OpenCloudOS-Kernel/drivers/gpu/ipu-v3/ipu-di.c

757 lines
19 KiB
C

/*
* Copyright (c) 2010 Sascha Hauer <s.hauer@pengutronix.de>
* Copyright (C) 2005-2009 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <linux/export.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <video/imx-ipu-v3.h>
#include "ipu-prv.h"
struct ipu_di {
void __iomem *base;
int id;
u32 module;
struct clk *clk_di; /* display input clock */
struct clk *clk_ipu; /* IPU bus clock */
struct clk *clk_di_pixel; /* resulting pixel clock */
bool inuse;
struct ipu_soc *ipu;
};
static DEFINE_MUTEX(di_mutex);
struct di_sync_config {
int run_count;
int run_src;
int offset_count;
int offset_src;
int repeat_count;
int cnt_clr_src;
int cnt_polarity_gen_en;
int cnt_polarity_clr_src;
int cnt_polarity_trigger_src;
int cnt_up;
int cnt_down;
};
enum di_pins {
DI_PIN11 = 0,
DI_PIN12 = 1,
DI_PIN13 = 2,
DI_PIN14 = 3,
DI_PIN15 = 4,
DI_PIN16 = 5,
DI_PIN17 = 6,
DI_PIN_CS = 7,
DI_PIN_SER_CLK = 0,
DI_PIN_SER_RS = 1,
};
enum di_sync_wave {
DI_SYNC_NONE = 0,
DI_SYNC_CLK = 1,
DI_SYNC_INT_HSYNC = 2,
DI_SYNC_HSYNC = 3,
DI_SYNC_VSYNC = 4,
DI_SYNC_DE = 6,
};
#define SYNC_WAVE 0
#define DI_GENERAL 0x0000
#define DI_BS_CLKGEN0 0x0004
#define DI_BS_CLKGEN1 0x0008
#define DI_SW_GEN0(gen) (0x000c + 4 * ((gen) - 1))
#define DI_SW_GEN1(gen) (0x0030 + 4 * ((gen) - 1))
#define DI_STP_REP(gen) (0x0148 + 4 * (((gen) - 1)/2))
#define DI_SYNC_AS_GEN 0x0054
#define DI_DW_GEN(gen) (0x0058 + 4 * (gen))
#define DI_DW_SET(gen, set) (0x0088 + 4 * ((gen) + 0xc * (set)))
#define DI_SER_CONF 0x015c
#define DI_SSC 0x0160
#define DI_POL 0x0164
#define DI_AW0 0x0168
#define DI_AW1 0x016c
#define DI_SCR_CONF 0x0170
#define DI_STAT 0x0174
#define DI_SW_GEN0_RUN_COUNT(x) ((x) << 19)
#define DI_SW_GEN0_RUN_SRC(x) ((x) << 16)
#define DI_SW_GEN0_OFFSET_COUNT(x) ((x) << 3)
#define DI_SW_GEN0_OFFSET_SRC(x) ((x) << 0)
#define DI_SW_GEN1_CNT_POL_GEN_EN(x) ((x) << 29)
#define DI_SW_GEN1_CNT_CLR_SRC(x) ((x) << 25)
#define DI_SW_GEN1_CNT_POL_TRIGGER_SRC(x) ((x) << 12)
#define DI_SW_GEN1_CNT_POL_CLR_SRC(x) ((x) << 9)
#define DI_SW_GEN1_CNT_DOWN(x) ((x) << 16)
#define DI_SW_GEN1_CNT_UP(x) (x)
#define DI_SW_GEN1_AUTO_RELOAD (0x10000000)
#define DI_DW_GEN_ACCESS_SIZE_OFFSET 24
#define DI_DW_GEN_COMPONENT_SIZE_OFFSET 16
#define DI_GEN_POLARITY_1 (1 << 0)
#define DI_GEN_POLARITY_2 (1 << 1)
#define DI_GEN_POLARITY_3 (1 << 2)
#define DI_GEN_POLARITY_4 (1 << 3)
#define DI_GEN_POLARITY_5 (1 << 4)
#define DI_GEN_POLARITY_6 (1 << 5)
#define DI_GEN_POLARITY_7 (1 << 6)
#define DI_GEN_POLARITY_8 (1 << 7)
#define DI_GEN_POLARITY_DISP_CLK (1 << 17)
#define DI_GEN_DI_CLK_EXT (1 << 20)
