OpenCloudOS-Kernel/drivers/hv/hv_balloon.c

2175 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012, Microsoft Corporation.
*
* Author:
* K. Y. Srinivasan <kys@microsoft.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/mman.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kthread.h>
#include <linux/completion.h>
#include <linux/count_zeros.h>
#include <linux/memory_hotplug.h>
#include <linux/memory.h>
#include <linux/notifier.h>
#include <linux/percpu_counter.h>
#include <linux/page_reporting.h>
#include <linux/hyperv.h>
#include <asm/hyperv-tlfs.h>
#include <asm/mshyperv.h>
#define CREATE_TRACE_POINTS
#include "hv_trace_balloon.h"
/*
* We begin with definitions supporting the Dynamic Memory protocol
* with the host.
*
* Begin protocol definitions.
*/
/*
* Protocol versions. The low word is the minor version, the high word the major
* version.
*
* History:
* Initial version 1.0
* Changed to 0.1 on 2009/03/25
* Changes to 0.2 on 2009/05/14
* Changes to 0.3 on 2009/12/03
* Changed to 1.0 on 2011/04/05
*/
#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
enum {
DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
};
/*
* Message Types
*/
enum dm_message_type {
/*
* Version 0.3
*/
DM_ERROR = 0,
DM_VERSION_REQUEST = 1,
DM_VERSION_RESPONSE = 2,
DM_CAPABILITIES_REPORT = 3,
DM_CAPABILITIES_RESPONSE = 4,
DM_STATUS_REPORT = 5,
DM_BALLOON_REQUEST = 6,
DM_BALLOON_RESPONSE = 7,
DM_UNBALLOON_REQUEST = 8,
DM_UNBALLOON_RESPONSE = 9,
DM_MEM_HOT_ADD_REQUEST = 10,
DM_MEM_HOT_ADD_RESPONSE = 11,
DM_VERSION_03_MAX = 11,
/*
* Version 1.0.
*/
DM_INFO_MESSAGE = 12,
DM_VERSION_1_MAX = 12
};
/*
* Structures defining the dynamic memory management
* protocol.
*/
union dm_version {
struct {
__u16 minor_version;
__u16 major_version;
};
__u32 version;
} __packed;
union dm_caps {
struct {
__u64 balloon:1;
__u64 hot_add:1;
/*
* To support guests that may have alignment
* limitations on hot-add, the guest can specify
* its alignment requirements; a value of n
* represents an alignment of 2^n in mega bytes.
*/
__u64 hot_add_alignment:4;
__u64 reservedz:58;
} cap_bits;
__u64 caps;
} __packed;
union dm_mem_page_range {
struct {
/*
* The PFN number of the first page in the range.
* 40 bits is the architectural limit of a PFN
* number for AMD64.
*/
__u64 start_page:40;
/*
* The number of pages in the range.
*/
__u64 page_cnt:24;
} finfo;
__u64 page_range;
} __packed;
/*
* The header for all dynamic memory messages:
*
* type: Type of the message.
* size: Size of the message in bytes; including the header.
* trans_id: The guest is responsible for manufacturing this ID.
*/
struct dm_header {
__u16 type;
__u16 size;
__u32 trans_id;
} __packed;
/*
* A generic message format for dynamic memory.
* Specific message formats are defined later in the file.
*/
struct dm_message {
struct dm_header hdr;
__u8 data[]; /* enclosed message */
} __packed;
/*
* Specific message types supporting the dynamic memory protocol.
*/
/*
* Version negotiation message. Sent from the guest to the host.
* The guest is free to try different versions until the host
* accepts the version.
*
* dm_version: The protocol version requested.
* is_last_attempt: If TRUE, this is the last version guest will request.
* reservedz: Reserved field, set to zero.
*/
struct dm_version_request {
struct dm_header hdr;
union dm_version version;
__u32 is_last_attempt:1;
__u32 reservedz:31;
} __packed;
/*
* Version response message; Host to Guest and indicates
* if the host has accepted the version sent by the guest.
*
* is_accepted: If TRUE, host has accepted the version and the guest
* should proceed to the next stage of the protocol. FALSE indicates that
* guest should re-try with a different version.
*
* reservedz: Reserved field, set to zero.
*/
struct dm_version_response {
struct dm_header hdr;
__u64 is_accepted:1;
__u64 reservedz:63;
} __packed;
/*
* Message reporting capabilities. This is sent from the guest to the
* host.
*/
struct dm_capabilities {
struct dm_header hdr;
union dm_caps caps;
__u64 min_page_cnt;
__u64 max_page_number;
} __packed;
/*
* Response to the capabilities message. This is sent from the host to the
* guest. This message notifies if the host has accepted the guest's
* capabilities. If the host has not accepted, the guest must shutdown
* the service.
*
* is_accepted: Indicates if the host has accepted guest's capabilities.
* reservedz: Must be 0.
*/
struct dm_capabilities_resp_msg {
struct dm_header hdr;
__u64 is_accepted:1;
__u64 reservedz:63;
} __packed;
/*
* This message is used to report memory pressure from the guest.
* This message is not part of any transaction and there is no
* response to this message.
*
* num_avail: Available memory in pages.
* num_committed: Committed memory in pages.
* page_file_size: The accumulated size of all page files
* in the system in pages.
* zero_free: The number of zero and free pages.
* page_file_writes: The writes to the page file in pages.
* io_diff: An indicator of file cache efficiency or page file activity,
* calculated as File Cache Page Fault Count - Page Read Count.
* This value is in pages.
*
* Some of these metrics are Windows specific and fortunately
* the algorithm on the host side that computes the guest memory
* pressure only uses num_committed value.
*/
struct dm_status {
struct dm_header hdr;
__u64 num_avail;
__u64 num_committed;
__u64 page_file_size;
__u64 zero_free;
__u32 page_file_writes;
__u32 io_diff;
} __packed;
/*
* Message to ask the guest to allocate memory - balloon up message.
* This message is sent from the host to the guest. The guest may not be
* able to allocate as much memory as requested.
*
* num_pages: number of pages to allocate.
*/
struct dm_balloon {
struct dm_header hdr;
__u32 num_pages;
__u32 reservedz;
} __packed;
/*
* Balloon response message; this message is sent from the guest
* to the host in response to the balloon message.
*
* reservedz: Reserved; must be set to zero.
* more_pages: If FALSE, this is the last message of the transaction.
* if TRUE there will atleast one more message from the guest.
*
* range_count: The number of ranges in the range array.
*
* range_array: An array of page ranges returned to the host.
