS:
|
|
do_addr = false;
|
|
break;
|
|
case NAND_CMD_PARAM:
|
|
case NAND_CMD_READID:
|
|
do_addr = false;
|
|
acycle = NFCADDR_CMD_ACYCLE_1;
|
|
if (column != -1)
|
|
addr1234 = column;
|
|
break;
|
|
case NAND_CMD_RNDOUT:
|
|
cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
|
|
vcmd2 = NFCADDR_CMD_VCMD2;
|
|
break;
|
|
case NAND_CMD_READ0:
|
|
case NAND_CMD_READOOB:
|
|
if (command == NAND_CMD_READOOB) {
|
|
column += mtd->writesize;
|
|
command = NAND_CMD_READ0; /* only READ0 is valid */
|
|
cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
|
|
}
|
|
if (host->nfc->use_nfc_sram) {
|
|
/* Enable Data transfer to sram */
|
|
dataen = NFCADDR_CMD_DATAEN;
|
|
|
|
/* Need enable PMECC now, since NFC will transfer
|
|
* data in bus after sending nfc read command.
|
|
*/
|
|
if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
|
|
pmecc_enable(host, NAND_ECC_READ);
|
|
}
|
|
|
|
cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
|
|
vcmd2 = NFCADDR_CMD_VCMD2;
|
|
break;
|
|
/* For prgramming command, the cmd need set to write enable */
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_RNDIN:
|
|
nfcwr = NFCADDR_CMD_NFCWR;
|
|
if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
|
|
dataen = NFCADDR_CMD_DATAEN;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (do_addr)
|
|
acycle = nfc_make_addr(mtd, command, column, page_addr,
|
|
&addr1234, &cycle0);
|
|
|
|
nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
|
|
nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
|
|
|
|
/*
|
|
* Program and erase have their own busy handlers status, sequential
|
|
* in, and deplete1 need no delay.
|
|
*/
|
|
switch (command) {
|
|
case NAND_CMD_CACHEDPROG:
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_RNDIN:
|
|
case NAND_CMD_STATUS:
|
|
case NAND_CMD_RNDOUT:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_READID:
|
|
return;
|
|
|
|
case NAND_CMD_READ0:
|
|
if (dataen == NFCADDR_CMD_DATAEN) {
|
|
host->nfc->data_in_sram = host->nfc->sram_bank0 +
|
|
nfc_get_sram_off(host);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
default:
|
|
nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
|
|
nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
|
|
}
|
|
}
|
|
|
|
static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint32_t offset, int data_len, const uint8_t *buf,
|
|
int oob_required, int page, int cached, int raw)
|
|
{
|
|
int cfg, len;
|
|
int status = 0;
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
|
|
|
|
/* Subpage write is not supported */
|
|
if (offset || (data_len < mtd->writesize))
|
|
return -EINVAL;
|
|
|
|
len = mtd->writesize;
|
|
/* Copy page data to sram that will write to nand via NFC */
|
|
if (use_dma) {
|
|
if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
|
|
/* Fall back to use cpu copy */
|
|
memcpy(sram, buf, len);
|
|
} else {
|
|
memcpy(sram, buf, len);
|
|
}
|
|
|
|
cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
|
|
if (unlikely(raw) && oob_required) {
|
|
memcpy(sram + len, chip->oob_poi, mtd->oobsize);
|
|
len += mtd->oobsize;
|
|
nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
|
|
} else {
|
|
nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
|
|
}
|
|
|
|
if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
|
|
/*
|
|
* When use NFC sram, need set up PMECC before send
|
|
* NAND_CMD_SEQIN command. Since when the nand command
|
|
* is sent, nfc will do transfer from sram and nand.
