OpenCloudOS-Kernel/drivers/media/i2c/ov9650.c

1563 lines
41 KiB
C

/*
* Omnivision OV9650/OV9652 CMOS Image Sensor driver
*
* Copyright (C) 2013, Sylwester Nawrocki <sylvester.nawrocki@gmail.com>
*
* Register definitions and initial settings based on a driver written
* by Vladimir Fonov.
* Copyright (c) 2010, Vladimir Fonov
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/media.h>
#include <linux/module.h>
#include <linux/ratelimit.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/videodev2.h>
#include <media/media-entity.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-image-sizes.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-mediabus.h>
#include <media/ov9650.h>
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-2)");
#define DRIVER_NAME "OV9650"
/*
* OV9650/OV9652 register definitions
*/
#define REG_GAIN 0x00 /* Gain control, AGC[7:0] */
#define REG_BLUE 0x01 /* AWB - Blue chanel gain */
#define REG_RED 0x02 /* AWB - Red chanel gain */
#define REG_VREF 0x03 /* [7:6] - AGC[9:8], [5:3]/[2:0] */
#define VREF_GAIN_MASK 0xc0 /* - VREF end/start low 3 bits */
#define REG_COM1 0x04
#define COM1_CCIR656 0x40
#define REG_B_AVE 0x05
#define REG_GB_AVE 0x06
#define REG_GR_AVE 0x07
#define REG_R_AVE 0x08
#define REG_COM2 0x09
#define REG_PID 0x0a /* Product ID MSB */
#define REG_VER 0x0b /* Product ID LSB */
#define REG_COM3 0x0c
#define COM3_SWAP 0x40
#define COM3_VARIOPIXEL1 0x04
#define REG_COM4 0x0d /* Vario Pixels */
#define COM4_VARIOPIXEL2 0x80
#define REG_COM5 0x0e /* System clock options */
#define COM5_SLAVE_MODE 0x10
#define COM5_SYSTEMCLOCK48MHZ 0x80
#define REG_COM6 0x0f /* HREF & ADBLC options */
#define REG_AECH 0x10 /* Exposure value, AEC[9:2] */
#define REG_CLKRC 0x11 /* Clock control */
#define CLK_EXT 0x40 /* Use external clock directly */
#define CLK_SCALE 0x3f /* Mask for internal clock scale */
#define REG_COM7 0x12 /* SCCB reset, output format */
#define COM7_RESET 0x80
#define COM7_FMT_MASK 0x38
#define COM7_FMT_VGA 0x40
#define COM7_FMT_CIF 0x20
#define COM7_FMT_QVGA 0x10
#define COM7_FMT_QCIF 0x08
#define COM7_RGB 0x04
#define COM7_YUV 0x00
#define COM7_BAYER 0x01
#define COM7_PBAYER 0x05
#define REG_COM8 0x13 /* AGC/AEC options */
#define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
#define COM8_AECSTEP 0x40 /* Unlimited AEC step size */
#define COM8_BFILT 0x20 /* Band filter enable */
#define COM8_AGC 0x04 /* Auto gain enable */
#define COM8_AWB 0x02 /* White balance enable */
#define COM8_AEC 0x01 /* Auto exposure enable */
#define REG_COM9 0x14 /* Gain ceiling */
#define COM9_GAIN_CEIL_MASK 0x70 /* */
#define REG_COM10 0x15 /* PCLK, HREF, HSYNC signals polarity */
#define COM10_HSYNC 0x40 /* HSYNC instead of HREF */
#define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */
#define COM10_HREF_REV 0x08 /* Reverse HREF */
#define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */
#define COM10_VS_NEG 0x02 /* VSYNC negative */
#define COM10_HS_NEG 0x01 /* HSYNC negative */
#define REG_HSTART 0x17 /* Horiz start high bits */
#define REG_HSTOP 0x18 /* Horiz stop high bits */
#define REG_VSTART 0x19 /* Vert start high bits */
#define REG_VSTOP 0x1a /* Vert stop high bits */
#define REG_PSHFT 0x1b /* Pixel delay after HREF */
#define REG_MIDH 0x1c /* Manufacturer ID MSB */
#define REG_MIDL 0x1d /* Manufufacturer ID LSB */
#define REG_MVFP 0x1e /* Image mirror/flip */
#define MVFP_MIRROR 0x20 /* Mirror image */
#define MVFP_FLIP 0x10 /* Vertical flip */
#define REG_BOS 0x20 /* B channel Offset */
#define REG_GBOS 0x21 /* Gb channel Offset */
#define REG_GROS 0x22 /* Gr channel Offset */
#define REG_ROS 0x23 /* R channel Offset */
#define REG_AEW 0x24 /* AGC upper limit */
#define REG_AEB 0x25 /* AGC lower limit */
#define REG_VPT 0x26 /* AGC/AEC fast mode op region */
#define REG_BBIAS 0x27 /* B channel output bias */
#define REG_GBBIAS 0x28 /* Gb channel output bias */
#define REG_GRCOM 0x29 /* Analog BLC & regulator */
#define REG_EXHCH 0x2a /* Dummy pixel insert MSB */
#define REG_EXHCL 0x2b /* Dummy pixel insert LSB */
#define REG_RBIAS 0x2c /* R channel output bias */
#define REG_ADVFL 0x2d /* LSB of dummy line insert */
#define REG_ADVFH 0x2e /* MSB of dummy line insert */
#define REG_YAVE 0x2f /* Y/G channel average value */
#define REG_HSYST 0x30 /* HSYNC rising edge delay LSB*/
#define REG_HSYEN 0x31 /* HSYNC falling edge delay LSB*/
#define REG_HREF 0x32 /* HREF pieces */
#define REG_CHLF 0x33 /* reserved */
#define REG_ADC 0x37 /* reserved */
#define REG_ACOM 0x38 /* reserved */
#define REG_OFON 0x39 /* Power down register */
#define OFON_PWRDN 0x08 /* Power down bit */
#define REG_TSLB 0x3a /* YUVU format */
#define TSLB_YUYV_MASK 0x0c /* UYVY or VYUY - see com13 */
#define REG_COM11 0x3b /* Night mode, banding filter enable */
#define COM11_NIGHT 0x80 /* Night mode enable */