*
*/
struct dm_balloon_response {
struct dm_header hdr;
__u32 reservedz;
__u32 more_pages:1;
__u32 range_count:31;
union dm_mem_page_range range_array[];
} __packed;
/*
* Un-balloon message; this message is sent from the host
* to the guest to give guest more memory.
*
* more_pages: If FALSE, this is the last message of the transaction.
* if TRUE there will atleast one more message from the guest.
*
* reservedz: Reserved; must be set to zero.
*
* range_count: The number of ranges in the range array.
*
* range_array: An array of page ranges returned to the host.
*
*/
struct dm_unballoon_request {
struct dm_header hdr;
__u32 more_pages:1;
__u32 reservedz:31;
__u32 range_count;
union dm_mem_page_range range_array[];
} __packed;
/*
* Un-balloon response message; this message is sent from the guest
* to the host in response to an unballoon request.
*
*/
struct dm_unballoon_response {
struct dm_header hdr;
} __packed;
/*
* Hot add request message. Message sent from the host to the guest.
*
* mem_range: Memory range to hot add.
*
*/
struct dm_hot_add {
struct dm_header hdr;
union dm_mem_page_range range;
} __packed;
/*
* Hot add response message.
* This message is sent by the guest to report the status of a hot add request.
* If page_count is less than the requested page count, then the host should
* assume all further hot add requests will fail, since this indicates that
* the guest has hit an upper physical memory barrier.
*
* Hot adds may also fail due to low resources; in this case, the guest must
* not complete this message until the hot add can succeed, and the host must
* not send a new hot add request until the response is sent.
* If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
* times it fails the request.
*
*
* page_count: number of pages that were successfully hot added.
*
* result: result of the operation 1: success, 0: failure.
*
*/
struct dm_hot_add_response {
struct dm_header hdr;
__u32 page_count;
__u32 result;
} __packed;
/*
* Types of information sent from host to the guest.
*/
enum dm_info_type {
INFO_TYPE_MAX_PAGE_CNT = 0,
MAX_INFO_TYPE
};
/*
* Header for the information message.
*/
struct dm_info_header {
enum dm_info_type type;
__u32 data_size;
} __packed;
/*
* This message is sent from the host to the guest to pass
* some relevant information (win8 addition).
*
* reserved: no used.
* info_size: size of the information blob.
* info: information blob.
*/
struct dm_info_msg {
struct dm_header hdr;
__u32 reserved;
__u32 info_size;
__u8 info[];
};
/*
* End protocol definitions.
*/
/*
* State to manage hot adding memory into the guest.
* The range start_pfn : end_pfn specifies the range
* that the host has asked us to hot add. The range
* start_pfn : ha_end_pfn specifies the range that we have
* currently hot added. We hot add in multiples of 128M
* chunks; it is possible that we may not be able to bring
* online all the pages in the region. The range
* covered_start_pfn:covered_end_pfn defines the pages that can
* be brough online.
*/
struct hv_hotadd_state {
struct list_head list;
unsigned long start_pfn;
unsigned long covered_start_pfn;
unsigned long covered_end_pfn;
unsigned long ha_end_pfn;
unsigned long end_pfn;
/*
* A list of gaps.
*/
struct list_head gap_list;
};
struct hv_hotadd_gap {
struct list_head list;
unsigned long start_pfn;
unsigned long end_pfn;
};
struct balloon_state {
__u32 num_pages;
struct work_struct wrk;
};
struct hot_add_wrk {
union dm_mem_page_range ha_page_range;
union dm_mem_page_range ha_region_range;
struct work_struct wrk;
};
static bool allow_hibernation;
static bool hot_add = true;
static bool do_hot_add;
/*
* Delay reporting memory pressure by
* the specified number of seconds.
*/
static uint pressure_report_delay = 45;
extern unsigned int page_reporting_order;
#define HV_MAX_FAILURES 2
/*
* The last time we posted a pressure report to host.
*/
static unsigned long last_post_time;
static int hv_hypercall_multi_failure;
module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
static atomic_t trans_id = ATOMIC_INIT(0);
static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
/*
* Driver specific state.
*/
enum hv_dm_state {
DM_INITIALIZING = 0,
DM_INITIALIZED,
DM_BALLOON_UP,
DM_BALLOON_DOWN,
DM_HOT_ADD,
DM_INIT_ERROR
};
static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
struct hv_dynmem_device {
struct hv_device *dev;
enum hv_dm_state state;
struct completion host_event;
struct completion config_event;
/*
* Number of pages we have currently ballooned out.
*/
unsigned int num_pages_ballooned;
unsigned int num_pages_onlined;
unsigned int num_pages_added;
/*
* State to manage the ballooning (up) operation.
*/
struct balloon_state balloon_wrk;
/*
* State to execute the "hot-add" operation.
*/
struct hot_add_wrk ha_wrk;
/*
* This state tracks if the host has specified a hot-add
* region.
*/
bool host_specified_ha_region;
/*
* State to synchronize hot-add.
*/
struct completion ol_waitevent;
/*
* This thread handles hot-add
* requests from the host as well as notifying
* the host with regards to memory pressure in
* the guest.
*/
struct task_struct *thread;
/*
* Protects ha_region_list, num_pages_onlined counter and individual
* regions from ha_region_list.
*/
spinlock_t ha_lock;
/*
* A list of hot-add regions.
*/
struct list_head ha_region_list;
/*
* We start with the highest version we can support
* and downgrade based on the host; we save here the
* next version to try.
*/
__u32 next_version;
/*
* The negotiated version agreed by host.
*/
__u32 version;
struct page_reporting_dev_info pr_dev_info;
/*
* Maximum number of pages that can be hot_add-ed
*/
__u64 max_dynamic_page_count;
};
static struct hv_dynmem_device dm_device;
static void post_status(struct hv_dynmem_device *dm);
static void enable_page_reporting(void);
static void disable_page_reporting(void);
#ifdef CONFIG_MEMORY_HOTPLUG
static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
unsigned long pfn)
{
struct hv_hotadd_gap *gap;
/* The page is not backed. */
if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
return false;
/* Check for gaps. */
list_for_each_entry(gap, &has->gap_list, list) {
if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
return false;
}
return true;
}
static unsigned long hv_page_offline_check(unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long pfn = start_pfn, count = 0;
struct hv_hotadd_state *has;
bool found;
while (pfn < start_pfn + nr_pages) {
/*
* Search for HAS which covers the pfn and when we find one
* count how many consequitive PFNs are covered.
