6829 lines
181 KiB
C
6829 lines
181 KiB
C
/*
|
|
* This file is part of the Chelsio T4 Ethernet driver for Linux.
|
|
*
|
|
* Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/bitmap.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/err.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/if.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/init.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/mdio.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/aer.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/sockios.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/workqueue.h>
|
|
#include <net/neighbour.h>
|
|
#include <net/netevent.h>
|
|
#include <net/addrconf.h>
|
|
#include <net/bonding.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <net/udp_tunnel.h>
|
|
#include <net/xfrm.h>
|
|
#if defined(CONFIG_CHELSIO_TLS_DEVICE)
|
|
#include <net/tls.h>
|
|
#endif
|
|
|
|
#include "cxgb4.h"
|
|
#include "cxgb4_filter.h"
|
|
#include "t4_regs.h"
|
|
#include "t4_values.h"
|
|
#include "t4_msg.h"
|
|
#include "t4fw_api.h"
|
|
#include "t4fw_version.h"
|
|
#include "cxgb4_dcb.h"
|
|
#include "srq.h"
|
|
#include "cxgb4_debugfs.h"
|
|
#include "clip_tbl.h"
|
|
#include "l2t.h"
|
|
#include "smt.h"
|
|
#include "sched.h"
|
|
#include "cxgb4_tc_u32.h"
|
|
#include "cxgb4_tc_flower.h"
|
|
#include "cxgb4_tc_mqprio.h"
|
|
#include "cxgb4_tc_matchall.h"
|
|
#include "cxgb4_ptp.h"
|
|
#include "cxgb4_cudbg.h"
|
|
|
|
char cxgb4_driver_name[] = KBUILD_MODNAME;
|
|
|
|
#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
|
|
|
|
#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
|
|
NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
|
|
NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
|
|
|
|
/* Macros needed to support the PCI Device ID Table ...
|
|
*/
|
|
#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
|
|
static const struct pci_device_id cxgb4_pci_tbl[] = {
|
|
#define CXGB4_UNIFIED_PF 0x4
|
|
|
|
#define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
|
|
|
|
/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
|
|
* called for both.
|
|
*/
|
|
#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
|
|
|
|
#define CH_PCI_ID_TABLE_ENTRY(devid) \
|
|
{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
|
|
|
|
#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
|
|
{ 0, } \
|
|
}
|
|
|
|
#include "t4_pci_id_tbl.h"
|
|
|
|
#define FW4_FNAME "cxgb4/t4fw.bin"
|
|
#define FW5_FNAME "cxgb4/t5fw.bin"
|
|
#define FW6_FNAME "cxgb4/t6fw.bin"
|
|
#define FW4_CFNAME "cxgb4/t4-config.txt"
|
|
#define FW5_CFNAME "cxgb4/t5-config.txt"
|
|
#define FW6_CFNAME "cxgb4/t6-config.txt"
|
|
#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
|
|
#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
|
|
#define PHY_AQ1202_DEVICEID 0x4409
|
|
#define PHY_BCM84834_DEVICEID 0x4486
|
|
|
|
MODULE_DESCRIPTION(DRV_DESC);
|
|
MODULE_AUTHOR("Chelsio Communications");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
|
|
MODULE_FIRMWARE(FW4_FNAME);
|
|
MODULE_FIRMWARE(FW5_FNAME);
|
|
MODULE_FIRMWARE(FW6_FNAME);
|
|
|
|
/*
|
|
* The driver uses the best interrupt scheme available on a platform in the
|
|
* order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
|
|
* of these schemes the driver may consider as follows:
|
|
*
|
|
* msi = 2: choose from among all three options
|
|
* msi = 1: only consider MSI and INTx interrupts
|
|
* msi = 0: force INTx interrupts
|
|
*/
|
|
static int msi = 2;
|
|
|
|
module_param(msi, int, 0644);
|
|
MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
|
|
|
|
/*
|
|
* Normally we tell the chip to deliver Ingress Packets into our DMA buffers
|
|
* offset by 2 bytes in order to have the IP headers line up on 4-byte
|
|
* boundaries. This is a requirement for many architectures which will throw
|
|
* a machine check fault if an attempt is made to access one of the 4-byte IP
|
|
* header fields on a non-4-byte boundary. And it's a major performance issue
|
|
* even on some architectures which allow it like some implementations of the
|
|
* x86 ISA. However, some architectures don't mind this and for some very
|
|
* edge-case performance sensitive applications (like forwarding large volumes
|
|
* of small packets), setting this DMA offset to 0 will decrease the number of
|
|
* PCI-E Bus transfers enough to measurably affect performance.
|
|
*/
|
|
static int rx_dma_offset = 2;
|
|
|
|
/* TX Queue select used to determine what algorithm to use for selecting TX
|
|
* queue. Select between the kernel provided function (select_queue=0) or user
|
|
* cxgb_select_queue function (select_queue=1)
|
|
*
|
|
* Default: select_queue=0
|
|
*/
|
|
static int select_queue;
|
|
module_param(select_queue, int, 0644);
|
|
MODULE_PARM_DESC(select_queue,
|
|
"Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
|
|
|
|
static struct dentry *cxgb4_debugfs_root;
|
|
|
|
LIST_HEAD(adapter_list);
|
|
DEFINE_MUTEX(uld_mutex);
|
|
LIST_HEAD(uld_list);
|
|
|
|
static int cfg_queues(struct adapter *adap);
|
|
|
|
static void link_report(struct net_device *dev)
|
|
{
|
|
if (!netif_carrier_ok(dev))
|
|
netdev_info(dev, "link down\n");
|
|
else {
|
|
static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
|
|
|
|
const char *s;
|
|
const struct port_info *p = netdev_priv(dev);
|
|
|
|
switch (p->link_cfg.speed) {
|
|
case 100:
|
|
s = "100Mbps";
|
|
break;
|
|
case 1000:
|
|
s = "1Gbps";
|
|
break;
|
|
case 10000:
|
|
s = "10Gbps";
|
|
break;
|
|
case 25000:
|
|
s = "25Gbps";
|
|
break;
|
|
case 40000:
|
|
s = "40Gbps";
|
|
break;
|
|
case 50000:
|
|
s = "50Gbps";
|
|
break;
|
|
case 100000:
|
|
s = "100Gbps";
|
|
break;
|
|
default:
|
|
pr_info("%s: unsupported speed: %d\n",
|
|
dev->name, p->link_cfg.speed);
|
|
return;
|
|
}
|
|
|
|
netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
|
|
fc[p->link_cfg.fc]);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
|
|
static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adap = pi->adapter;
|
|
struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
|
|
int i;
|
|
|
|
/* We use a simple mapping of Port TX Queue Index to DCB
|
|
* Priority when we're enabling DCB.
|
|
*/
|
|
for (i = 0; i < pi->nqsets; i++, txq++) {
|
|
u32 name, value;
|
|
int err;
|
|
|
|
name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
|
|
FW_PARAMS_PARAM_X_V(
|
|
FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
|
|
FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
|
|
value = enable ? i : 0xffffffff;
|
|
|
|
/* Since we can be called while atomic (from "interrupt
|
|
* level") we need to issue the Set Parameters Commannd
|
|
* without sleeping (timeout < 0).
|
|
*/
|
|
err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
|
|
&name, &value,
|
|
-FW_CMD_MAX_TIMEOUT);
|
|
|
|
if (err)
|
|
dev_err(adap->pdev_dev,
|
|
"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
|
|
enable ? "set" : "unset", pi->port_id, i, -err);
|
|
else
|
|
txq->dcb_prio = enable ? value : 0;
|
|
}
|
|
}
|
|
|
|
int cxgb4_dcb_enabled(const struct net_device *dev)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
if (!pi->dcb.enabled)
|
|
return 0;
|
|
|
|
return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
|
|
(pi->dcb.state == CXGB4_DCB_STATE_HOST));
|
|
}
|
|
#endif /* CONFIG_CHELSIO_T4_DCB */
|
|
|
|
void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
|
|
{
|
|
struct net_device *dev = adapter->port[port_id];
|
|
|
|
/* Skip changes from disabled ports. */
|
|
if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
|
|
if (link_stat)
|
|
netif_carrier_on(dev);
|
|
else {
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
if (cxgb4_dcb_enabled(dev)) {
|
|
cxgb4_dcb_reset(dev);
|
|
dcb_tx_queue_prio_enable(dev, false);
|
|
}
|
|
#endif /* CONFIG_CHELSIO_T4_DCB */
|
|
netif_carrier_off(dev);
|
|
}
|
|
|
|
link_report(dev);
|
|
}
|
|
}
|
|
|
|
void t4_os_portmod_changed(struct adapter *adap, int port_id)
|
|
{
|
|
static const char *mod_str[] = {
|
|
NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
|
|
};
|
|
|
|
struct net_device *dev = adap->port[port_id];
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
|
|
netdev_info(dev, "port module unplugged\n");
|
|
else if (pi->mod_type < ARRAY_SIZE(mod_str))
|
|
netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
|
|
else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
|
|
netdev_info(dev, "%s: unsupported port module inserted\n",
|
|
dev->name);
|
|
else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
|
|
netdev_info(dev, "%s: unknown port module inserted\n",
|
|
dev->name);
|
|
else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
|
|
netdev_info(dev, "%s: transceiver module error\n", dev->name);
|
|
else
|
|
netdev_info(dev, "%s: unknown module type %d inserted\n",
|
|
dev->name, pi->mod_type);
|
|
|
|
/* If the interface is running, then we'll need any "sticky" Link
|
|
* Parameters redone with a new Transceiver Module.
|
|
*/
|
|
pi->link_cfg.redo_l1cfg = netif_running(dev);
|
|
}
|
|
|
|
int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
|
|
module_param(dbfifo_int_thresh, int, 0644);
|
|
MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
|
|
|
|
/*
|
|
* usecs to sleep while draining the dbfifo
|
|
*/
|
|
static int dbfifo_drain_delay = 1000;
|
|
module_param(dbfifo_drain_delay, int, 0644);
|
|
MODULE_PARM_DESC(dbfifo_drain_delay,
|
|
"usecs to sleep while draining the dbfifo");
|
|
|
|
static inline int cxgb4_set_addr_hash(struct port_info *pi)
|
|
{
|
|
struct adapter *adap = pi->adapter;
|
|
u64 vec = 0;
|
|
bool ucast = false;
|
|
struct hash_mac_addr *entry;
|
|
|
|
/* Calculate the hash vector for the updated list and program it */
|
|
list_for_each_entry(entry, &adap->mac_hlist, list) {
|
|
ucast |= is_unicast_ether_addr(entry->addr);
|
|
vec |= (1ULL << hash_mac_addr(entry->addr));
|
|
}
|
|
return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
|
|
vec, false);
|
|
}
|
|
|
|
static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
|
|
{
|
|
struct port_info *pi = netdev_priv(netdev);
|
|
struct adapter *adap = pi->adapter;
|
|
int ret;
|
|
u64 mhash = 0;
|
|
u64 uhash = 0;
|
|
/* idx stores the index of allocated filters,
|
|
* its size should be modified based on the number of
|
|
* MAC addresses that we allocate filters for
|
|
*/
|
|
|
|
u16 idx[1] = {};
|
|
bool free = false;
|
|
bool ucast = is_unicast_ether_addr(mac_addr);
|
|
const u8 *maclist[1] = {mac_addr};
|
|
struct hash_mac_addr *new_entry;
|
|
|
|
ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
|
|
idx, ucast ? &uhash : &mhash, false);
|
|
if (ret < 0)
|
|
goto out;
|
|
/* if hash != 0, then add the addr to hash addr list
|
|
* so on the end we will calculate the hash for the
|
|
* list and program it
|
|
*/
|
|
if (uhash || mhash) {
|
|
new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
|
|
if (!new_entry)
|
|
return -ENOMEM;
|
|
ether_addr_copy(new_entry->addr, mac_addr);
|
|
list_add_tail(&new_entry->list, &adap->mac_hlist);
|
|
ret = cxgb4_set_addr_hash(pi);
|
|
}
|
|
out:
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
|
|
{
|
|
struct port_info *pi = netdev_priv(netdev);
|
|
struct adapter *adap = pi->adapter;
|
|
int ret;
|
|
const u8 *maclist[1] = {mac_addr};
|
|
struct hash_mac_addr *entry, *tmp;
|
|
|
|
/* If the MAC address to be removed is in the hash addr
|
|
* list, delete it from the list and update hash vector
|
|
*/
|
|
list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
|
|
if (ether_addr_equal(entry->addr, mac_addr)) {
|
|
list_del(&entry->list);
|
|
kfree(entry);
|
|
return cxgb4_set_addr_hash(pi);
|
|
}
|
|
}
|
|
|
|
ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
|
|
return ret < 0 ? -EINVAL : 0;
|
|
}
|
|
|
|
/*
|
|
* Set Rx properties of a port, such as promiscruity, address filters, and MTU.
|
|
* If @mtu is -1 it is left unchanged.
|
|
*/
|
|
static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adapter = pi->adapter;
|
|
|
|
__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
|
|
__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
|
|
|
|
return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
|
|
(dev->flags & IFF_PROMISC) ? 1 : 0,
|
|
(dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
|
|
sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* cxgb4_change_mac - Update match filter for a MAC address.
|
|
* @pi: the port_info
|
|
* @viid: the VI id
|
|
* @tcam_idx: TCAM index of existing filter for old value of MAC address,
|
|
* or -1
|
|
* @addr: the new MAC address value
|
|
* @persist: whether a new MAC allocation should be persistent
|
|
* @add_smt: if true also add the address to the HW SMT
|
|
*
|
|
* Modifies an MPS filter and sets it to the new MAC address if
|
|
* @tcam_idx >= 0, or adds the MAC address to a new filter if
|
|
* @tcam_idx < 0. In the latter case the address is added persistently
|
|
* if @persist is %true.
|
|
* Addresses are programmed to hash region, if tcam runs out of entries.
|
|
*
|
|
*/
|
|
int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
|
|
int *tcam_idx, const u8 *addr, bool persist,
|
|
u8 *smt_idx)
|
|
{
|
|
struct adapter *adapter = pi->adapter;
|
|
struct hash_mac_addr *entry, *new_entry;
|
|
int ret;
|
|
|
|
ret = t4_change_mac(adapter, adapter->mbox, viid,
|
|
*tcam_idx, addr, persist, smt_idx);
|
|
/* We ran out of TCAM entries. try programming hash region. */
|
|
if (ret == -ENOMEM) {
|
|
/* If the MAC address to be updated is in the hash addr
|
|
* list, update it from the list
|
|
*/
|
|
list_for_each_entry(entry, &adapter->mac_hlist, list) {
|
|
if (entry->iface_mac) {
|
|
ether_addr_copy(entry->addr, addr);
|
|
goto set_hash;
|
|
}
|
|
}
|
|
new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
|
|
if (!new_entry)
|
|
return -ENOMEM;
|
|
ether_addr_copy(new_entry->addr, addr);
|
|
new_entry->iface_mac = true;
|
|
list_add_tail(&new_entry->list, &adapter->mac_hlist);
|
|
set_hash:
|
|
ret = cxgb4_set_addr_hash(pi);
|
|
} else if (ret >= 0) {
|
|
*tcam_idx = ret;
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* link_start - enable a port
|
|
* @dev: the port to enable
|
|
*
|
|
* Performs the MAC and PHY actions needed to enable a port.
|
|
*/
|
|
static int link_start(struct net_device *dev)
|
|
{
|
|
int ret;
|
|
struct port_info *pi = netdev_priv(dev);
|
|
unsigned int mb = pi->adapter->pf;
|
|
|
|
/*
|
|
* We do not set address filters and promiscuity here, the stack does
|
|
* that step explicitly.
|
|
*/
|
|
ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
|
|
!!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
|
|
if (ret == 0)
|
|
ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
|
|
dev->dev_addr, true, &pi->smt_idx);
|
|
if (ret == 0)
|
|
ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
|
|
&pi->link_cfg);
|
|
if (ret == 0) {
|
|
local_bh_disable();
|
|
ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
|
|
true, CXGB4_DCB_ENABLED);
|
|
local_bh_enable();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
/* Handle a Data Center Bridging update message from the firmware. */
|
|
static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
|
|
{
|
|
int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
|
|
struct net_device *dev = adap->port[adap->chan_map[port]];
|
|
int old_dcb_enabled = cxgb4_dcb_enabled(dev);
|
|
int new_dcb_enabled;
|
|
|
|
cxgb4_dcb_handle_fw_update(adap, pcmd);
|
|
new_dcb_enabled = cxgb4_dcb_enabled(dev);
|
|
|
|
/* If the DCB has become enabled or disabled on the port then we're
|
|
* going to need to set up/tear down DCB Priority parameters for the
|
|
* TX Queues associated with the port.
|
|
*/
|
|
if (new_dcb_enabled != old_dcb_enabled)
|
|
dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
|
|
}
|
|
#endif /* CONFIG_CHELSIO_T4_DCB */
|
|
|
|
/* Response queue handler for the FW event queue.
|
|
*/
|
|
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
|
|
const struct pkt_gl *gl)
|
|
{
|
|
u8 opcode = ((const struct rss_header *)rsp)->opcode;
|
|
|
|
rsp++; /* skip RSS header */
|
|
|
|
/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
|
|
*/
|
|
if (unlikely(opcode == CPL_FW4_MSG &&
|
|
((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
|
|
rsp++;
|
|
opcode = ((const struct rss_header *)rsp)->opcode;
|
|
rsp++;
|
|
if (opcode != CPL_SGE_EGR_UPDATE) {
|
|
dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
|
|
, opcode);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
|
|
const struct cpl_sge_egr_update *p = (void *)rsp;
|
|
unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
|
|
struct sge_txq *txq;
|
|
|
|
txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
|
|
txq->restarts++;
|
|
if (txq->q_type == CXGB4_TXQ_ETH) {
|
|
struct sge_eth_txq *eq;
|
|
|
|
eq = container_of(txq, struct sge_eth_txq, q);
|
|
t4_sge_eth_txq_egress_update(q->adap, eq, -1);
|
|
} else {
|
|
struct sge_uld_txq *oq;
|
|
|
|
oq = container_of(txq, struct sge_uld_txq, q);
|
|
tasklet_schedule(&oq->qresume_tsk);
|
|
}
|
|
} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
|
|
const struct cpl_fw6_msg *p = (void *)rsp;
|
|
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
const struct fw_port_cmd *pcmd = (const void *)p->data;
|
|
unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
|
|
unsigned int action =
|
|
FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
|
|
|
|
if (cmd == FW_PORT_CMD &&
|
|
(action == FW_PORT_ACTION_GET_PORT_INFO ||
|
|
action == FW_PORT_ACTION_GET_PORT_INFO32)) {
|
|
int port = FW_PORT_CMD_PORTID_G(
|
|
be32_to_cpu(pcmd->op_to_portid));
|
|
struct net_device *dev;
|
|
int dcbxdis, state_input;
|
|
|
|
dev = q->adap->port[q->adap->chan_map[port]];
|
|
dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
|
|
? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
|
|
: !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
|
|
& FW_PORT_CMD_DCBXDIS32_F));
|
|
state_input = (dcbxdis
|
|
? CXGB4_DCB_INPUT_FW_DISABLED
|
|
: CXGB4_DCB_INPUT_FW_ENABLED);
|
|
|
|
cxgb4_dcb_state_fsm(dev, state_input);
|
|
}
|
|
|
|
if (cmd == FW_PORT_CMD &&
|
|
action == FW_PORT_ACTION_L2_DCB_CFG)
|
|
dcb_rpl(q->adap, pcmd);
|
|
else
|
|
#endif
|
|
if (p->type == 0)
|
|
t4_handle_fw_rpl(q->adap, p->data);
|
|
} else if (opcode == CPL_L2T_WRITE_RPL) {
|
|
const struct cpl_l2t_write_rpl *p = (void *)rsp;
|
|
|
|
do_l2t_write_rpl(q->adap, p);
|
|
} else if (opcode == CPL_SMT_WRITE_RPL) {
|
|
const struct cpl_smt_write_rpl *p = (void *)rsp;
|
|
|
|
do_smt_write_rpl(q->adap, p);
|
|
} else if (opcode == CPL_SET_TCB_RPL) {
|
|
const struct cpl_set_tcb_rpl *p = (void *)rsp;
|
|
|
|
filter_rpl(q->adap, p);
|
|
} else if (opcode == CPL_ACT_OPEN_RPL) {
|
|
const struct cpl_act_open_rpl *p = (void *)rsp;
|
|
|
|
hash_filter_rpl(q->adap, p);
|
|
} else if (opcode == CPL_ABORT_RPL_RSS) {
|
|
const struct cpl_abort_rpl_rss *p = (void *)rsp;
|
|
|
|
hash_del_filter_rpl(q->adap, p);
|
|
} else if (opcode == CPL_SRQ_TABLE_RPL) {
|
|
const struct cpl_srq_table_rpl *p = (void *)rsp;
|
|
|
|
do_srq_table_rpl(q->adap, p);
|
|
} else
|
|
dev_err(q->adap->pdev_dev,
|
|
"unexpected CPL %#x on FW event queue\n", opcode);
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
static void disable_msi(struct adapter *adapter)
|
|
{
|
|
if (adapter->flags & CXGB4_USING_MSIX) {
|
|
pci_disable_msix(adapter->pdev);
|
|
adapter->flags &= ~CXGB4_USING_MSIX;
|
|
} else if (adapter->flags & CXGB4_USING_MSI) {
|
|
pci_disable_msi(adapter->pdev);
|
|
adapter->flags &= ~CXGB4_USING_MSI;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler for non-data events used with MSI-X.
|
|
*/
|
|
static irqreturn_t t4_nondata_intr(int irq, void *cookie)
|
|
{
|
|
struct adapter *adap = cookie;
|
|
u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
|
|
|
|
if (v & PFSW_F) {
|
|
adap->swintr = 1;
|
|
t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
|
|
}
|
|
if (adap->flags & CXGB4_MASTER_PF)
|
|
t4_slow_intr_handler(adap);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
|
|
cpumask_var_t *aff_mask, int idx)
|
|
{
|
|
int rv;
|
|
|
|
if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
|
|
dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
|
|
*aff_mask);
|
|
|
|
rv = irq_set_affinity_hint(vec, *aff_mask);
|
|
if (rv)
|
|
dev_warn(adap->pdev_dev,
|
|
"irq_set_affinity_hint %u failed %d\n",
|
|
vec, rv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
|
|
{
|
|
irq_set_affinity_hint(vec, NULL);
|
|
free_cpumask_var(aff_mask);
|
|
}
|
|
|
|
static int request_msix_queue_irqs(struct adapter *adap)
|
|
{
|
|
struct sge *s = &adap->sge;
|
|
struct msix_info *minfo;
|
|
int err, ethqidx;
|
|
|
|
if (s->fwevtq_msix_idx < 0)
|
|
return -ENOMEM;
|
|
|
|
err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
|
|
t4_sge_intr_msix, 0,
|
|
adap->msix_info[s->fwevtq_msix_idx].desc,
|
|
&s->fw_evtq);
|
|
if (err)
|
|
return err;
|
|
|
|
for_each_ethrxq(s, ethqidx) {
|
|
minfo = s->ethrxq[ethqidx].msix;
|
|
err = request_irq(minfo->vec,
|
|
t4_sge_intr_msix, 0,
|
|
minfo->desc,
|
|
&s->ethrxq[ethqidx].rspq);
|
|
if (err)
|
|
goto unwind;
|
|
|
|
cxgb4_set_msix_aff(adap, minfo->vec,
|
|
&minfo->aff_mask, ethqidx);
|
|
}
|
|
return 0;
|
|
|
|
unwind:
|
|
while (--ethqidx >= 0) {
|
|
minfo = s->ethrxq[ethqidx].msix;
|
|
cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
|
|
free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
|
|
}
|
|
free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
|
|
return err;
|
|
}
|
|
|
|
static void free_msix_queue_irqs(struct adapter *adap)
|
|
{
|
|
struct sge *s = &adap->sge;
|
|
struct msix_info *minfo;
|
|
int i;
|
|
|
|
free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
|
|
for_each_ethrxq(s, i) {
|
|
minfo = s->ethrxq[i].msix;
|
|
cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
|
|
free_irq(minfo->vec, &s->ethrxq[i].rspq);
|
|
}
|
|
}
|
|
|
|
static int setup_ppod_edram(struct adapter *adap)
|
|
{
|
|
unsigned int param, val;
|
|
int ret;
|
|
|
|
/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
|
|
* if firmware supports ppod edram feature or not. If firmware
|
|
* returns 1, then driver can enable this feature by sending
|
|
* FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
|
|
* enable ppod edram feature.