#define COM11_NMFR 0x60 /* Two bit NM frame rate */
#define COM11_BANDING 0x01 /* Banding filter */
#define COM11_AEC_REF_MASK 0x18 /* AEC reference area selection */
#define REG_COM12 0x3c /* HREF option, UV average */
#define COM12_HREF 0x80 /* HREF always */
#define REG_COM13 0x3d /* Gamma selection, Color matrix en. */
#define COM13_GAMMA 0x80 /* Gamma enable */
#define COM13_UVSAT 0x40 /* UV saturation auto adjustment */
#define COM13_UVSWAP 0x01 /* V before U - w/TSLB */
#define REG_COM14 0x3e /* Edge enhancement options */
#define COM14_EDGE_EN 0x02
#define COM14_EEF_X2 0x01
#define REG_EDGE 0x3f /* Edge enhancement factor */
#define EDGE_FACTOR_MASK 0x0f
#define REG_COM15 0x40 /* Output range, RGB 555/565 */
#define COM15_R10F0 0x00 /* Data range 10 to F0 */
#define COM15_R01FE 0x80 /* 01 to FE */
#define COM15_R00FF 0xc0 /* 00 to FF */
#define COM15_RGB565 0x10 /* RGB565 output */
#define COM15_RGB555 0x30 /* RGB555 output */
#define COM15_SWAPRB 0x04 /* Swap R&B */
#define REG_COM16 0x41 /* Color matrix coeff options */
#define REG_COM17 0x42 /* Single frame out, banding filter */
/* n = 1...9, 0x4f..0x57 */
#define REG_MTX(__n) (0x4f + (__n) - 1)
#define REG_MTXS 0x58
/* Lens Correction Option 1...5, __n = 0...5 */
#define REG_LCC(__n) (0x62 + (__n) - 1)
#define LCC5_LCC_ENABLE 0x01 /* LCC5, enable lens correction */
#define LCC5_LCC_COLOR 0x04
#define REG_MANU 0x67 /* Manual U value */
#define REG_MANV 0x68 /* Manual V value */
#define REG_HV 0x69 /* Manual banding filter MSB */
#define REG_MBD 0x6a /* Manual banding filter value */
#define REG_DBLV 0x6b /* reserved */
#define REG_GSP 0x6c /* Gamma curve */
#define GSP_LEN 15
#define REG_GST 0x7c /* Gamma curve */
#define GST_LEN 15
#define REG_COM21 0x8b
#define REG_COM22 0x8c /* Edge enhancement, denoising */
#define COM22_WHTPCOR 0x02 /* White pixel correction enable */
#define COM22_WHTPCOROPT 0x01 /* White pixel correction option */
#define COM22_DENOISE 0x10 /* White pixel correction option */
#define REG_COM23 0x8d /* Color bar test, color gain */
#define COM23_TEST_MODE 0x10
#define REG_DBLC1 0x8f /* Digital BLC */
#define REG_DBLC_B 0x90 /* Digital BLC B channel offset */
#define REG_DBLC_R 0x91 /* Digital BLC R channel offset */
#define REG_DM_LNL 0x92 /* Dummy line low 8 bits */
#define REG_DM_LNH 0x93 /* Dummy line high 8 bits */
#define REG_LCCFB 0x9d /* Lens Correction B channel */
#define REG_LCCFR 0x9e /* Lens Correction R channel */
#define REG_DBLC_GB 0x9f /* Digital BLC GB chan offset */
#define REG_DBLC_GR 0xa0 /* Digital BLC GR chan offset */
#define REG_AECHM 0xa1 /* Exposure value - bits AEC[15:10] */
#define REG_BD50ST 0xa2 /* Banding filter value for 50Hz */
#define REG_BD60ST 0xa3 /* Banding filter value for 60Hz */
#define REG_NULL 0xff /* Array end token */
#define DEF_CLKRC 0x80
#define OV965X_ID(_msb, _lsb) ((_msb) << 8 | (_lsb))
#define OV9650_ID 0x9650
#define OV9652_ID 0x9652
struct ov965x_ctrls {
struct v4l2_ctrl_handler handler;
struct {
struct v4l2_ctrl *auto_exp;
struct v4l2_ctrl *exposure;
};
struct {
struct v4l2_ctrl *auto_wb;
struct v4l2_ctrl *blue_balance;
struct v4l2_ctrl *red_balance;
};
struct {
struct v4l2_ctrl *hflip;
struct v4l2_ctrl *vflip;
};
struct {
struct v4l2_ctrl *auto_gain;
struct v4l2_ctrl *gain;
};
struct v4l2_ctrl *brightness;
struct v4l2_ctrl *saturation;
struct v4l2_ctrl *sharpness;
struct v4l2_ctrl *light_freq;
u8 update;
};
struct ov965x_framesize {
u16 width;
u16 height;
u16 max_exp_lines;
const u8 *regs;
};
struct ov965x_interval {
struct v4l2_fract interval;
/* Maximum resolution for this interval */
struct v4l2_frmsize_discrete size;
u8 clkrc_div;
};
enum gpio_id {
GPIO_PWDN,
GPIO_RST,
NUM_GPIOS,
};
struct ov965x {
struct v4l2_subdev sd;
struct media_pad pad;
enum v4l2_mbus_type bus_type;
int gpios[NUM_GPIOS];
/* External master clock frequency */
unsigned long mclk_frequency;
/* Protects the struct fields below */
struct mutex lock;
struct i2c_client *client;
/* Exposure row interval in us */
unsigned int exp_row_interval;
unsigned short id;
const struct ov965x_framesize *frame_size;
/* YUYV sequence (pixel format) control register */
u8 tslb_reg;
struct v4l2_mbus_framefmt format;
struct ov965x_ctrls ctrls;
/* Pointer to frame rate control data structure */
const struct ov965x_interval *fiv;
int streaming;
int power;
u8 apply_frame_fmt;
};
struct i2c_rv {
u8 addr;
u8 value;
};
static const struct i2c_rv ov965x_init_regs[] = {
{ REG_COM2, 0x10 }, /* Set soft sleep mode */
{ REG_COM5, 0x00 }, /* System clock options */
{ REG_COM2, 0x01 }, /* Output drive, soft sleep mode */
{ REG_COM10, 0x00 }, /* Slave mode, HREF vs HSYNC, signals negate */
{ REG_EDGE, 0xa6 }, /* Edge enhancement treshhold and factor */
{ REG_COM16, 0x02 }, /* Color matrix coeff double option */