*/
found = false;
list_for_each_entry(has, &dm_device.ha_region_list, list) {
while ((pfn >= has->start_pfn) &&
(pfn < has->end_pfn) &&
(pfn < start_pfn + nr_pages)) {
found = true;
if (has_pfn_is_backed(has, pfn))
count++;
pfn++;
}
}
/*
* This PFN is not in any HAS (e.g. we're offlining a region
* which was present at boot), no need to account for it. Go
* to the next one.
*/
if (!found)
pfn++;
}
return count;
}
static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
void *v)
{
struct memory_notify *mem = (struct memory_notify *)v;
unsigned long flags, pfn_count;
switch (val) {
case MEM_ONLINE:
case MEM_CANCEL_ONLINE:
complete(&dm_device.ol_waitevent);
break;
case MEM_OFFLINE:
spin_lock_irqsave(&dm_device.ha_lock, flags);
pfn_count = hv_page_offline_check(mem->start_pfn,
mem->nr_pages);
if (pfn_count <= dm_device.num_pages_onlined) {
dm_device.num_pages_onlined -= pfn_count;
} else {
/*
* We're offlining more pages than we managed to online.
* This is unexpected. In any case don't let
* num_pages_onlined wrap around zero.
*/
WARN_ON_ONCE(1);
dm_device.num_pages_onlined = 0;
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
break;
case MEM_GOING_ONLINE:
case MEM_GOING_OFFLINE:
case MEM_CANCEL_OFFLINE:
break;
}
return NOTIFY_OK;
}
static struct notifier_block hv_memory_nb = {
.notifier_call = hv_memory_notifier,
.priority = 0
};
/* Check if the particular page is backed and can be onlined and online it. */
static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
{
if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
if (!PageOffline(pg))
__SetPageOffline(pg);
return;
}
if (PageOffline(pg))
__ClearPageOffline(pg);
/* This frame is currently backed; online the page. */
generic_online_page(pg, 0);
lockdep_assert_held(&dm_device.ha_lock);
dm_device.num_pages_onlined++;
}
static void hv_bring_pgs_online(struct hv_hotadd_state *has,
unsigned long start_pfn, unsigned long size)
{
int i;
pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
for (i = 0; i < size; i++)
hv_page_online_one(has, pfn_to_page(start_pfn + i));
}
static void hv_mem_hot_add(unsigned long start, unsigned long size,
unsigned long pfn_count,
struct hv_hotadd_state *has)
{
int ret = 0;
int i, nid;
unsigned long start_pfn;
unsigned long processed_pfn;
unsigned long total_pfn = pfn_count;
unsigned long flags;
for (i = 0; i < (size/HA_CHUNK); i++) {
start_pfn = start + (i * HA_CHUNK);
spin_lock_irqsave(&dm_device.ha_lock, flags);
has->ha_end_pfn += HA_CHUNK;
if (total_pfn > HA_CHUNK) {
processed_pfn = HA_CHUNK;
total_pfn -= HA_CHUNK;
} else {
processed_pfn = total_pfn;
total_pfn = 0;
}
has->covered_end_pfn += processed_pfn;
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
reinit_completion(&dm_device.ol_waitevent);
nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
ret = add_memory(nid, PFN_PHYS((start_pfn)),
(HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
if (ret) {
pr_err("hot_add memory failed error is %d\n", ret);
if (ret == -EEXIST) {
/*
* This error indicates that the error
* is not a transient failure. This is the
* case where the guest's physical address map
* precludes hot adding memory. Stop all further
* memory hot-add.
*/
do_hot_add = false;
}
spin_lock_irqsave(&dm_device.ha_lock, flags);
has->ha_end_pfn -= HA_CHUNK;
has->covered_end_pfn -= processed_pfn;
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
break;
}
/*
* Wait for memory to get onlined. If the kernel onlined the
* memory when adding it, this will return directly. Otherwise,
* it will wait for user space to online the memory. This helps
* to avoid adding memory faster than it is getting onlined. As
* adding succeeded, it is ok to proceed even if the memory was
* not onlined in time.
*/
wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
post_status(&dm_device);
}
}
static void hv_online_page(struct page *pg, unsigned int order)
{
struct hv_hotadd_state *has;
unsigned long flags;
unsigned long pfn = page_to_pfn(pg);
spin_lock_irqsave(&dm_device.ha_lock, flags);
list_for_each_entry(has, &dm_device.ha_region_list, list) {
/* The page belongs to a different HAS. */
if ((pfn < has->start_pfn) ||
(pfn + (1UL << order) > has->end_pfn))
continue;
hv_bring_pgs_online(has, pfn, 1UL << order);
break;
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
}
static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
{
struct hv_hotadd_state *has;
struct hv_hotadd_gap *gap;
unsigned long residual, new_inc;
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&dm_device.ha_lock, flags);
list_for_each_entry(has, &dm_device.ha_region_list, list) {
/*
* If the pfn range we are dealing with is not in the current
* "hot add block", move on.
*/
if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
continue;
/*
* If the current start pfn is not where the covered_end
* is, create a gap and update covered_end_pfn.
*/
if (has->covered_end_pfn != start_pfn) {
gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
if (!gap) {
ret = -ENOMEM;
break;
}
INIT_LIST_HEAD(&gap->list);
gap->start_pfn = has->covered_end_pfn;
gap->end_pfn = start_pfn;
list_add_tail(&gap->list, &has->gap_list);
has->covered_end_pfn = start_pfn;
}
/*
* If the current hot add-request extends beyond
* our current limit; extend it.
*/
if ((start_pfn + pfn_cnt) > has->end_pfn) {
residual = (start_pfn + pfn_cnt - has->end_pfn);
/*
* Extend the region by multiples of HA_CHUNK.
*/
new_inc = (residual / HA_CHUNK) * HA_CHUNK;
if (residual % HA_CHUNK)
new_inc += HA_CHUNK;
has->end_pfn += new_inc;
}
ret = 1;
break;
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
return ret;
}
static unsigned long handle_pg_range(unsigned long pg_start,
unsigned long pg_count)
{
unsigned long start_pfn = pg_start;
unsigned long pfn_cnt = pg_count;
unsigned long size;
struct hv_hotadd_state *has;
unsigned long pgs_ol = 0;
unsigned long old_covered_state;
unsigned long res = 0, flags;
pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
pg_start);
spin_lock_irqsave(&dm_device.ha_lock, flags);
list_for_each_entry(has, &dm_device.ha_region_list, list) {
/*
* If the pfn range we are dealing with is not in the current
* "hot add block", move on.