#define DI_GEN_DI_VSYNC_EXT (1 << 21)
#define DI_POL_DRDY_DATA_POLARITY (1 << 7)
#define DI_POL_DRDY_POLARITY_15 (1 << 4)
#define DI_VSYNC_SEL_OFFSET 13
static inline u32 ipu_di_read(struct ipu_di *di, unsigned offset)
{
return readl(di->base + offset);
}
static inline void ipu_di_write(struct ipu_di *di, u32 value, unsigned offset)
{
writel(value, di->base + offset);
}
static void ipu_di_data_wave_config(struct ipu_di *di,
int wave_gen,
int access_size, int component_size)
{
u32 reg;
reg = (access_size << DI_DW_GEN_ACCESS_SIZE_OFFSET) |
(component_size << DI_DW_GEN_COMPONENT_SIZE_OFFSET);
ipu_di_write(di, reg, DI_DW_GEN(wave_gen));
}
static void ipu_di_data_pin_config(struct ipu_di *di, int wave_gen, int di_pin,
int set, int up, int down)
{
u32 reg;
reg = ipu_di_read(di, DI_DW_GEN(wave_gen));
reg &= ~(0x3 << (di_pin * 2));
reg |= set << (di_pin * 2);
ipu_di_write(di, reg, DI_DW_GEN(wave_gen));
ipu_di_write(di, (down << 16) | up, DI_DW_SET(wave_gen, set));
}
static void ipu_di_sync_config(struct ipu_di *di, struct di_sync_config *config,
int start, int count)
{
u32 reg;
int i;
for (i = 0; i < count; i++) {
struct di_sync_config *c = &config[i];
int wave_gen = start + i + 1;
if ((c->run_count >= 0x1000) || (c->offset_count >= 0x1000) ||
(c->repeat_count >= 0x1000) ||
(c->cnt_up >= 0x400) ||
(c->cnt_down >= 0x400)) {
dev_err(di->ipu->dev, "DI%d counters out of range.\n",
di->id);
return;
}
reg = DI_SW_GEN0_RUN_COUNT(c->run_count) |
DI_SW_GEN0_RUN_SRC(c->run_src) |
DI_SW_GEN0_OFFSET_COUNT(c->offset_count) |
DI_SW_GEN0_OFFSET_SRC(c->offset_src);
ipu_di_write(di, reg, DI_SW_GEN0(wave_gen));
reg = DI_SW_GEN1_CNT_POL_GEN_EN(c->cnt_polarity_gen_en) |
DI_SW_GEN1_CNT_CLR_SRC(c->cnt_clr_src) |
DI_SW_GEN1_CNT_POL_TRIGGER_SRC(
c->cnt_polarity_trigger_src) |
DI_SW_GEN1_CNT_POL_CLR_SRC(c->cnt_polarity_clr_src) |
DI_SW_GEN1_CNT_DOWN(c->cnt_down) |
DI_SW_GEN1_CNT_UP(c->cnt_up);
/* Enable auto reload */
if (c->repeat_count == 0)
reg |= DI_SW_GEN1_AUTO_RELOAD;
ipu_di_write(di, reg, DI_SW_GEN1(wave_gen));
reg = ipu_di_read(di, DI_STP_REP(wave_gen));
reg &= ~(0xffff << (16 * ((wave_gen - 1) & 0x1)));
reg |= c->repeat_count << (16 * ((wave_gen - 1) & 0x1));
ipu_di_write(di, reg, DI_STP_REP(wave_gen));
}
}
static void ipu_di_sync_config_interlaced(struct ipu_di *di,
struct ipu_di_signal_cfg *sig)
{
u32 h_total = sig->mode.hactive + sig->mode.hsync_len +
sig->mode.hback_porch + sig->mode.hfront_porch;
u32 v_total = sig->mode.vactive + sig->mode.vsync_len +
sig->mode.vback_porch + sig->mode.vfront_porch;
u32 reg;
struct di_sync_config cfg[] = {
{
.run_count = h_total / 2 - 1,