{ REG_COM17, 0x08 }, /* Single frame out, banding filter */
{ 0x16, 0x06 },
{ REG_CHLF, 0xc0 }, /* Reserved */
{ 0x34, 0xbf },
{ 0xa8, 0x80 },
{ 0x96, 0x04 },
{ 0x8e, 0x00 },
{ REG_COM12, 0x77 }, /* HREF option, UV average */
{ 0x8b, 0x06 },
{ 0x35, 0x91 },
{ 0x94, 0x88 },
{ 0x95, 0x88 },
{ REG_COM15, 0xc1 }, /* Output range, RGB 555/565 */
{ REG_GRCOM, 0x2f }, /* Analog BLC & regulator */
{ REG_COM6, 0x43 }, /* HREF & ADBLC options */
{ REG_COM8, 0xe5 }, /* AGC/AEC options */
{ REG_COM13, 0x90 }, /* Gamma selection, colour matrix, UV delay */
{ REG_HV, 0x80 }, /* Manual banding filter MSB */
{ 0x5c, 0x96 }, /* Reserved up to 0xa5 */
{ 0x5d, 0x96 },
{ 0x5e, 0x10 },
{ 0x59, 0xeb },
{ 0x5a, 0x9c },
{ 0x5b, 0x55 },
{ 0x43, 0xf0 },
{ 0x44, 0x10 },
{ 0x45, 0x55 },
{ 0x46, 0x86 },
{ 0x47, 0x64 },
{ 0x48, 0x86 },
{ 0x5f, 0xe0 },
{ 0x60, 0x8c },
{ 0x61, 0x20 },
{ 0xa5, 0xd9 },
{ 0xa4, 0x74 }, /* reserved */
{ REG_COM23, 0x02 }, /* Color gain analog/_digital_ */
{ REG_COM8, 0xe7 }, /* Enable AEC, AWB, AEC */
{ REG_COM22, 0x23 }, /* Edge enhancement, denoising */
{ 0xa9, 0xb8 },
{ 0xaa, 0x92 },
{ 0xab, 0x0a },
{ REG_DBLC1, 0xdf }, /* Digital BLC */
{ REG_DBLC_B, 0x00 }, /* Digital BLC B chan offset */
{ REG_DBLC_R, 0x00 }, /* Digital BLC R chan offset */
{ REG_DBLC_GB, 0x00 }, /* Digital BLC GB chan offset */
{ REG_DBLC_GR, 0x00 },
{ REG_COM9, 0x3a }, /* Gain ceiling 16x */
{ REG_NULL, 0 }
};
#define NUM_FMT_REGS 14
/*
* COM7, COM3, COM4, HSTART, HSTOP, HREF, VSTART, VSTOP, VREF,
* EXHCH, EXHCL, ADC, OCOM, OFON
*/
static const u8 frame_size_reg_addr[NUM_FMT_REGS] = {
0x12, 0x0c, 0x0d, 0x17, 0x18, 0x32, 0x19, 0x1a, 0x03,
0x2a, 0x2b, 0x37, 0x38, 0x39,
};
static const u8 ov965x_sxga_regs[NUM_FMT_REGS] = {
0x00, 0x00, 0x00, 0x1e, 0xbe, 0xbf, 0x01, 0x81, 0x12,
0x10, 0x34, 0x81, 0x93, 0x51,
};
static const u8 ov965x_vga_regs[NUM_FMT_REGS] = {
0x40, 0x04, 0x80, 0x26, 0xc6, 0xed, 0x01, 0x3d, 0x00,
0x10, 0x40, 0x91, 0x12, 0x43,
};
/* Determined empirically. */
static const u8 ov965x_qvga_regs[NUM_FMT_REGS] = {
0x10, 0x04, 0x80, 0x25, 0xc5, 0xbf, 0x00, 0x80, 0x12,
0x10, 0x40, 0x91, 0x12, 0x43,
};
static const struct ov965x_framesize ov965x_framesizes[] = {
{
.width = SXGA_WIDTH,
.height = SXGA_HEIGHT,
.regs = ov965x_sxga_regs,
.max_exp_lines = 1048,
}, {
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.regs = ov965x_vga_regs,
.max_exp_lines = 498,
}, {
.width = QVGA_WIDTH,
.height = QVGA_HEIGHT,
.regs = ov965x_qvga_regs,
.max_exp_lines = 248,
},
};
struct ov965x_pixfmt {
u32 code;
u32 colorspace;
/* REG_TSLB value, only bits [3:2] may be set. */
u8 tslb_reg;
};
static const struct ov965x_pixfmt ov965x_formats[] = {
{ MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_JPEG, 0x00},
{ MEDIA_BUS_FMT_YVYU8_2X8, V4L2_COLORSPACE_JPEG, 0x04},
{ MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_JPEG, 0x0c},
{ MEDIA_BUS_FMT_VYUY8_2X8, V4L2_COLORSPACE_JPEG, 0x08},
};
/*
* This table specifies possible frame resolution and interval
* combinations. Default CLKRC[5:0] divider values are valid
* only for 24 MHz external clock frequency.
*/
static struct ov965x_interval ov965x_intervals[] = {
{{ 100, 625 }, { SXGA_WIDTH, SXGA_HEIGHT }, 0 }, /* 6.25 fps */
{{ 10, 125 }, { VGA_WIDTH, VGA_HEIGHT }, 1 }, /* 12.5 fps */
{{ 10, 125 }, { QVGA_WIDTH, QVGA_HEIGHT }, 3 }, /* 12.5 fps */
{{ 1, 25 }, { VGA_WIDTH, VGA_HEIGHT }, 0 }, /* 25 fps */
{{ 1, 25 }, { QVGA_WIDTH, QVGA_HEIGHT }, 1 }, /* 25 fps */
};
static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct ov965x, ctrls.handler)->sd;
}
static inline struct ov965x *to_ov965x(struct v4l2_subdev *sd)
{
return container_of(sd, struct ov965x, sd);
}
static int ov965x_read(struct i2c_client *client, u8 addr, u8 *val)
{
u8 buf = addr;
struct i2c_msg msg = {
.addr = client->addr,
.flags = 0,
.len = 1,
.buf = &buf
};
int ret;
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret == 1) {
msg.flags = I2C_M_RD;
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret == 1)
*val = buf;
}
v4l2_dbg(2, debug, client, "%s: 0x%02x @ 0x%02x. (%d)\n",
__func__, *val, addr, ret);
return ret == 1 ? 0 : ret;
}
static int ov965x_write(struct i2c_client *client, u8 addr, u8 val)
{
u8 buf[2] = { addr, val };
int ret = i2c_master_send(client, buf, 2);
v4l2_dbg(2, debug, client, "%s: 0x%02x @ 0x%02X (%d)\n",
__func__, val, addr, ret);
return ret == 2 ? 0 : ret;
}
static int ov965x_write_array(struct i2c_client *client,
const struct i2c_rv *regs)
{
int i, ret = 0;
for (i = 0; ret == 0 && regs[i].addr != REG_NULL; i++)
ret = ov965x_write(client, regs[i].addr, regs[i].value);
return ret;
}
static int ov965x_set_default_gamma_curve(struct ov965x *ov965x)
{
static const u8 gamma_curve[] = {
/* Values taken from OV application note. */
0x40, 0x30, 0x4b, 0x60, 0x70, 0x70, 0x70, 0x70,
0x60, 0x60, 0x50, 0x48, 0x3a, 0x2e, 0x28, 0x22,