*/
if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
continue;
old_covered_state = has->covered_end_pfn;
if (start_pfn < has->ha_end_pfn) {
/*
* This is the case where we are backing pages
* in an already hot added region. Bring
* these pages online first.
*/
pgs_ol = has->ha_end_pfn - start_pfn;
if (pgs_ol > pfn_cnt)
pgs_ol = pfn_cnt;
has->covered_end_pfn += pgs_ol;
pfn_cnt -= pgs_ol;
/*
* Check if the corresponding memory block is already
* online. It is possible to observe struct pages still
* being uninitialized here so check section instead.
* In case the section is online we need to bring the
* rest of pfns (which were not backed previously)
* online too.
*/
if (start_pfn > has->start_pfn &&
online_section_nr(pfn_to_section_nr(start_pfn)))
hv_bring_pgs_online(has, start_pfn, pgs_ol);
}
if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
/*
* We have some residual hot add range
* that needs to be hot added; hot add
* it now. Hot add a multiple of
* HA_CHUNK that fully covers the pages
* we have.
*/
size = (has->end_pfn - has->ha_end_pfn);
if (pfn_cnt <= size) {
size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
if (pfn_cnt % HA_CHUNK)
size += HA_CHUNK;
} else {
pfn_cnt = size;
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
spin_lock_irqsave(&dm_device.ha_lock, flags);
}
/*
* If we managed to online any pages that were given to us,
* we declare success.
*/
res = has->covered_end_pfn - old_covered_state;
break;
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
return res;
}
static unsigned long process_hot_add(unsigned long pg_start,
unsigned long pfn_cnt,
unsigned long rg_start,
unsigned long rg_size)
{
struct hv_hotadd_state *ha_region = NULL;
int covered;
unsigned long flags;
if (pfn_cnt == 0)
return 0;
if (!dm_device.host_specified_ha_region) {
covered = pfn_covered(pg_start, pfn_cnt);
if (covered < 0)
return 0;
if (covered)
goto do_pg_range;
}
/*
* If the host has specified a hot-add range; deal with it first.
*/
if (rg_size != 0) {
ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
if (!ha_region)
return 0;
INIT_LIST_HEAD(&ha_region->list);
INIT_LIST_HEAD(&ha_region->gap_list);
ha_region->start_pfn = rg_start;
ha_region->ha_end_pfn = rg_start;
ha_region->covered_start_pfn = pg_start;
ha_region->covered_end_pfn = pg_start;
ha_region->end_pfn = rg_start + rg_size;
spin_lock_irqsave(&dm_device.ha_lock, flags);
list_add_tail(&ha_region->list, &dm_device.ha_region_list);
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
}
do_pg_range:
/*
* Process the page range specified; bringing them
* online if possible.
*/
return handle_pg_range(pg_start, pfn_cnt);
}
#endif
static void hot_add_req(struct work_struct *dummy)
{
struct dm_hot_add_response resp;
#ifdef CONFIG_MEMORY_HOTPLUG
unsigned long pg_start, pfn_cnt;
unsigned long rg_start, rg_sz;
#endif
struct hv_dynmem_device *dm = &dm_device;
memset(&resp, 0, sizeof(struct dm_hot_add_response));
resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
resp.hdr.size = sizeof(struct dm_hot_add_response);
#ifdef CONFIG_MEMORY_HOTPLUG
pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
unsigned long region_size;
unsigned long region_start;
/*
* The host has not specified the hot-add region.
* Based on the hot-add page range being specified,
* compute a hot-add region that can cover the pages
* that need to be hot-added while ensuring the alignment
* and size requirements of Linux as it relates to hot-add.
*/
region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
if (pfn_cnt % HA_CHUNK)
region_size += HA_CHUNK;
region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
rg_start = region_start;
rg_sz = region_size;
}
if (do_hot_add)
resp.page_count = process_hot_add(pg_start, pfn_cnt,
rg_start, rg_sz);
dm->num_pages_added += resp.page_count;
#endif
/*
* The result field of the response structure has the
* following semantics:
*
* 1. If all or some pages hot-added: Guest should return success.
*
* 2. If no pages could be hot-added:
*
* If the guest returns success, then the host
* will not attempt any further hot-add operations. This
* signifies a permanent failure.
*
* If the guest returns failure, then this failure will be
* treated as a transient failure and the host may retry the
* hot-add operation after some delay.
*/
if (resp.page_count > 0)
resp.result = 1;
else if (!do_hot_add)
resp.result = 1;
else
resp.result = 0;
if (!do_hot_add || resp.page_count == 0) {
if (!allow_hibernation)
pr_err("Memory hot add failed\n");
else
pr_info("Ignore hot-add request!\n");
}
dm->state = DM_INITIALIZED;
resp.hdr.trans_id = atomic_inc_return(&trans_id);
vmbus_sendpacket(dm->dev->channel, &resp,
sizeof(struct dm_hot_add_response),
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
}
static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
{
struct dm_info_header *info_hdr;
info_hdr = (struct dm_info_header *)msg->info;
switch (info_hdr->type) {
case INFO_TYPE_MAX_PAGE_CNT:
if (info_hdr->data_size == sizeof(__u64)) {
__u64 *max_page_count = (__u64 *)&info_hdr[1];
pr_info("Max. dynamic memory size: %llu MB\n",
(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
dm->max_dynamic_page_count = *max_page_count;
}
break;
default:
pr_warn("Received Unknown type: %d\n", info_hdr->type);
}
}
static unsigned long compute_balloon_floor(void)
{
unsigned long min_pages;
unsigned long nr_pages = totalram_pages();
#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
/* Simple continuous piecewiese linear function:
* max MiB -> min MiB gradient
* 0 0
* 16 16
* 32 24
* 128 72 (1/2)
* 512 168 (1/4)
* 2048 360 (1/8)
* 8192 744 (1/16)
* 32768 1512 (1/32)
*/
if (nr_pages < MB2PAGES(128))
min_pages = MB2PAGES(8) + (nr_pages >> 1);
else if (nr_pages < MB2PAGES(512))
min_pages = MB2PAGES(40) + (nr_pages >> 2);
else if (nr_pages < MB2PAGES(2048))
min_pages = MB2PAGES(104) + (nr_pages >> 3);
else if (nr_pages < MB2PAGES(8192))
min_pages = MB2PAGES(232) + (nr_pages >> 4);
else
min_pages = MB2PAGES(488) + (nr_pages >> 5);
#undef MB2PAGES
return min_pages;
}
/*
* Compute total committed memory pages
*/
static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
{
return vm_memory_committed() +
dm->num_pages_ballooned +
(dm->num_pages_added > dm->num_pages_onlined ?
dm->num_pages_added - dm->num_pages_onlined : 0) +
compute_balloon_floor();
}
/*
* Post our status as it relates memory pressure to the
* host. Host expects the guests to post this status
* periodically at 1 second intervals.