.run_src = DI_SYNC_CLK,
}, {
.run_count = h_total - 11,
.run_src = DI_SYNC_CLK,
.cnt_down = 4,
}, {
.run_count = v_total * 2 - 1,
.run_src = DI_SYNC_INT_HSYNC,
.offset_count = 1,
.offset_src = DI_SYNC_INT_HSYNC,
.cnt_down = 4,
}, {
.run_count = v_total / 2 - 1,
.run_src = DI_SYNC_HSYNC,
.offset_count = sig->mode.vback_porch,
.offset_src = DI_SYNC_HSYNC,
.repeat_count = 2,
.cnt_clr_src = DI_SYNC_VSYNC,
}, {
.run_src = DI_SYNC_HSYNC,
.repeat_count = sig->mode.vactive / 2,
.cnt_clr_src = 4,
}, {
.run_count = v_total - 1,
.run_src = DI_SYNC_HSYNC,
}, {
.run_count = v_total / 2 - 1,
.run_src = DI_SYNC_HSYNC,
.offset_count = 9,
.offset_src = DI_SYNC_HSYNC,
.repeat_count = 2,
.cnt_clr_src = DI_SYNC_VSYNC,
}, {
.run_src = DI_SYNC_CLK,
.offset_count = sig->mode.hback_porch,
.offset_src = DI_SYNC_CLK,
.repeat_count = sig->mode.hactive,
.cnt_clr_src = 5,
}, {
.run_count = v_total - 1,
.run_src = DI_SYNC_INT_HSYNC,
.offset_count = v_total / 2,
.offset_src = DI_SYNC_INT_HSYNC,
.cnt_clr_src = DI_SYNC_HSYNC,
.cnt_down = 4,
}
};
ipu_di_sync_config(di, cfg, 0, ARRAY_SIZE(cfg));
/* set gentime select and tag sel */
reg = ipu_di_read(di, DI_SW_GEN1(9));
reg &= 0x1FFFFFFF;
reg |= (3 - 1) << 29 | 0x00008000;
ipu_di_write(di, reg, DI_SW_GEN1(9));
ipu_di_write(di, v_total / 2 - 1, DI_SCR_CONF);
}
static void ipu_di_sync_config_noninterlaced(struct ipu_di *di,
struct ipu_di_signal_cfg *sig, int div)
{
u32 h_total = sig->mode.hactive + sig->mode.hsync_len +
sig->mode.hback_porch + sig->mode.hfront_porch;
u32 v_total = sig->mode.vactive + sig->mode.vsync_len +
sig->mode.vback_porch + sig->mode.vfront_porch;
struct di_sync_config cfg[] = {
{
/* 1: INT_HSYNC */
.run_count = h_total - 1,
.run_src = DI_SYNC_CLK,
} , {
/* PIN2: HSYNC */
.run_count = h_total - 1,
.run_src = DI_SYNC_CLK,
.offset_count = div * sig->v_to_h_sync,
.offset_src = DI_SYNC_CLK,
.cnt_polarity_gen_en = 1,
.cnt_polarity_trigger_src = DI_SYNC_CLK,
.cnt_down = sig->mode.hsync_len * 2,
} , {
/* PIN3: VSYNC */
.run_count = v_total - 1,
.run_src = DI_SYNC_INT_HSYNC,
.cnt_polarity_gen_en = 1,
.cnt_polarity_trigger_src = DI_SYNC_INT_HSYNC,
.cnt_down = sig->mode.vsync_len * 2,
} , {
/* 4: Line Active */
.run_src = DI_SYNC_HSYNC,
.offset_count = sig->mode.vsync_len +
sig->mode.vback_porch,
.offset_src = DI_SYNC_HSYNC,
.repeat_count = sig->mode.vactive,
.cnt_clr_src = DI_SYNC_VSYNC,
} , {
/* 5: Pixel Active, referenced by DC */
.run_src = DI_SYNC_CLK,
.offset_count = sig->mode.hsync_len +
sig->mode.hback_porch,
.offset_src = DI_SYNC_CLK,
.repeat_count = sig->mode.hactive,
.cnt_clr_src = 5, /* Line Active */
} , {
/* unused */