0x04, 0x07, 0x10, 0x28, 0x36, 0x44, 0x52, 0x60,
0x6c, 0x78, 0x8c, 0x9e, 0xbb, 0xd2, 0xe6
};
u8 addr = REG_GSP;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(gamma_curve); i++) {
int ret = ov965x_write(ov965x->client, addr, gamma_curve[i]);
if (ret < 0)
return ret;
addr++;
}
return 0;
};
static int ov965x_set_color_matrix(struct ov965x *ov965x)
{
static const u8 mtx[] = {
/* MTX1..MTX9, MTXS */
0x3a, 0x3d, 0x03, 0x12, 0x26, 0x38, 0x40, 0x40, 0x40, 0x0d
};
u8 addr = REG_MTX(1);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(mtx); i++) {
int ret = ov965x_write(ov965x->client, addr, mtx[i]);
if (ret < 0)
return ret;
addr++;
}
return 0;
}
static void ov965x_gpio_set(int gpio, int val)
{
if (gpio_is_valid(gpio))
gpio_set_value(gpio, val);
}
static void __ov965x_set_power(struct ov965x *ov965x, int on)
{
if (on) {
ov965x_gpio_set(ov965x->gpios[GPIO_PWDN], 0);
ov965x_gpio_set(ov965x->gpios[GPIO_RST], 0);
usleep_range(25000, 26000);
} else {
ov965x_gpio_set(ov965x->gpios[GPIO_RST], 1);
ov965x_gpio_set(ov965x->gpios[GPIO_PWDN], 1);
}
ov965x->streaming = 0;
}
static int ov965x_s_power(struct v4l2_subdev *sd, int on)
{
struct ov965x *ov965x = to_ov965x(sd);
struct i2c_client *client = ov965x->client;
int ret = 0;
v4l2_dbg(1, debug, client, "%s: on: %d\n", __func__, on);
mutex_lock(&ov965x->lock);
if (ov965x->power == !on) {
__ov965x_set_power(ov965x, on);
if (on) {
ret = ov965x_write_array(client,
ov965x_init_regs);
ov965x->apply_frame_fmt = 1;
ov965x->ctrls.update = 1;
}
}
if (!ret)
ov965x->power += on ? 1 : -1;
WARN_ON(ov965x->power < 0);
mutex_unlock(&ov965x->lock);
return ret;
}
/*
* V4L2 controls
*/
static void ov965x_update_exposure_ctrl(struct ov965x *ov965x)
{
struct v4l2_ctrl *ctrl = ov965x->ctrls.exposure;
unsigned long fint, trow;
int min, max, def;
u8 clkrc;
mutex_lock(&ov965x->lock);
if (WARN_ON(!ctrl || !ov965x->frame_size)) {
mutex_unlock(&ov965x->lock);
return;
}
clkrc = DEF_CLKRC + ov965x->fiv->clkrc_div;
/* Calculate internal clock frequency */
fint = ov965x->mclk_frequency * ((clkrc >> 7) + 1) /
((2 * ((clkrc & 0x3f) + 1)));
/* and the row interval (in us). */
trow = (2 * 1520 * 1000000UL) / fint;
max = ov965x->frame_size->max_exp_lines * trow;
ov965x->exp_row_interval = trow;
mutex_unlock(&ov965x->lock);
v4l2_dbg(1, debug, &ov965x->sd, "clkrc: %#x, fi: %lu, tr: %lu, %d\n",
clkrc, fint, trow, max);
/* Update exposure time range to match current frame format. */
min = (trow + 100) / 100;
max = (max - 100) / 100;
def = min + (max - min) / 2;
if (v4l2_ctrl_modify_range(ctrl, min, max, 1, def))
v4l2_err(&ov965x->sd, "Exposure ctrl range update failed\n");
}
static int ov965x_set_banding_filter(struct ov965x *ov965x, int value)
{
unsigned long mbd, light_freq;
int ret;
u8 reg;
ret = ov965x_read(ov965x->client, REG_COM8, &reg);
if (!ret) {
if (value == V4L2_CID_POWER_LINE_FREQUENCY_DISABLED)
reg &= ~COM8_BFILT;
else
reg |= COM8_BFILT;
ret = ov965x_write(ov965x->client, REG_COM8, reg);
}
if (value == V4L2_CID_POWER_LINE_FREQUENCY_DISABLED)
return 0;
if (WARN_ON(ov965x->fiv == NULL))
return -EINVAL;
/* Set minimal exposure time for 50/60 HZ lighting */
if (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ)
light_freq = 50;
else
light_freq = 60;
mbd = (1000UL * ov965x->fiv->interval.denominator *
ov965x->frame_size->max_exp_lines) /
ov965x->fiv->interval.numerator;
mbd = ((mbd / (light_freq * 2)) + 500) / 1000UL;
return ov965x_write(ov965x->client, REG_MBD, mbd);
}
static int ov965x_set_white_balance(struct ov965x *ov965x, int awb)
{
int ret;
u8 reg;
ret = ov965x_read(ov965x->client, REG_COM8, &reg);
if (!ret) {
reg = awb ? reg | REG_COM8 : reg & ~REG_COM8;
ret = ov965x_write(ov965x->client, REG_COM8, reg);
}
if (!ret && !awb) {
ret = ov965x_write(ov965x->client, REG_BLUE,
ov965x->ctrls.blue_balance->val);
if (ret < 0)
return ret;
ret = ov965x_write(ov965x->client, REG_RED,
ov965x->ctrls.red_balance->val);
}
return ret;
}
#define NUM_BR_LEVELS 7
#define NUM_BR_REGS 3
static int ov965x_set_brightness(struct ov965x *ov965x, int val)
{
static const u8 regs[NUM_BR_LEVELS + 1][NUM_BR_REGS] = {
{ REG_AEW, REG_AEB, REG_VPT },
{ 0x1c, 0x12, 0x50 }, /* -3 */
{ 0x3d, 0x30, 0x71 }, /* -2 */
{ 0x50, 0x44, 0x92 }, /* -1 */
{ 0x70, 0x64, 0xc3 }, /* 0 */
{ 0x90, 0x84, 0xd4 }, /* +1 */
{ 0xc4, 0xbf, 0xf9 }, /* +2 */
{ 0xd8, 0xd0, 0xfa }, /* +3 */
};
int i, ret = 0;
val += (NUM_BR_LEVELS / 2 + 1);
if (val > NUM_BR_LEVELS)
return -EINVAL;
for (i = 0; i < NUM_BR_REGS && !ret; i++)
ret = ov965x_write(ov965x->client, regs[0][i],
regs[val][i]);
return ret;
}
static int ov965x_set_gain(struct ov965x *ov965x, int auto_gain)
{
struct i2c_client *client = ov965x->client;
struct ov965x_ctrls *ctrls = &ov965x->ctrls;
int ret = 0;
u8 reg;
/*
* For manual mode we need to disable AGC first, so
* gain value in REG_VREF, REG_GAIN is not overwritten.