|
|
*/
|
|
pmecc_enable(host, NAND_ECC_WRITE);
|
|
|
|
host->nfc->will_write_sram = true;
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
|
|
host->nfc->will_write_sram = false;
|
|
|
|
if (likely(!raw))
|
|
/* Need to write ecc into oob */
|
|
status = chip->ecc.write_page(mtd, chip, buf, oob_required,
|
|
page);
|
|
|
|
if (status < 0)
|
|
return status;
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
status = chip->waitfunc(mtd, chip);
|
|
|
|
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
|
|
status = chip->errstat(mtd, chip, FL_WRITING, status, page);
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nfc_sram_init(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand_host *host = nand_get_controller_data(chip);
|
|
int res = 0;
|
|
|
|
/* Initialize the NFC CFG register */
|
|
unsigned int cfg_nfc = 0;
|
|
|
|
/* set page size and oob layout */
|
|
switch (mtd->writesize) {
|
|
case 512:
|
|
cfg_nfc = NFC_CFG_PAGESIZE_512;
|
|
break;
|
|
case 1024:
|
|
cfg_nfc = NFC_CFG_PAGESIZE_1024;
|
|
break;
|
|
case 2048:
|
|
cfg_nfc = NFC_CFG_PAGESIZE_2048;
|
|
break;
|
|
case 4096:
|
|
cfg_nfc = NFC_CFG_PAGESIZE_4096;
|
|
break;
|
|
case 8192:
|
|
cfg_nfc = NFC_CFG_PAGESIZE_8192;
|
|
break;
|
|
default:
|
|
dev_err(host->dev, "Unsupported page size for NFC.\n");
|
|
res = -ENXIO;
|
|
return res;
|
|
}
|
|
|
|
/* oob bytes size = (NFCSPARESIZE + 1) * 4
|
|
* Max support spare size is 512 bytes. */
|
|
cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
|
|
& NFC_CFG_NFC_SPARESIZE);
|
|
/* default set a max timeout */
|
|
cfg_nfc |= NFC_CFG_RSPARE |
|
|
NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
|
|
|
|
nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
|
|
|
|
host->nfc->will_write_sram = false;
|
|
nfc_set_sram_bank(host, 0);
|
|
|
|
/* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
|
|
if (host->nfc->write_by_sram) {
|
|
if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
|
|
chip->ecc.mode == NAND_ECC_NONE)
|
|
chip->write_page = nfc_sram_write_page;
|
|
else
|
|
host->nfc->write_by_sram = false;
|
|
}
|
|
|
|
dev_info(host->dev, "Using NFC Sram read %s\n",
|
|
host->nfc->write_by_sram ? "and write" : "");
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver atmel_nand_nfc_driver;
|
|
/*
|
|
* Probe for the NAND device.
|
|
*/
|
|
static int atmel_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct atmel_nand_host *host;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *nand_chip;
|
|
struct resource *mem;
|
|
int res, irq;
|
|
|
|
/* Allocate memory for the device structure (and zero it) */
|
|
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
res = platform_driver_register(&atmel_nand_nfc_driver);
|
|
if (res)
|
|
dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
|
|
|
|
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
host->io_base = devm_ioremap_resource(&pdev->dev, mem);
|
|
if (IS_ERR(host->io_base)) {
|
|
res = PTR_ERR(host->io_base);
|
|
goto err_nand_ioremap;
|
|
}
|
|
host->io_phys = (dma_addr_t)mem->start;
|
|
|
|
nand_chip = &host->nand_chip;
|
|
mtd = nand_to_mtd(nand_chip);
|
|
host->dev = &pdev->dev;
|
|
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
|
|
nand_set_flash_node(nand_chip, pdev->dev.of_node);
|
|
/* Only when CONFIG_OF is enabled of_node can be parsed */
|
|
res = atmel_of_init_port(host, pdev->dev.of_node);
|
|
if (res)
|
|
goto err_nand_ioremap;
|
|
} else {
|
|
memcpy(&host->board, dev_get_platdata(&pdev->dev),
|
|
sizeof(struct atmel_nand_data));
|
|
}
|
|
|
|
/* link the private data structures */
|
|
nand_set_controller_data(nand_chip, host);
|
|
mtd->dev.parent = &pdev->dev;
|
|
|
|
/* Set address of NAND IO lines */
|
|
nand_chip->IO_ADDR_R = host->io_base;
|
|
nand_chip->IO_ADDR_W = host->io_base;
|
|
|
|