|
|
*/
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
|
|
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
|
|
if (ret < 0) {
|
|
dev_warn(adap->pdev_dev,
|
|
"querying PPOD_EDRAM support failed: %d\n",
|
|
ret);
|
|
return -1;
|
|
}
|
|
|
|
if (val != 1)
|
|
return -1;
|
|
|
|
ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
|
|
if (ret < 0) {
|
|
dev_err(adap->pdev_dev,
|
|
"setting PPOD_EDRAM failed: %d\n", ret);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void adap_config_hpfilter(struct adapter *adapter)
|
|
{
|
|
u32 param, val = 0;
|
|
int ret;
|
|
|
|
/* Enable HP filter region. Older fw will fail this request and
|
|
* it is fine.
|
|
*/
|
|
param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
|
|
ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
|
|
1, ¶m, &val);
|
|
|
|
/* An error means FW doesn't know about HP filter support,
|
|
* it's not a problem, don't return an error.
|
|
*/
|
|
if (ret < 0)
|
|
dev_err(adapter->pdev_dev,
|
|
"HP filter region isn't supported by FW\n");
|
|
}
|
|
|
|
/**
|
|
* cxgb4_write_rss - write the RSS table for a given port
|
|
* @pi: the port
|
|
* @queues: array of queue indices for RSS
|
|
*
|
|
* Sets up the portion of the HW RSS table for the port's VI to distribute
|
|
* packets to the Rx queues in @queues.
|
|
* Should never be called before setting up sge eth rx queues
|
|
*/
|
|
int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
|
|
{
|
|
u16 *rss;
|
|
int i, err;
|
|
struct adapter *adapter = pi->adapter;
|
|
const struct sge_eth_rxq *rxq;
|
|
|
|
rxq = &adapter->sge.ethrxq[pi->first_qset];
|
|
rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
|
|
if (!rss)
|
|
return -ENOMEM;
|
|
|
|
/* map the queue indices to queue ids */
|
|
for (i = 0; i < pi->rss_size; i++, queues++)
|
|
rss[i] = rxq[*queues].rspq.abs_id;
|
|
|
|
err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
|
|
pi->rss_size, rss, pi->rss_size);
|
|
/* If Tunnel All Lookup isn't specified in the global RSS
|
|
* Configuration, then we need to specify a default Ingress
|
|
* Queue for any ingress packets which aren't hashed. We'll
|
|
* use our first ingress queue ...
|
|
*/
|
|
if (!err)
|
|
err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
|
|
FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
|
|
FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
|
|
FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
|
|
FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
|
|
FW_RSS_VI_CONFIG_CMD_UDPEN_F,
|
|
rss[0]);
|
|
kfree(rss);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* setup_rss - configure RSS
|
|
* @adap: the adapter
|
|
*
|
|
* Sets up RSS for each port.
|
|
*/
|
|
static int setup_rss(struct adapter *adap)
|
|
{
|
|
int i, j, err;
|
|
|
|
for_each_port(adap, i) {
|
|
const struct port_info *pi = adap2pinfo(adap, i);
|
|
|
|
/* Fill default values with equal distribution */
|
|
for (j = 0; j < pi->rss_size; j++)
|
|
pi->rss[j] = j % pi->nqsets;
|
|
|
|
err = cxgb4_write_rss(pi, pi->rss);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the channel of the ingress queue with the given qid.
|
|
*/
|
|
static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
|
|
{
|
|
qid -= p->ingr_start;
|
|
return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
|
|
}
|
|
|
|
void cxgb4_quiesce_rx(struct sge_rspq *q)
|
|
{
|
|
if (q->handler)
|
|
napi_disable(&q->napi);
|
|
}
|
|
|
|
/*
|
|
* Wait until all NAPI handlers are descheduled.
|
|
*/
|
|
static void quiesce_rx(struct adapter *adap)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adap->sge.ingr_sz; i++) {
|
|
struct sge_rspq *q = adap->sge.ingr_map[i];
|
|
|
|
if (!q)
|
|
continue;
|
|
|
|
cxgb4_quiesce_rx(q);
|
|
}
|
|
}
|
|
|
|
/* Disable interrupt and napi handler */
|
|
static void disable_interrupts(struct adapter *adap)
|
|
{
|
|
struct sge *s = &adap->sge;
|
|
|
|
if (adap->flags & CXGB4_FULL_INIT_DONE) {
|
|
t4_intr_disable(adap);
|
|
if (adap->flags & CXGB4_USING_MSIX) {
|
|
free_msix_queue_irqs(adap);
|
|
free_irq(adap->msix_info[s->nd_msix_idx].vec,
|
|
adap);
|
|
} else {
|
|
free_irq(adap->pdev->irq, adap);
|
|
}
|
|
quiesce_rx(adap);
|
|
}
|
|
}
|
|
|
|
void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
|
|
{
|
|
if (q->handler)
|
|
napi_enable(&q->napi);
|
|
|
|
/* 0-increment GTS to start the timer and enable interrupts */
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
|
|
SEINTARM_V(q->intr_params) |
|
|
INGRESSQID_V(q->cntxt_id));
|
|
}
|
|
|
|
/*
|
|
* Enable NAPI scheduling and interrupt generation for all Rx queues.
|
|
*/
|
|
static void enable_rx(struct adapter *adap)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adap->sge.ingr_sz; i++) {
|
|
struct sge_rspq *q = adap->sge.ingr_map[i];
|
|
|
|
if (!q)
|
|
continue;
|
|
|
|
cxgb4_enable_rx(adap, q);
|
|
}
|
|
}
|
|
|
|
static int setup_non_data_intr(struct adapter *adap)
|
|
{
|
|
int msix;
|
|
|
|
adap->sge.nd_msix_idx = -1;
|
|
if (!(adap->flags & CXGB4_USING_MSIX))
|
|
return 0;
|
|
|
|
/* Request MSI-X vector for non-data interrupt */
|
|
msix = cxgb4_get_msix_idx_from_bmap(adap);
|
|
if (msix < 0)
|
|
return -ENOMEM;
|
|
|
|
snprintf(adap->msix_info[msix].desc,
|
|
sizeof(adap->msix_info[msix].desc),
|
|
"%s", adap->port[0]->name);
|
|
|
|
adap->sge.nd_msix_idx = msix;
|
|
return 0;
|
|
}
|
|
|
|
static int setup_fw_sge_queues(struct adapter *adap)
|
|
{
|
|
struct sge *s = &adap->sge;
|
|
int msix, err = 0;
|
|
|
|
bitmap_zero(s->starving_fl, s->egr_sz);
|
|
bitmap_zero(s->txq_maperr, s->egr_sz);
|
|
|
|
if (adap->flags & CXGB4_USING_MSIX) {
|
|
s->fwevtq_msix_idx = -1;
|
|
msix = cxgb4_get_msix_idx_from_bmap(adap);
|
|
if (msix < 0)
|
|
return -ENOMEM;
|
|
|
|
snprintf(adap->msix_info[msix].desc,
|
|
sizeof(adap->msix_info[msix].desc),
|
|
"%s-FWeventq", adap->port[0]->name);
|
|
} else {
|
|
err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
|
|
NULL, NULL, NULL, -1);
|
|
if (err)
|
|
return err;
|
|
msix = -((int)s->intrq.abs_id + 1);
|
|
}
|
|
|
|
err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
|
|
msix, NULL, fwevtq_handler, NULL, -1);
|
|
if (err && msix >= 0)
|
|
cxgb4_free_msix_idx_in_bmap(adap, msix);
|
|
|
|
s->fwevtq_msix_idx = msix;
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* setup_sge_queues - configure SGE Tx/Rx/response queues
|
|
* @adap: the adapter
|
|
*
|
|
* Determines how many sets of SGE queues to use and initializes them.
|
|
* We support multiple queue sets per port if we have MSI-X, otherwise
|
|
* just one queue set per port.
|
|
*/
|
|
static int setup_sge_queues(struct adapter *adap)
|
|
{
|
|
struct sge_uld_rxq_info *rxq_info = NULL;
|
|
struct sge *s = &adap->sge;
|
|
unsigned int cmplqid = 0;
|
|
int err, i, j, msix = 0;
|
|
|
|
if (is_uld(adap))
|
|
rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
|
|
|
|
if (!(adap->flags & CXGB4_USING_MSIX))
|
|
msix = -((int)s->intrq.abs_id + 1);
|
|
|
|
for_each_port(adap, i) {
|
|
struct net_device *dev = adap->port[i];
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
|
|
struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
|
|
|
|
for (j = 0; j < pi->nqsets; j++, q++) {
|
|
if (msix >= 0) {
|
|
msix = cxgb4_get_msix_idx_from_bmap(adap);
|
|
if (msix < 0) {
|
|
err = msix;
|
|
goto freeout;
|
|
}
|
|
|
|
snprintf(adap->msix_info[msix].desc,
|
|
sizeof(adap->msix_info[msix].desc),
|
|
"%s-Rx%d", dev->name, j);
|
|
q->msix = &adap->msix_info[msix];
|
|
}
|
|
|
|
err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
|
|
msix, &q->fl,
|
|
t4_ethrx_handler,
|
|
NULL,
|
|
t4_get_tp_ch_map(adap,
|
|
pi->tx_chan));
|
|
if (err)
|
|
goto freeout;
|
|
q->rspq.idx = j;
|
|
memset(&q->stats, 0, sizeof(q->stats));
|
|
}
|
|
|
|
q = &s->ethrxq[pi->first_qset];
|
|
for (j = 0; j < pi->nqsets; j++, t++, q++) {
|
|
err = t4_sge_alloc_eth_txq(adap, t, dev,
|
|
netdev_get_tx_queue(dev, j),
|
|
q->rspq.cntxt_id,
|
|
!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
|
|
if (err)
|
|
goto freeout;
|
|
}
|
|
}
|
|
|
|
for_each_port(adap, i) {
|
|
/* Note that cmplqid below is 0 if we don't
|
|
* have RDMA queues, and that's the right value.
|
|
*/
|
|
if (rxq_info)
|
|
cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
|
|
|
|
err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
|
|
s->fw_evtq.cntxt_id, cmplqid);
|
|
if (err)
|
|
goto freeout;
|
|
}
|
|
|
|
if (!is_t4(adap->params.chip)) {
|
|
err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
|
|
netdev_get_tx_queue(adap->port[0], 0)
|
|
, s->fw_evtq.cntxt_id, false);
|
|
if (err)
|
|
goto freeout;
|
|
}
|
|
|
|
t4_write_reg(adap, is_t4(adap->params.chip) ?
|
|
MPS_TRC_RSS_CONTROL_A :
|
|
MPS_T5_TRC_RSS_CONTROL_A,
|
|
RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
|
|
QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
|
|
return 0;
|
|
freeout:
|
|
dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
|
|
t4_free_sge_resources(adap);
|
|
return err;
|
|
}
|
|
|
|
static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
|
|
struct net_device *sb_dev)
|
|
{
|
|
int txq;
|
|
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
/* If a Data Center Bridging has been successfully negotiated on this
|
|
* link then we'll use the skb's priority to map it to a TX Queue.
|
|
* The skb's priority is determined via the VLAN Tag Priority Code
|
|
* Point field.
|
|
*/
|
|
if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
|
|
u16 vlan_tci;
|
|
int err;
|
|
|
|
err = vlan_get_tag(skb, &vlan_tci);
|
|
if (unlikely(err)) {
|
|
if (net_ratelimit())
|
|
netdev_warn(dev,
|
|
"TX Packet without VLAN Tag on DCB Link\n");
|
|
txq = 0;
|
|
} else {
|
|
txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
if (skb->protocol == htons(ETH_P_FCOE))
|
|
txq = skb->priority & 0x7;
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
}
|
|
return txq;
|
|
}
|
|
#endif /* CONFIG_CHELSIO_T4_DCB */
|
|
|
|
if (dev->num_tc) {
|
|
struct port_info *pi = netdev2pinfo(dev);
|
|
u8 ver, proto;
|
|
|
|
ver = ip_hdr(skb)->version;
|
|
proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
|
|
ip_hdr(skb)->protocol;
|
|
|
|
/* Send unsupported traffic pattern to normal NIC queues. */
|
|
txq = netdev_pick_tx(dev, skb, sb_dev);
|
|
if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
|
|
skb->encapsulation ||
|
|
(proto != IPPROTO_TCP && proto != IPPROTO_UDP))
|
|
txq = txq % pi->nqsets;
|
|
|
|
return txq;
|
|
}
|
|
|
|
if (select_queue) {
|
|
txq = (skb_rx_queue_recorded(skb)
|
|
? skb_get_rx_queue(skb)
|
|
: smp_processor_id());
|
|
|
|
while (unlikely(txq >= dev->real_num_tx_queues))
|
|
txq -= dev->real_num_tx_queues;
|
|
|
|
return txq;
|
|
}
|
|
|
|
return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
|
|
}
|
|
|
|
static int closest_timer(const struct sge *s, int time)
|
|
{
|
|
int i, delta, match = 0, min_delta = INT_MAX;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
|
|
delta = time - s->timer_val[i];
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta < min_delta) {
|
|
min_delta = delta;
|
|
match = i;
|
|
}
|
|
}
|
|
return match;
|
|
}
|
|
|
|
static int closest_thres(const struct sge *s, int thres)
|
|
{
|
|
int i, delta, match = 0, min_delta = INT_MAX;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
|
|
delta = thres - s->counter_val[i];
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta < min_delta) {
|
|
min_delta = delta;
|
|
match = i;
|
|
}
|
|
}
|
|
return match;
|
|
}
|
|
|
|
/**
|
|
* cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
|
|
* @q: the Rx queue
|
|
* @us: the hold-off time in us, or 0 to disable timer
|
|
* @cnt: the hold-off packet count, or 0 to disable counter
|
|
*
|
|
* Sets an Rx queue's interrupt hold-off time and packet count. At least
|
|
* one of the two needs to be enabled for the queue to generate interrupts.
|
|
*/
|
|
int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
|
|
unsigned int us, unsigned int cnt)
|
|
{
|
|
struct adapter *adap = q->adap;
|
|
|
|
if ((us | cnt) == 0)
|
|
cnt = 1;
|
|
|
|
if (cnt) {
|
|
int err;
|
|
u32 v, new_idx;
|
|
|
|
new_idx = closest_thres(&adap->sge, cnt);
|
|
if (q->desc && q->pktcnt_idx != new_idx) {
|
|
/* the queue has already been created, update it */
|
|
v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
|
|
FW_PARAMS_PARAM_X_V(
|
|
FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
|
|
FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
|
|
err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
|
|
&v, &new_idx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
q->pktcnt_idx = new_idx;
|
|
}
|
|
|
|
us = us == 0 ? 6 : closest_timer(&adap->sge, us);
|
|
q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
|
|
return 0;
|
|
}
|
|
|
|
static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
|
|
{
|
|
const struct port_info *pi = netdev_priv(dev);
|
|
netdev_features_t changed = dev->features ^ features;
|
|
int err;
|
|
|
|
if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
|
|
return 0;
|
|
|
|
err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
|
|
-1, -1, -1,
|
|
!!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
|
|
if (unlikely(err))
|
|
dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
|
|
return err;
|
|
}
|
|
|
|
static int setup_debugfs(struct adapter *adap)
|
|
{
|
|
if (IS_ERR_OR_NULL(adap->debugfs_root))
|
|
return -1;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
t4_setup_debugfs(adap);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* upper-layer driver support
|
|
*/
|
|
|
|
/*
|
|
* Allocate an active-open TID and set it to the supplied value.
|
|
*/
|
|
int cxgb4_alloc_atid(struct tid_info *t, void *data)
|
|
{
|
|
int atid = -1;
|
|
|
|
spin_lock_bh(&t->atid_lock);
|
|
if (t->afree) {
|
|
union aopen_entry *p = t->afree;
|
|
|
|
atid = (p - t->atid_tab) + t->atid_base;
|
|
t->afree = p->next;
|
|
p->data = data;
|
|
t->atids_in_use++;
|
|
}
|
|
spin_unlock_bh(&t->atid_lock);
|
|
return atid;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_alloc_atid);
|
|
|
|
/*
|
|
* Release an active-open TID.
|
|
*/
|
|
void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
|
|
{
|
|
union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
|
|
|
|
spin_lock_bh(&t->atid_lock);
|
|
p->next = t->afree;
|
|
t->afree = p;
|
|
t->atids_in_use--;
|
|
spin_unlock_bh(&t->atid_lock);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_free_atid);
|
|
|
|
/*
|
|
* Allocate a server TID and set it to the supplied value.
|
|
*/
|
|
int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
|
|
{
|
|
int stid;
|
|
|
|
spin_lock_bh(&t->stid_lock);
|
|
if (family == PF_INET) {
|
|
stid = find_first_zero_bit(t->stid_bmap, t->nstids);
|
|
if (stid < t->nstids)
|
|
__set_bit(stid, t->stid_bmap);
|
|
else
|
|
stid = -1;
|
|
} else {
|
|
stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
|
|
if (stid < 0)
|
|
stid = -1;
|
|
}
|
|
if (stid >= 0) {
|
|
t->stid_tab[stid].data = data;
|
|
stid += t->stid_base;
|
|
/* IPv6 requires max of 520 bits or 16 cells in TCAM
|
|
* This is equivalent to 4 TIDs. With CLIP enabled it
|
|
* needs 2 TIDs.
|
|
*/
|
|
if (family == PF_INET6) {
|
|
t->stids_in_use += 2;
|
|
t->v6_stids_in_use += 2;
|
|
} else {
|
|
t->stids_in_use++;
|
|
}
|
|
}
|
|
spin_unlock_bh(&t->stid_lock);
|
|
return stid;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_alloc_stid);
|
|
|
|
/* Allocate a server filter TID and set it to the supplied value.
|
|
*/
|
|
int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
|
|
{
|
|
int stid;
|
|
|
|
spin_lock_bh(&t->stid_lock);
|
|
if (family == PF_INET) {
|
|
stid = find_next_zero_bit(t->stid_bmap,
|
|
t->nstids + t->nsftids, t->nstids);
|
|
if (stid < (t->nstids + t->nsftids))
|
|
__set_bit(stid, t->stid_bmap);
|
|
else
|
|
stid = -1;
|
|
} else {
|
|
stid = -1;
|
|
}
|
|
if (stid >= 0) {
|
|
t->stid_tab[stid].data = data;
|
|
stid -= t->nstids;
|
|
stid += t->sftid_base;
|
|
t->sftids_in_use++;
|
|
}
|
|
spin_unlock_bh(&t->stid_lock);
|
|
return stid;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_alloc_sftid);
|
|
|
|
/* Release a server TID.
|
|
*/
|
|
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
|
|
{
|
|
/* Is it a server filter TID? */
|
|
if (t->nsftids && (stid >= t->sftid_base)) {
|
|
stid -= t->sftid_base;
|
|
stid += t->nstids;
|
|
} else {
|
|
stid -= t->stid_base;
|
|
}
|
|
|
|
spin_lock_bh(&t->stid_lock);
|
|
if (family == PF_INET)
|
|
__clear_bit(stid, t->stid_bmap);
|
|
else
|
|
bitmap_release_region(t->stid_bmap, stid, 1);
|
|
t->stid_tab[stid].data = NULL;
|
|
if (stid < t->nstids) {
|
|
if (family == PF_INET6) {
|
|
t->stids_in_use -= 2;
|
|
t->v6_stids_in_use -= 2;
|
|
} else {
|
|
t->stids_in_use--;
|
|
}
|
|
} else {
|
|
t->sftids_in_use--;
|
|
}
|
|
|
|
spin_unlock_bh(&t->stid_lock);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_free_stid);
|
|
|
|
/*
|
|
* Populate a TID_RELEASE WR. Caller must properly size the skb.
|
|
*/
|
|
static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
|
|
unsigned int tid)
|
|
{
|
|
struct cpl_tid_release *req;
|
|
|
|
set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
|
|
req = __skb_put(skb, sizeof(*req));
|
|
INIT_TP_WR(req, tid);
|
|
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
|
|
}
|
|
|
|
/*
|
|
* Queue a TID release request and if necessary schedule a work queue to
|
|
* process it.
|
|
*/
|
|
static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
|
|
unsigned int tid)
|
|
{
|
|
struct adapter *adap = container_of(t, struct adapter, tids);
|
|
void **p = &t->tid_tab[tid - t->tid_base];
|
|
|
|
spin_lock_bh(&adap->tid_release_lock);
|
|
*p = adap->tid_release_head;
|
|
/* Low 2 bits encode the Tx channel number */
|
|
adap->tid_release_head = (void **)((uintptr_t)p | chan);
|
|
if (!adap->tid_release_task_busy) {
|
|
adap->tid_release_task_busy = true;
|
|
queue_work(adap->workq, &adap->tid_release_task);
|
|
}
|
|
spin_unlock_bh(&adap->tid_release_lock);
|
|
}
|
|
|
|
/*
|
|
* Process the list of pending TID release requests.
|
|
*/
|
|
static void process_tid_release_list(struct work_struct *work)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct adapter *adap;
|
|
|
|
adap = container_of(work, struct adapter, tid_release_task);
|
|
|
|
spin_lock_bh(&adap->tid_release_lock);
|
|
while (adap->tid_release_head) {
|
|
void **p = adap->tid_release_head;
|
|
unsigned int chan = (uintptr_t)p & 3;
|
|
p = (void *)p - chan;
|
|
|
|
adap->tid_release_head = *p;
|
|
*p = NULL;
|
|
spin_unlock_bh(&adap->tid_release_lock);
|
|
|
|
while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
|
|
GFP_KERNEL)))
|
|
schedule_timeout_uninterruptible(1);
|
|
|
|
mk_tid_release(skb, chan, p - adap->tids.tid_tab);
|
|
t4_ofld_send(adap, skb);
|
|
spin_lock_bh(&adap->tid_release_lock);
|
|
}
|
|
adap->tid_release_task_busy = false;
|
|
spin_unlock_bh(&adap->tid_release_lock);
|
|
}
|
|
|
|
/*
|
|
* Release a TID and inform HW. If we are unable to allocate the release
|
|
* message we defer to a work queue.