*/
if (ctrls->auto_gain->is_new) {
ret = ov965x_read(client, REG_COM8, &reg);
if (ret < 0)
return ret;
if (ctrls->auto_gain->val)
reg |= COM8_AGC;
else
reg &= ~COM8_AGC;
ret = ov965x_write(client, REG_COM8, reg);
if (ret < 0)
return ret;
}
if (ctrls->gain->is_new && !auto_gain) {
unsigned int gain = ctrls->gain->val;
unsigned int rgain;
int m;
/*
* Convert gain control value to the sensor's gain
* registers (VREF[7:6], GAIN[7:0]) format.
*/
for (m = 6; m >= 0; m--)
if (gain >= (1 << m) * 16)
break;
rgain = (gain - ((1 << m) * 16)) / (1 << m);
rgain |= (((1 << m) - 1) << 4);
ret = ov965x_write(client, REG_GAIN, rgain & 0xff);
if (ret < 0)
return ret;
ret = ov965x_read(client, REG_VREF, &reg);
if (ret < 0)
return ret;
reg &= ~VREF_GAIN_MASK;
reg |= (((rgain >> 8) & 0x3) << 6);
ret = ov965x_write(client, REG_VREF, reg);
if (ret < 0)
return ret;
/* Return updated control's value to userspace */
ctrls->gain->val = (1 << m) * (16 + (rgain & 0xf));
}
return ret;
}
static int ov965x_set_sharpness(struct ov965x *ov965x, unsigned int value)
{
u8 com14, edge;
int ret;
ret = ov965x_read(ov965x->client, REG_COM14, &com14);
if (ret < 0)
return ret;
ret = ov965x_read(ov965x->client, REG_EDGE, &edge);
if (ret < 0)
return ret;
com14 = value ? com14 | COM14_EDGE_EN : com14 & ~COM14_EDGE_EN;
value--;
if (value > 0x0f) {
com14 |= COM14_EEF_X2;
value >>= 1;
} else {
com14 &= ~COM14_EEF_X2;
}
ret = ov965x_write(ov965x->client, REG_COM14, com14);
if (ret < 0)
return ret;
edge &= ~EDGE_FACTOR_MASK;
edge |= ((u8)value & 0x0f);
return ov965x_write(ov965x->client, REG_EDGE, edge);
}
static int ov965x_set_exposure(struct ov965x *ov965x, int exp)
{
struct i2c_client *client = ov965x->client;
struct ov965x_ctrls *ctrls = &ov965x->ctrls;
bool auto_exposure = (exp == V4L2_EXPOSURE_AUTO);
int ret;
u8 reg;
if (ctrls->auto_exp->is_new) {
ret = ov965x_read(client, REG_COM8, &reg);
if (ret < 0)
return ret;
if (auto_exposure)
reg |= (COM8_AEC | COM8_AGC);
else
reg &= ~(COM8_AEC | COM8_AGC);
ret = ov965x_write(client, REG_COM8, reg);
if (ret < 0)
return ret;
}
if (!auto_exposure && ctrls->exposure->is_new) {
unsigned int exposure = (ctrls->exposure->val * 100)
/ ov965x->exp_row_interval;
/*
* Manual exposure value
* [b15:b0] - AECHM (b15:b10), AECH (b9:b2), COM1 (b1:b0)
*/
ret = ov965x_write(client, REG_COM1, exposure & 0x3);
if (!ret)
ret = ov965x_write(client, REG_AECH,
(exposure >> 2) & 0xff);
if (!ret)
ret = ov965x_write(client, REG_AECHM,
(exposure >> 10) & 0x3f);
/* Update the value to minimize rounding errors */
ctrls->exposure->val = ((exposure * ov965x->exp_row_interval)
+ 50) / 100;
if (ret < 0)
return ret;
}
v4l2_ctrl_activate(ov965x->ctrls.brightness, !exp);
return 0;
}
static int ov965x_set_flip(struct ov965x *ov965x)
{
u8 mvfp = 0;
if (ov965x->ctrls.hflip->val)
mvfp |= MVFP_MIRROR;
if (ov965x->ctrls.vflip->val)
mvfp |= MVFP_FLIP;
return ov965x_write(ov965x->client, REG_MVFP, mvfp);
}
#define NUM_SAT_LEVELS 5
#define NUM_SAT_REGS 6
static int ov965x_set_saturation(struct ov965x *ov965x, int val)
{
static const u8 regs[NUM_SAT_LEVELS][NUM_SAT_REGS] = {
/* MTX(1)...MTX(6) */
{ 0x1d, 0x1f, 0x02, 0x09, 0x13, 0x1c }, /* -2 */
{ 0x2e, 0x31, 0x02, 0x0e, 0x1e, 0x2d }, /* -1 */
{ 0x3a, 0x3d, 0x03, 0x12, 0x26, 0x38 }, /* 0 */
{ 0x46, 0x49, 0x04, 0x16, 0x2e, 0x43 }, /* +1 */
{ 0x57, 0x5c, 0x05, 0x1b, 0x39, 0x54 }, /* +2 */
};
u8 addr = REG_MTX(1);
int i, ret = 0;
val += (NUM_SAT_LEVELS / 2);
if (val >= NUM_SAT_LEVELS)
return -EINVAL;
for (i = 0; i < NUM_SAT_REGS && !ret; i++)
ret = ov965x_write(ov965x->client, addr + i, regs[val][i]);
return ret;
}
static int ov965x_set_test_pattern(struct ov965x *ov965x, int value)
{
int ret;
u8 reg;
ret = ov965x_read(ov965x->client, REG_COM23, &reg);
if (ret < 0)
return ret;
reg = value ? reg | COM23_TEST_MODE : reg & ~COM23_TEST_MODE;
return ov965x_write(ov965x->client, REG_COM23, reg);
}
static int __g_volatile_ctrl(struct ov965x *ov965x, struct v4l2_ctrl *ctrl)
{
struct i2c_client *client = ov965x->client;
unsigned int exposure, gain, m;
u8 reg0, reg1, reg2;
int ret;
if (!ov965x->power)
return 0;
switch (ctrl->id) {
case V4L2_CID_AUTOGAIN:
if (!ctrl->val)
return 0;
ret = ov965x_read(client, REG_GAIN, &reg0);
if (ret < 0)
return ret;
ret = ov965x_read(client, REG_VREF, &reg1);
if (ret < 0)
return ret;
gain = ((reg1 >> 6) << 8) | reg0;
m = 0x01 << fls(gain >> 4);
ov965x->ctrls.gain->val = m * (16 + (gain & 0xf));
break;
case V4L2_CID_EXPOSURE_AUTO:
if (ctrl->val == V4L2_EXPOSURE_MANUAL)
return 0;
ret = ov965x_read(client, REG_COM1, &reg0);
if (!ret)
ret = ov965x_read(client, REG_AECH, &reg1);
if (!ret)
ret = ov965x_read(client, REG_AECHM, &reg2);
if (ret < 0)
return ret;
exposure = ((reg2 & 0x3f) << 10) | (reg1 << 2) |
(reg0 & 0x3);
ov965x->ctrls.exposure->val = ((exposure *
ov965x->exp_row_interval) + 50) / 100;
break;
}
return 0;
}
static int ov965x_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
struct ov965x *ov965x = to_ov965x(sd);
int ret;
v4l2_dbg(1, debug, sd, "g_ctrl: %s\n", ctrl->name);
mutex_lock(&ov965x->lock);
ret = __g_volatile_ctrl(ov965x, ctrl);
mutex_unlock(&ov965x->lock);
return ret;
}
static int ov965x_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
struct ov965x *ov965x = to_ov965x(sd);
int ret = -EINVAL;
v4l2_dbg(1, debug, sd, "s_ctrl: %s, value: %d. power: %d\n",
ctrl->name, ctrl->val, ov965x->power);
mutex_lock(&ov965x->lock);
/*
* If the device is not powered up now postpone applying control's
* value to the hardware, until it is ready to accept commands.