*
* The metrics specified in this protocol are very Windows
* specific and so we cook up numbers here to convey our memory
* pressure.
*/
static void post_status(struct hv_dynmem_device *dm)
{
struct dm_status status;
unsigned long now = jiffies;
unsigned long last_post = last_post_time;
unsigned long num_pages_avail, num_pages_committed;
if (pressure_report_delay > 0) {
--pressure_report_delay;
return;
}
if (!time_after(now, (last_post_time + HZ)))
return;
memset(&status, 0, sizeof(struct dm_status));
status.hdr.type = DM_STATUS_REPORT;
status.hdr.size = sizeof(struct dm_status);
status.hdr.trans_id = atomic_inc_return(&trans_id);
/*
* The host expects the guest to report free and committed memory.
* Furthermore, the host expects the pressure information to include
* the ballooned out pages. For a given amount of memory that we are
* managing we need to compute a floor below which we should not
* balloon. Compute this and add it to the pressure report.
* We also need to report all offline pages (num_pages_added -
* num_pages_onlined) as committed to the host, otherwise it can try
* asking us to balloon them out.
*/
num_pages_avail = si_mem_available();
num_pages_committed = get_pages_committed(dm);
trace_balloon_status(num_pages_avail, num_pages_committed,
vm_memory_committed(), dm->num_pages_ballooned,
dm->num_pages_added, dm->num_pages_onlined);
/* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
/*
* If our transaction ID is no longer current, just don't
* send the status. This can happen if we were interrupted
* after we picked our transaction ID.
*/
if (status.hdr.trans_id != atomic_read(&trans_id))
return;
/*
* If the last post time that we sampled has changed,
* we have raced, don't post the status.
*/
if (last_post != last_post_time)
return;
last_post_time = jiffies;
vmbus_sendpacket(dm->dev->channel, &status,
sizeof(struct dm_status),
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
}
static void free_balloon_pages(struct hv_dynmem_device *dm,
union dm_mem_page_range *range_array)
{
int num_pages = range_array->finfo.page_cnt;
__u64 start_frame = range_array->finfo.start_page;
struct page *pg;
int i;
for (i = 0; i < num_pages; i++) {
pg = pfn_to_page(i + start_frame);
__ClearPageOffline(pg);
__free_page(pg);
dm->num_pages_ballooned--;
adjust_managed_page_count(pg, 1);
}
}
static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
unsigned int num_pages,
struct dm_balloon_response *bl_resp,
int alloc_unit)
{
unsigned int i, j;
struct page *pg;
for (i = 0; i < num_pages / alloc_unit; i++) {
if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
HV_HYP_PAGE_SIZE)
return i * alloc_unit;
/*
* We execute this code in a thread context. Furthermore,
* we don't want the kernel to try too hard.
*/
pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
__GFP_NOMEMALLOC | __GFP_NOWARN,
get_order(alloc_unit << PAGE_SHIFT));
if (!pg)
return i * alloc_unit;
dm->num_pages_ballooned += alloc_unit;
/*
* If we allocatted 2M pages; split them so we
* can free them in any order we get.
*/
if (alloc_unit != 1)
split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
/* mark all pages offline */
for (j = 0; j < alloc_unit; j++) {
__SetPageOffline(pg + j);
adjust_managed_page_count(pg + j, -1);
}
bl_resp->range_count++;
bl_resp->range_array[i].finfo.start_page =
page_to_pfn(pg);
bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
bl_resp->hdr.size += sizeof(union dm_mem_page_range);
}
return i * alloc_unit;
}
static void balloon_up(struct work_struct *dummy)
{
unsigned int num_pages = dm_device.balloon_wrk.num_pages;
unsigned int num_ballooned = 0;
struct dm_balloon_response *bl_resp;
int alloc_unit;
int ret;
bool done = false;
int i;
long avail_pages;
unsigned long floor;
/*
* We will attempt 2M allocations. However, if we fail to
* allocate 2M chunks, we will go back to PAGE_SIZE allocations.
*/
alloc_unit = PAGES_IN_2M;
avail_pages = si_mem_available();
floor = compute_balloon_floor();
/* Refuse to balloon below the floor. */
if (avail_pages < num_pages || avail_pages - num_pages < floor) {
pr_info("Balloon request will be partially fulfilled. %s\n",
avail_pages < num_pages ? "Not enough memory." :
"Balloon floor reached.");
num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
}
while (!done) {
memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
bl_resp->hdr.type = DM_BALLOON_RESPONSE;
bl_resp->hdr.size = sizeof(struct dm_balloon_response);
bl_resp->more_pages = 1;
num_pages -= num_ballooned;
num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
bl_resp, alloc_unit);
if (alloc_unit != 1 && num_ballooned == 0) {
alloc_unit = 1;
continue;
}
if (num_ballooned == 0 || num_ballooned == num_pages) {
pr_debug("Ballooned %u out of %u requested pages.\n",
num_pages, dm_device.balloon_wrk.num_pages);
bl_resp->more_pages = 0;
done = true;
dm_device.state = DM_INITIALIZED;
}
/*
* We are pushing a lot of data through the channel;
* deal with transient failures caused because of the
* lack of space in the ring buffer.
*/
do {
bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
ret = vmbus_sendpacket(dm_device.dev->channel,
bl_resp,
bl_resp->hdr.size,
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
if (ret == -EAGAIN)
msleep(20);
post_status(&dm_device);
} while (ret == -EAGAIN);
if (ret) {
/*
* Free up the memory we allocatted.