|
|
*/
|
|
void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
|
|
unsigned short family)
|
|
{
|
|
struct adapter *adap = container_of(t, struct adapter, tids);
|
|
struct sk_buff *skb;
|
|
|
|
WARN_ON(tid_out_of_range(&adap->tids, tid));
|
|
|
|
if (t->tid_tab[tid - adap->tids.tid_base]) {
|
|
t->tid_tab[tid - adap->tids.tid_base] = NULL;
|
|
atomic_dec(&t->conns_in_use);
|
|
if (t->hash_base && (tid >= t->hash_base)) {
|
|
if (family == AF_INET6)
|
|
atomic_sub(2, &t->hash_tids_in_use);
|
|
else
|
|
atomic_dec(&t->hash_tids_in_use);
|
|
} else {
|
|
if (family == AF_INET6)
|
|
atomic_sub(2, &t->tids_in_use);
|
|
else
|
|
atomic_dec(&t->tids_in_use);
|
|
}
|
|
}
|
|
|
|
skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
|
|
if (likely(skb)) {
|
|
mk_tid_release(skb, chan, tid);
|
|
t4_ofld_send(adap, skb);
|
|
} else
|
|
cxgb4_queue_tid_release(t, chan, tid);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_remove_tid);
|
|
|
|
/*
|
|
* Allocate and initialize the TID tables. Returns 0 on success.
|
|
*/
|
|
static int tid_init(struct tid_info *t)
|
|
{
|
|
struct adapter *adap = container_of(t, struct adapter, tids);
|
|
unsigned int max_ftids = t->nftids + t->nsftids;
|
|
unsigned int natids = t->natids;
|
|
unsigned int hpftid_bmap_size;
|
|
unsigned int eotid_bmap_size;
|
|
unsigned int stid_bmap_size;
|
|
unsigned int ftid_bmap_size;
|
|
size_t size;
|
|
|
|
stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
|
|
ftid_bmap_size = BITS_TO_LONGS(t->nftids);
|
|
hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
|
|
eotid_bmap_size = BITS_TO_LONGS(t->neotids);
|
|
size = t->ntids * sizeof(*t->tid_tab) +
|
|
natids * sizeof(*t->atid_tab) +
|
|
t->nstids * sizeof(*t->stid_tab) +
|
|
t->nsftids * sizeof(*t->stid_tab) +
|
|
stid_bmap_size * sizeof(long) +
|
|
t->nhpftids * sizeof(*t->hpftid_tab) +
|
|
hpftid_bmap_size * sizeof(long) +
|
|
max_ftids * sizeof(*t->ftid_tab) +
|
|
ftid_bmap_size * sizeof(long) +
|
|
t->neotids * sizeof(*t->eotid_tab) +
|
|
eotid_bmap_size * sizeof(long);
|
|
|
|
t->tid_tab = kvzalloc(size, GFP_KERNEL);
|
|
if (!t->tid_tab)
|
|
return -ENOMEM;
|
|
|
|
t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
|
|
t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
|
|
t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
|
|
t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
|
|
t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
|
|
t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
|
|
t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
|
|
t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
|
|
t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
|
|
spin_lock_init(&t->stid_lock);
|
|
spin_lock_init(&t->atid_lock);
|
|
spin_lock_init(&t->ftid_lock);
|
|
|
|
t->stids_in_use = 0;
|
|
t->v6_stids_in_use = 0;
|
|
t->sftids_in_use = 0;
|
|
t->afree = NULL;
|
|
t->atids_in_use = 0;
|
|
atomic_set(&t->tids_in_use, 0);
|
|
atomic_set(&t->conns_in_use, 0);
|
|
atomic_set(&t->hash_tids_in_use, 0);
|
|
atomic_set(&t->eotids_in_use, 0);
|
|
|
|
/* Setup the free list for atid_tab and clear the stid bitmap. */
|
|
if (natids) {
|
|
while (--natids)
|
|
t->atid_tab[natids - 1].next = &t->atid_tab[natids];
|
|
t->afree = t->atid_tab;
|
|
}
|
|
|
|
if (is_offload(adap)) {
|
|
bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
|
|
/* Reserve stid 0 for T4/T5 adapters */
|
|
if (!t->stid_base &&
|
|
CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
|
|
__set_bit(0, t->stid_bmap);
|
|
|
|
if (t->neotids)
|
|
bitmap_zero(t->eotid_bmap, t->neotids);
|
|
}
|
|
|
|
if (t->nhpftids)
|
|
bitmap_zero(t->hpftid_bmap, t->nhpftids);
|
|
bitmap_zero(t->ftid_bmap, t->nftids);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cxgb4_create_server - create an IP server
|
|
* @dev: the device
|
|
* @stid: the server TID
|
|
* @sip: local IP address to bind server to
|
|
* @sport: the server's TCP port
|
|
* @queue: queue to direct messages from this server to
|
|
*
|
|
* Create an IP server for the given port and address.
|
|
* Returns <0 on error and one of the %NET_XMIT_* values on success.
|
|
*/
|
|
int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
|
|
__be32 sip, __be16 sport, __be16 vlan,
|
|
unsigned int queue)
|
|
{
|
|
unsigned int chan;
|
|
struct sk_buff *skb;
|
|
struct adapter *adap;
|
|
struct cpl_pass_open_req *req;
|
|
int ret;
|
|
|
|
skb = alloc_skb(sizeof(*req), GFP_KERNEL);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
adap = netdev2adap(dev);
|
|
req = __skb_put(skb, sizeof(*req));
|
|
INIT_TP_WR(req, 0);
|
|
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
|
|
req->local_port = sport;
|
|
req->peer_port = htons(0);
|
|
req->local_ip = sip;
|
|
req->peer_ip = htonl(0);
|
|
chan = rxq_to_chan(&adap->sge, queue);
|
|
req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
|
|
req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
|
|
SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
|
|
ret = t4_mgmt_tx(adap, skb);
|
|
return net_xmit_eval(ret);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_create_server);
|
|
|
|
/* cxgb4_create_server6 - create an IPv6 server
|
|
* @dev: the device
|
|
* @stid: the server TID
|
|
* @sip: local IPv6 address to bind server to
|
|
* @sport: the server's TCP port
|
|
* @queue: queue to direct messages from this server to
|
|
*
|
|
* Create an IPv6 server for the given port and address.
|
|
* Returns <0 on error and one of the %NET_XMIT_* values on success.
|
|
*/
|
|
int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
|
|
const struct in6_addr *sip, __be16 sport,
|
|
unsigned int queue)
|
|
{
|
|
unsigned int chan;
|
|
struct sk_buff *skb;
|
|
struct adapter *adap;
|
|
struct cpl_pass_open_req6 *req;
|
|
int ret;
|
|
|
|
skb = alloc_skb(sizeof(*req), GFP_KERNEL);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
adap = netdev2adap(dev);
|
|
req = __skb_put(skb, sizeof(*req));
|
|
INIT_TP_WR(req, 0);
|
|
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
|
|
req->local_port = sport;
|
|
req->peer_port = htons(0);
|
|
req->local_ip_hi = *(__be64 *)(sip->s6_addr);
|
|
req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
|
|
req->peer_ip_hi = cpu_to_be64(0);
|
|
req->peer_ip_lo = cpu_to_be64(0);
|
|
chan = rxq_to_chan(&adap->sge, queue);
|
|
req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
|
|
req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
|
|
SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
|
|
ret = t4_mgmt_tx(adap, skb);
|
|
return net_xmit_eval(ret);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_create_server6);
|
|
|
|
int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
|
|
unsigned int queue, bool ipv6)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct adapter *adap;
|
|
struct cpl_close_listsvr_req *req;
|
|
int ret;
|
|
|
|
adap = netdev2adap(dev);
|
|
|
|
skb = alloc_skb(sizeof(*req), GFP_KERNEL);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
req = __skb_put(skb, sizeof(*req));
|
|
INIT_TP_WR(req, 0);
|
|
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
|
|
req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
|
|
LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
|
|
ret = t4_mgmt_tx(adap, skb);
|
|
return net_xmit_eval(ret);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_remove_server);
|
|
|
|
/**
|
|
* cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
|
|
* @mtus: the HW MTU table
|
|
* @mtu: the target MTU
|
|
* @idx: index of selected entry in the MTU table
|
|
*
|
|
* Returns the index and the value in the HW MTU table that is closest to
|
|
* but does not exceed @mtu, unless @mtu is smaller than any value in the
|
|
* table, in which case that smallest available value is selected.
|
|
*/
|
|
unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
|
|
unsigned int *idx)
|
|
{
|
|
unsigned int i = 0;
|
|
|
|
while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
|
|
++i;
|
|
if (idx)
|
|
*idx = i;
|
|
return mtus[i];
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_best_mtu);
|
|
|
|
/**
|
|
* cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
|
|
* @mtus: the HW MTU table
|
|
* @header_size: Header Size
|
|
* @data_size_max: maximum Data Segment Size
|
|
* @data_size_align: desired Data Segment Size Alignment (2^N)
|
|
* @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
|
|
*
|
|
* Similar to cxgb4_best_mtu() but instead of searching the Hardware
|
|
* MTU Table based solely on a Maximum MTU parameter, we break that
|
|
* parameter up into a Header Size and Maximum Data Segment Size, and
|
|
* provide a desired Data Segment Size Alignment. If we find an MTU in
|
|
* the Hardware MTU Table which will result in a Data Segment Size with
|
|
* the requested alignment _and_ that MTU isn't "too far" from the
|
|
* closest MTU, then we'll return that rather than the closest MTU.
|
|
*/
|
|
unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
|
|
unsigned short header_size,
|
|
unsigned short data_size_max,
|
|
unsigned short data_size_align,
|
|
unsigned int *mtu_idxp)
|
|
{
|
|
unsigned short max_mtu = header_size + data_size_max;
|
|
unsigned short data_size_align_mask = data_size_align - 1;
|
|
int mtu_idx, aligned_mtu_idx;
|
|
|
|
/* Scan the MTU Table till we find an MTU which is larger than our
|
|
* Maximum MTU or we reach the end of the table. Along the way,
|
|
* record the last MTU found, if any, which will result in a Data
|
|
* Segment Length matching the requested alignment.
|
|
*/
|
|
for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
|
|
unsigned short data_size = mtus[mtu_idx] - header_size;
|
|
|
|
/* If this MTU minus the Header Size would result in a
|
|
* Data Segment Size of the desired alignment, remember it.
|
|
*/
|
|
if ((data_size & data_size_align_mask) == 0)
|
|
aligned_mtu_idx = mtu_idx;
|
|
|
|
/* If we're not at the end of the Hardware MTU Table and the
|
|
* next element is larger than our Maximum MTU, drop out of
|
|
* the loop.
|
|
*/
|
|
if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
|
|
break;
|
|
}
|
|
|
|
/* If we fell out of the loop because we ran to the end of the table,
|
|
* then we just have to use the last [largest] entry.
|
|
*/
|
|
if (mtu_idx == NMTUS)
|
|
mtu_idx--;
|
|
|
|
/* If we found an MTU which resulted in the requested Data Segment
|
|
* Length alignment and that's "not far" from the largest MTU which is
|
|
* less than or equal to the maximum MTU, then use that.
|
|
*/
|
|
if (aligned_mtu_idx >= 0 &&
|
|
mtu_idx - aligned_mtu_idx <= 1)
|
|
mtu_idx = aligned_mtu_idx;
|
|
|
|
/* If the caller has passed in an MTU Index pointer, pass the
|
|
* MTU Index back. Return the MTU value.
|
|
*/
|
|
if (mtu_idxp)
|
|
*mtu_idxp = mtu_idx;
|
|
return mtus[mtu_idx];
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
|
|
|
|
/**
|
|
* cxgb4_port_chan - get the HW channel of a port
|
|
* @dev: the net device for the port
|
|
*
|
|
* Return the HW Tx channel of the given port.
|
|
*/
|
|
unsigned int cxgb4_port_chan(const struct net_device *dev)
|
|
{
|
|
return netdev2pinfo(dev)->tx_chan;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_port_chan);
|
|
|
|
/**
|
|
* cxgb4_port_e2cchan - get the HW c-channel of a port
|
|
* @dev: the net device for the port
|
|
*
|
|
* Return the HW RX c-channel of the given port.
|
|
*/
|
|
unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
|
|
{
|
|
return netdev2pinfo(dev)->rx_cchan;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_port_e2cchan);
|
|
|
|
unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
|
|
{
|
|
struct adapter *adap = netdev2adap(dev);
|
|
u32 v1, v2, lp_count, hp_count;
|
|
|
|
v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
|
|
v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
|
|
if (is_t4(adap->params.chip)) {
|
|
lp_count = LP_COUNT_G(v1);
|
|
hp_count = HP_COUNT_G(v1);
|
|
} else {
|
|
lp_count = LP_COUNT_T5_G(v1);
|
|
hp_count = HP_COUNT_T5_G(v2);
|
|
}
|
|
return lpfifo ? lp_count : hp_count;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_dbfifo_count);
|
|
|
|
/**
|
|
* cxgb4_port_viid - get the VI id of a port
|
|
* @dev: the net device for the port
|
|
*
|
|
* Return the VI id of the given port.
|
|
*/
|
|
unsigned int cxgb4_port_viid(const struct net_device *dev)
|
|
{
|
|
return netdev2pinfo(dev)->viid;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_port_viid);
|
|
|
|
/**
|
|
* cxgb4_port_idx - get the index of a port
|
|
* @dev: the net device for the port
|
|
*
|
|
* Return the index of the given port.
|
|
*/
|
|
unsigned int cxgb4_port_idx(const struct net_device *dev)
|
|
{
|
|
return netdev2pinfo(dev)->port_id;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_port_idx);
|
|
|
|
void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
|
|
struct tp_tcp_stats *v6)
|
|
{
|
|
struct adapter *adap = pci_get_drvdata(pdev);
|
|
|
|
spin_lock(&adap->stats_lock);
|
|
t4_tp_get_tcp_stats(adap, v4, v6, false);
|
|
spin_unlock(&adap->stats_lock);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_get_tcp_stats);
|
|
|
|
void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
|
|
const unsigned int *pgsz_order)
|
|
{
|
|
struct adapter *adap = netdev2adap(dev);
|
|
|
|
t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
|
|
t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
|
|
HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
|
|
HPZ3_V(pgsz_order[3]));
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_iscsi_init);
|
|
|
|
int cxgb4_flush_eq_cache(struct net_device *dev)
|
|
{
|
|
struct adapter *adap = netdev2adap(dev);
|
|
|
|
return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_flush_eq_cache);
|
|
|
|
static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
|
|
{
|
|
u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
|
|
__be64 indices;
|
|
int ret;
|
|
|
|
spin_lock(&adap->win0_lock);
|
|
ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
|
|
sizeof(indices), (__be32 *)&indices,
|
|
T4_MEMORY_READ);
|
|
spin_unlock(&adap->win0_lock);
|
|
if (!ret) {
|
|
*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
|
|
*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
|
|
u16 size)
|
|
{
|
|
struct adapter *adap = netdev2adap(dev);
|
|
u16 hw_pidx, hw_cidx;
|
|
int ret;
|
|
|
|
ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (pidx != hw_pidx) {
|
|
u16 delta;
|
|
u32 val;
|
|
|
|
if (pidx >= hw_pidx)
|
|
delta = pidx - hw_pidx;
|
|
else
|
|
delta = size - hw_pidx + pidx;
|
|
|
|
if (is_t4(adap->params.chip))
|
|
val = PIDX_V(delta);
|
|
else
|
|
val = PIDX_T5_V(delta);
|
|
wmb();
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
|
|
QID_V(qid) | val);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
|
|
|
|
int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
|
|
{
|
|
u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
|
|
u32 edc0_end, edc1_end, mc0_end, mc1_end;
|
|
u32 offset, memtype, memaddr;
|
|
struct adapter *adap;
|
|
u32 hma_size = 0;
|
|
int ret;
|
|
|
|
adap = netdev2adap(dev);
|
|
|
|
offset = ((stag >> 8) * 32) + adap->vres.stag.start;
|
|
|
|
/* Figure out where the offset lands in the Memory Type/Address scheme.
|
|
* This code assumes that the memory is laid out starting at offset 0
|
|
* with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
|
|
* and EDC1. Some cards will have neither MC0 nor MC1, most cards have
|
|
* MC0, and some have both MC0 and MC1.
|
|
*/
|
|
size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
|
|
edc0_size = EDRAM0_SIZE_G(size) << 20;
|
|
size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
|
|
edc1_size = EDRAM1_SIZE_G(size) << 20;
|
|
size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
|
|
mc0_size = EXT_MEM0_SIZE_G(size) << 20;
|
|
|
|
if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
|
|
size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
|
|
hma_size = EXT_MEM1_SIZE_G(size) << 20;
|
|
}
|
|
edc0_end = edc0_size;
|
|
edc1_end = edc0_end + edc1_size;
|
|
mc0_end = edc1_end + mc0_size;
|
|
|
|
if (offset < edc0_end) {
|
|
memtype = MEM_EDC0;
|
|
memaddr = offset;
|
|
} else if (offset < edc1_end) {
|
|
memtype = MEM_EDC1;
|
|
memaddr = offset - edc0_end;
|
|
} else {
|
|
if (hma_size && (offset < (edc1_end + hma_size))) {
|
|
memtype = MEM_HMA;
|
|
memaddr = offset - edc1_end;
|
|
} else if (offset < mc0_end) {
|
|
memtype = MEM_MC0;
|
|
memaddr = offset - edc1_end;
|
|
} else if (is_t5(adap->params.chip)) {
|
|
size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
|
|
mc1_size = EXT_MEM1_SIZE_G(size) << 20;
|
|
mc1_end = mc0_end + mc1_size;
|
|
if (offset < mc1_end) {
|
|
memtype = MEM_MC1;
|
|
memaddr = offset - mc0_end;
|
|
} else {
|
|
/* offset beyond the end of any memory */
|
|
goto err;
|
|
}
|
|
} else {
|
|
/* T4/T6 only has a single memory channel */
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
spin_lock(&adap->win0_lock);
|
|
ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
|
|
spin_unlock(&adap->win0_lock);
|
|
return ret;
|
|
|
|
err:
|
|
dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
|
|
stag, offset);
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_read_tpte);
|
|
|
|
u64 cxgb4_read_sge_timestamp(struct net_device *dev)
|
|
{
|
|
u32 hi, lo;
|
|
struct adapter *adap;
|
|
|
|
adap = netdev2adap(dev);
|
|
lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
|
|
hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
|
|
|
|
return ((u64)hi << 32) | (u64)lo;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
|
|
|
|
int cxgb4_bar2_sge_qregs(struct net_device *dev,
|
|
unsigned int qid,
|
|
enum cxgb4_bar2_qtype qtype,
|
|
int user,
|
|
u64 *pbar2_qoffset,
|
|
unsigned int *pbar2_qid)
|
|
{
|
|
return t4_bar2_sge_qregs(netdev2adap(dev),
|
|
qid,
|
|
(qtype == CXGB4_BAR2_QTYPE_EGRESS
|
|
? T4_BAR2_QTYPE_EGRESS
|
|
: T4_BAR2_QTYPE_INGRESS),
|
|
user,
|
|
pbar2_qoffset,
|
|
pbar2_qid);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
|
|
|
|
static struct pci_driver cxgb4_driver;
|
|
|
|
static void check_neigh_update(struct neighbour *neigh)
|
|
{
|
|
const struct device *parent;
|
|
const struct net_device *netdev = neigh->dev;
|
|
|
|
if (is_vlan_dev(netdev))
|
|
netdev = vlan_dev_real_dev(netdev);
|
|
parent = netdev->dev.parent;
|
|
if (parent && parent->driver == &cxgb4_driver.driver)
|
|
t4_l2t_update(dev_get_drvdata(parent), neigh);
|
|
}
|
|
|
|
static int netevent_cb(struct notifier_block *nb, unsigned long event,
|
|
void *data)
|
|
{
|
|
switch (event) {
|
|
case NETEVENT_NEIGH_UPDATE:
|
|
check_neigh_update(data);
|
|
break;
|
|
case NETEVENT_REDIRECT:
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool netevent_registered;
|
|
static struct notifier_block cxgb4_netevent_nb = {
|
|
.notifier_call = netevent_cb
|
|
};
|
|
|
|
static void drain_db_fifo(struct adapter *adap, int usecs)
|
|
{
|
|
u32 v1, v2, lp_count, hp_count;
|
|
|
|
do {
|
|
v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
|
|
v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
|
|
if (is_t4(adap->params.chip)) {
|
|
lp_count = LP_COUNT_G(v1);
|
|
hp_count = HP_COUNT_G(v1);
|
|
} else {
|
|
lp_count = LP_COUNT_T5_G(v1);
|
|
hp_count = HP_COUNT_T5_G(v2);
|
|
}
|
|
|
|
if (lp_count == 0 && hp_count == 0)
|
|
break;
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_timeout(usecs_to_jiffies(usecs));
|
|
} while (1);
|
|
}
|
|
|
|
static void disable_txq_db(struct sge_txq *q)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&q->db_lock, flags);
|
|
q->db_disabled = 1;
|
|
spin_unlock_irqrestore(&q->db_lock, flags);
|
|
}
|
|
|
|
static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
|
|
{
|
|
spin_lock_irq(&q->db_lock);
|
|
if (q->db_pidx_inc) {
|
|
/* Make sure that all writes to the TX descriptors
|
|
* are committed before we tell HW about them.