*/
if (ov965x->power == 0) {
mutex_unlock(&ov965x->lock);
return 0;
}
switch (ctrl->id) {
case V4L2_CID_AUTO_WHITE_BALANCE:
ret = ov965x_set_white_balance(ov965x, ctrl->val);
break;
case V4L2_CID_BRIGHTNESS:
ret = ov965x_set_brightness(ov965x, ctrl->val);
break;
case V4L2_CID_EXPOSURE_AUTO:
ret = ov965x_set_exposure(ov965x, ctrl->val);
break;
case V4L2_CID_AUTOGAIN:
ret = ov965x_set_gain(ov965x, ctrl->val);
break;
case V4L2_CID_HFLIP:
ret = ov965x_set_flip(ov965x);
break;
case V4L2_CID_POWER_LINE_FREQUENCY:
ret = ov965x_set_banding_filter(ov965x, ctrl->val);
break;
case V4L2_CID_SATURATION:
ret = ov965x_set_saturation(ov965x, ctrl->val);
break;
case V4L2_CID_SHARPNESS:
ret = ov965x_set_sharpness(ov965x, ctrl->val);
break;
case V4L2_CID_TEST_PATTERN:
ret = ov965x_set_test_pattern(ov965x, ctrl->val);
break;
}
mutex_unlock(&ov965x->lock);
return ret;
}
static const struct v4l2_ctrl_ops ov965x_ctrl_ops = {
.g_volatile_ctrl = ov965x_g_volatile_ctrl,
.s_ctrl = ov965x_s_ctrl,
};
static const char * const test_pattern_menu[] = {
"Disabled",
"Color bars",
NULL
};
static int ov965x_initialize_controls(struct ov965x *ov965x)
{
const struct v4l2_ctrl_ops *ops = &ov965x_ctrl_ops;
struct ov965x_ctrls *ctrls = &ov965x->ctrls;
struct v4l2_ctrl_handler *hdl = &ctrls->handler;
int ret;
ret = v4l2_ctrl_handler_init(hdl, 16);
if (ret < 0)
return ret;
/* Auto/manual white balance */
ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops,
V4L2_CID_AUTO_WHITE_BALANCE,
0, 1, 1, 1);
ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE,
0, 0xff, 1, 0x80);
ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE,
0, 0xff, 1, 0x80);
/* Auto/manual exposure */
ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
V4L2_CID_EXPOSURE_AUTO,
V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO);
/* Exposure time, in 100 us units. min/max is updated dynamically. */
ctrls->exposure = v4l2_ctrl_new_std(hdl, ops,
V4L2_CID_EXPOSURE_ABSOLUTE,
2, 1500, 1, 500);
/* Auto/manual gain */
ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN,
0, 1, 1, 1);
ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
16, 64 * (16 + 15), 1, 64 * 16);
ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION,
-2, 2, 1, 0);
ctrls->brightness = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BRIGHTNESS,
-3, 3, 1, 0);
ctrls->sharpness = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SHARPNESS,
0, 32, 1, 6);
ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
ctrls->light_freq = v4l2_ctrl_new_std_menu(hdl, ops,
V4L2_CID_POWER_LINE_FREQUENCY,
V4L2_CID_POWER_LINE_FREQUENCY_60HZ, ~0x7,
V4L2_CID_POWER_LINE_FREQUENCY_50HZ);
v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(test_pattern_menu) - 1, 0, 0,
test_pattern_menu);
if (hdl->error) {
ret = hdl->error;
v4l2_ctrl_handler_free(hdl);
return ret;
}
ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE;
ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE;
v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false);
v4l2_ctrl_auto_cluster(3, &ctrls->auto_gain, 0, true);
v4l2_ctrl_auto_cluster(3, &ctrls->auto_exp, 1, true);
v4l2_ctrl_cluster(2, &ctrls->hflip);
ov965x->sd.ctrl_handler = hdl;
return 0;
}
/*
* V4L2 subdev video and pad level operations
*/
static void ov965x_get_default_format(struct v4l2_mbus_framefmt *mf)
{
mf->width = ov965x_framesizes[0].width;
mf->height = ov965x_framesizes[0].height;
mf->colorspace = ov965x_formats[0].colorspace;
mf->code = ov965x_formats[0].code;
mf->field = V4L2_FIELD_NONE;
}
static int ov965x_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index >= ARRAY_SIZE(ov965x_formats))
return -EINVAL;
code->code = ov965x_formats[code->index].code;
return 0;
}
static int ov965x_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
int i = ARRAY_SIZE(ov965x_formats);
if (fse->index >= ARRAY_SIZE(ov965x_framesizes))
return -EINVAL;
while (--i)
if (fse->code == ov965x_formats[i].code)
break;
fse->code = ov965x_formats[i].code;
fse->min_width = ov965x_framesizes[fse->index].width;
fse->max_width = fse->min_width;
fse->max_height = ov965x_framesizes[fse->index].height;
fse->min_height = fse->max_height;
return 0;
}
static int ov965x_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct ov965x *ov965x = to_ov965x(sd);
mutex_lock(&ov965x->lock);
fi->interval = ov965x->fiv->interval;
mutex_unlock(&ov965x->lock);
return 0;
}
static int __ov965x_set_frame_interval(struct ov965x *ov965x,
struct v4l2_subdev_frame_interval *fi)
{
struct v4l2_mbus_framefmt *mbus_fmt = &ov965x->format;
const struct ov965x_interval *fiv = &ov965x_intervals[0];
u64 req_int, err, min_err = ~0ULL;
unsigned int i;
if (fi->interval.denominator == 0)
return -EINVAL;
req_int = (u64)(fi->interval.numerator * 10000) /
fi->interval.denominator;