} , {
/* unused */
} , {
/* unused */
} , {
/* unused */
},
};
/* can't use #7 and #8 for line active and pixel active counters */
struct di_sync_config cfg_vga[] = {
{
/* 1: INT_HSYNC */
.run_count = h_total - 1,
.run_src = DI_SYNC_CLK,
} , {
/* 2: VSYNC */
.run_count = v_total - 1,
.run_src = DI_SYNC_INT_HSYNC,
} , {
/* 3: Line Active */
.run_src = DI_SYNC_INT_HSYNC,
.offset_count = sig->mode.vsync_len +
sig->mode.vback_porch,
.offset_src = DI_SYNC_INT_HSYNC,
.repeat_count = sig->mode.vactive,
.cnt_clr_src = 3 /* VSYNC */,
} , {
/* PIN4: HSYNC for VGA via TVEv2 on TQ MBa53 */
.run_count = h_total - 1,
.run_src = DI_SYNC_CLK,
.offset_count = div * sig->v_to_h_sync + 18, /* magic value from Freescale TVE driver */
.offset_src = DI_SYNC_CLK,
.cnt_polarity_gen_en = 1,
.cnt_polarity_trigger_src = DI_SYNC_CLK,
.cnt_down = sig->mode.hsync_len * 2,
} , {
/* 5: Pixel Active signal to DC */
.run_src = DI_SYNC_CLK,
.offset_count = sig->mode.hsync_len +
sig->mode.hback_porch,
.offset_src = DI_SYNC_CLK,
.repeat_count = sig->mode.hactive,
.cnt_clr_src = 4, /* Line Active */
} , {
/* PIN6: VSYNC for VGA via TVEv2 on TQ MBa53 */
.run_count = v_total - 1,
.run_src = DI_SYNC_INT_HSYNC,
.offset_count = 1, /* magic value from Freescale TVE driver */
.offset_src = DI_SYNC_INT_HSYNC,
.cnt_polarity_gen_en = 1,
.cnt_polarity_trigger_src = DI_SYNC_INT_HSYNC,
.cnt_down = sig->mode.vsync_len * 2,
} , {
/* PIN4: HSYNC for VGA via TVEv2 on i.MX53-QSB */
.run_count = h_total - 1,
.run_src = DI_SYNC_CLK,
.offset_count = div * sig->v_to_h_sync + 18, /* magic value from Freescale TVE driver */
.offset_src = DI_SYNC_CLK,
.cnt_polarity_gen_en = 1,
.cnt_polarity_trigger_src = DI_SYNC_CLK,
.cnt_down = sig->mode.hsync_len * 2,
} , {
/* PIN6: VSYNC for VGA via TVEv2 on i.MX53-QSB */
.run_count = v_total - 1,
.run_src = DI_SYNC_INT_HSYNC,
.offset_count = 1, /* magic value from Freescale TVE driver */
.offset_src = DI_SYNC_INT_HSYNC,
.cnt_polarity_gen_en = 1,
.cnt_polarity_trigger_src = DI_SYNC_INT_HSYNC,
.cnt_down = sig->mode.vsync_len * 2,
} , {
/* unused */
},
};
ipu_di_write(di, v_total - 1, DI_SCR_CONF);
if (sig->hsync_pin == 2 && sig->vsync_pin == 3)
ipu_di_sync_config(di, cfg, 0, ARRAY_SIZE(cfg));
else
ipu_di_sync_config(di, cfg_vga, 0, ARRAY_SIZE(cfg_vga));
}
static void ipu_di_config_clock(struct ipu_di *di,
const struct ipu_di_signal_cfg *sig)
{
struct clk *clk;
unsigned clkgen0;
uint32_t val;
if (sig->clkflags & IPU_DI_CLKMODE_EXT) {
/*
* CLKMODE_EXT means we must use the DI clock: this is
* needed for things like LVDS which needs to feed the
* DI and LDB with the same pixel clock.