|
|
*/
|
|
wmb();
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
|
|
QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
|
|
q->db_pidx_inc = 0;
|
|
}
|
|
q->db_disabled = 0;
|
|
spin_unlock_irq(&q->db_lock);
|
|
}
|
|
|
|
static void disable_dbs(struct adapter *adap)
|
|
{
|
|
int i;
|
|
|
|
for_each_ethrxq(&adap->sge, i)
|
|
disable_txq_db(&adap->sge.ethtxq[i].q);
|
|
if (is_offload(adap)) {
|
|
struct sge_uld_txq_info *txq_info =
|
|
adap->sge.uld_txq_info[CXGB4_TX_OFLD];
|
|
|
|
if (txq_info) {
|
|
for_each_ofldtxq(&adap->sge, i) {
|
|
struct sge_uld_txq *txq = &txq_info->uldtxq[i];
|
|
|
|
disable_txq_db(&txq->q);
|
|
}
|
|
}
|
|
}
|
|
for_each_port(adap, i)
|
|
disable_txq_db(&adap->sge.ctrlq[i].q);
|
|
}
|
|
|
|
static void enable_dbs(struct adapter *adap)
|
|
{
|
|
int i;
|
|
|
|
for_each_ethrxq(&adap->sge, i)
|
|
enable_txq_db(adap, &adap->sge.ethtxq[i].q);
|
|
if (is_offload(adap)) {
|
|
struct sge_uld_txq_info *txq_info =
|
|
adap->sge.uld_txq_info[CXGB4_TX_OFLD];
|
|
|
|
if (txq_info) {
|
|
for_each_ofldtxq(&adap->sge, i) {
|
|
struct sge_uld_txq *txq = &txq_info->uldtxq[i];
|
|
|
|
enable_txq_db(adap, &txq->q);
|
|
}
|
|
}
|
|
}
|
|
for_each_port(adap, i)
|
|
enable_txq_db(adap, &adap->sge.ctrlq[i].q);
|
|
}
|
|
|
|
static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
|
|
{
|
|
enum cxgb4_uld type = CXGB4_ULD_RDMA;
|
|
|
|
if (adap->uld && adap->uld[type].handle)
|
|
adap->uld[type].control(adap->uld[type].handle, cmd);
|
|
}
|
|
|
|
static void process_db_full(struct work_struct *work)
|
|
{
|
|
struct adapter *adap;
|
|
|
|
adap = container_of(work, struct adapter, db_full_task);
|
|
|
|
drain_db_fifo(adap, dbfifo_drain_delay);
|
|
enable_dbs(adap);
|
|
notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
|
|
t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
|
|
DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
|
|
DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
|
|
else
|
|
t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
|
|
DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
|
|
}
|
|
|
|
static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
|
|
{
|
|
u16 hw_pidx, hw_cidx;
|
|
int ret;
|
|
|
|
spin_lock_irq(&q->db_lock);
|
|
ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
|
|
if (ret)
|
|
goto out;
|
|
if (q->db_pidx != hw_pidx) {
|
|
u16 delta;
|
|
u32 val;
|
|
|
|
if (q->db_pidx >= hw_pidx)
|
|
delta = q->db_pidx - hw_pidx;
|
|
else
|
|
delta = q->size - hw_pidx + q->db_pidx;
|
|
|
|
if (is_t4(adap->params.chip))
|
|
val = PIDX_V(delta);
|
|
else
|
|
val = PIDX_T5_V(delta);
|
|
wmb();
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
|
|
QID_V(q->cntxt_id) | val);
|
|
}
|
|
out:
|
|
q->db_disabled = 0;
|
|
q->db_pidx_inc = 0;
|
|
spin_unlock_irq(&q->db_lock);
|
|
if (ret)
|
|
CH_WARN(adap, "DB drop recovery failed.\n");
|
|
}
|
|
|
|
static void recover_all_queues(struct adapter *adap)
|
|
{
|
|
int i;
|
|
|
|
for_each_ethrxq(&adap->sge, i)
|
|
sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
|
|
if (is_offload(adap)) {
|
|
struct sge_uld_txq_info *txq_info =
|
|
adap->sge.uld_txq_info[CXGB4_TX_OFLD];
|
|
if (txq_info) {
|
|
for_each_ofldtxq(&adap->sge, i) {
|
|
struct sge_uld_txq *txq = &txq_info->uldtxq[i];
|
|
|
|
sync_txq_pidx(adap, &txq->q);
|
|
}
|
|
}
|
|
}
|
|
for_each_port(adap, i)
|
|
sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
|
|
}
|
|
|
|
static void process_db_drop(struct work_struct *work)
|
|
{
|
|
struct adapter *adap;
|
|
|
|
adap = container_of(work, struct adapter, db_drop_task);
|
|
|
|
if (is_t4(adap->params.chip)) {
|
|
drain_db_fifo(adap, dbfifo_drain_delay);
|
|
notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
|
|
drain_db_fifo(adap, dbfifo_drain_delay);
|
|
recover_all_queues(adap);
|
|
drain_db_fifo(adap, dbfifo_drain_delay);
|
|
enable_dbs(adap);
|
|
notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
|
|
} else if (is_t5(adap->params.chip)) {
|
|
u32 dropped_db = t4_read_reg(adap, 0x010ac);
|
|
u16 qid = (dropped_db >> 15) & 0x1ffff;
|
|
u16 pidx_inc = dropped_db & 0x1fff;
|
|
u64 bar2_qoffset;
|
|
unsigned int bar2_qid;
|
|
int ret;
|
|
|
|
ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
|
|
0, &bar2_qoffset, &bar2_qid);
|
|
if (ret)
|
|
dev_err(adap->pdev_dev, "doorbell drop recovery: "
|
|
"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
|
|
else
|
|
writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
|
|
adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
|
|
|
|
/* Re-enable BAR2 WC */
|
|
t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
|
|
}
|
|
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
|
|
t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
|
|
}
|
|
|
|
void t4_db_full(struct adapter *adap)
|
|
{
|
|
if (is_t4(adap->params.chip)) {
|
|
disable_dbs(adap);
|
|
notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
|
|
t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
|
|
DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
|
|
queue_work(adap->workq, &adap->db_full_task);
|
|
}
|
|
}
|
|
|
|
void t4_db_dropped(struct adapter *adap)
|
|
{
|
|
if (is_t4(adap->params.chip)) {
|
|
disable_dbs(adap);
|
|
notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
|
|
}
|
|
queue_work(adap->workq, &adap->db_drop_task);
|
|
}
|
|
|
|
void t4_register_netevent_notifier(void)
|
|
{
|
|
if (!netevent_registered) {
|
|
register_netevent_notifier(&cxgb4_netevent_nb);
|
|
netevent_registered = true;
|
|
}
|
|
}
|
|
|
|
static void detach_ulds(struct adapter *adap)
|
|
{
|
|
unsigned int i;
|
|
|
|
mutex_lock(&uld_mutex);
|
|
list_del(&adap->list_node);
|
|
|
|
for (i = 0; i < CXGB4_ULD_MAX; i++)
|
|
if (adap->uld && adap->uld[i].handle)
|
|
adap->uld[i].state_change(adap->uld[i].handle,
|
|
CXGB4_STATE_DETACH);
|
|
|
|
if (netevent_registered && list_empty(&adapter_list)) {
|
|
unregister_netevent_notifier(&cxgb4_netevent_nb);
|
|
netevent_registered = false;
|
|
}
|
|
mutex_unlock(&uld_mutex);
|
|
}
|
|
|
|
static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
|
|
{
|
|
unsigned int i;
|
|
|
|
mutex_lock(&uld_mutex);
|
|
for (i = 0; i < CXGB4_ULD_MAX; i++)
|
|
if (adap->uld && adap->uld[i].handle)
|
|
adap->uld[i].state_change(adap->uld[i].handle,
|
|
new_state);
|
|
mutex_unlock(&uld_mutex);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
static int cxgb4_inet6addr_handler(struct notifier_block *this,
|
|
unsigned long event, void *data)
|
|
{
|
|
struct inet6_ifaddr *ifa = data;
|
|
struct net_device *event_dev = ifa->idev->dev;
|
|
const struct device *parent = NULL;
|
|
#if IS_ENABLED(CONFIG_BONDING)
|
|
struct adapter *adap;
|
|
#endif
|
|
if (is_vlan_dev(event_dev))
|
|
event_dev = vlan_dev_real_dev(event_dev);
|
|
#if IS_ENABLED(CONFIG_BONDING)
|
|
if (event_dev->flags & IFF_MASTER) {
|
|
list_for_each_entry(adap, &adapter_list, list_node) {
|
|
switch (event) {
|
|
case NETDEV_UP:
|
|
cxgb4_clip_get(adap->port[0],
|
|
(const u32 *)ifa, 1);
|
|
break;
|
|
case NETDEV_DOWN:
|
|
cxgb4_clip_release(adap->port[0],
|
|
(const u32 *)ifa, 1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
#endif
|
|
|
|
if (event_dev)
|
|
parent = event_dev->dev.parent;
|
|
|
|
if (parent && parent->driver == &cxgb4_driver.driver) {
|
|
switch (event) {
|
|
case NETDEV_UP:
|
|
cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
|
|
break;
|
|
case NETDEV_DOWN:
|
|
cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static bool inet6addr_registered;
|
|
static struct notifier_block cxgb4_inet6addr_notifier = {
|
|
.notifier_call = cxgb4_inet6addr_handler
|
|
};
|
|
|
|
static void update_clip(const struct adapter *adap)
|
|
{
|
|
int i;
|
|
struct net_device *dev;
|
|
int ret;
|
|
|
|
rcu_read_lock();
|
|
|
|
for (i = 0; i < MAX_NPORTS; i++) {
|
|
dev = adap->port[i];
|
|
ret = 0;
|
|
|
|
if (dev)
|
|
ret = cxgb4_update_root_dev_clip(dev);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
#endif /* IS_ENABLED(CONFIG_IPV6) */
|
|
|
|
/**
|
|
* cxgb_up - enable the adapter
|
|
* @adap: adapter being enabled
|
|
*
|
|
* Called when the first port is enabled, this function performs the
|
|
* actions necessary to make an adapter operational, such as completing
|
|
* the initialization of HW modules, and enabling interrupts.
|
|
*
|
|
* Must be called with the rtnl lock held.
|
|
*/
|
|
static int cxgb_up(struct adapter *adap)
|
|
{
|
|
struct sge *s = &adap->sge;
|
|
int err;
|
|
|
|
mutex_lock(&uld_mutex);
|
|
err = setup_sge_queues(adap);
|
|
if (err)
|
|
goto rel_lock;
|
|
err = setup_rss(adap);
|
|
if (err)
|
|
goto freeq;
|
|
|
|
if (adap->flags & CXGB4_USING_MSIX) {
|
|
if (s->nd_msix_idx < 0) {
|
|
err = -ENOMEM;
|
|
goto irq_err;
|
|
}
|
|
|
|
err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
|
|
t4_nondata_intr, 0,
|
|
adap->msix_info[s->nd_msix_idx].desc, adap);
|
|
if (err)
|
|
goto irq_err;
|
|
|
|
err = request_msix_queue_irqs(adap);
|
|
if (err)
|
|
goto irq_err_free_nd_msix;
|
|
} else {
|
|
err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
|
|
(adap->flags & CXGB4_USING_MSI) ? 0
|
|
: IRQF_SHARED,
|
|
adap->port[0]->name, adap);
|
|
if (err)
|
|
goto irq_err;
|
|
}
|
|
|
|
enable_rx(adap);
|
|
t4_sge_start(adap);
|
|
t4_intr_enable(adap);
|
|
adap->flags |= CXGB4_FULL_INIT_DONE;
|
|
mutex_unlock(&uld_mutex);
|
|
|
|
notify_ulds(adap, CXGB4_STATE_UP);
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
update_clip(adap);
|
|
#endif
|
|
return err;
|
|
|
|
irq_err_free_nd_msix:
|
|
free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
|
|
irq_err:
|
|
dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
|
|
freeq:
|
|
t4_free_sge_resources(adap);
|
|
rel_lock:
|
|
mutex_unlock(&uld_mutex);
|
|
return err;
|
|
}
|
|
|
|
static void cxgb_down(struct adapter *adapter)
|
|
{
|
|
cancel_work_sync(&adapter->tid_release_task);
|
|
cancel_work_sync(&adapter->db_full_task);
|
|
cancel_work_sync(&adapter->db_drop_task);
|
|
adapter->tid_release_task_busy = false;
|
|
adapter->tid_release_head = NULL;
|
|
|
|
t4_sge_stop(adapter);
|
|
t4_free_sge_resources(adapter);
|
|
|
|
adapter->flags &= ~CXGB4_FULL_INIT_DONE;
|
|
}
|
|
|
|
/*
|
|
* net_device operations
|
|
*/
|
|
int cxgb_open(struct net_device *dev)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adapter = pi->adapter;
|
|
int err;
|
|
|
|
netif_carrier_off(dev);
|
|
|
|
if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
|
|
err = cxgb_up(adapter);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
/* It's possible that the basic port information could have
|
|
* changed since we first read it.
|
|
*/
|
|
err = t4_update_port_info(pi);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
err = link_start(dev);
|
|
if (!err)
|
|
netif_tx_start_all_queues(dev);
|
|
return err;
|
|
}
|
|
|
|
int cxgb_close(struct net_device *dev)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adapter = pi->adapter;
|
|
int ret;
|
|
|
|
netif_tx_stop_all_queues(dev);
|
|
netif_carrier_off(dev);
|
|
ret = t4_enable_pi_params(adapter, adapter->pf, pi,
|
|
false, false, false);
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
cxgb4_dcb_reset(dev);
|
|
dcb_tx_queue_prio_enable(dev, false);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
|
|
__be32 sip, __be16 sport, __be16 vlan,
|
|
unsigned int queue, unsigned char port, unsigned char mask)
|
|
{
|
|
int ret;
|
|
struct filter_entry *f;
|
|
struct adapter *adap;
|
|
int i;
|
|
u8 *val;
|
|
|
|
adap = netdev2adap(dev);
|
|
|
|
/* Adjust stid to correct filter index */
|
|
stid -= adap->tids.sftid_base;
|
|
stid += adap->tids.nftids;
|
|
|
|
/* Check to make sure the filter requested is writable ...
|
|
*/
|
|
f = &adap->tids.ftid_tab[stid];
|
|
ret = writable_filter(f);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Clear out any old resources being used by the filter before
|
|
* we start constructing the new filter.
|
|
*/
|
|
if (f->valid)
|
|
clear_filter(adap, f);
|
|
|
|
/* Clear out filter specifications */
|
|
memset(&f->fs, 0, sizeof(struct ch_filter_specification));
|
|
f->fs.val.lport = cpu_to_be16(sport);
|
|
f->fs.mask.lport = ~0;
|
|
val = (u8 *)&sip;
|
|
if ((val[0] | val[1] | val[2] | val[3]) != 0) {
|
|
for (i = 0; i < 4; i++) {
|
|
f->fs.val.lip[i] = val[i];
|
|
f->fs.mask.lip[i] = ~0;
|
|
}
|
|
if (adap->params.tp.vlan_pri_map & PORT_F) {
|
|
f->fs.val.iport = port;
|
|
f->fs.mask.iport = mask;
|
|
}
|
|
}
|
|
|
|
if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
|
|
f->fs.val.proto = IPPROTO_TCP;
|
|
f->fs.mask.proto = ~0;
|
|
}
|
|
|
|
f->fs.dirsteer = 1;
|
|
f->fs.iq = queue;
|
|
/* Mark filter as locked */
|
|
f->locked = 1;
|
|
f->fs.rpttid = 1;
|
|
|
|
/* Save the actual tid. We need this to get the corresponding
|
|
* filter entry structure in filter_rpl.
|
|
*/
|
|
f->tid = stid + adap->tids.ftid_base;
|
|
ret = set_filter_wr(adap, stid);
|
|
if (ret) {
|
|
clear_filter(adap, f);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_create_server_filter);
|
|
|
|
int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
|
|
unsigned int queue, bool ipv6)
|
|
{
|
|
struct filter_entry *f;
|
|
struct adapter *adap;
|
|
|
|
adap = netdev2adap(dev);
|
|
|
|
/* Adjust stid to correct filter index */
|
|
stid -= adap->tids.sftid_base;
|
|
stid += adap->tids.nftids;
|
|
|
|
f = &adap->tids.ftid_tab[stid];
|
|
/* Unlock the filter */
|
|
f->locked = 0;
|
|
|
|
return delete_filter(adap, stid);
|
|
}
|
|
EXPORT_SYMBOL(cxgb4_remove_server_filter);
|
|
|
|
static void cxgb_get_stats(struct net_device *dev,
|
|
struct rtnl_link_stats64 *ns)
|
|
{
|
|
struct port_stats stats;
|
|
struct port_info *p = netdev_priv(dev);
|
|
struct adapter *adapter = p->adapter;
|
|
|
|
/* Block retrieving statistics during EEH error
|
|
* recovery. Otherwise, the recovery might fail
|
|
* and the PCI device will be removed permanently
|
|
*/
|
|
spin_lock(&adapter->stats_lock);
|
|
if (!netif_device_present(dev)) {
|
|
spin_unlock(&adapter->stats_lock);
|
|
return;
|
|
}
|
|
t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
|
|
&p->stats_base);
|
|
spin_unlock(&adapter->stats_lock);
|
|
|
|
ns->tx_bytes = stats.tx_octets;
|
|
ns->tx_packets = stats.tx_frames;
|
|
ns->rx_bytes = stats.rx_octets;
|
|
ns->rx_packets = stats.rx_frames;
|
|
ns->multicast = stats.rx_mcast_frames;
|
|
|
|
/* detailed rx_errors */
|
|
ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
|
|
stats.rx_runt;
|
|
ns->rx_over_errors = 0;
|
|
ns->rx_crc_errors = stats.rx_fcs_err;
|
|
ns->rx_frame_errors = stats.rx_symbol_err;
|
|
ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
|
|
stats.rx_ovflow2 + stats.rx_ovflow3 +
|
|
stats.rx_trunc0 + stats.rx_trunc1 +
|
|
stats.rx_trunc2 + stats.rx_trunc3;
|
|
ns->rx_missed_errors = 0;
|
|
|
|
/* detailed tx_errors */
|
|
ns->tx_aborted_errors = 0;
|
|
ns->tx_carrier_errors = 0;
|
|
ns->tx_fifo_errors = 0;
|
|
ns->tx_heartbeat_errors = 0;
|
|
ns->tx_window_errors = 0;
|
|
|
|
ns->tx_errors = stats.tx_error_frames;
|
|
ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
|
|
ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
|
|
}
|
|
|
|
static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
|
|
{
|
|
unsigned int mbox;
|
|
int ret = 0, prtad, devad;
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adapter = pi->adapter;
|
|
struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
|
|
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY:
|
|
if (pi->mdio_addr < 0)
|
|
return -EOPNOTSUPP;
|
|
data->phy_id = pi->mdio_addr;
|
|
break;
|
|
case SIOCGMIIREG:
|
|
case SIOCSMIIREG:
|
|
if (mdio_phy_id_is_c45(data->phy_id)) {
|
|
prtad = mdio_phy_id_prtad(data->phy_id);
|
|
devad = mdio_phy_id_devad(data->phy_id);
|
|
} else if (data->phy_id < 32) {
|
|
prtad = data->phy_id;
|
|
devad = 0;
|
|
data->reg_num &= 0x1f;
|
|
} else
|
|
return -EINVAL;
|
|
|
|
mbox = pi->adapter->pf;
|
|
if (cmd == SIOCGMIIREG)
|
|
ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
|
|
data->reg_num, &data->val_out);
|
|
else
|
|
ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
|
|
data->reg_num, data->val_in);
|
|
break;
|
|
case SIOCGHWTSTAMP:
|
|
return copy_to_user(req->ifr_data, &pi->tstamp_config,
|
|
sizeof(pi->tstamp_config)) ?
|
|
-EFAULT : 0;
|
|
case SIOCSHWTSTAMP:
|
|
if (copy_from_user(&pi->tstamp_config, req->ifr_data,
|
|
sizeof(pi->tstamp_config)))
|
|
return -EFAULT;
|
|
|
|
if (!is_t4(adapter->params.chip)) {
|
|
switch (pi->tstamp_config.tx_type) {
|
|
case HWTSTAMP_TX_OFF:
|
|
case HWTSTAMP_TX_ON:
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
switch (pi->tstamp_config.rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
pi->rxtstamp = false;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
cxgb4_ptprx_timestamping(pi, pi->port_id,
|
|
PTP_TS_L4);
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
cxgb4_ptprx_timestamping(pi, pi->port_id,
|
|
PTP_TS_L2_L4);
|
|
break;
|
|
case HWTSTAMP_FILTER_ALL:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
pi->rxtstamp = true;
|
|
break;
|
|
default:
|
|
pi->tstamp_config.rx_filter =
|
|
HWTSTAMP_FILTER_NONE;
|
|
return -ERANGE;
|
|
}
|
|
|
|
if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
|
|
(pi->tstamp_config.rx_filter ==
|
|
HWTSTAMP_FILTER_NONE)) {
|
|
if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
|
|
pi->ptp_enable = false;
|
|
}
|
|
|
|
if (pi->tstamp_config.rx_filter !=
|
|
HWTSTAMP_FILTER_NONE) {
|
|
if (cxgb4_ptp_redirect_rx_packet(adapter,
|
|
pi) >= 0)
|
|
pi->ptp_enable = true;
|
|
}
|
|
} else {
|
|
/* For T4 Adapters */
|
|
switch (pi->tstamp_config.rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
pi->rxtstamp = false;
|
|
break;
|
|
case HWTSTAMP_FILTER_ALL:
|
|
pi->rxtstamp = true;
|
|
break;
|
|
default:
|
|
pi->tstamp_config.rx_filter =
|
|
HWTSTAMP_FILTER_NONE;
|
|
return -ERANGE;
|
|
}
|
|
}
|
|
return copy_to_user(req->ifr_data, &pi->tstamp_config,
|
|
sizeof(pi->tstamp_config)) ?
|
|
-EFAULT : 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void cxgb_set_rxmode(struct net_device *dev)
|
|
{
|
|
/* unfortunately we can't return errors to the stack */
|
|
set_rxmode(dev, -1, false);
|
|
}
|
|
|
|
static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
int ret;
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
|
|
-1, -1, -1, true);
|
|
if (!ret)
|
|
dev->mtu = new_mtu;
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static int cxgb4_mgmt_open(struct net_device *dev)
|
|
{
|
|
/* Turn carrier off since we don't have to transmit anything on this
|
|
* interface.