for (i = 0; i < ARRAY_SIZE(ov965x_intervals); i++) {
const struct ov965x_interval *iv = &ov965x_intervals[i];
if (mbus_fmt->width != iv->size.width ||
mbus_fmt->height != iv->size.height)
continue;
err = abs64((u64)(iv->interval.numerator * 10000) /
iv->interval.denominator - req_int);
if (err < min_err) {
fiv = iv;
min_err = err;
}
}
ov965x->fiv = fiv;
v4l2_dbg(1, debug, &ov965x->sd, "Changed frame interval to %u us\n",
fiv->interval.numerator * 1000000 / fiv->interval.denominator);
return 0;
}
static int ov965x_s_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct ov965x *ov965x = to_ov965x(sd);
int ret;
v4l2_dbg(1, debug, sd, "Setting %d/%d frame interval\n",
fi->interval.numerator, fi->interval.denominator);
mutex_lock(&ov965x->lock);
ret = __ov965x_set_frame_interval(ov965x, fi);
ov965x->apply_frame_fmt = 1;
mutex_unlock(&ov965x->lock);
return ret;
}
static int ov965x_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct ov965x *ov965x = to_ov965x(sd);
struct v4l2_mbus_framefmt *mf;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
mf = v4l2_subdev_get_try_format(sd, cfg, 0);
fmt->format = *mf;
return 0;
}
mutex_lock(&ov965x->lock);
fmt->format = ov965x->format;
mutex_unlock(&ov965x->lock);
return 0;
}
static void __ov965x_try_frame_size(struct v4l2_mbus_framefmt *mf,
const struct ov965x_framesize **size)
{
const struct ov965x_framesize *fsize = &ov965x_framesizes[0],
*match = NULL;
int i = ARRAY_SIZE(ov965x_framesizes);
unsigned int min_err = UINT_MAX;
while (i--) {
int err = abs(fsize->width - mf->width)
+ abs(fsize->height - mf->height);
if (err < min_err) {
min_err = err;
match = fsize;
}
fsize++;
}
if (!match)
match = &ov965x_framesizes[0];
mf->width = match->width;
mf->height = match->height;
if (size)
*size = match;
}
static int ov965x_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
unsigned int index = ARRAY_SIZE(ov965x_formats);
struct v4l2_mbus_framefmt *mf = &fmt->format;
struct ov965x *ov965x = to_ov965x(sd);
const struct ov965x_framesize *size = NULL;
int ret = 0;
__ov965x_try_frame_size(mf, &size);
while (--index)
if (ov965x_formats[index].code == mf->code)
break;
mf->colorspace = V4L2_COLORSPACE_JPEG;
mf->code = ov965x_formats[index].code;
mf->field = V4L2_FIELD_NONE;
mutex_lock(&ov965x->lock);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
if (cfg != NULL) {
mf = v4l2_subdev_get_try_format(sd, cfg, fmt->pad);
*mf = fmt->format;
}
} else {
if (ov965x->streaming) {
ret = -EBUSY;
} else {
ov965x->frame_size = size;
ov965x->format = fmt->format;
ov965x->tslb_reg = ov965x_formats[index].tslb_reg;
ov965x->apply_frame_fmt = 1;
}
}
if (!ret && fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
struct v4l2_subdev_frame_interval fiv = {
.interval = { 0, 1 }
};
/* Reset to minimum possible frame interval */
__ov965x_set_frame_interval(ov965x, &fiv);
}
mutex_unlock(&ov965x->lock);
if (!ret)
ov965x_update_exposure_ctrl(ov965x);
return ret;
}
static int ov965x_set_frame_size(struct ov965x *ov965x)
{
int i, ret = 0;
for (i = 0; ret == 0 && i < NUM_FMT_REGS; i++)
ret = ov965x_write(ov965x->client, frame_size_reg_addr[i],
ov965x->frame_size->regs[i]);
return ret;
}
static int __ov965x_set_params(struct ov965x *ov965x)
{
struct i2c_client *client = ov965x->client;
struct ov965x_ctrls *ctrls = &ov965x->ctrls;
int ret = 0;
u8 reg;
if (ov965x->apply_frame_fmt) {
reg = DEF_CLKRC + ov965x->fiv->clkrc_div;
ret = ov965x_write(client, REG_CLKRC, reg);
if (ret < 0)
return ret;
ret = ov965x_set_frame_size(ov965x);
if (ret < 0)
return ret;
ret = ov965x_read(client, REG_TSLB, &reg);
if (ret < 0)
return ret;
reg &= ~TSLB_YUYV_MASK;
reg |= ov965x->tslb_reg;
ret = ov965x_write(client, REG_TSLB, reg);
if (ret < 0)
return ret;
}
ret = ov965x_set_default_gamma_curve(ov965x);
if (ret < 0)
return ret;
ret = ov965x_set_color_matrix(ov965x);
if (ret < 0)
return ret;
/*
* Select manual banding filter, the filter will
* be enabled further if required.
*/
ret = ov965x_read(client, REG_COM11, &reg);
if (!ret)
reg |= COM11_BANDING;
ret = ov965x_write(client, REG_COM11, reg);
if (ret < 0)
return ret;
/*
* Banding filter (REG_MBD value) needs to match selected
* resolution and frame rate, so it's always updated here.
*/
return ov965x_set_banding_filter(ov965x, ctrls->light_freq->val);
}
static int ov965x_s_stream(struct v4l2_subdev *sd, int on)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct ov965x *ov965x = to_ov965x(sd);
struct ov965x_ctrls *ctrls = &ov965x->ctrls;
int ret = 0;
v4l2_dbg(1, debug, client, "%s: on: %d\n", __func__, on);
mutex_lock(&ov965x->lock);
if (ov965x->streaming == !on) {
if (on)
ret = __ov965x_set_params(ov965x);
if (!ret && ctrls->update) {
/*
* ov965x_s_ctrl callback takes the mutex
* so it needs to be released here.