if (nand_nfc.is_initialized) {
|
|
/* NFC driver is probed and initialized */
|
|
host->nfc = &nand_nfc;
|
|
|
|
nand_chip->select_chip = nfc_select_chip;
|
|
nand_chip->dev_ready = nfc_device_ready;
|
|
nand_chip->cmdfunc = nfc_nand_command;
|
|
|
|
/* Initialize the interrupt for NFC */
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0) {
|
|
dev_err(host->dev, "Cannot get HSMC irq!\n");
|
|
res = irq;
|
|
goto err_nand_ioremap;
|
|
}
|
|
|
|
res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
|
|
0, "hsmc", host);
|
|
if (res) {
|
|
dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
|
|
irq);
|
|
goto err_nand_ioremap;
|
|
}
|
|
} else {
|
|
res = atmel_nand_set_enable_ready_pins(mtd);
|
|
if (res)
|
|
goto err_nand_ioremap;
|
|
|
|
nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
|
|
}
|
|
|
|
nand_chip->ecc.mode = host->board.ecc_mode;
|
|
nand_chip->chip_delay = 40; /* 40us command delay time */
|
|
|
|
if (host->board.bus_width_16) /* 16-bit bus width */
|
|
nand_chip->options |= NAND_BUSWIDTH_16;
|
|
|
|
nand_chip->read_buf = atmel_read_buf;
|
|
nand_chip->write_buf = atmel_write_buf;
|
|
|
|
platform_set_drvdata(pdev, host);
|
|
atmel_nand_enable(host);
|
|
|
|
if (gpio_is_valid(host->board.det_pin)) {
|
|
res = devm_gpio_request(&pdev->dev,
|
|
host->board.det_pin, "nand_det");
|
|
if (res < 0) {
|
|
dev_err(&pdev->dev,
|
|
"can't request det gpio %d\n",
|
|
host->board.det_pin);
|
|
goto err_no_card;
|
|
}
|
|
|
|
res = gpio_direction_input(host->board.det_pin);
|
|
if (res < 0) {
|
|
dev_err(&pdev->dev,
|
|
"can't request input direction det gpio %d\n",
|
|
host->board.det_pin);
|
|
goto err_no_card;
|
|
}
|
|
|
|
if (gpio_get_value(host->board.det_pin)) {
|
|
dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
|
|
res = -ENXIO;
|
|
goto err_no_card;
|
|
}
|
|
}
|
|
|
|
if (host->board.on_flash_bbt || on_flash_bbt) {
|
|
dev_info(&pdev->dev, "Use On Flash BBT\n");
|
|
nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
}
|
|
|
|
if (!host->board.has_dma)
|
|
use_dma = 0;
|
|
|
|
if (use_dma) {
|
|
dma_cap_mask_t mask;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_MEMCPY, mask);
|
|
host->dma_chan = dma_request_channel(mask, NULL, NULL);
|
|
if (!host->dma_chan) {
|
|
dev_err(host->dev, "Failed to request DMA channel\n");
|
|
use_dma = 0;
|
|
}
|
|
}
|
|
if (use_dma)
|
|
dev_info(host->dev, "Using %s for DMA transfers.\n",
|
|
dma_chan_name(host->dma_chan));
|
|
else
|
|
dev_info(host->dev, "No DMA support for NAND access.\n");
|
|
|
|
/* first scan to find the device and get the page size */
|
|
if (nand_scan_ident(mtd, 1, NULL)) {
|
|
res = -ENXIO;
|
|
goto err_scan_ident;
|
|
}
|
|
|
|
if (nand_chip->ecc.mode == NAND_ECC_HW) {
|
|
if (host->has_pmecc)
|
|
res = atmel_pmecc_nand_init_params(pdev, host);
|
|
else
|
|
res = atmel_hw_nand_init_params(pdev, host);
|
|
|
|
if (res != 0)
|
|
goto err_hw_ecc;
|
|
}
|
|
|
|
/* initialize the nfc configuration register */
|
|
if (host->nfc && host->nfc->use_nfc_sram) {
|
|
res = nfc_sram_init(mtd);
|
|
if (res) {
|
|
host->nfc->use_nfc_sram = false;
|
|
dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
|
|
}
|
|
}
|
|
|
|
/* second phase scan */
|
|
if (nand_scan_tail(mtd)) {
|
|
res = -ENXIO;
|
|
goto err_scan_tail;
|
|
}
|
|
|
|
mtd->name = "atmel_nand";
|
|
res = mtd_device_register(mtd, host->board.parts,
|
|
host->board.num_parts);
|
|
if (!res)
|
|
return res;
|
|
|
|
err_scan_tail:
|
|
if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
|
|
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
|
|
err_hw_ecc:
|
|
err_scan_ident:
|
|
err_no_card:
|
|
atmel_nand_disable(host);
|
|
if (host->dma_chan)
|
|
dma_release_channel(host->dma_chan);
|
|
err_nand_ioremap:
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Remove a NAND device.