|
|
*/
|
|
netif_carrier_off(dev);
|
|
return 0;
|
|
}
|
|
|
|
/* Fill MAC address that will be assigned by the FW */
|
|
static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
|
|
{
|
|
u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
|
|
unsigned int i, vf, nvfs;
|
|
u16 a, b;
|
|
int err;
|
|
u8 *na;
|
|
|
|
adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
|
|
PCI_CAP_ID_VPD);
|
|
err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
|
|
if (err)
|
|
return;
|
|
|
|
na = adap->params.vpd.na;
|
|
for (i = 0; i < ETH_ALEN; i++)
|
|
hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
|
|
hex2val(na[2 * i + 1]));
|
|
|
|
a = (hw_addr[0] << 8) | hw_addr[1];
|
|
b = (hw_addr[1] << 8) | hw_addr[2];
|
|
a ^= b;
|
|
a |= 0x0200; /* locally assigned Ethernet MAC address */
|
|
a &= ~0x0100; /* not a multicast Ethernet MAC address */
|
|
macaddr[0] = a >> 8;
|
|
macaddr[1] = a & 0xff;
|
|
|
|
for (i = 2; i < 5; i++)
|
|
macaddr[i] = hw_addr[i + 1];
|
|
|
|
for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
|
|
vf < nvfs; vf++) {
|
|
macaddr[5] = adap->pf * nvfs + vf;
|
|
ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
|
|
}
|
|
}
|
|
|
|
static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adap = pi->adapter;
|
|
int ret;
|
|
|
|
/* verify MAC addr is valid */
|
|
if (!is_valid_ether_addr(mac)) {
|
|
dev_err(pi->adapter->pdev_dev,
|
|
"Invalid Ethernet address %pM for VF %d\n",
|
|
mac, vf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_info(pi->adapter->pdev_dev,
|
|
"Setting MAC %pM on VF %d\n", mac, vf);
|
|
ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
|
|
if (!ret)
|
|
ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
|
|
return ret;
|
|
}
|
|
|
|
static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
|
|
int vf, struct ifla_vf_info *ivi)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adap = pi->adapter;
|
|
struct vf_info *vfinfo;
|
|
|
|
if (vf >= adap->num_vfs)
|
|
return -EINVAL;
|
|
vfinfo = &adap->vfinfo[vf];
|
|
|
|
ivi->vf = vf;
|
|
ivi->max_tx_rate = vfinfo->tx_rate;
|
|
ivi->min_tx_rate = 0;
|
|
ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
|
|
ivi->vlan = vfinfo->vlan;
|
|
ivi->linkstate = vfinfo->link_state;
|
|
return 0;
|
|
}
|
|
|
|
static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
|
|
struct netdev_phys_item_id *ppid)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
unsigned int phy_port_id;
|
|
|
|
phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
|
|
ppid->id_len = sizeof(phy_port_id);
|
|
memcpy(ppid->id, &phy_port_id, ppid->id_len);
|
|
return 0;
|
|
}
|
|
|
|
static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
|
|
int min_tx_rate, int max_tx_rate)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adap = pi->adapter;
|
|
unsigned int link_ok, speed, mtu;
|
|
u32 fw_pfvf, fw_class;
|
|
int class_id = vf;
|
|
int ret;
|
|
u16 pktsize;
|
|
|
|
if (vf >= adap->num_vfs)
|
|
return -EINVAL;
|
|
|
|
if (min_tx_rate) {
|
|
dev_err(adap->pdev_dev,
|
|
"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
|
|
min_tx_rate, vf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (max_tx_rate == 0) {
|
|
/* unbind VF to to any Traffic Class */
|
|
fw_pfvf =
|
|
(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
|
|
fw_class = 0xffffffff;
|
|
ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
|
|
&fw_pfvf, &fw_class);
|
|
if (ret) {
|
|
dev_err(adap->pdev_dev,
|
|
"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
|
|
ret, adap->pf, vf);
|
|
return -EINVAL;
|
|
}
|
|
dev_info(adap->pdev_dev,
|
|
"PF %d VF %d is unbound from TX Rate Limiting\n",
|
|
adap->pf, vf);
|
|
adap->vfinfo[vf].tx_rate = 0;
|
|
return 0;
|
|
}
|
|
|
|
ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
|
|
if (ret != FW_SUCCESS) {
|
|
dev_err(adap->pdev_dev,
|
|
"Failed to get link information for VF %d\n", vf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!link_ok) {
|
|
dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (max_tx_rate > speed) {
|
|
dev_err(adap->pdev_dev,
|
|
"Max tx rate %d for VF %d can't be > link-speed %u",
|
|
max_tx_rate, vf, speed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pktsize = mtu;
|
|
/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
|
|
pktsize = pktsize - sizeof(struct ethhdr) - 4;
|
|
/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
|
|
pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
|
|
/* configure Traffic Class for rate-limiting */
|
|
ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
|
|
SCHED_CLASS_LEVEL_CL_RL,
|
|
SCHED_CLASS_MODE_CLASS,
|
|
SCHED_CLASS_RATEUNIT_BITS,
|
|
SCHED_CLASS_RATEMODE_ABS,
|
|
pi->tx_chan, class_id, 0,
|
|
max_tx_rate * 1000, 0, pktsize, 0);
|
|
if (ret) {
|
|
dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
|
|
ret);
|
|
return -EINVAL;
|
|
}
|
|
dev_info(adap->pdev_dev,
|
|
"Class %d with MSS %u configured with rate %u\n",
|
|
class_id, pktsize, max_tx_rate);
|
|
|
|
/* bind VF to configured Traffic Class */
|
|
fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
|
|
fw_class = class_id;
|
|
ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
|
|
&fw_class);
|
|
if (ret) {
|
|
dev_err(adap->pdev_dev,
|
|
"Err %d in binding PF %d VF %d to Traffic Class %d\n",
|
|
ret, adap->pf, vf, class_id);
|
|
return -EINVAL;
|
|
}
|
|
dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
|
|
adap->pf, vf, class_id);
|
|
adap->vfinfo[vf].tx_rate = max_tx_rate;
|
|
return 0;
|
|
}
|
|
|
|
static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
|
|
u16 vlan, u8 qos, __be16 vlan_proto)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adap = pi->adapter;
|
|
int ret;
|
|
|
|
if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
|
|
return -EINVAL;
|
|
|
|
if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
|
|
return -EPROTONOSUPPORT;
|
|
|
|
ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
|
|
if (!ret) {
|
|
adap->vfinfo[vf].vlan = vlan;
|
|
return 0;
|
|
}
|
|
|
|
dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
|
|
ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
|
|
return ret;
|
|
}
|
|
|
|
static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
|
|
int link)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adap = pi->adapter;
|
|
u32 param, val;
|
|
int ret = 0;
|
|
|
|
if (vf >= adap->num_vfs)
|
|
return -EINVAL;
|
|
|
|
switch (link) {
|
|
case IFLA_VF_LINK_STATE_AUTO:
|
|
val = FW_VF_LINK_STATE_AUTO;
|
|
break;
|
|
|
|
case IFLA_VF_LINK_STATE_ENABLE:
|
|
val = FW_VF_LINK_STATE_ENABLE;
|
|
break;
|
|
|
|
case IFLA_VF_LINK_STATE_DISABLE:
|
|
val = FW_VF_LINK_STATE_DISABLE;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
|
|
ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
|
|
¶m, &val);
|
|
if (ret) {
|
|
dev_err(adap->pdev_dev,
|
|
"Error %d in setting PF %d VF %d link state\n",
|
|
ret, adap->pf, vf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
adap->vfinfo[vf].link_state = link;
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
static int cxgb_set_mac_addr(struct net_device *dev, void *p)
|
|
{
|
|
int ret;
|
|
struct sockaddr *addr = p;
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
|
|
addr->sa_data, true, &pi->smt_idx);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
static void cxgb_netpoll(struct net_device *dev)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adap = pi->adapter;
|
|
|
|
if (adap->flags & CXGB4_USING_MSIX) {
|
|
int i;
|
|
struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
|
|
|
|
for (i = pi->nqsets; i; i--, rx++)
|
|
t4_sge_intr_msix(0, &rx->rspq);
|
|
} else
|
|
t4_intr_handler(adap)(0, adap);
|
|
}
|
|
#endif
|
|
|
|
static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adap = pi->adapter;
|
|
struct ch_sched_queue qe = { 0 };
|
|
struct ch_sched_params p = { 0 };
|
|
struct sched_class *e;
|
|
u32 req_rate;
|
|
int err = 0;
|
|
|
|
if (!can_sched(dev))
|
|
return -ENOTSUPP;
|
|
|
|
if (index < 0 || index > pi->nqsets - 1)
|
|
return -EINVAL;
|
|
|
|
if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
|
|
dev_err(adap->pdev_dev,
|
|
"Failed to rate limit on queue %d. Link Down?\n",
|
|
index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
qe.queue = index;
|
|
e = cxgb4_sched_queue_lookup(dev, &qe);
|
|
if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
|
|
dev_err(adap->pdev_dev,
|
|
"Queue %u already bound to class %u of type: %u\n",
|
|
index, e->idx, e->info.u.params.level);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Convert from Mbps to Kbps */
|
|
req_rate = rate * 1000;
|
|
|
|
/* Max rate is 100 Gbps */
|
|
if (req_rate > SCHED_MAX_RATE_KBPS) {
|
|
dev_err(adap->pdev_dev,
|
|
"Invalid rate %u Mbps, Max rate is %u Mbps\n",
|
|
rate, SCHED_MAX_RATE_KBPS / 1000);
|
|
return -ERANGE;
|
|
}
|
|
|
|
/* First unbind the queue from any existing class */
|
|
memset(&qe, 0, sizeof(qe));
|
|
qe.queue = index;
|
|
qe.class = SCHED_CLS_NONE;
|
|
|
|
err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
|
|
if (err) {
|
|
dev_err(adap->pdev_dev,
|
|
"Unbinding Queue %d on port %d fail. Err: %d\n",
|
|
index, pi->port_id, err);
|
|
return err;
|
|
}
|
|
|
|
/* Queue already unbound */
|
|
if (!req_rate)
|
|
return 0;
|
|
|
|
/* Fetch any available unused or matching scheduling class */
|
|
p.type = SCHED_CLASS_TYPE_PACKET;
|
|
p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
|
|
p.u.params.mode = SCHED_CLASS_MODE_CLASS;
|
|
p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
|
|
p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
|
|
p.u.params.channel = pi->tx_chan;
|
|
p.u.params.class = SCHED_CLS_NONE;
|
|
p.u.params.minrate = 0;
|
|
p.u.params.maxrate = req_rate;
|
|
p.u.params.weight = 0;
|
|
p.u.params.pktsize = dev->mtu;
|
|
|
|
e = cxgb4_sched_class_alloc(dev, &p);
|
|
if (!e)
|
|
return -ENOMEM;
|
|
|
|
/* Bind the queue to a scheduling class */
|
|
memset(&qe, 0, sizeof(qe));
|
|
qe.queue = index;
|
|
qe.class = e->idx;
|
|
|
|
err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
|
|
if (err)
|
|
dev_err(adap->pdev_dev,
|
|
"Queue rate limiting failed. Err: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
static int cxgb_setup_tc_flower(struct net_device *dev,
|
|
struct flow_cls_offload *cls_flower)
|
|
{
|
|
switch (cls_flower->command) {
|
|
case FLOW_CLS_REPLACE:
|
|
return cxgb4_tc_flower_replace(dev, cls_flower);
|
|
case FLOW_CLS_DESTROY:
|
|
return cxgb4_tc_flower_destroy(dev, cls_flower);
|
|
case FLOW_CLS_STATS:
|
|
return cxgb4_tc_flower_stats(dev, cls_flower);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static int cxgb_setup_tc_cls_u32(struct net_device *dev,
|
|
struct tc_cls_u32_offload *cls_u32)
|
|
{
|
|
switch (cls_u32->command) {
|
|
case TC_CLSU32_NEW_KNODE:
|
|
case TC_CLSU32_REPLACE_KNODE:
|
|
return cxgb4_config_knode(dev, cls_u32);
|
|
case TC_CLSU32_DELETE_KNODE:
|
|
return cxgb4_delete_knode(dev, cls_u32);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static int cxgb_setup_tc_matchall(struct net_device *dev,
|
|
struct tc_cls_matchall_offload *cls_matchall,
|
|
bool ingress)
|
|
{
|
|
struct adapter *adap = netdev2adap(dev);
|
|
|
|
if (!adap->tc_matchall)
|
|
return -ENOMEM;
|
|
|
|
switch (cls_matchall->command) {
|
|
case TC_CLSMATCHALL_REPLACE:
|
|
return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
|
|
case TC_CLSMATCHALL_DESTROY:
|
|
return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
|
|
case TC_CLSMATCHALL_STATS:
|
|
if (ingress)
|
|
return cxgb4_tc_matchall_stats(dev, cls_matchall);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
|
|
void *type_data, void *cb_priv)
|
|
{
|
|
struct net_device *dev = cb_priv;
|
|
struct port_info *pi = netdev2pinfo(dev);
|
|
struct adapter *adap = netdev2adap(dev);
|
|
|
|
if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
|
|
dev_err(adap->pdev_dev,
|
|
"Failed to setup tc on port %d. Link Down?\n",
|
|
pi->port_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!tc_cls_can_offload_and_chain0(dev, type_data))
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (type) {
|
|
case TC_SETUP_CLSU32:
|
|
return cxgb_setup_tc_cls_u32(dev, type_data);
|
|
case TC_SETUP_CLSFLOWER:
|
|
return cxgb_setup_tc_flower(dev, type_data);
|
|
case TC_SETUP_CLSMATCHALL:
|
|
return cxgb_setup_tc_matchall(dev, type_data, true);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
|
|
void *type_data, void *cb_priv)
|
|
{
|
|
struct net_device *dev = cb_priv;
|
|
struct port_info *pi = netdev2pinfo(dev);
|
|
struct adapter *adap = netdev2adap(dev);
|
|
|
|
if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
|
|
dev_err(adap->pdev_dev,
|
|
"Failed to setup tc on port %d. Link Down?\n",
|
|
pi->port_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!tc_cls_can_offload_and_chain0(dev, type_data))
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (type) {
|
|
case TC_SETUP_CLSMATCHALL:
|
|
return cxgb_setup_tc_matchall(dev, type_data, false);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int cxgb_setup_tc_mqprio(struct net_device *dev,
|
|
struct tc_mqprio_qopt_offload *mqprio)
|
|
{
|
|
struct adapter *adap = netdev2adap(dev);
|
|
|
|
if (!is_ethofld(adap) || !adap->tc_mqprio)
|
|
return -ENOMEM;
|
|
|
|
return cxgb4_setup_tc_mqprio(dev, mqprio);
|
|
}
|
|
|
|
static LIST_HEAD(cxgb_block_cb_list);
|
|
|
|
static int cxgb_setup_tc_block(struct net_device *dev,
|
|
struct flow_block_offload *f)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
flow_setup_cb_t *cb;
|
|
bool ingress_only;
|
|
|
|
pi->tc_block_shared = f->block_shared;
|
|
if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
|
|
cb = cxgb_setup_tc_block_egress_cb;
|
|
ingress_only = false;
|
|
} else {
|
|
cb = cxgb_setup_tc_block_ingress_cb;
|
|
ingress_only = true;
|
|
}
|
|
|
|
return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
|
|
cb, pi, dev, ingress_only);
|
|
}
|
|
|
|
static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
|
|
void *type_data)
|
|
{
|
|
switch (type) {
|
|
case TC_SETUP_QDISC_MQPRIO:
|
|
return cxgb_setup_tc_mqprio(dev, type_data);
|
|
case TC_SETUP_BLOCK:
|
|
return cxgb_setup_tc_block(dev, type_data);
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static void cxgb_del_udp_tunnel(struct net_device *netdev,
|
|
struct udp_tunnel_info *ti)
|
|
{
|
|
struct port_info *pi = netdev_priv(netdev);
|
|
struct adapter *adapter = pi->adapter;
|
|
unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
|
|
u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
|
|
int ret = 0, i;
|
|
|
|
if (chip_ver < CHELSIO_T6)
|
|
return;
|
|
|
|
switch (ti->type) {
|
|
case UDP_TUNNEL_TYPE_VXLAN:
|
|
if (!adapter->vxlan_port_cnt ||
|
|
adapter->vxlan_port != ti->port)
|
|
return; /* Invalid VxLAN destination port */
|
|
|
|
adapter->vxlan_port_cnt--;
|
|
if (adapter->vxlan_port_cnt)
|
|
return;
|
|
|
|
adapter->vxlan_port = 0;
|
|
t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
|
|
break;
|
|
case UDP_TUNNEL_TYPE_GENEVE:
|
|
if (!adapter->geneve_port_cnt ||
|
|
adapter->geneve_port != ti->port)
|
|
return; /* Invalid GENEVE destination port */
|
|
|
|
adapter->geneve_port_cnt--;
|
|
if (adapter->geneve_port_cnt)
|
|
return;
|
|
|
|
adapter->geneve_port = 0;
|
|
t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
/* Matchall mac entries can be deleted only after all tunnel ports
|
|
* are brought down or removed.
|
|
*/
|
|
if (!adapter->rawf_cnt)
|
|
return;
|
|
for_each_port(adapter, i) {
|
|
pi = adap2pinfo(adapter, i);
|
|
ret = t4_free_raw_mac_filt(adapter, pi->viid,
|
|
match_all_mac, match_all_mac,
|
|
adapter->rawf_start +
|
|
pi->port_id,
|
|
1, pi->port_id, false);
|
|
if (ret < 0) {
|
|
netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
|
|
i);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cxgb_add_udp_tunnel(struct net_device *netdev,
|
|
struct udp_tunnel_info *ti)
|
|
{
|
|
struct port_info *pi = netdev_priv(netdev);
|
|
struct adapter *adapter = pi->adapter;
|
|
unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
|
|
u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
|
|
int i, ret;
|
|
|
|
if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
|
|
return;
|
|
|
|
switch (ti->type) {
|
|
case UDP_TUNNEL_TYPE_VXLAN:
|
|
/* Callback for adding vxlan port can be called with the same
|
|
* port for both IPv4 and IPv6. We should not disable the
|
|
* offloading when the same port for both protocols is added
|
|
* and later one of them is removed.
|
|
*/
|
|
if (adapter->vxlan_port_cnt &&
|
|
adapter->vxlan_port == ti->port) {
|
|
adapter->vxlan_port_cnt++;
|
|
return;
|
|
}
|
|
|
|
/* We will support only one VxLAN port */
|
|
if (adapter->vxlan_port_cnt) {
|
|
netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
|
|
be16_to_cpu(adapter->vxlan_port),
|
|
be16_to_cpu(ti->port));
|
|
return;
|
|
}
|
|
|
|
adapter->vxlan_port = ti->port;
|
|
adapter->vxlan_port_cnt = 1;
|
|
|
|
t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
|
|
VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
|
|
break;
|
|
case UDP_TUNNEL_TYPE_GENEVE:
|
|
if (adapter->geneve_port_cnt &&
|
|
adapter->geneve_port == ti->port) {
|
|
adapter->geneve_port_cnt++;
|
|
return;
|
|
}
|
|
|
|
/* We will support only one GENEVE port */
|
|
if (adapter->geneve_port_cnt) {
|
|
netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
|
|
be16_to_cpu(adapter->geneve_port),
|
|
be16_to_cpu(ti->port));
|
|
return;
|
|
}
|
|
|
|
adapter->geneve_port = ti->port;
|
|
adapter->geneve_port_cnt = 1;
|
|
|
|
t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
|
|
GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
/* Create a 'match all' mac filter entry for inner mac,
|
|
* if raw mac interface is supported. Once the linux kernel provides
|
|
* driver entry points for adding/deleting the inner mac addresses,
|
|
* we will remove this 'match all' entry and fallback to adding
|
|
* exact match filters.
|
|
*/
|
|
for_each_port(adapter, i) {
|
|
pi = adap2pinfo(adapter, i);
|
|
|
|
ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
|
|
match_all_mac,
|
|
match_all_mac,
|
|
adapter->rawf_start +
|
|
pi->port_id,
|
|
1, pi->port_id, false);
|
|
if (ret < 0) {
|
|
netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
|
|
be16_to_cpu(ti->port));
|
|
cxgb_del_udp_tunnel(netdev, ti);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static netdev_features_t cxgb_features_check(struct sk_buff *skb,
|
|
struct net_device *dev,
|
|
netdev_features_t features)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adapter = pi->adapter;
|
|
|
|
if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
|
|
return features;
|
|
|
|
/* Check if hw supports offload for this packet */
|
|
if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
|
|
return features;
|
|
|
|
/* Offload is not supported for this encapsulated packet */
|
|
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
|
|
}
|
|
|
|
static netdev_features_t cxgb_fix_features(struct net_device *dev,
|
|
netdev_features_t features)
|
|
{
|
|
/* Disable GRO, if RX_CSUM is disabled */
|
|
if (!(features & NETIF_F_RXCSUM))
|
|
features &= ~NETIF_F_GRO;
|
|
|
|
return features;
|
|
}
|
|
|
|
static const struct net_device_ops cxgb4_netdev_ops = {
|
|
.ndo_open = cxgb_open,
|
|
.ndo_stop = cxgb_close,
|
|
.ndo_start_xmit = t4_start_xmit,
|
|
.ndo_select_queue = cxgb_select_queue,
|
|
.ndo_get_stats64 = cxgb_get_stats,
|
|
.ndo_set_rx_mode = cxgb_set_rxmode,
|
|
.ndo_set_mac_address = cxgb_set_mac_addr,
|
|
.ndo_set_features = cxgb_set_features,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_do_ioctl = cxgb_ioctl,
|
|
.ndo_change_mtu = cxgb_change_mtu,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = cxgb_netpoll,
|
|
#endif
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
.ndo_fcoe_enable = cxgb_fcoe_enable,
|
|
.ndo_fcoe_disable = cxgb_fcoe_disable,
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
.ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
|
|
.ndo_setup_tc = cxgb_setup_tc,
|
|
.ndo_udp_tunnel_add = cxgb_add_udp_tunnel,
|
|
.ndo_udp_tunnel_del = cxgb_del_udp_tunnel,
|
|
.ndo_features_check = cxgb_features_check,
|
|
.ndo_fix_features = cxgb_fix_features,
|
|
};
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
|
|
.ndo_open = cxgb4_mgmt_open,
|
|
.ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
|
|
.ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
|
|
.ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
|
|
.ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
|
|
.ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
|
|
.ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state,
|
|
};
|
|
#endif
|
|
|
|
static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
|
|
struct ethtool_drvinfo *info)
|
|
{
|
|
struct adapter *adapter = netdev2adap(dev);
|
|
|
|
strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
|
|
strlcpy(info->bus_info, pci_name(adapter->pdev),
|
|
sizeof(info->bus_info));
|
|
}
|
|
|
|
static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
|
|
.get_drvinfo = cxgb4_mgmt_get_drvinfo,
|
|
};
|
|
|
|
static void notify_fatal_err(struct work_struct *work)
|
|
{
|
|
struct adapter *adap;
|
|
|
|
adap = container_of(work, struct adapter, fatal_err_notify_task);
|
|
notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
|
|
}
|
|
|
|
void t4_fatal_err(struct adapter *adap)
|
|
{
|
|
int port;
|
|
|
|
if (pci_channel_offline(adap->pdev))
|
|
return;
|
|
|
|
/* Disable the SGE since ULDs are going to free resources that
|
|
* could be exposed to the adapter. RDMA MWs for example...
|
|
*/
|
|
t4_shutdown_adapter(adap);
|
|
for_each_port(adap, port) {
|
|
struct net_device *dev = adap->port[port];
|
|
|
|
/* If we get here in very early initialization the network
|
|
* devices may not have been set up yet.
|
|
*/
|
|
if (!dev)
|
|
continue;
|
|
|
|
netif_tx_stop_all_queues(dev);
|
|
netif_carrier_off(dev);
|
|
}
|
|
dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
|
|
queue_work(adap->workq, &adap->fatal_err_notify_task);
|
|
}
|
|
|
|
static void setup_memwin(struct adapter *adap)
|
|
{
|
|
u32 nic_win_base = t4_get_util_window(adap);
|
|
|
|
t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
|
|
}
|
|
|
|
static void setup_memwin_rdma(struct adapter *adap)
|
|
{
|
|
if (adap->vres.ocq.size) {
|
|
u32 start;
|
|
unsigned int sz_kb;
|
|
|
|
start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
|
|
start &= PCI_BASE_ADDRESS_MEM_MASK;
|
|
start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
|
|
sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
|
|
t4_write_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
|
|
start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
|
|
t4_write_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
|
|
adap->vres.ocq.start);
|
|
t4_read_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
|
|
}
|
|
}
|
|
|
|
/* HMA Definitions */
|
|
|
|
/* The maximum number of address that can be send in a single FW cmd */
|
|
#define HMA_MAX_ADDR_IN_CMD 5
|
|
|
|
#define HMA_PAGE_SIZE PAGE_SIZE
|
|
|
|
#define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
|
|
|
|
#define HMA_PAGE_ORDER \
|
|
((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
|
|
ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
|
|
|
|
/* The minimum and maximum possible HMA sizes that can be specified in the FW
|
|
* configuration(in units of MB).
|
|
*/
|
|
#define HMA_MIN_TOTAL_SIZE 1
|
|
#define HMA_MAX_TOTAL_SIZE \
|
|
(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
|
|
HMA_MAX_NO_FW_ADDRESS) >> 20)
|
|
|
|
static void adap_free_hma_mem(struct adapter *adapter)
|
|
{
|
|
struct scatterlist *iter;
|
|
struct page *page;
|
|
int i;
|
|
|
|
if (!adapter->hma.sgt)
|
|
return;
|
|
|
|
if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
|
|
dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
|
|
adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
|
|
adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
|
|
}
|
|
|
|
for_each_sg(adapter->hma.sgt->sgl, iter,
|
|
adapter->hma.sgt->orig_nents, i) {
|
|
page = sg_page(iter);
|
|
if (page)
|
|
__free_pages(page, HMA_PAGE_ORDER);
|
|
}
|
|
|
|
kfree(adapter->hma.phy_addr);
|
|
sg_free_table(adapter->hma.sgt);
|
|
kfree(adapter->hma.sgt);
|
|
adapter->hma.sgt = NULL;
|
|
}
|
|
|
|
static int adap_config_hma(struct adapter *adapter)
|
|
{
|
|
struct scatterlist *sgl, *iter;
|
|
struct sg_table *sgt;
|
|
struct page *newpage;
|
|
unsigned int i, j, k;
|
|
u32 param, hma_size;
|
|
unsigned int ncmds;
|
|
size_t page_size;
|
|
u32 page_order;
|
|
int node, ret;
|
|
|
|
/* HMA is supported only for T6+ cards.
|
|
* Avoid initializing HMA in kdump kernels.
|
|
*/
|
|
if (is_kdump_kernel() ||
|
|
CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
|
|
return 0;
|
|
|
|
/* Get the HMA region size required by fw */
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
|
|
ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
|
|
1, ¶m, &hma_size);
|
|
/* An error means card has its own memory or HMA is not supported by
|
|
* the firmware. Return without any errors.