*/
pr_err("Balloon response failed\n");
for (i = 0; i < bl_resp->range_count; i++)
free_balloon_pages(&dm_device,
&bl_resp->range_array[i]);
done = true;
}
}
}
static void balloon_down(struct hv_dynmem_device *dm,
struct dm_unballoon_request *req)
{
union dm_mem_page_range *range_array = req->range_array;
int range_count = req->range_count;
struct dm_unballoon_response resp;
int i;
unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
for (i = 0; i < range_count; i++) {
free_balloon_pages(dm, &range_array[i]);
complete(&dm_device.config_event);
}
pr_debug("Freed %u ballooned pages.\n",
prev_pages_ballooned - dm->num_pages_ballooned);
if (req->more_pages == 1)
return;
memset(&resp, 0, sizeof(struct dm_unballoon_response));
resp.hdr.type = DM_UNBALLOON_RESPONSE;
resp.hdr.trans_id = atomic_inc_return(&trans_id);
resp.hdr.size = sizeof(struct dm_unballoon_response);
vmbus_sendpacket(dm_device.dev->channel, &resp,
sizeof(struct dm_unballoon_response),
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
dm->state = DM_INITIALIZED;
}
static void balloon_onchannelcallback(void *context);
static int dm_thread_func(void *dm_dev)
{
struct hv_dynmem_device *dm = dm_dev;
while (!kthread_should_stop()) {
wait_for_completion_interruptible_timeout(
&dm_device.config_event, 1*HZ);
/*
* The host expects us to post information on the memory
* pressure every second.
*/
reinit_completion(&dm_device.config_event);
post_status(dm);
/*
* disable free page reporting if multiple hypercall
* failure flag set. It is not done in the page_reporting
* callback context as that causes a deadlock between
* page_reporting_process() and page_reporting_unregister()
*/
if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) {
pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n");
disable_page_reporting();
/* Reset the flag after disabling reporting */
hv_hypercall_multi_failure = 0;
}
}
return 0;
}
static void version_resp(struct hv_dynmem_device *dm,
struct dm_version_response *vresp)
{
struct dm_version_request version_req;
int ret;
if (vresp->is_accepted) {
/*
* We are done; wakeup the
* context waiting for version
* negotiation.
*/
complete(&dm->host_event);
return;
}
/*
* If there are more versions to try, continue
* with negotiations; if not
* shutdown the service since we are not able
* to negotiate a suitable version number
* with the host.
*/
if (dm->next_version == 0)
goto version_error;
memset(&version_req, 0, sizeof(struct dm_version_request));
version_req.hdr.type = DM_VERSION_REQUEST;
version_req.hdr.size = sizeof(struct dm_version_request);
version_req.hdr.trans_id = atomic_inc_return(&trans_id);
version_req.version.version = dm->next_version;
dm->version = version_req.version.version;
/*
* Set the next version to try in case current version fails.
* Win7 protocol ought to be the last one to try.
*/
switch (version_req.version.version) {
case DYNMEM_PROTOCOL_VERSION_WIN8:
dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
version_req.is_last_attempt = 0;
break;
default:
dm->next_version = 0;
version_req.is_last_attempt = 1;
}
ret = vmbus_sendpacket(dm->dev->channel, &version_req,
sizeof(struct dm_version_request),
(unsigned long)NULL,
VM_PKT_DATA_INBAND, 0);
if (ret)
goto version_error;
return;
version_error:
dm->state = DM_INIT_ERROR;
complete(&dm->host_event);
}
static void cap_resp(struct hv_dynmem_device *dm,
struct dm_capabilities_resp_msg *cap_resp)
{
if (!cap_resp->is_accepted) {
pr_err("Capabilities not accepted by host\n");
dm->state = DM_INIT_ERROR;
}
complete(&dm->host_event);
}
static void balloon_onchannelcallback(void *context)
{
struct hv_device *dev = context;
u32 recvlen;
u64 requestid;
struct dm_message *dm_msg;
struct dm_header *dm_hdr;
struct hv_dynmem_device *dm = hv_get_drvdata(dev);
struct dm_balloon *bal_msg;
struct dm_hot_add *ha_msg;
union dm_mem_page_range *ha_pg_range;
union dm_mem_page_range *ha_region;
memset(recv_buffer, 0, sizeof(recv_buffer));
vmbus_recvpacket(dev->channel, recv_buffer,
HV_HYP_PAGE_SIZE, &recvlen, &requestid);
if (recvlen > 0) {
dm_msg = (struct dm_message *)recv_buffer;
dm_hdr = &dm_msg->hdr;
switch (dm_hdr->type) {
case DM_VERSION_RESPONSE:
version_resp(dm,
(struct dm_version_response *)dm_msg);
break;
case DM_CAPABILITIES_RESPONSE:
cap_resp(dm,
(struct dm_capabilities_resp_msg *)dm_msg);
break;
case DM_BALLOON_REQUEST:
if (allow_hibernation) {
pr_info("Ignore balloon-up request!\n");
break;
}
if (dm->state == DM_BALLOON_UP)
pr_warn("Currently ballooning\n");
bal_msg = (struct dm_balloon *)recv_buffer;
dm->state = DM_BALLOON_UP;
dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
schedule_work(&dm_device.balloon_wrk.wrk);
break;
case DM_UNBALLOON_REQUEST:
if (allow_hibernation) {
pr_info("Ignore balloon-down request!\n");
break;
}
dm->state = DM_BALLOON_DOWN;
balloon_down(dm,
(struct dm_unballoon_request *)recv_buffer);
break;
case DM_MEM_HOT_ADD_REQUEST:
if (dm->state == DM_HOT_ADD)
pr_warn("Currently hot-adding\n");
dm->state = DM_HOT_ADD;
ha_msg = (struct dm_hot_add *)recv_buffer;
if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
/*
* This is a normal hot-add request specifying
* hot-add memory.
*/
dm->host_specified_ha_region = false;
ha_pg_range = &ha_msg->range;
dm->ha_wrk.ha_page_range = *ha_pg_range;
dm->ha_wrk.ha_region_range.page_range = 0;
} else {
/*
* Host is specifying that we first hot-add
* a region and then partially populate this
* region.
*/
dm->host_specified_ha_region = true;
ha_pg_range = &ha_msg->range;
ha_region = &ha_pg_range[1];
dm->ha_wrk.ha_page_range = *ha_pg_range;
dm->ha_wrk.ha_region_range = *ha_region;
}
schedule_work(&dm_device.ha_wrk.wrk);
break;
case DM_INFO_MESSAGE:
process_info(dm, (struct dm_info_msg *)dm_msg);
break;
default:
pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
}
}
}
#define HV_LARGE_REPORTING_ORDER 9
#define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \
HV_LARGE_REPORTING_ORDER)
static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
struct scatterlist *sgl, unsigned int nents)
{
unsigned long flags;
struct hv_memory_hint *hint;
int i, order;
u64 status;
struct scatterlist *sg;
WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order));
local_irq_save(flags);
hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
if (!hint) {
local_irq_restore(flags);
return -ENOSPC;
}
hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
hint->reserved = 0;
for_each_sg(sgl, sg, nents, i) {
union hv_gpa_page_range *range;
range = &hint->ranges[i];
range->address_space = 0;
order = get_order(sg->length);
/*
* Hyper-V expects the additional_pages field in the units
* of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes.