*/
clk = di->clk_di;
if (sig->clkflags & IPU_DI_CLKMODE_SYNC) {
/*
* CLKMODE_SYNC means that we want the DI to be
* clocked at the same rate as the parent clock.
* This is needed (eg) for LDB which needs to be
* fed with the same pixel clock. We assume that
* the LDB clock has already been set correctly.
*/
clkgen0 = 1 << 4;
} else {
/*
* We can use the divider. We should really have
* a flag here indicating whether the bridge can
* cope with a fractional divider or not. For the
* time being, let's go for simplicitly and
* reliability.
*/
unsigned long in_rate;
unsigned div;
clk_set_rate(clk, sig->mode.pixelclock);
in_rate = clk_get_rate(clk);
div = DIV_ROUND_CLOSEST(in_rate, sig->mode.pixelclock);
div = clamp(div, 1U, 255U);
clkgen0 = div << 4;
}
} else {
/*
* For other interfaces, we can arbitarily select between
* the DI specific clock and the internal IPU clock. See
* DI_GENERAL bit 20. We select the IPU clock if it can
* give us a clock rate within 1% of the requested frequency,
* otherwise we use the DI clock.
*/
unsigned long rate, clkrate;
unsigned div, error;
clkrate = clk_get_rate(di->clk_ipu);
div = DIV_ROUND_CLOSEST(clkrate, sig->mode.pixelclock);
div = clamp(div, 1U, 255U);
rate = clkrate / div;
error = rate / (sig->mode.pixelclock / 1000);
dev_dbg(di->ipu->dev, " IPU clock can give %lu with divider %u, error %d.%u%%\n",
rate, div, (signed)(error - 1000) / 10, error % 10);
/* Allow a 1% error */
if (error < 1010 && error >= 990) {
clk = di->clk_ipu;
clkgen0 = div << 4;
} else {
unsigned long in_rate;
unsigned div;
clk = di->clk_di;
clk_set_rate(clk, sig->mode.pixelclock);
in_rate = clk_get_rate(clk);
div = DIV_ROUND_CLOSEST(in_rate, sig->mode.pixelclock);
div = clamp(div, 1U, 255U);
clkgen0 = div << 4;
}
}
di->clk_di_pixel = clk;
/* Set the divider */
ipu_di_write(di, clkgen0, DI_BS_CLKGEN0);
/*
* Set the high/low periods. Bits 24:16 give us the falling edge,
* and bits 8:0 give the rising edge. LSB is fraction, and is
* based on the divider above. We want a 50% duty cycle, so set
* the falling edge to be half the divider.
*/
ipu_di_write(di, (clkgen0 >> 4) << 16, DI_BS_CLKGEN1);
/* Finally select the input clock */
val = ipu_di_read(di, DI_GENERAL) & ~DI_GEN_DI_CLK_EXT;
if (clk == di->clk_di)
val |= DI_GEN_DI_CLK_EXT;
ipu_di_write(di, val, DI_GENERAL);
dev_dbg(di->ipu->dev, "Want %luHz IPU %luHz DI %luHz using %s, %luHz\n",
sig->mode.pixelclock,
clk_get_rate(di->clk_ipu),
clk_get_rate(di->clk_di),
clk == di->clk_di ? "DI" : "IPU",
clk_get_rate(di->clk_di_pixel) / (clkgen0 >> 4));
}
/*
* This function is called to adjust a video mode to IPU restrictions.