*/
mutex_unlock(&ov965x->lock);
ret = v4l2_ctrl_handler_setup(&ctrls->handler);
mutex_lock(&ov965x->lock);
if (!ret)
ctrls->update = 0;
}
if (!ret)
ret = ov965x_write(client, REG_COM2,
on ? 0x01 : 0x11);
}
if (!ret)
ov965x->streaming += on ? 1 : -1;
WARN_ON(ov965x->streaming < 0);
mutex_unlock(&ov965x->lock);
return ret;
}
/*
* V4L2 subdev internal operations
*/
static int ov965x_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct v4l2_mbus_framefmt *mf = v4l2_subdev_get_try_format(sd, fh->pad, 0);
ov965x_get_default_format(mf);
return 0;
}
static const struct v4l2_subdev_pad_ops ov965x_pad_ops = {
.enum_mbus_code = ov965x_enum_mbus_code,
.enum_frame_size = ov965x_enum_frame_sizes,
.get_fmt = ov965x_get_fmt,
.set_fmt = ov965x_set_fmt,
};
static const struct v4l2_subdev_video_ops ov965x_video_ops = {
.s_stream = ov965x_s_stream,
.g_frame_interval = ov965x_g_frame_interval,
.s_frame_interval = ov965x_s_frame_interval,
};
static const struct v4l2_subdev_internal_ops ov965x_sd_internal_ops = {
.open = ov965x_open,
};
static const struct v4l2_subdev_core_ops ov965x_core_ops = {
.s_power = ov965x_s_power,
.log_status = v4l2_ctrl_subdev_log_status,
.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
};
static const struct v4l2_subdev_ops ov965x_subdev_ops = {
.core = &ov965x_core_ops,
.pad = &ov965x_pad_ops,
.video = &ov965x_video_ops,
};
/*
* Reset and power down GPIOs configuration
*/
static int ov965x_configure_gpios(struct ov965x *ov965x,
const struct ov9650_platform_data *pdata)
{
int ret, i;
ov965x->gpios[GPIO_PWDN] = pdata->gpio_pwdn;
ov965x->gpios[GPIO_RST] = pdata->gpio_reset;
for (i = 0; i < ARRAY_SIZE(ov965x->gpios); i++) {
int gpio = ov965x->gpios[i];
if (!gpio_is_valid(gpio))
continue;
ret = devm_gpio_request_one(&ov965x->client->dev, gpio,
GPIOF_OUT_INIT_HIGH, "OV965X");
if (ret < 0)
return ret;
v4l2_dbg(1, debug, &ov965x->sd, "set gpio %d to 1\n", gpio);
gpio_set_value(gpio, 1);
gpio_export(gpio, 0);
ov965x->gpios[i] = gpio;
}
return 0;
}
static int ov965x_detect_sensor(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct ov965x *ov965x = to_ov965x(sd);
u8 pid, ver;
int ret;
mutex_lock(&ov965x->lock);
__ov965x_set_power(ov965x, 1);
usleep_range(25000, 26000);
/* Check sensor revision */
ret = ov965x_read(client, REG_PID, &pid);
if (!ret)
ret = ov965x_read(client, REG_VER, &ver);
__ov965x_set_power(ov965x, 0);
if (!ret) {
ov965x->id = OV965X_ID(pid, ver);
if (ov965x->id == OV9650_ID || ov965x->id == OV9652_ID) {
v4l2_info(sd, "Found OV%04X sensor\n", ov965x->id);
} else {
v4l2_err(sd, "Sensor detection failed (%04X, %d)\n",
ov965x->id, ret);
ret = -ENODEV;
}
}
mutex_unlock(&ov965x->lock);
return ret;
}
static int ov965x_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
const struct ov9650_platform_data *pdata = client->dev.platform_data;
struct v4l2_subdev *sd;
struct ov965x *ov965x;
int ret;
if (pdata == NULL) {
dev_err(&client->dev, "platform data not specified\n");
return -EINVAL;
}
if (pdata->mclk_frequency == 0) {
dev_err(&client->dev, "MCLK frequency not specified\n");
return -EINVAL;
}
ov965x = devm_kzalloc(&client->dev, sizeof(*ov965x), GFP_KERNEL);
if (!ov965x)
return -ENOMEM;
mutex_init(&ov965x->lock);
ov965x->client = client;
ov965x->mclk_frequency = pdata->mclk_frequency;
sd = &ov965x->sd;
v4l2_i2c_subdev_init(sd, client, &ov965x_subdev_ops);
strlcpy(sd->name, DRIVER_NAME, sizeof(sd->name));
sd->internal_ops = &ov965x_sd_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
V4L2_SUBDEV_FL_HAS_EVENTS;
ret = ov965x_configure_gpios(ov965x, pdata);
if (ret < 0)
return ret;
ov965x->pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
ret = media_entity_init(&sd->entity, 1, &ov965x->pad, 0);
if (ret < 0)
return ret;
ret = ov965x_initialize_controls(ov965x);
if (ret < 0)
goto err_me;
ov965x_get_default_format(&ov965x->format);
ov965x->frame_size = &ov965x_framesizes[0];
ov965x->fiv = &ov965x_intervals[0];
ret = ov965x_detect_sensor(sd);
if (ret < 0)
goto err_ctrls;
/* Update exposure time min/max to match frame format */
ov965x_update_exposure_ctrl(ov965x);
return 0;
err_ctrls:
v4l2_ctrl_handler_free(sd->ctrl_handler);
err_me:
media_entity_cleanup(&sd->entity);
return ret;
}
static int ov965x_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
v4l2_device_unregister_subdev(sd);
v4l2_ctrl_handler_free(sd->ctrl_handler);
media_entity_cleanup(&sd->entity);
return 0;
}
static const struct i2c_device_id ov965x_id[] = {
{ "OV9650", 0 },
{ "OV9652", 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, ov965x_id);
static struct i2c_driver ov965x_i2c_driver = {
.driver = {
.name = DRIVER_NAME,
},
.probe = ov965x_probe,
.remove = ov965x_remove,
.id_table = ov965x_id,
};
module_i2c_driver(ov965x_i2c_driver);
MODULE_AUTHOR("Sylwester Nawrocki <sylvester.nawrocki@gmail.com>");
MODULE_DESCRIPTION("OV9650/OV9652 CMOS Image Sensor driver");
MODULE_LICENSE("GPL");