* This is dictated by the values of the fields page.largesize
* and page_size.
* This code however, only uses 4Kbytes and 2Mbytes units
* and not 1Gbytes unit.
*/
/* page reporting for pages 2MB or higher */
if (order >= HV_LARGE_REPORTING_ORDER ) {
range->page.largepage = 1;
range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
range->base_large_pfn = page_to_hvpfn(
sg_page(sg)) >> HV_LARGE_REPORTING_ORDER;
range->page.additional_pages =
(sg->length / HV_LARGE_REPORTING_LEN) - 1;
} else {
/* Page reporting for pages below 2MB */
range->page.basepfn = page_to_hvpfn(sg_page(sg));
range->page.largepage = false;
range->page.additional_pages =
(sg->length / HV_HYP_PAGE_SIZE) - 1;
}
}
status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
hint, NULL);
local_irq_restore(flags);
if (!hv_result_success(status)) {
pr_err("Cold memory discard hypercall failed with status %llx\n",
status);
if (hv_hypercall_multi_failure > 0)
hv_hypercall_multi_failure++;
if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) {
pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n");
pr_err("Defaulting to page_reporting_order %d\n",
pageblock_order);
page_reporting_order = pageblock_order;
hv_hypercall_multi_failure++;
return -EINVAL;
}
return -EINVAL;
}
return 0;
}
static void enable_page_reporting(void)
{
int ret;
if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
pr_debug("Cold memory discard hint not supported by Hyper-V\n");
return;
}
BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
dm_device.pr_dev_info.report = hv_free_page_report;
/*
* We let the page_reporting_order parameter decide the order
* in the page_reporting code
*/
dm_device.pr_dev_info.order = 0;
ret = page_reporting_register(&dm_device.pr_dev_info);
if (ret < 0) {
dm_device.pr_dev_info.report = NULL;
pr_err("Failed to enable cold memory discard: %d\n", ret);
} else {
pr_info("Cold memory discard hint enabled with order %d\n",
page_reporting_order);
}
}
static void disable_page_reporting(void)
{
if (dm_device.pr_dev_info.report) {
page_reporting_unregister(&dm_device.pr_dev_info);
dm_device.pr_dev_info.report = NULL;
}
}
static int ballooning_enabled(void)
{
/*
* Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
* since currently it's unclear to us whether an unballoon request can
* make sure all page ranges are guest page size aligned.
*/
if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
pr_info("Ballooning disabled because page size is not 4096 bytes\n");
return 0;
}
return 1;
}
static int hot_add_enabled(void)
{
/*
* Disable hot add on ARM64, because we currently rely on
* memory_add_physaddr_to_nid() to get a node id of a hot add range,
* however ARM64's memory_add_physaddr_to_nid() always return 0 and
* DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
* add_memory().
*/
if (IS_ENABLED(CONFIG_ARM64)) {
pr_info("Memory hot add disabled on ARM64\n");
return 0;
}
return 1;
}
static int balloon_connect_vsp(struct hv_device *dev)
{
struct dm_version_request version_req;
struct dm_capabilities cap_msg;
unsigned long t;
int ret;
/*
* max_pkt_size should be large enough for one vmbus packet header plus
* our receive buffer size. Hyper-V sends messages up to
* HV_HYP_PAGE_SIZE bytes long on balloon channel.
*/
dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
balloon_onchannelcallback, dev);
if (ret)
return ret;
/*
* Initiate the hand shake with the host and negotiate
* a version that the host can support. We start with the
* highest version number and go down if the host cannot
* support it.
*/
memset(&version_req, 0, sizeof(struct dm_version_request));
version_req.hdr.type = DM_VERSION_REQUEST;
version_req.hdr.size = sizeof(struct dm_version_request);
version_req.hdr.trans_id = atomic_inc_return(&trans_id);
version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
version_req.is_last_attempt = 0;
dm_device.version = version_req.version.version;
ret = vmbus_sendpacket(dev->channel, &version_req,
sizeof(struct dm_version_request),
(unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
if (ret)
goto out;
t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
if (t == 0) {
ret = -ETIMEDOUT;
goto out;
}
/*
* If we could not negotiate a compatible version with the host
* fail the probe function.
*/
if (dm_device.state == DM_INIT_ERROR) {
ret = -EPROTO;
goto out;
}
pr_info("Using Dynamic Memory protocol version %u.%u\n",
DYNMEM_MAJOR_VERSION(dm_device.version),
DYNMEM_MINOR_VERSION(dm_device.version));
/*
* Now submit our capabilities to the host.
*/
memset(&cap_msg, 0, sizeof(struct dm_capabilities));
cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
cap_msg.hdr.size = sizeof(struct dm_capabilities);
cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
/*
* When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
* currently still requires the bits to be set, so we have to add code
* to fail the host's hot-add and balloon up/down requests, if any.
*/
cap_msg.caps.cap_bits.balloon = ballooning_enabled();
cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
/*
* Specify our alignment requirements as it relates
* memory hot-add. Specify 128MB alignment.
*/
cap_msg.caps.cap_bits.hot_add_alignment = 7;
/*
* Currently the host does not use these
* values and we set them to what is done in the
* Windows driver.
*/
cap_msg.min_page_cnt = 0;
cap_msg.max_page_number = -1;
ret = vmbus_sendpacket(dev->channel, &cap_msg,
sizeof(struct dm_capabilities),
(unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
if (ret)
goto out;
t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
if (t == 0) {
ret = -ETIMEDOUT;
goto out;
}
/*
* If the host does not like our capabilities,
* fail the probe function.
*/
if (dm_device.state == DM_INIT_ERROR) {
ret = -EPROTO;
goto out;
}
return 0;
out:
vmbus_close(dev->channel);
return ret;
}
/*
* DEBUGFS Interface
*/
#ifdef CONFIG_DEBUG_FS
/**
* hv_balloon_debug_show - shows statistics of balloon operations.
* @f: pointer to the &struct seq_file.
* @offset: ignored.
*
* Provides the statistics that can be accessed in hv-balloon in the debugfs.
*
* Return: zero on success or an error code.