|
|
*/
|
|
if (ret || !hma_size)
|
|
return 0;
|
|
|
|
if (hma_size < HMA_MIN_TOTAL_SIZE ||
|
|
hma_size > HMA_MAX_TOTAL_SIZE) {
|
|
dev_err(adapter->pdev_dev,
|
|
"HMA size %uMB beyond bounds(%u-%lu)MB\n",
|
|
hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
page_size = HMA_PAGE_SIZE;
|
|
page_order = HMA_PAGE_ORDER;
|
|
adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
|
|
if (unlikely(!adapter->hma.sgt)) {
|
|
dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
sgt = adapter->hma.sgt;
|
|
/* FW returned value will be in MB's
|
|
*/
|
|
sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
|
|
if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
|
|
dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
|
|
kfree(adapter->hma.sgt);
|
|
adapter->hma.sgt = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
sgl = adapter->hma.sgt->sgl;
|
|
node = dev_to_node(adapter->pdev_dev);
|
|
for_each_sg(sgl, iter, sgt->orig_nents, i) {
|
|
newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
|
|
__GFP_ZERO, page_order);
|
|
if (!newpage) {
|
|
dev_err(adapter->pdev_dev,
|
|
"Not enough memory for HMA page allocation\n");
|
|
ret = -ENOMEM;
|
|
goto free_hma;
|
|
}
|
|
sg_set_page(iter, newpage, page_size << page_order, 0);
|
|
}
|
|
|
|
sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
|
|
DMA_BIDIRECTIONAL);
|
|
if (!sgt->nents) {
|
|
dev_err(adapter->pdev_dev,
|
|
"Not enough memory for HMA DMA mapping");
|
|
ret = -ENOMEM;
|
|
goto free_hma;
|
|
}
|
|
adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
|
|
|
|
adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
|
|
GFP_KERNEL);
|
|
if (unlikely(!adapter->hma.phy_addr))
|
|
goto free_hma;
|
|
|
|
for_each_sg(sgl, iter, sgt->nents, i) {
|
|
newpage = sg_page(iter);
|
|
adapter->hma.phy_addr[i] = sg_dma_address(iter);
|
|
}
|
|
|
|
ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
|
|
/* Pass on the addresses to firmware */
|
|
for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
|
|
struct fw_hma_cmd hma_cmd;
|
|
u8 naddr = HMA_MAX_ADDR_IN_CMD;
|
|
u8 soc = 0, eoc = 0;
|
|
u8 hma_mode = 1; /* Presently we support only Page table mode */
|
|
|
|
soc = (i == 0) ? 1 : 0;
|
|
eoc = (i == ncmds - 1) ? 1 : 0;
|
|
|
|
/* For last cmd, set naddr corresponding to remaining
|
|
* addresses
|
|
*/
|
|
if (i == ncmds - 1) {
|
|
naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
|
|
naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
|
|
}
|
|
memset(&hma_cmd, 0, sizeof(hma_cmd));
|
|
hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
|
|
hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
|
|
|
|
hma_cmd.mode_to_pcie_params =
|
|
htonl(FW_HMA_CMD_MODE_V(hma_mode) |
|
|
FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
|
|
|
|
/* HMA cmd size specified in MB's */
|
|
hma_cmd.naddr_size =
|
|
htonl(FW_HMA_CMD_SIZE_V(hma_size) |
|
|
FW_HMA_CMD_NADDR_V(naddr));
|
|
|
|
/* Total Page size specified in units of 4K */
|
|
hma_cmd.addr_size_pkd =
|
|
htonl(FW_HMA_CMD_ADDR_SIZE_V
|
|
((page_size << page_order) >> 12));
|
|
|
|
/* Fill the 5 addresses */
|
|
for (j = 0; j < naddr; j++) {
|
|
hma_cmd.phy_address[j] =
|
|
cpu_to_be64(adapter->hma.phy_addr[j + k]);
|
|
}
|
|
ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
|
|
sizeof(hma_cmd), &hma_cmd);
|
|
if (ret) {
|
|
dev_err(adapter->pdev_dev,
|
|
"HMA FW command failed with err %d\n", ret);
|
|
goto free_hma;
|
|
}
|
|
}
|
|
|
|
if (!ret)
|
|
dev_info(adapter->pdev_dev,
|
|
"Reserved %uMB host memory for HMA\n", hma_size);
|
|
return ret;
|
|
|
|
free_hma:
|
|
adap_free_hma_mem(adapter);
|
|
return ret;
|
|
}
|
|
|
|
static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
|
|
{
|
|
u32 v;
|
|
int ret;
|
|
|
|
/* Now that we've successfully configured and initialized the adapter
|
|
* can ask the Firmware what resources it has provisioned for us.
|
|
*/
|
|
ret = t4_get_pfres(adap);
|
|
if (ret) {
|
|
dev_err(adap->pdev_dev,
|
|
"Unable to retrieve resource provisioning information\n");
|
|
return ret;
|
|
}
|
|
|
|
/* get device capabilities */
|
|
memset(c, 0, sizeof(*c));
|
|
c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F);
|
|
c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
|
|
ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
|
|
ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = t4_config_glbl_rss(adap, adap->pf,
|
|
FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
|
|
FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
|
|
FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
|
|
MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
|
|
FW_CMD_CAP_PF);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
t4_sge_init(adap);
|
|
|
|
/* tweak some settings */
|
|
t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
|
|
t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
|
|
t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
|
|
v = t4_read_reg(adap, TP_PIO_DATA_A);
|
|
t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
|
|
|
|
/* first 4 Tx modulation queues point to consecutive Tx channels */
|
|
adap->params.tp.tx_modq_map = 0xE4;
|
|
t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
|
|
TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
|
|
|
|
/* associate each Tx modulation queue with consecutive Tx channels */
|
|
v = 0x84218421;
|
|
t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
|
|
&v, 1, TP_TX_SCHED_HDR_A);
|
|
t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
|
|
&v, 1, TP_TX_SCHED_FIFO_A);
|
|
t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
|
|
&v, 1, TP_TX_SCHED_PCMD_A);
|
|
|
|
#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
|
|
if (is_offload(adap)) {
|
|
t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
|
|
TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
|
|
TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
|
|
TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
|
|
TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
|
|
t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
|
|
TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
|
|
TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
|
|
TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
|
|
TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
|
|
}
|
|
|
|
/* get basic stuff going */
|
|
return t4_early_init(adap, adap->pf);
|
|
}
|
|
|
|
/*
|
|
* Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
|
|
*/
|
|
#define MAX_ATIDS 8192U
|
|
|
|
/*
|
|
* Phase 0 of initialization: contact FW, obtain config, perform basic init.
|
|
*
|
|
* If the firmware we're dealing with has Configuration File support, then
|
|
* we use that to perform all configuration
|
|
*/
|
|
|
|
/*
|
|
* Tweak configuration based on module parameters, etc. Most of these have
|
|
* defaults assigned to them by Firmware Configuration Files (if we're using
|
|
* them) but need to be explicitly set if we're using hard-coded
|
|
* initialization. But even in the case of using Firmware Configuration
|
|
* Files, we'd like to expose the ability to change these via module
|
|
* parameters so these are essentially common tweaks/settings for
|
|
* Configuration Files and hard-coded initialization ...
|
|
*/
|
|
static int adap_init0_tweaks(struct adapter *adapter)
|
|
{
|
|
/*
|
|
* Fix up various Host-Dependent Parameters like Page Size, Cache
|
|
* Line Size, etc. The firmware default is for a 4KB Page Size and
|
|
* 64B Cache Line Size ...
|
|
*/
|
|
t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
|
|
|
|
/*
|
|
* Process module parameters which affect early initialization.
|
|
*/
|
|
if (rx_dma_offset != 2 && rx_dma_offset != 0) {
|
|
dev_err(&adapter->pdev->dev,
|
|
"Ignoring illegal rx_dma_offset=%d, using 2\n",
|
|
rx_dma_offset);
|
|
rx_dma_offset = 2;
|
|
}
|
|
t4_set_reg_field(adapter, SGE_CONTROL_A,
|
|
PKTSHIFT_V(PKTSHIFT_M),
|
|
PKTSHIFT_V(rx_dma_offset));
|
|
|
|
/*
|
|
* Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
|
|
* adds the pseudo header itself.
|
|
*/
|
|
t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
|
|
CSUM_HAS_PSEUDO_HDR_F, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
|
|
* unto themselves and they contain their own firmware to perform their
|
|
* tasks ...
|
|
*/
|
|
static int phy_aq1202_version(const u8 *phy_fw_data,
|
|
size_t phy_fw_size)
|
|
{
|
|
int offset;
|
|
|
|
/* At offset 0x8 you're looking for the primary image's
|
|
* starting offset which is 3 Bytes wide
|
|
*
|
|
* At offset 0xa of the primary image, you look for the offset
|
|
* of the DRAM segment which is 3 Bytes wide.
|
|
*
|
|
* The FW version is at offset 0x27e of the DRAM and is 2 Bytes
|
|
* wide
|
|
*/
|
|
#define be16(__p) (((__p)[0] << 8) | (__p)[1])
|
|
#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
|
|
#define le24(__p) (le16(__p) | ((__p)[2] << 16))
|
|
|
|
offset = le24(phy_fw_data + 0x8) << 12;
|
|
offset = le24(phy_fw_data + offset + 0xa);
|
|
return be16(phy_fw_data + offset + 0x27e);
|
|
|
|
#undef be16
|
|
#undef le16
|
|
#undef le24
|
|
}
|
|
|
|
static struct info_10gbt_phy_fw {
|
|
unsigned int phy_fw_id; /* PCI Device ID */
|
|
char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
|
|
int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
|
|
int phy_flash; /* Has FLASH for PHY Firmware */
|
|
} phy_info_array[] = {
|
|
{
|
|
PHY_AQ1202_DEVICEID,
|
|
PHY_AQ1202_FIRMWARE,
|
|
phy_aq1202_version,
|
|
1,
|
|
},
|
|
{
|
|
PHY_BCM84834_DEVICEID,
|
|
PHY_BCM84834_FIRMWARE,
|
|
NULL,
|
|
0,
|
|
},
|
|
{ 0, NULL, NULL },
|
|
};
|
|
|
|
static struct info_10gbt_phy_fw *find_phy_info(int devid)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
|
|
if (phy_info_array[i].phy_fw_id == devid)
|
|
return &phy_info_array[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
|
|
* happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
|
|
* we return a negative error number. If we transfer new firmware we return 1
|
|
* (from t4_load_phy_fw()). If we don't do anything we return 0.
|
|
*/
|
|
static int adap_init0_phy(struct adapter *adap)
|
|
{
|
|
const struct firmware *phyf;
|
|
int ret;
|
|
struct info_10gbt_phy_fw *phy_info;
|
|
|
|
/* Use the device ID to determine which PHY file to flash.
|
|
*/
|
|
phy_info = find_phy_info(adap->pdev->device);
|
|
if (!phy_info) {
|
|
dev_warn(adap->pdev_dev,
|
|
"No PHY Firmware file found for this PHY\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
|
|
* use that. The adapter firmware provides us with a memory buffer
|
|
* where we can load a PHY firmware file from the host if we want to
|
|
* override the PHY firmware File in flash.
|
|
*/
|
|
ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
|
|
adap->pdev_dev);
|
|
if (ret < 0) {
|
|
/* For adapters without FLASH attached to PHY for their
|
|
* firmware, it's obviously a fatal error if we can't get the
|
|
* firmware to the adapter. For adapters with PHY firmware
|
|
* FLASH storage, it's worth a warning if we can't find the
|
|
* PHY Firmware but we'll neuter the error ...
|
|
*/
|
|
dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
|
|
"/lib/firmware/%s, error %d\n",
|
|
phy_info->phy_fw_file, -ret);
|
|
if (phy_info->phy_flash) {
|
|
int cur_phy_fw_ver = 0;
|
|
|
|
t4_phy_fw_ver(adap, &cur_phy_fw_ver);
|
|
dev_warn(adap->pdev_dev, "continuing with, on-adapter "
|
|
"FLASH copy, version %#x\n", cur_phy_fw_ver);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Load PHY Firmware onto adapter.
|
|
*/
|
|
ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
|
|
phy_info->phy_fw_version,
|
|
(u8 *)phyf->data, phyf->size);
|
|
if (ret < 0)
|
|
dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
|
|
-ret);
|
|
else if (ret > 0) {
|
|
int new_phy_fw_ver = 0;
|
|
|
|
if (phy_info->phy_fw_version)
|
|
new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
|
|
phyf->size);
|
|
dev_info(adap->pdev_dev, "Successfully transferred PHY "
|
|
"Firmware /lib/firmware/%s, version %#x\n",
|
|
phy_info->phy_fw_file, new_phy_fw_ver);
|
|
}
|
|
|
|
release_firmware(phyf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Attempt to initialize the adapter via a Firmware Configuration File.
|
|
*/
|
|
static int adap_init0_config(struct adapter *adapter, int reset)
|
|
{
|
|
char *fw_config_file, fw_config_file_path[256];
|
|
u32 finiver, finicsum, cfcsum, param, val;
|
|
struct fw_caps_config_cmd caps_cmd;
|
|
unsigned long mtype = 0, maddr = 0;
|
|
const struct firmware *cf;
|
|
char *config_name = NULL;
|
|
int config_issued = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* Reset device if necessary.
|
|
*/
|
|
if (reset) {
|
|
ret = t4_fw_reset(adapter, adapter->mbox,
|
|
PIORSTMODE_F | PIORST_F);
|
|
if (ret < 0)
|
|
goto bye;
|
|
}
|
|
|
|
/* If this is a 10Gb/s-BT adapter make sure the chip-external
|
|
* 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
|
|
* to be performed after any global adapter RESET above since some
|
|
* PHYs only have local RAM copies of the PHY firmware.
|
|
*/
|
|
if (is_10gbt_device(adapter->pdev->device)) {
|
|
ret = adap_init0_phy(adapter);
|
|
if (ret < 0)
|
|
goto bye;
|
|
}
|
|
/*
|
|
* If we have a T4 configuration file under /lib/firmware/cxgb4/,
|
|
* then use that. Otherwise, use the configuration file stored
|
|
* in the adapter flash ...
|
|
*/
|
|
switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
|
|
case CHELSIO_T4:
|
|
fw_config_file = FW4_CFNAME;
|
|
break;
|
|
case CHELSIO_T5:
|
|
fw_config_file = FW5_CFNAME;
|
|
break;
|
|
case CHELSIO_T6:
|
|
fw_config_file = FW6_CFNAME;
|
|
break;
|
|
default:
|
|
dev_err(adapter->pdev_dev, "Device %d is not supported\n",
|
|
adapter->pdev->device);
|
|
ret = -EINVAL;
|
|
goto bye;
|
|
}
|
|
|
|
ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
|
|
if (ret < 0) {
|
|
config_name = "On FLASH";
|
|
mtype = FW_MEMTYPE_CF_FLASH;
|
|
maddr = t4_flash_cfg_addr(adapter);
|
|
} else {
|
|
u32 params[7], val[7];
|
|
|
|
sprintf(fw_config_file_path,
|
|
"/lib/firmware/%s", fw_config_file);
|
|
config_name = fw_config_file_path;
|
|
|
|
if (cf->size >= FLASH_CFG_MAX_SIZE)
|
|
ret = -ENOMEM;
|
|
else {
|
|
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
|
|
ret = t4_query_params(adapter, adapter->mbox,
|
|
adapter->pf, 0, 1, params, val);
|
|
if (ret == 0) {
|
|
/*
|
|
* For t4_memory_rw() below addresses and
|
|
* sizes have to be in terms of multiples of 4
|
|
* bytes. So, if the Configuration File isn't
|
|
* a multiple of 4 bytes in length we'll have
|
|
* to write that out separately since we can't
|
|
* guarantee that the bytes following the
|
|
* residual byte in the buffer returned by
|
|
* request_firmware() are zeroed out ...
|
|
*/
|
|
size_t resid = cf->size & 0x3;
|
|
size_t size = cf->size & ~0x3;
|
|
__be32 *data = (__be32 *)cf->data;
|
|
|
|
mtype = FW_PARAMS_PARAM_Y_G(val[0]);
|
|
maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
|
|
|
|
spin_lock(&adapter->win0_lock);
|
|
ret = t4_memory_rw(adapter, 0, mtype, maddr,
|
|
size, data, T4_MEMORY_WRITE);
|
|
if (ret == 0 && resid != 0) {
|
|
union {
|
|
__be32 word;
|
|
char buf[4];
|
|
} last;
|
|
int i;
|
|
|
|
last.word = data[size >> 2];
|
|
for (i = resid; i < 4; i++)
|
|
last.buf[i] = 0;
|
|
ret = t4_memory_rw(adapter, 0, mtype,
|
|
maddr + size,
|
|
4, &last.word,
|
|
T4_MEMORY_WRITE);
|
|
}
|
|
spin_unlock(&adapter->win0_lock);
|
|
}
|
|
}
|
|
|
|
release_firmware(cf);
|
|
if (ret)
|
|
goto bye;
|
|
}
|
|
|
|
val = 0;
|
|
|
|
/* Ofld + Hash filter is supported. Older fw will fail this request and
|
|
* it is fine.
|
|
*/
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
|
|
ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
|
|
1, ¶m, &val);
|
|
|
|
/* FW doesn't know about Hash filter + ofld support,
|
|
* it's not a problem, don't return an error.
|
|
*/
|
|
if (ret < 0) {
|
|
dev_warn(adapter->pdev_dev,
|
|
"Hash filter with ofld is not supported by FW\n");
|
|
}
|
|
|
|
/*
|
|
* Issue a Capability Configuration command to the firmware to get it
|
|
* to parse the Configuration File. We don't use t4_fw_config_file()
|
|
* because we want the ability to modify various features after we've
|
|
* processed the configuration file ...
|
|
*/
|
|
memset(&caps_cmd, 0, sizeof(caps_cmd));
|
|
caps_cmd.op_to_write =
|
|
htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_READ_F);
|
|
caps_cmd.cfvalid_to_len16 =
|
|
htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
|
|
FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
|
|
FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
|
|
FW_LEN16(caps_cmd));
|
|
ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
|
|
&caps_cmd);
|
|
|
|
/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
|
|
* Configuration File in FLASH), our last gasp effort is to use the
|
|
* Firmware Configuration File which is embedded in the firmware. A
|
|
* very few early versions of the firmware didn't have one embedded
|
|
* but we can ignore those.
|
|
*/
|
|
if (ret == -ENOENT) {
|
|
memset(&caps_cmd, 0, sizeof(caps_cmd));
|
|
caps_cmd.op_to_write =
|
|
htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_READ_F);
|
|
caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
|
|
ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
|
|
sizeof(caps_cmd), &caps_cmd);
|
|
config_name = "Firmware Default";
|
|
}
|
|
|
|
config_issued = 1;
|
|
if (ret < 0)
|
|
goto bye;
|
|
|
|
finiver = ntohl(caps_cmd.finiver);
|
|
finicsum = ntohl(caps_cmd.finicsum);
|
|
cfcsum = ntohl(caps_cmd.cfcsum);
|
|
if (finicsum != cfcsum)
|
|
dev_warn(adapter->pdev_dev, "Configuration File checksum "\
|
|
"mismatch: [fini] csum=%#x, computed csum=%#x\n",
|
|
finicsum, cfcsum);
|
|
|
|
/*
|
|
* And now tell the firmware to use the configuration we just loaded.
|
|
*/
|
|
caps_cmd.op_to_write =
|
|
htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F);
|
|
caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
|
|
ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
|
|
NULL);
|
|
if (ret < 0)
|
|
goto bye;
|
|
|
|
/*
|
|
* Tweak configuration based on system architecture, module
|
|
* parameters, etc.
|
|
*/
|
|
ret = adap_init0_tweaks(adapter);
|
|
if (ret < 0)
|
|
goto bye;
|
|
|
|
/* We will proceed even if HMA init fails. */
|
|
ret = adap_config_hma(adapter);
|
|
if (ret)
|
|
dev_err(adapter->pdev_dev,
|
|
"HMA configuration failed with error %d\n", ret);
|
|
|
|
if (is_t6(adapter->params.chip)) {
|
|
adap_config_hpfilter(adapter);
|
|
ret = setup_ppod_edram(adapter);
|
|
if (!ret)
|
|
dev_info(adapter->pdev_dev, "Successfully enabled "
|
|
"ppod edram feature\n");
|
|
}
|
|
|
|
/*
|
|
* And finally tell the firmware to initialize itself using the
|
|
* parameters from the Configuration File.
|
|
*/
|
|
ret = t4_fw_initialize(adapter, adapter->mbox);
|
|
if (ret < 0)
|
|
goto bye;
|
|
|
|
/* Emit Firmware Configuration File information and return
|
|
* successfully.
|
|
*/
|
|
dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
|
|
"Configuration File \"%s\", version %#x, computed checksum %#x\n",
|
|
config_name, finiver, cfcsum);
|
|
return 0;
|
|
|
|
/*
|
|
* Something bad happened. Return the error ... (If the "error"
|
|
* is that there's no Configuration File on the adapter we don't
|
|
* want to issue a warning since this is fairly common.)
|
|
*/
|
|
bye:
|
|
if (config_issued && ret != -ENOENT)
|
|
dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
|
|
config_name, -ret);
|
|
return ret;
|
|
}
|
|
|
|
static struct fw_info fw_info_array[] = {
|
|
{
|
|
.chip = CHELSIO_T4,
|
|
.fs_name = FW4_CFNAME,
|
|
.fw_mod_name = FW4_FNAME,
|
|
.fw_hdr = {
|
|
.chip = FW_HDR_CHIP_T4,
|
|
.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
|
|
.intfver_nic = FW_INTFVER(T4, NIC),
|
|
.intfver_vnic = FW_INTFVER(T4, VNIC),
|
|
.intfver_ri = FW_INTFVER(T4, RI),
|
|
.intfver_iscsi = FW_INTFVER(T4, ISCSI),
|
|
.intfver_fcoe = FW_INTFVER(T4, FCOE),
|
|
},
|
|
}, {
|
|
.chip = CHELSIO_T5,
|
|
.fs_name = FW5_CFNAME,
|
|
.fw_mod_name = FW5_FNAME,
|
|
.fw_hdr = {
|
|
.chip = FW_HDR_CHIP_T5,
|
|
.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
|
|
.intfver_nic = FW_INTFVER(T5, NIC),
|
|
.intfver_vnic = FW_INTFVER(T5, VNIC),
|
|
.intfver_ri = FW_INTFVER(T5, RI),
|
|
.intfver_iscsi = FW_INTFVER(T5, ISCSI),
|
|
.intfver_fcoe = FW_INTFVER(T5, FCOE),
|
|
},
|
|
}, {
|
|
.chip = CHELSIO_T6,
|
|
.fs_name = FW6_CFNAME,
|
|
.fw_mod_name = FW6_FNAME,
|
|
.fw_hdr = {
|
|
.chip = FW_HDR_CHIP_T6,
|
|
.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
|
|
.intfver_nic = FW_INTFVER(T6, NIC),
|
|
.intfver_vnic = FW_INTFVER(T6, VNIC),
|
|
.intfver_ofld = FW_INTFVER(T6, OFLD),
|
|
.intfver_ri = FW_INTFVER(T6, RI),
|
|
.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
|
|
.intfver_iscsi = FW_INTFVER(T6, ISCSI),
|
|
.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
|
|
.intfver_fcoe = FW_INTFVER(T6, FCOE),
|
|
},
|
|
}
|
|
|
|
};
|
|
|
|
static struct fw_info *find_fw_info(int chip)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
|
|
if (fw_info_array[i].chip == chip)
|
|
return &fw_info_array[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Phase 0 of initialization: contact FW, obtain config, perform basic init.