* It is meant to be called from drm crtc mode_fixup() methods.
*/
int ipu_di_adjust_videomode(struct ipu_di *di, struct videomode *mode)
{
u32 diff;
if (mode->vfront_porch >= 2)
return 0;
diff = 2 - mode->vfront_porch;
if (mode->vback_porch >= diff) {
mode->vfront_porch = 2;
mode->vback_porch -= diff;
} else if (mode->vsync_len > diff) {
mode->vfront_porch = 2;
mode->vsync_len = mode->vsync_len - diff;
} else {
dev_warn(di->ipu->dev, "failed to adjust videomode\n");
return -EINVAL;
}
dev_warn(di->ipu->dev, "videomode adapted for IPU restrictions\n");
return 0;
}
EXPORT_SYMBOL_GPL(ipu_di_adjust_videomode);
int ipu_di_init_sync_panel(struct ipu_di *di, struct ipu_di_signal_cfg *sig)
{
u32 reg;
u32 di_gen, vsync_cnt;
u32 div;
dev_dbg(di->ipu->dev, "disp %d: panel size = %d x %d\n",
di->id, sig->mode.hactive, sig->mode.vactive);
if ((sig->mode.vsync_len == 0) || (sig->mode.hsync_len == 0))
return -EINVAL;
dev_dbg(di->ipu->dev, "Clocks: IPU %luHz DI %luHz Needed %luHz\n",
clk_get_rate(di->clk_ipu),
clk_get_rate(di->clk_di),
sig->mode.pixelclock);
mutex_lock(&di_mutex);
ipu_di_config_clock(di, sig);
div = ipu_di_read(di, DI_BS_CLKGEN0) & 0xfff;
div = div / 16; /* Now divider is integer portion */
/* Setup pixel clock timing */
/* Down time is half of period */
ipu_di_write(di, (div << 16), DI_BS_CLKGEN1);
ipu_di_data_wave_config(di, SYNC_WAVE, div - 1, div - 1);
ipu_di_data_pin_config(di, SYNC_WAVE, DI_PIN15, 3, 0, div * 2);
di_gen = ipu_di_read(di, DI_GENERAL) & DI_GEN_DI_CLK_EXT;
di_gen |= DI_GEN_DI_VSYNC_EXT;
if (sig->mode.flags & DISPLAY_FLAGS_INTERLACED) {
ipu_di_sync_config_interlaced(di, sig);
/* set y_sel = 1 */
di_gen |= 0x10000000;
di_gen |= DI_GEN_POLARITY_5;
di_gen |= DI_GEN_POLARITY_8;
vsync_cnt = 7;
if (sig->mode.flags & DISPLAY_FLAGS_HSYNC_HIGH)
di_gen |= DI_GEN_POLARITY_3;
if (sig->mode.flags & DISPLAY_FLAGS_VSYNC_HIGH)
di_gen |= DI_GEN_POLARITY_2;
} else {
ipu_di_sync_config_noninterlaced(di, sig, div);
vsync_cnt = 3;
if (di->id == 1)
/*
* TODO: change only for TVEv2, parallel display
* uses pin 2 / 3
*/
if (!(sig->hsync_pin == 2 && sig->vsync_pin == 3))
vsync_cnt = 6;
if (sig->mode.flags & DISPLAY_FLAGS_HSYNC_HIGH) {
if (sig->hsync_pin == 2)
di_gen |= DI_GEN_POLARITY_2;
else if (sig->hsync_pin == 4)
di_gen |= DI_GEN_POLARITY_4;
else if (sig->hsync_pin == 7)
di_gen |= DI_GEN_POLARITY_7;
}
if (sig->mode.flags & DISPLAY_FLAGS_VSYNC_HIGH) {
if (sig->vsync_pin == 3)