|
|
*/
|
|
static int atmel_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct atmel_nand_host *host = platform_get_drvdata(pdev);
|
|
struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
|
|
|
|
nand_release(mtd);
|
|
|
|
atmel_nand_disable(host);
|
|
|
|
if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
|
|
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
|
|
pmerrloc_writel(host->pmerrloc_base, ELDIS,
|
|
PMERRLOC_DISABLE);
|
|
}
|
|
|
|
if (host->dma_chan)
|
|
dma_release_channel(host->dma_chan);
|
|
|
|
platform_driver_unregister(&atmel_nand_nfc_driver);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct atmel_nand_caps at91rm9200_caps = {
|
|
.pmecc_correct_erase_page = false,
|
|
};
|
|
|
|
static const struct atmel_nand_caps sama5d4_caps = {
|
|
.pmecc_correct_erase_page = true,
|
|
};
|
|
|
|
static const struct of_device_id atmel_nand_dt_ids[] = {
|
|
{ .compatible = "atmel,at91rm9200-nand", .data = &at91rm9200_caps },
|
|
{ .compatible = "atmel,sama5d4-nand", .data = &sama5d4_caps },
|
|
{ /* sentinel */ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
|
|
|
|
static int atmel_nand_nfc_probe(struct platform_device *pdev)
|
|
{
|
|
struct atmel_nfc *nfc = &nand_nfc;
|
|
struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
|
|
int ret;
|
|
|
|
nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
|
|
if (IS_ERR(nfc->base_cmd_regs))
|
|
return PTR_ERR(nfc->base_cmd_regs);
|
|
|
|
nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
|
|
nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
|
|
if (IS_ERR(nfc->hsmc_regs))
|
|
return PTR_ERR(nfc->hsmc_regs);
|
|
|
|
nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
|
|
if (nfc_sram) {
|
|
nfc->sram_bank0 = (void * __force)
|
|
devm_ioremap_resource(&pdev->dev, nfc_sram);
|
|
if (IS_ERR(nfc->sram_bank0)) {
|
|
dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
|
|
PTR_ERR(nfc->sram_bank0));
|
|
} else {
|
|
nfc->use_nfc_sram = true;
|
|
nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
|
|
|
|
if (pdev->dev.of_node)
|
|
nfc->write_by_sram = of_property_read_bool(
|
|
pdev->dev.of_node,
|
|
"atmel,write-by-sram");
|
|
}
|
|
}
|
|
|
|
nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
|
|
nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */
|
|
|
|
nfc->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (!IS_ERR(nfc->clk)) {
|
|
ret = clk_prepare_enable(nfc->clk);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
|
|
}
|
|
|
|
nfc->is_initialized = true;
|
|
dev_info(&pdev->dev, "NFC is probed.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_nand_nfc_remove(struct platform_device *pdev)
|
|
{
|
|
struct atmel_nfc *nfc = &nand_nfc;
|
|
|
|
if (!IS_ERR(nfc->clk))
|
|
clk_disable_unprepare(nfc->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id atmel_nand_nfc_match[] = {
|
|
{ .compatible = "atmel,sama5d3-nfc" },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
|
|
|
|
static struct platform_driver atmel_nand_nfc_driver = {
|
|
.driver = {
|
|
.name = "atmel_nand_nfc",
|
|
.of_match_table = of_match_ptr(atmel_nand_nfc_match),
|
|
},
|
|
.probe = atmel_nand_nfc_probe,
|
|
.remove = atmel_nand_nfc_remove,
|
|
};
|
|
|
|
static struct platform_driver atmel_nand_driver = {
|
|
.probe = atmel_nand_probe,
|
|
.remove = atmel_nand_remove,
|
|
.driver = {
|
|
.name = "atmel_nand",
|
|
.of_match_table = of_match_ptr(atmel_nand_dt_ids),
|
|
},
|
|
};
|
|
|
|
module_platform_driver(atmel_nand_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Rick Bronson");
|
|
MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
|
|
MODULE_ALIAS("platform:atmel_nand");
|