|
|
*/
|
|
static int adap_init0(struct adapter *adap, int vpd_skip)
|
|
{
|
|
struct fw_caps_config_cmd caps_cmd;
|
|
u32 params[7], val[7];
|
|
enum dev_state state;
|
|
u32 v, port_vec;
|
|
int reset = 1;
|
|
int ret;
|
|
|
|
/* Grab Firmware Device Log parameters as early as possible so we have
|
|
* access to it for debugging, etc.
|
|
*/
|
|
ret = t4_init_devlog_params(adap);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Contact FW, advertising Master capability */
|
|
ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
|
|
is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
|
|
if (ret < 0) {
|
|
dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
if (ret == adap->mbox)
|
|
adap->flags |= CXGB4_MASTER_PF;
|
|
|
|
/*
|
|
* If we're the Master PF Driver and the device is uninitialized,
|
|
* then let's consider upgrading the firmware ... (We always want
|
|
* to check the firmware version number in order to A. get it for
|
|
* later reporting and B. to warn if the currently loaded firmware
|
|
* is excessively mismatched relative to the driver.)
|
|
*/
|
|
|
|
t4_get_version_info(adap);
|
|
ret = t4_check_fw_version(adap);
|
|
/* If firmware is too old (not supported by driver) force an update. */
|
|
if (ret)
|
|
state = DEV_STATE_UNINIT;
|
|
if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
|
|
struct fw_info *fw_info;
|
|
struct fw_hdr *card_fw;
|
|
const struct firmware *fw;
|
|
const u8 *fw_data = NULL;
|
|
unsigned int fw_size = 0;
|
|
|
|
/* This is the firmware whose headers the driver was compiled
|
|
* against
|
|
*/
|
|
fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
|
|
if (fw_info == NULL) {
|
|
dev_err(adap->pdev_dev,
|
|
"unable to get firmware info for chip %d.\n",
|
|
CHELSIO_CHIP_VERSION(adap->params.chip));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* allocate memory to read the header of the firmware on the
|
|
* card
|
|
*/
|
|
card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
|
|
if (!card_fw) {
|
|
ret = -ENOMEM;
|
|
goto bye;
|
|
}
|
|
|
|
/* Get FW from from /lib/firmware/ */
|
|
ret = request_firmware(&fw, fw_info->fw_mod_name,
|
|
adap->pdev_dev);
|
|
if (ret < 0) {
|
|
dev_err(adap->pdev_dev,
|
|
"unable to load firmware image %s, error %d\n",
|
|
fw_info->fw_mod_name, ret);
|
|
} else {
|
|
fw_data = fw->data;
|
|
fw_size = fw->size;
|
|
}
|
|
|
|
/* upgrade FW logic */
|
|
ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
|
|
state, &reset);
|
|
|
|
/* Cleaning up */
|
|
release_firmware(fw);
|
|
kvfree(card_fw);
|
|
|
|
if (ret < 0)
|
|
goto bye;
|
|
}
|
|
|
|
/* If the firmware is initialized already, emit a simply note to that
|
|
* effect. Otherwise, it's time to try initializing the adapter.
|
|
*/
|
|
if (state == DEV_STATE_INIT) {
|
|
ret = adap_config_hma(adap);
|
|
if (ret)
|
|
dev_err(adap->pdev_dev,
|
|
"HMA configuration failed with error %d\n",
|
|
ret);
|
|
dev_info(adap->pdev_dev, "Coming up as %s: "\
|
|
"Adapter already initialized\n",
|
|
adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
|
|
} else {
|
|
dev_info(adap->pdev_dev, "Coming up as MASTER: "\
|
|
"Initializing adapter\n");
|
|
|
|
/* Find out whether we're dealing with a version of the
|
|
* firmware which has configuration file support.
|
|
*/
|
|
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
|
|
params, val);
|
|
|
|
/* If the firmware doesn't support Configuration Files,
|
|
* return an error.
|
|
*/
|
|
if (ret < 0) {
|
|
dev_err(adap->pdev_dev, "firmware doesn't support "
|
|
"Firmware Configuration Files\n");
|
|
goto bye;
|
|
}
|
|
|
|
/* The firmware provides us with a memory buffer where we can
|
|
* load a Configuration File from the host if we want to
|
|
* override the Configuration File in flash.
|
|
*/
|
|
ret = adap_init0_config(adap, reset);
|
|
if (ret == -ENOENT) {
|
|
dev_err(adap->pdev_dev, "no Configuration File "
|
|
"present on adapter.\n");
|
|
goto bye;
|
|
}
|
|
if (ret < 0) {
|
|
dev_err(adap->pdev_dev, "could not initialize "
|
|
"adapter, error %d\n", -ret);
|
|
goto bye;
|
|
}
|
|
}
|
|
|
|
/* Now that we've successfully configured and initialized the adapter
|
|
* (or found it already initialized), we can ask the Firmware what
|
|
* resources it has provisioned for us.
|
|
*/
|
|
ret = t4_get_pfres(adap);
|
|
if (ret) {
|
|
dev_err(adap->pdev_dev,
|
|
"Unable to retrieve resource provisioning information\n");
|
|
goto bye;
|
|
}
|
|
|
|
/* Grab VPD parameters. This should be done after we establish a
|
|
* connection to the firmware since some of the VPD parameters
|
|
* (notably the Core Clock frequency) are retrieved via requests to
|
|
* the firmware. On the other hand, we need these fairly early on
|
|
* so we do this right after getting ahold of the firmware.
|
|
*
|
|
* We need to do this after initializing the adapter because someone
|
|
* could have FLASHed a new VPD which won't be read by the firmware
|
|
* until we do the RESET ...
|
|
*/
|
|
if (!vpd_skip) {
|
|
ret = t4_get_vpd_params(adap, &adap->params.vpd);
|
|
if (ret < 0)
|
|
goto bye;
|
|
}
|
|
|
|
/* Find out what ports are available to us. Note that we need to do
|
|
* this before calling adap_init0_no_config() since it needs nports
|
|
* and portvec ...
|
|
*/
|
|
v =
|
|
FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
|
|
if (ret < 0)
|
|
goto bye;
|
|
|
|
adap->params.nports = hweight32(port_vec);
|
|
adap->params.portvec = port_vec;
|
|
|
|
/* Give the SGE code a chance to pull in anything that it needs ...
|
|
* Note that this must be called after we retrieve our VPD parameters
|
|
* in order to know how to convert core ticks to seconds, etc.
|
|
*/
|
|
ret = t4_sge_init(adap);
|
|
if (ret < 0)
|
|
goto bye;
|
|
|
|
/* Grab the SGE Doorbell Queue Timer values. If successful, that
|
|
* indicates that the Firmware and Hardware support this.
|
|
*/
|
|
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
|
|
1, params, val);
|
|
|
|
if (!ret) {
|
|
adap->sge.dbqtimer_tick = val[0];
|
|
ret = t4_read_sge_dbqtimers(adap,
|
|
ARRAY_SIZE(adap->sge.dbqtimer_val),
|
|
adap->sge.dbqtimer_val);
|
|
}
|
|
|
|
if (!ret)
|
|
adap->flags |= CXGB4_SGE_DBQ_TIMER;
|
|
|
|
if (is_bypass_device(adap->pdev->device))
|
|
adap->params.bypass = 1;
|
|
|
|
/*
|
|
* Grab some of our basic fundamental operating parameters.
|
|
*/
|
|
params[0] = FW_PARAM_PFVF(EQ_START);
|
|
params[1] = FW_PARAM_PFVF(L2T_START);
|
|
params[2] = FW_PARAM_PFVF(L2T_END);
|
|
params[3] = FW_PARAM_PFVF(FILTER_START);
|
|
params[4] = FW_PARAM_PFVF(FILTER_END);
|
|
params[5] = FW_PARAM_PFVF(IQFLINT_START);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
|
|
if (ret < 0)
|
|
goto bye;
|
|
adap->sge.egr_start = val[0];
|
|
adap->l2t_start = val[1];
|
|
adap->l2t_end = val[2];
|
|
adap->tids.ftid_base = val[3];
|
|
adap->tids.nftids = val[4] - val[3] + 1;
|
|
adap->sge.ingr_start = val[5];
|
|
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
|
|
params[0] = FW_PARAM_PFVF(HPFILTER_START);
|
|
params[1] = FW_PARAM_PFVF(HPFILTER_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
|
|
params, val);
|
|
if (ret < 0)
|
|
goto bye;
|
|
|
|
adap->tids.hpftid_base = val[0];
|
|
adap->tids.nhpftids = val[1] - val[0] + 1;
|
|
|
|
/* Read the raw mps entries. In T6, the last 2 tcam entries
|
|
* are reserved for raw mac addresses (rawf = 2, one per port).
|
|
*/
|
|
params[0] = FW_PARAM_PFVF(RAWF_START);
|
|
params[1] = FW_PARAM_PFVF(RAWF_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
|
|
params, val);
|
|
if (ret == 0) {
|
|
adap->rawf_start = val[0];
|
|
adap->rawf_cnt = val[1] - val[0] + 1;
|
|
}
|
|
|
|
adap->tids.tid_base =
|
|
t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
|
|
}
|
|
|
|
/* qids (ingress/egress) returned from firmware can be anywhere
|
|
* in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
|
|
* Hence driver needs to allocate memory for this range to
|
|
* store the queue info. Get the highest IQFLINT/EQ index returned
|
|
* in FW_EQ_*_CMD.alloc command.
|
|
*/
|
|
params[0] = FW_PARAM_PFVF(EQ_END);
|
|
params[1] = FW_PARAM_PFVF(IQFLINT_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
|
|
if (ret < 0)
|
|
goto bye;
|
|
adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
|
|
adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
|
|
|
|
adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
|
|
sizeof(*adap->sge.egr_map), GFP_KERNEL);
|
|
if (!adap->sge.egr_map) {
|
|
ret = -ENOMEM;
|
|
goto bye;
|
|
}
|
|
|
|
adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
|
|
sizeof(*adap->sge.ingr_map), GFP_KERNEL);
|
|
if (!adap->sge.ingr_map) {
|
|
ret = -ENOMEM;
|
|
goto bye;
|
|
}
|
|
|
|
/* Allocate the memory for the vaious egress queue bitmaps
|
|
* ie starving_fl, txq_maperr and blocked_fl.
|
|
*/
|
|
adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
|
|
sizeof(long), GFP_KERNEL);
|
|
if (!adap->sge.starving_fl) {
|
|
ret = -ENOMEM;
|
|
goto bye;
|
|
}
|
|
|
|
adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
|
|
sizeof(long), GFP_KERNEL);
|
|
if (!adap->sge.txq_maperr) {
|
|
ret = -ENOMEM;
|
|
goto bye;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
|
|
sizeof(long), GFP_KERNEL);
|
|
if (!adap->sge.blocked_fl) {
|
|
ret = -ENOMEM;
|
|
goto bye;
|
|
}
|
|
#endif
|
|
|
|
params[0] = FW_PARAM_PFVF(CLIP_START);
|
|
params[1] = FW_PARAM_PFVF(CLIP_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
|
|
if (ret < 0)
|
|
goto bye;
|
|
adap->clipt_start = val[0];
|
|
adap->clipt_end = val[1];
|
|
|
|
/* Get the supported number of traffic classes */
|
|
params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
|
|
if (ret < 0) {
|
|
/* We couldn't retrieve the number of Traffic Classes
|
|
* supported by the hardware/firmware. So we hard
|
|
* code it here.
|
|
*/
|
|
adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
|
|
} else {
|
|
adap->params.nsched_cls = val[0];
|
|
}
|
|
|
|
/* query params related to active filter region */
|
|
params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
|
|
params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
|
|
/* If Active filter size is set we enable establishing
|
|
* offload connection through firmware work request
|
|
*/
|
|
if ((val[0] != val[1]) && (ret >= 0)) {
|
|
adap->flags |= CXGB4_FW_OFLD_CONN;
|
|
adap->tids.aftid_base = val[0];
|
|
adap->tids.aftid_end = val[1];
|
|
}
|
|
|
|
/* If we're running on newer firmware, let it know that we're
|
|
* prepared to deal with encapsulated CPL messages. Older
|
|
* firmware won't understand this and we'll just get
|
|
* unencapsulated messages ...
|
|
*/
|
|
params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
|
|
val[0] = 1;
|
|
(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
|
|
|
|
/*
|
|
* Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
|
|
* capability. Earlier versions of the firmware didn't have the
|
|
* ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
|
|
* permission to use ULPTX MEMWRITE DSGL.
|
|
*/
|
|
if (is_t4(adap->params.chip)) {
|
|
adap->params.ulptx_memwrite_dsgl = false;
|
|
} else {
|
|
params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
|
|
1, params, val);
|
|
adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
|
|
}
|
|
|
|
/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
|
|
params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
|
|
1, params, val);
|
|
adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
|
|
|
|
/* See if FW supports FW_FILTER2 work request */
|
|
if (is_t4(adap->params.chip)) {
|
|
adap->params.filter2_wr_support = 0;
|
|
} else {
|
|
params[0] = FW_PARAM_DEV(FILTER2_WR);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
|
|
1, params, val);
|
|
adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
|
|
}
|
|
|
|
/* Check if FW supports returning vin and smt index.
|
|
* If this is not supported, driver will interpret
|
|
* these values from viid.
|
|
*/
|
|
params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
|
|
1, params, val);
|
|
adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
|
|
|
|
/*
|
|
* Get device capabilities so we can determine what resources we need
|
|
* to manage.
|
|
*/
|
|
memset(&caps_cmd, 0, sizeof(caps_cmd));
|
|
caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F);
|
|
caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
|
|
ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
|
|
&caps_cmd);
|
|
if (ret < 0)
|
|
goto bye;
|
|
|
|
/* hash filter has some mandatory register settings to be tested and for
|
|
* that it needs to test whether offload is enabled or not, hence
|
|
* checking and setting it here.
|
|
*/
|
|
if (caps_cmd.ofldcaps)
|
|
adap->params.offload = 1;
|
|
|
|
if (caps_cmd.ofldcaps ||
|
|
(caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
|
|
(caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
|
|
/* query offload-related parameters */
|
|
params[0] = FW_PARAM_DEV(NTID);
|
|
params[1] = FW_PARAM_PFVF(SERVER_START);
|
|
params[2] = FW_PARAM_PFVF(SERVER_END);
|
|
params[3] = FW_PARAM_PFVF(TDDP_START);
|
|
params[4] = FW_PARAM_PFVF(TDDP_END);
|
|
params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
|
|
params, val);
|
|
if (ret < 0)
|
|
goto bye;
|
|
adap->tids.ntids = val[0];
|
|
adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
|
|
adap->tids.stid_base = val[1];
|
|
adap->tids.nstids = val[2] - val[1] + 1;
|
|
/*
|
|
* Setup server filter region. Divide the available filter
|
|
* region into two parts. Regular filters get 1/3rd and server
|
|
* filters get 2/3rd part. This is only enabled if workarond
|
|
* path is enabled.
|
|
* 1. For regular filters.
|
|
* 2. Server filter: This are special filters which are used
|
|
* to redirect SYN packets to offload queue.
|
|
*/
|
|
if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
|
|
adap->tids.sftid_base = adap->tids.ftid_base +
|
|
DIV_ROUND_UP(adap->tids.nftids, 3);
|
|
adap->tids.nsftids = adap->tids.nftids -
|
|
DIV_ROUND_UP(adap->tids.nftids, 3);
|
|
adap->tids.nftids = adap->tids.sftid_base -
|
|
adap->tids.ftid_base;
|
|
}
|
|
adap->vres.ddp.start = val[3];
|
|
adap->vres.ddp.size = val[4] - val[3] + 1;
|
|
adap->params.ofldq_wr_cred = val[5];
|
|
|
|
if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
|
|
init_hash_filter(adap);
|
|
} else {
|
|
adap->num_ofld_uld += 1;
|
|
}
|
|
|
|
if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
|
|
params[0] = FW_PARAM_PFVF(ETHOFLD_START);
|
|
params[1] = FW_PARAM_PFVF(ETHOFLD_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
|
|
params, val);
|
|
if (!ret) {
|
|
adap->tids.eotid_base = val[0];
|
|
adap->tids.neotids = min_t(u32, MAX_ATIDS,
|
|
val[1] - val[0] + 1);
|
|
adap->params.ethofld = 1;
|
|
}
|
|
}
|
|
}
|
|
if (caps_cmd.rdmacaps) {
|
|
params[0] = FW_PARAM_PFVF(STAG_START);
|
|
params[1] = FW_PARAM_PFVF(STAG_END);
|
|
params[2] = FW_PARAM_PFVF(RQ_START);
|
|
params[3] = FW_PARAM_PFVF(RQ_END);
|
|
params[4] = FW_PARAM_PFVF(PBL_START);
|
|
params[5] = FW_PARAM_PFVF(PBL_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
|
|
params, val);
|
|
if (ret < 0)
|
|
goto bye;
|
|
adap->vres.stag.start = val[0];
|
|
adap->vres.stag.size = val[1] - val[0] + 1;
|
|
adap->vres.rq.start = val[2];
|
|
adap->vres.rq.size = val[3] - val[2] + 1;
|
|
adap->vres.pbl.start = val[4];
|
|
adap->vres.pbl.size = val[5] - val[4] + 1;
|
|
|
|
params[0] = FW_PARAM_PFVF(SRQ_START);
|
|
params[1] = FW_PARAM_PFVF(SRQ_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
|
|
params, val);
|
|
if (!ret) {
|
|
adap->vres.srq.start = val[0];
|
|
adap->vres.srq.size = val[1] - val[0] + 1;
|
|
}
|
|
if (adap->vres.srq.size) {
|
|
adap->srq = t4_init_srq(adap->vres.srq.size);
|
|
if (!adap->srq)
|
|
dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
|
|
}
|
|
|
|
params[0] = FW_PARAM_PFVF(SQRQ_START);
|
|
params[1] = FW_PARAM_PFVF(SQRQ_END);
|
|
params[2] = FW_PARAM_PFVF(CQ_START);
|
|
params[3] = FW_PARAM_PFVF(CQ_END);
|
|
params[4] = FW_PARAM_PFVF(OCQ_START);
|
|
params[5] = FW_PARAM_PFVF(OCQ_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
|
|
val);
|
|
if (ret < 0)
|
|
goto bye;
|
|
adap->vres.qp.start = val[0];
|
|
adap->vres.qp.size = val[1] - val[0] + 1;
|
|
adap->vres.cq.start = val[2];
|
|
adap->vres.cq.size = val[3] - val[2] + 1;
|
|
adap->vres.ocq.start = val[4];
|
|
adap->vres.ocq.size = val[5] - val[4] + 1;
|
|
|
|
params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
|
|
params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
|
|
val);
|
|
if (ret < 0) {
|
|
adap->params.max_ordird_qp = 8;
|
|
adap->params.max_ird_adapter = 32 * adap->tids.ntids;
|
|
ret = 0;
|
|
} else {
|
|
adap->params.max_ordird_qp = val[0];
|
|
adap->params.max_ird_adapter = val[1];
|
|
}
|
|
dev_info(adap->pdev_dev,
|
|
"max_ordird_qp %d max_ird_adapter %d\n",
|
|
adap->params.max_ordird_qp,
|
|
adap->params.max_ird_adapter);
|
|
|
|
/* Enable write_with_immediate if FW supports it */
|
|
params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
|
|
val);
|
|
adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
|
|
|
|
/* Enable write_cmpl if FW supports it */
|
|
params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
|
|
val);
|
|
adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
|
|
adap->num_ofld_uld += 2;
|
|
}
|
|
if (caps_cmd.iscsicaps) {
|
|
params[0] = FW_PARAM_PFVF(ISCSI_START);
|
|
params[1] = FW_PARAM_PFVF(ISCSI_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
|
|
params, val);
|
|
if (ret < 0)
|
|
goto bye;
|
|
adap->vres.iscsi.start = val[0];
|
|
adap->vres.iscsi.size = val[1] - val[0] + 1;
|
|
if (is_t6(adap->params.chip)) {
|
|
params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
|
|
params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
|
|
params, val);
|
|
if (!ret) {
|
|
adap->vres.ppod_edram.start = val[0];
|
|
adap->vres.ppod_edram.size =
|
|
val[1] - val[0] + 1;
|
|
|
|
dev_info(adap->pdev_dev,
|
|
"ppod edram start 0x%x end 0x%x size 0x%x\n",
|
|
val[0], val[1],
|
|
adap->vres.ppod_edram.size);
|
|
}
|
|
}
|
|
/* LIO target and cxgb4i initiaitor */
|
|
adap->num_ofld_uld += 2;
|
|
}
|
|
if (caps_cmd.cryptocaps) {
|
|
if (ntohs(caps_cmd.cryptocaps) &
|
|
FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
|
|
params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
|
|
2, params, val);
|
|
if (ret < 0) {
|
|
if (ret != -EINVAL)
|
|
goto bye;
|
|
} else {
|
|
adap->vres.ncrypto_fc = val[0];
|
|
}
|
|
adap->num_ofld_uld += 1;
|
|
}
|
|
if (ntohs(caps_cmd.cryptocaps) &
|
|
FW_CAPS_CONFIG_TLS_INLINE) {
|
|
params[0] = FW_PARAM_PFVF(TLS_START);
|
|
params[1] = FW_PARAM_PFVF(TLS_END);
|
|
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
|
|
2, params, val);
|
|
if (ret < 0)
|
|
goto bye;
|
|
adap->vres.key.start = val[0];
|
|
adap->vres.key.size = val[1] - val[0] + 1;
|
|
adap->num_uld += 1;
|
|
}
|
|
adap->params.crypto = ntohs(caps_cmd.cryptocaps);
|
|
}
|
|
|
|
/* The MTU/MSS Table is initialized by now, so load their values. If
|
|
* we're initializing the adapter, then we'll make any modifications
|
|
* we want to the MTU/MSS Table and also initialize the congestion
|
|
* parameters.
|
|
*/
|
|
t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
|
|
if (state != DEV_STATE_INIT) {
|
|
int i;
|
|
|
|
/* The default MTU Table contains values 1492 and 1500.
|
|
* However, for TCP, it's better to have two values which are
|
|
* a multiple of 8 +/- 4 bytes apart near this popular MTU.
|
|
* This allows us to have a TCP Data Payload which is a
|
|
* multiple of 8 regardless of what combination of TCP Options
|
|
* are in use (always a multiple of 4 bytes) which is
|
|
* important for performance reasons. For instance, if no
|
|
* options are in use, then we have a 20-byte IP header and a
|
|
* 20-byte TCP header. In this case, a 1500-byte MSS would
|
|
* result in a TCP Data Payload of 1500 - 40 == 1460 bytes
|
|
* which is not a multiple of 8. So using an MSS of 1488 in
|
|
* this case results in a TCP Data Payload of 1448 bytes which
|
|
* is a multiple of 8. On the other hand, if 12-byte TCP Time
|
|
* Stamps have been negotiated, then an MTU of 1500 bytes
|
|
* results in a TCP Data Payload of 1448 bytes which, as
|
|
* above, is a multiple of 8 bytes ...