*/
static int hv_balloon_debug_show(struct seq_file *f, void *offset)
{
struct hv_dynmem_device *dm = f->private;
char *sname;
seq_printf(f, "%-22s: %u.%u\n", "host_version",
DYNMEM_MAJOR_VERSION(dm->version),
DYNMEM_MINOR_VERSION(dm->version));
seq_printf(f, "%-22s:", "capabilities");
if (ballooning_enabled())
seq_puts(f, " enabled");
if (hot_add_enabled())
seq_puts(f, " hot_add");
seq_puts(f, "\n");
seq_printf(f, "%-22s: %u", "state", dm->state);
switch (dm->state) {
case DM_INITIALIZING:
sname = "Initializing";
break;
case DM_INITIALIZED:
sname = "Initialized";
break;
case DM_BALLOON_UP:
sname = "Balloon Up";
break;
case DM_BALLOON_DOWN:
sname = "Balloon Down";
break;
case DM_HOT_ADD:
sname = "Hot Add";
break;
case DM_INIT_ERROR:
sname = "Error";
break;
default:
sname = "Unknown";
}
seq_printf(f, " (%s)\n", sname);
/* HV Page Size */
seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
/* Pages added with hot_add */
seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
/* pages that are "onlined"/used from pages_added */
seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
/* pages we have given back to host */
seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
get_pages_committed(dm));
seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
dm->max_dynamic_page_count);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
static void hv_balloon_debugfs_init(struct hv_dynmem_device *b)
{
debugfs_create_file("hv-balloon", 0444, NULL, b,
&hv_balloon_debug_fops);
}
static void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
{
debugfs_remove(debugfs_lookup("hv-balloon", NULL));
}
#else
static inline void hv_balloon_debugfs_init(struct hv_dynmem_device *b)
{
}
static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
{
}
#endif /* CONFIG_DEBUG_FS */
static int balloon_probe(struct hv_device *dev,
const struct hv_vmbus_device_id *dev_id)
{
int ret;
allow_hibernation = hv_is_hibernation_supported();
if (allow_hibernation)
hot_add = false;
#ifdef CONFIG_MEMORY_HOTPLUG
do_hot_add = hot_add;
#else
do_hot_add = false;
#endif
dm_device.dev = dev;
dm_device.state = DM_INITIALIZING;
dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
init_completion(&dm_device.host_event);
init_completion(&dm_device.config_event);
INIT_LIST_HEAD(&dm_device.ha_region_list);
spin_lock_init(&dm_device.ha_lock);
INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
dm_device.host_specified_ha_region = false;
#ifdef CONFIG_MEMORY_HOTPLUG
set_online_page_callback(&hv_online_page);
init_completion(&dm_device.ol_waitevent);
register_memory_notifier(&hv_memory_nb);
#endif
hv_set_drvdata(dev, &dm_device);
ret = balloon_connect_vsp(dev);
if (ret != 0)
goto connect_error;
enable_page_reporting();
dm_device.state = DM_INITIALIZED;
dm_device.thread =
kthread_run(dm_thread_func, &dm_device, "hv_balloon");
if (IS_ERR(dm_device.thread)) {
ret = PTR_ERR(dm_device.thread);
goto probe_error;
}
hv_balloon_debugfs_init(&dm_device);
return 0;
probe_error:
dm_device.state = DM_INIT_ERROR;
dm_device.thread = NULL;
disable_page_reporting();
vmbus_close(dev->channel);
connect_error:
#ifdef CONFIG_MEMORY_HOTPLUG
unregister_memory_notifier(&hv_memory_nb);
restore_online_page_callback(&hv_online_page);
#endif
return ret;
}
static int balloon_remove(struct hv_device *dev)
{
struct hv_dynmem_device *dm = hv_get_drvdata(dev);
struct hv_hotadd_state *has, *tmp;
struct hv_hotadd_gap *gap, *tmp_gap;
unsigned long flags;
if (dm->num_pages_ballooned != 0)
pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
hv_balloon_debugfs_exit(dm);
cancel_work_sync(&dm->balloon_wrk.wrk);
cancel_work_sync(&dm->ha_wrk.wrk);
kthread_stop(dm->thread);
/*
* This is to handle the case when balloon_resume()
* call has failed and some cleanup has been done as
* a part of the error handling.
*/
if (dm_device.state != DM_INIT_ERROR) {
disable_page_reporting();
vmbus_close(dev->channel);
#ifdef CONFIG_MEMORY_HOTPLUG
unregister_memory_notifier(&hv_memory_nb);
restore_online_page_callback(&hv_online_page);
#endif
}
spin_lock_irqsave(&dm_device.ha_lock, flags);
list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
list_del(&gap->list);
kfree(gap);
}
list_del(&has->list);
kfree(has);
}
spin_unlock_irqrestore(&dm_device.ha_lock, flags);
return 0;
}
static int balloon_suspend(struct hv_device *hv_dev)
{
struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
tasklet_disable(&hv_dev->channel->callback_event);
cancel_work_sync(&dm->balloon_wrk.wrk);
cancel_work_sync(&dm->ha_wrk.wrk);
if (dm->thread) {
kthread_stop(dm->thread);
dm->thread = NULL;
vmbus_close(hv_dev->channel);
}
tasklet_enable(&hv_dev->channel->callback_event);
return 0;
}
static int balloon_resume(struct hv_device *dev)
{
int ret;
dm_device.state = DM_INITIALIZING;
ret = balloon_connect_vsp(dev);
if (ret != 0)
goto out;
dm_device.thread =
kthread_run(dm_thread_func, &dm_device, "hv_balloon");
if (IS_ERR(dm_device.thread)) {
ret = PTR_ERR(dm_device.thread);
dm_device.thread = NULL;
goto close_channel;
}
dm_device.state = DM_INITIALIZED;
return 0;
close_channel:
vmbus_close(dev->channel);
out:
dm_device.state = DM_INIT_ERROR;
disable_page_reporting();
#ifdef CONFIG_MEMORY_HOTPLUG
unregister_memory_notifier(&hv_memory_nb);
restore_online_page_callback(&hv_online_page);
#endif
return ret;
}
static const struct hv_vmbus_device_id id_table[] = {
/* Dynamic Memory Class ID */
/* 525074DC-8985-46e2-8057-A307DC18A502 */
{ HV_DM_GUID, },
{ },
};
MODULE_DEVICE_TABLE(vmbus, id_table);
static struct hv_driver balloon_drv = {
.name = "hv_balloon",
.id_table = id_table,
.probe = balloon_probe,
.remove = balloon_remove,
.suspend = balloon_suspend,
.resume = balloon_resume,
.driver = {
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
static int __init init_balloon_drv(void)
{
return vmbus_driver_register(&balloon_drv);
}
module_init(init_balloon_drv);
MODULE_DESCRIPTION("Hyper-V Balloon");
MODULE_LICENSE("GPL");