di_gen |= DI_GEN_POLARITY_3;
else if (sig->vsync_pin == 6)
di_gen |= DI_GEN_POLARITY_6;
else if (sig->vsync_pin == 8)
di_gen |= DI_GEN_POLARITY_8;
}
}
if (sig->clk_pol)
di_gen |= DI_GEN_POLARITY_DISP_CLK;
ipu_di_write(di, di_gen, DI_GENERAL);
ipu_di_write(di, (--vsync_cnt << DI_VSYNC_SEL_OFFSET) | 0x00000002,
DI_SYNC_AS_GEN);
reg = ipu_di_read(di, DI_POL);
reg &= ~(DI_POL_DRDY_DATA_POLARITY | DI_POL_DRDY_POLARITY_15);
if (sig->enable_pol)
reg |= DI_POL_DRDY_POLARITY_15;
if (sig->data_pol)
reg |= DI_POL_DRDY_DATA_POLARITY;
ipu_di_write(di, reg, DI_POL);
mutex_unlock(&di_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(ipu_di_init_sync_panel);
int ipu_di_enable(struct ipu_di *di)
{
int ret;
WARN_ON(IS_ERR(di->clk_di_pixel));
ret = clk_prepare_enable(di->clk_di_pixel);
if (ret)
return ret;
ipu_module_enable(di->ipu, di->module);
return 0;
}
EXPORT_SYMBOL_GPL(ipu_di_enable);
int ipu_di_disable(struct ipu_di *di)
{
WARN_ON(IS_ERR(di->clk_di_pixel));
ipu_module_disable(di->ipu, di->module);
clk_disable_unprepare(di->clk_di_pixel);
return 0;
}
EXPORT_SYMBOL_GPL(ipu_di_disable);
int ipu_di_get_num(struct ipu_di *di)
{
return di->id;
}
EXPORT_SYMBOL_GPL(ipu_di_get_num);
static DEFINE_MUTEX(ipu_di_lock);
struct ipu_di *ipu_di_get(struct ipu_soc *ipu, int disp)
{
struct ipu_di *di;
if (disp > 1)
return ERR_PTR(-EINVAL);
di = ipu->di_priv[disp];
mutex_lock(&ipu_di_lock);
if (di->inuse) {
di = ERR_PTR(-EBUSY);
goto out;
}
di->inuse = true;
out:
mutex_unlock(&ipu_di_lock);
return di;
}
EXPORT_SYMBOL_GPL(ipu_di_get);
void ipu_di_put(struct ipu_di *di)
{
mutex_lock(&ipu_di_lock);
di->inuse = false;
mutex_unlock(&ipu_di_lock);
}
EXPORT_SYMBOL_GPL(ipu_di_put);
int ipu_di_init(struct ipu_soc *ipu, struct device *dev, int id,
unsigned long base,
u32 module, struct clk *clk_ipu)
{
struct ipu_di *di;
if (id > 1)
return -ENODEV;
di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL);
if (!di)
return -ENOMEM;
ipu->di_priv[id] = di;
di->clk_di = devm_clk_get(dev, id ? "di1" : "di0");
if (IS_ERR(di->clk_di))
return PTR_ERR(di->clk_di);
di->module = module;
di->id = id;
di->clk_ipu = clk_ipu;
di->base = devm_ioremap(dev, base, PAGE_SIZE);
if (!di->base)
return -ENOMEM;
ipu_di_write(di, 0x10, DI_BS_CLKGEN0);
dev_dbg(dev, "DI%d base: 0x%08lx remapped to %p\n",
id, base, di->base);
di->inuse = false;
di->ipu = ipu;
return 0;
}
void ipu_di_exit(struct ipu_soc *ipu, int id)
{
}