Add two generic hardware events: front-end and back-end stalled cycles.
These events measure conditions when the CPU is executing code but its
capabilities are not fully utilized. Understanding such situations and
analyzing them is an important sub-task of code optimization workflows.
Both events limit performance: most front end stalls tend to be caused
by branch misprediction or instruction fetch cachemisses, backend
stalls can be caused by various resource shortages or inefficient
instruction scheduling.
Front-end stalls are the more important ones: code cannot run fast
if the instruction stream is not being kept up.
An over-utilized back-end can cause front-end stalls and thus
has to be kept an eye on as well.
The exact composition is very program logic and instruction mix
dependent.
We use the terms 'stall', 'front-end' and 'back-end' loosely and
try to use the best available events from specific CPUs that
approximate these concepts.
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/n/tip-7y40wib8n000io7hjpn1dsrm@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>