|
|
*/
|
|
for (i = 0; i < NMTUS; i++)
|
|
if (adap->params.mtus[i] == 1492) {
|
|
adap->params.mtus[i] = 1488;
|
|
break;
|
|
}
|
|
|
|
t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
|
|
adap->params.b_wnd);
|
|
}
|
|
t4_init_sge_params(adap);
|
|
adap->flags |= CXGB4_FW_OK;
|
|
t4_init_tp_params(adap, true);
|
|
return 0;
|
|
|
|
/*
|
|
* Something bad happened. If a command timed out or failed with EIO
|
|
* FW does not operate within its spec or something catastrophic
|
|
* happened to HW/FW, stop issuing commands.
|
|
*/
|
|
bye:
|
|
adap_free_hma_mem(adap);
|
|
kfree(adap->sge.egr_map);
|
|
kfree(adap->sge.ingr_map);
|
|
kfree(adap->sge.starving_fl);
|
|
kfree(adap->sge.txq_maperr);
|
|
#ifdef CONFIG_DEBUG_FS
|
|
kfree(adap->sge.blocked_fl);
|
|
#endif
|
|
if (ret != -ETIMEDOUT && ret != -EIO)
|
|
t4_fw_bye(adap, adap->mbox);
|
|
return ret;
|
|
}
|
|
|
|
/* EEH callbacks */
|
|
|
|
static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
int i;
|
|
struct adapter *adap = pci_get_drvdata(pdev);
|
|
|
|
if (!adap)
|
|
goto out;
|
|
|
|
rtnl_lock();
|
|
adap->flags &= ~CXGB4_FW_OK;
|
|
notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
|
|
spin_lock(&adap->stats_lock);
|
|
for_each_port(adap, i) {
|
|
struct net_device *dev = adap->port[i];
|
|
if (dev) {
|
|
netif_device_detach(dev);
|
|
netif_carrier_off(dev);
|
|
}
|
|
}
|
|
spin_unlock(&adap->stats_lock);
|
|
disable_interrupts(adap);
|
|
if (adap->flags & CXGB4_FULL_INIT_DONE)
|
|
cxgb_down(adap);
|
|
rtnl_unlock();
|
|
if ((adap->flags & CXGB4_DEV_ENABLED)) {
|
|
pci_disable_device(pdev);
|
|
adap->flags &= ~CXGB4_DEV_ENABLED;
|
|
}
|
|
out: return state == pci_channel_io_perm_failure ?
|
|
PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
|
|
}
|
|
|
|
static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
int i, ret;
|
|
struct fw_caps_config_cmd c;
|
|
struct adapter *adap = pci_get_drvdata(pdev);
|
|
|
|
if (!adap) {
|
|
pci_restore_state(pdev);
|
|
pci_save_state(pdev);
|
|
return PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
if (!(adap->flags & CXGB4_DEV_ENABLED)) {
|
|
if (pci_enable_device(pdev)) {
|
|
dev_err(&pdev->dev, "Cannot reenable PCI "
|
|
"device after reset\n");
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
adap->flags |= CXGB4_DEV_ENABLED;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
pci_restore_state(pdev);
|
|
pci_save_state(pdev);
|
|
|
|
if (t4_wait_dev_ready(adap->regs) < 0)
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
adap->flags |= CXGB4_FW_OK;
|
|
if (adap_init1(adap, &c))
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
|
|
for_each_port(adap, i) {
|
|
struct port_info *pi = adap2pinfo(adap, i);
|
|
u8 vivld = 0, vin = 0;
|
|
|
|
ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
|
|
NULL, NULL, &vivld, &vin);
|
|
if (ret < 0)
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
pi->viid = ret;
|
|
pi->xact_addr_filt = -1;
|
|
/* If fw supports returning the VIN as part of FW_VI_CMD,
|
|
* save the returned values.
|
|
*/
|
|
if (adap->params.viid_smt_extn_support) {
|
|
pi->vivld = vivld;
|
|
pi->vin = vin;
|
|
} else {
|
|
/* Retrieve the values from VIID */
|
|
pi->vivld = FW_VIID_VIVLD_G(pi->viid);
|
|
pi->vin = FW_VIID_VIN_G(pi->viid);
|
|
}
|
|
}
|
|
|
|
t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
|
|
adap->params.b_wnd);
|
|
setup_memwin(adap);
|
|
if (cxgb_up(adap))
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
return PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
static void eeh_resume(struct pci_dev *pdev)
|
|
{
|
|
int i;
|
|
struct adapter *adap = pci_get_drvdata(pdev);
|
|
|
|
if (!adap)
|
|
return;
|
|
|
|
rtnl_lock();
|
|
for_each_port(adap, i) {
|
|
struct net_device *dev = adap->port[i];
|
|
if (dev) {
|
|
if (netif_running(dev)) {
|
|
link_start(dev);
|
|
cxgb_set_rxmode(dev);
|
|
}
|
|
netif_device_attach(dev);
|
|
}
|
|
}
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static void eeh_reset_prepare(struct pci_dev *pdev)
|
|
{
|
|
struct adapter *adapter = pci_get_drvdata(pdev);
|
|
int i;
|
|
|
|
if (adapter->pf != 4)
|
|
return;
|
|
|
|
adapter->flags &= ~CXGB4_FW_OK;
|
|
|
|
notify_ulds(adapter, CXGB4_STATE_DOWN);
|
|
|
|
for_each_port(adapter, i)
|
|
if (adapter->port[i]->reg_state == NETREG_REGISTERED)
|
|
cxgb_close(adapter->port[i]);
|
|
|
|
disable_interrupts(adapter);
|
|
cxgb4_free_mps_ref_entries(adapter);
|
|
|
|
adap_free_hma_mem(adapter);
|
|
|
|
if (adapter->flags & CXGB4_FULL_INIT_DONE)
|
|
cxgb_down(adapter);
|
|
}
|
|
|
|
static void eeh_reset_done(struct pci_dev *pdev)
|
|
{
|
|
struct adapter *adapter = pci_get_drvdata(pdev);
|
|
int err, i;
|
|
|
|
if (adapter->pf != 4)
|
|
return;
|
|
|
|
err = t4_wait_dev_ready(adapter->regs);
|
|
if (err < 0) {
|
|
dev_err(adapter->pdev_dev,
|
|
"Device not ready, err %d", err);
|
|
return;
|
|
}
|
|
|
|
setup_memwin(adapter);
|
|
|
|
err = adap_init0(adapter, 1);
|
|
if (err) {
|
|
dev_err(adapter->pdev_dev,
|
|
"Adapter init failed, err %d", err);
|
|
return;
|
|
}
|
|
|
|
setup_memwin_rdma(adapter);
|
|
|
|
if (adapter->flags & CXGB4_FW_OK) {
|
|
err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
|
|
if (err) {
|
|
dev_err(adapter->pdev_dev,
|
|
"Port init failed, err %d", err);
|
|
return;
|
|
}
|
|
}
|
|
|
|
err = cfg_queues(adapter);
|
|
if (err) {
|
|
dev_err(adapter->pdev_dev,
|
|
"Config queues failed, err %d", err);
|
|
return;
|
|
}
|
|
|
|
cxgb4_init_mps_ref_entries(adapter);
|
|
|
|
err = setup_fw_sge_queues(adapter);
|
|
if (err) {
|
|
dev_err(adapter->pdev_dev,
|
|
"FW sge queue allocation failed, err %d", err);
|
|
return;
|
|
}
|
|
|
|
for_each_port(adapter, i)
|
|
if (adapter->port[i]->reg_state == NETREG_REGISTERED)
|
|
cxgb_open(adapter->port[i]);
|
|
}
|
|
|
|
static const struct pci_error_handlers cxgb4_eeh = {
|
|
.error_detected = eeh_err_detected,
|
|
.slot_reset = eeh_slot_reset,
|
|
.resume = eeh_resume,
|
|
.reset_prepare = eeh_reset_prepare,
|
|
.reset_done = eeh_reset_done,
|
|
};
|
|
|
|
/* Return true if the Link Configuration supports "High Speeds" (those greater
|
|
* than 1Gb/s).
|
|
*/
|
|
static inline bool is_x_10g_port(const struct link_config *lc)
|
|
{
|
|
unsigned int speeds, high_speeds;
|
|
|
|
speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
|
|
high_speeds = speeds &
|
|
~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
|
|
|
|
return high_speeds != 0;
|
|
}
|
|
|
|
/* Perform default configuration of DMA queues depending on the number and type
|
|
* of ports we found and the number of available CPUs. Most settings can be
|
|
* modified by the admin prior to actual use.
|
|
*/
|
|
static int cfg_queues(struct adapter *adap)
|
|
{
|
|
u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
|
|
u32 i, n10g = 0, qidx = 0, n1g = 0;
|
|
u32 ncpus = num_online_cpus();
|
|
u32 niqflint, neq, num_ulds;
|
|
struct sge *s = &adap->sge;
|
|
u32 q10g = 0, q1g;
|
|
|
|
/* Reduce memory usage in kdump environment, disable all offload. */
|
|
if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
|
|
adap->params.offload = 0;
|
|
adap->params.crypto = 0;
|
|
adap->params.ethofld = 0;
|
|
}
|
|
|
|
/* Calculate the number of Ethernet Queue Sets available based on
|
|
* resources provisioned for us. We always have an Asynchronous
|
|
* Firmware Event Ingress Queue. If we're operating in MSI or Legacy
|
|
* IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
|
|
* Ingress Queue. Meanwhile, we need two Egress Queues for each
|
|
* Queue Set: one for the Free List and one for the Ethernet TX Queue.
|
|
*
|
|
* Note that we should also take into account all of the various
|
|
* Offload Queues. But, in any situation where we're operating in
|
|
* a Resource Constrained Provisioning environment, doing any Offload
|
|
* at all is problematic ...
|
|
*/
|
|
niqflint = adap->params.pfres.niqflint - 1;
|
|
if (!(adap->flags & CXGB4_USING_MSIX))
|
|
niqflint--;
|
|
neq = adap->params.pfres.neq / 2;
|
|
avail_qsets = min(niqflint, neq);
|
|
|
|
if (avail_qsets < adap->params.nports) {
|
|
dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
|
|
avail_qsets, adap->params.nports);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Count the number of 10Gb/s or better ports */
|
|
for_each_port(adap, i)
|
|
n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
|
|
|
|
avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
|
|
|
|
/* We default to 1 queue per non-10G port and up to # of cores queues
|
|
* per 10G port.
|
|
*/
|
|
if (n10g)
|
|
q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
|
|
|
|
n1g = adap->params.nports - n10g;
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
/* For Data Center Bridging support we need to be able to support up
|
|
* to 8 Traffic Priorities; each of which will be assigned to its
|
|
* own TX Queue in order to prevent Head-Of-Line Blocking.
|
|
*/
|
|
q1g = 8;
|
|
if (adap->params.nports * 8 > avail_eth_qsets) {
|
|
dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
|
|
avail_eth_qsets, adap->params.nports * 8);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (adap->params.nports * ncpus < avail_eth_qsets)
|
|
q10g = max(8U, ncpus);
|
|
else
|
|
q10g = max(8U, q10g);
|
|
|
|
while ((q10g * n10g) > (avail_eth_qsets - n1g * q1g))
|
|
q10g--;
|
|
|
|
#else /* !CONFIG_CHELSIO_T4_DCB */
|
|
q1g = 1;
|
|
q10g = min(q10g, ncpus);
|
|
#endif /* !CONFIG_CHELSIO_T4_DCB */
|
|
if (is_kdump_kernel()) {
|
|
q10g = 1;
|
|
q1g = 1;
|
|
}
|
|
|
|
for_each_port(adap, i) {
|
|
struct port_info *pi = adap2pinfo(adap, i);
|
|
|
|
pi->first_qset = qidx;
|
|
pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
|
|
qidx += pi->nqsets;
|
|
}
|
|
|
|
s->ethqsets = qidx;
|
|
s->max_ethqsets = qidx; /* MSI-X may lower it later */
|
|
avail_qsets -= qidx;
|
|
|
|
if (is_uld(adap)) {
|
|
/* For offload we use 1 queue/channel if all ports are up to 1G,
|
|
* otherwise we divide all available queues amongst the channels
|
|
* capped by the number of available cores.
|
|
*/
|
|
num_ulds = adap->num_uld + adap->num_ofld_uld;
|
|
i = min_t(u32, MAX_OFLD_QSETS, ncpus);
|
|
avail_uld_qsets = roundup(i, adap->params.nports);
|
|
if (avail_qsets < num_ulds * adap->params.nports) {
|
|
adap->params.offload = 0;
|
|
adap->params.crypto = 0;
|
|
s->ofldqsets = 0;
|
|
} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
|
|
s->ofldqsets = adap->params.nports;
|
|
} else {
|
|
s->ofldqsets = avail_uld_qsets;
|
|
}
|
|
|
|
avail_qsets -= num_ulds * s->ofldqsets;
|
|
}
|
|
|
|
/* ETHOFLD Queues used for QoS offload should follow same
|
|
* allocation scheme as normal Ethernet Queues.
|
|
*/
|
|
if (is_ethofld(adap)) {
|
|
if (avail_qsets < s->max_ethqsets) {
|
|
adap->params.ethofld = 0;
|
|
s->eoqsets = 0;
|
|
} else {
|
|
s->eoqsets = s->max_ethqsets;
|
|
}
|
|
avail_qsets -= s->eoqsets;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
|
|
struct sge_eth_rxq *r = &s->ethrxq[i];
|
|
|
|
init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
|
|
r->fl.size = 72;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
|
|
s->ethtxq[i].q.size = 1024;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
|
|
s->ctrlq[i].q.size = 512;
|
|
|
|
if (!is_t4(adap->params.chip))
|
|
s->ptptxq.q.size = 8;
|
|
|
|
init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
|
|
init_rspq(adap, &s->intrq, 0, 1, 512, 64);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reduce the number of Ethernet queues across all ports to at most n.
|
|
* n provides at least one queue per port.
|
|
*/
|
|
static void reduce_ethqs(struct adapter *adap, int n)
|
|
{
|
|
int i;
|
|
struct port_info *pi;
|
|
|
|
while (n < adap->sge.ethqsets)
|
|
for_each_port(adap, i) {
|
|
pi = adap2pinfo(adap, i);
|
|
if (pi->nqsets > 1) {
|
|
pi->nqsets--;
|
|
adap->sge.ethqsets--;
|
|
if (adap->sge.ethqsets <= n)
|
|
break;
|
|
}
|
|
}
|
|
|
|
n = 0;
|
|
for_each_port(adap, i) {
|
|
pi = adap2pinfo(adap, i);
|
|
pi->first_qset = n;
|
|
n += pi->nqsets;
|
|
}
|
|
}
|
|
|
|
static int alloc_msix_info(struct adapter *adap, u32 num_vec)
|
|
{
|
|
struct msix_info *msix_info;
|
|
|
|
msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
|
|
if (!msix_info)
|
|
return -ENOMEM;
|
|
|
|
adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
|
|
sizeof(long), GFP_KERNEL);
|
|
if (!adap->msix_bmap.msix_bmap) {
|
|
kfree(msix_info);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock_init(&adap->msix_bmap.lock);
|
|
adap->msix_bmap.mapsize = num_vec;
|
|
|
|
adap->msix_info = msix_info;
|
|
return 0;
|
|
}
|
|
|
|
static void free_msix_info(struct adapter *adap)
|
|
{
|
|
kfree(adap->msix_bmap.msix_bmap);
|
|
kfree(adap->msix_info);
|
|
}
|
|
|
|
int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
|
|
{
|
|
struct msix_bmap *bmap = &adap->msix_bmap;
|
|
unsigned int msix_idx;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&bmap->lock, flags);
|
|
msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
|
|
if (msix_idx < bmap->mapsize) {
|
|
__set_bit(msix_idx, bmap->msix_bmap);
|
|
} else {
|
|
spin_unlock_irqrestore(&bmap->lock, flags);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&bmap->lock, flags);
|
|
return msix_idx;
|
|
}
|
|
|
|
void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
|
|
unsigned int msix_idx)
|
|
{
|
|
struct msix_bmap *bmap = &adap->msix_bmap;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&bmap->lock, flags);
|
|
__clear_bit(msix_idx, bmap->msix_bmap);
|
|
spin_unlock_irqrestore(&bmap->lock, flags);
|
|
}
|
|
|
|
/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
|
|
#define EXTRA_VECS 2
|
|
|
|
static int enable_msix(struct adapter *adap)
|
|
{
|
|
u32 eth_need, uld_need = 0, ethofld_need = 0;
|
|
u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0;
|
|
u8 num_uld = 0, nchan = adap->params.nports;
|
|
u32 i, want, need, num_vec;
|
|
struct sge *s = &adap->sge;
|
|
struct msix_entry *entries;
|
|
struct port_info *pi;
|
|
int allocated, ret;
|
|
|
|
want = s->max_ethqsets;
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
|
|
* each port.
|
|
*/
|
|
need = 8 * nchan;
|
|
#else
|
|
need = nchan;
|
|
#endif
|
|
eth_need = need;
|
|
if (is_uld(adap)) {
|
|
num_uld = adap->num_ofld_uld + adap->num_uld;
|
|
want += num_uld * s->ofldqsets;
|
|
uld_need = num_uld * nchan;
|
|
need += uld_need;
|
|
}
|
|
|
|
if (is_ethofld(adap)) {
|
|
want += s->eoqsets;
|
|
ethofld_need = eth_need;
|
|
need += ethofld_need;
|
|
}
|
|
|
|
want += EXTRA_VECS;
|
|
need += EXTRA_VECS;
|
|
|
|
entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
|
|
if (!entries)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < want; i++)
|
|
entries[i].entry = i;
|
|
|
|
allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
|
|
if (allocated < 0) {
|
|
/* Disable offload and attempt to get vectors for NIC
|
|
* only mode.
|
|
*/
|
|
want = s->max_ethqsets + EXTRA_VECS;
|
|
need = eth_need + EXTRA_VECS;
|
|
allocated = pci_enable_msix_range(adap->pdev, entries,
|
|
need, want);
|
|
if (allocated < 0) {
|
|
dev_info(adap->pdev_dev,
|
|
"Disabling MSI-X due to insufficient MSI-X vectors\n");
|
|
ret = allocated;
|
|
goto out_free;
|
|
}
|
|
|
|
dev_info(adap->pdev_dev,
|
|
"Disabling offload due to insufficient MSI-X vectors\n");
|
|
adap->params.offload = 0;
|
|
adap->params.crypto = 0;
|
|
adap->params.ethofld = 0;
|
|
s->ofldqsets = 0;
|
|
s->eoqsets = 0;
|
|
uld_need = 0;
|
|
ethofld_need = 0;
|
|
}
|
|
|
|
num_vec = allocated;
|
|
if (num_vec < want) {
|
|
/* Distribute available vectors to the various queue groups.
|
|
* Every group gets its minimum requirement and NIC gets top
|
|
* priority for leftovers.
|
|
*/
|
|
ethqsets = eth_need;
|
|
if (is_uld(adap))
|
|
ofldqsets = nchan;
|
|
if (is_ethofld(adap))
|
|
eoqsets = ethofld_need;
|
|
|
|
num_vec -= need;
|
|
while (num_vec) {
|
|
if (num_vec < eth_need + ethofld_need ||
|
|
ethqsets > s->max_ethqsets)
|
|
break;
|
|
|
|
for_each_port(adap, i) {
|
|
pi = adap2pinfo(adap, i);
|
|
if (pi->nqsets < 2)
|
|
continue;
|
|
|
|
ethqsets++;
|
|
num_vec--;
|
|
if (ethofld_need) {
|
|
eoqsets++;
|
|
num_vec--;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_uld(adap)) {
|
|
while (num_vec) {
|
|
if (num_vec < uld_need ||
|
|
ofldqsets > s->ofldqsets)
|
|
break;
|
|
|
|
ofldqsets++;
|
|
num_vec -= uld_need;
|
|
}
|
|
}
|
|
} else {
|
|
ethqsets = s->max_ethqsets;
|
|
if (is_uld(adap))
|
|
ofldqsets = s->ofldqsets;
|
|
if (is_ethofld(adap))
|
|
eoqsets = s->eoqsets;
|
|
}
|
|
|
|
if (ethqsets < s->max_ethqsets) {
|
|
s->max_ethqsets = ethqsets;
|
|
reduce_ethqs(adap, ethqsets);
|
|
}
|
|
|
|
if (is_uld(adap)) {
|
|
s->ofldqsets = ofldqsets;
|
|
s->nqs_per_uld = s->ofldqsets;
|
|
}
|
|
|
|
if (is_ethofld(adap))
|
|
s->eoqsets = eoqsets;
|
|
|
|
/* map for msix */
|
|
ret = alloc_msix_info(adap, allocated);
|
|
if (ret)
|
|
goto out_disable_msix;
|
|
|
|
for (i = 0; i < allocated; i++) {
|
|
adap->msix_info[i].vec = entries[i].vector;
|
|
adap->msix_info[i].idx = i;
|
|
}
|
|
|
|
dev_info(adap->pdev_dev,
|
|
"%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n",
|
|
allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld);
|
|
|
|
kfree(entries);
|
|
return 0;
|
|
|
|
out_disable_msix:
|
|
pci_disable_msix(adap->pdev);
|
|
|
|
out_free:
|
|
kfree(entries);
|
|
return ret;
|
|
}
|
|
|
|
#undef EXTRA_VECS
|
|
|
|
static int init_rss(struct adapter *adap)
|
|
{
|
|
unsigned int i;
|
|
int err;
|
|
|
|
err = t4_init_rss_mode(adap, adap->mbox);
|
|
if (err)
|
|
return err;
|
|
|
|
for_each_port(adap, i) {
|
|
struct port_info *pi = adap2pinfo(adap, i);
|
|
|
|
pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
|
|
if (!pi->rss)
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Dump basic information about the adapter */
|
|
static void print_adapter_info(struct adapter *adapter)
|
|
{
|
|
/* Hardware/Firmware/etc. Version/Revision IDs */
|
|
t4_dump_version_info(adapter);
|
|
|
|
/* Software/Hardware configuration */
|
|
dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
|
|
is_offload(adapter) ? "R" : "",
|
|
((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
|
|
(adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
|
|
is_offload(adapter) ? "Offload" : "non-Offload");
|
|
}
|
|
|
|
static void print_port_info(const struct net_device *dev)
|
|
{
|
|
char buf[80];
|
|
char *bufp = buf;
|
|
const struct port_info *pi = netdev_priv(dev);
|
|
const struct adapter *adap = pi->adapter;
|
|
|
|
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
|
|
bufp += sprintf(bufp, "100M/");
|
|
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
|
|
bufp += sprintf(bufp, "1G/");
|
|
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
|
|
bufp += sprintf(bufp, "10G/");
|
|
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
|
|
bufp += sprintf(bufp, "25G/");
|
|
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
|
|
bufp += sprintf(bufp, "40G/");
|
|
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
|
|
bufp += sprintf(bufp, "50G/");
|
|
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
|
|
bufp += sprintf(bufp, "100G/");
|
|
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
|
|
bufp += sprintf(bufp, "200G/");
|
|
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
|
|
bufp += sprintf(bufp, "400G/");
|
|
if (bufp != buf)
|
|
--bufp;
|
|
sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
|
|
|
|
netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
|
|
dev->name, adap->params.vpd.id, adap->name, buf);
|
|
}
|
|
|
|
/*
|
|
* Free the following resources:
|
|
* - memory used for tables
|
|
* - MSI/MSI-X
|
|
* - net devices
|
|
* - resources FW is holding for us
|
|
*/
|
|
static void free_some_resources(struct adapter *adapter)
|
|
{
|
|
unsigned int i;
|
|
|
|
kvfree(adapter->smt);
|
|
kvfree(adapter->l2t);
|
|
kvfree(adapter->srq);
|
|
t4_cleanup_sched(adapter);
|
|
kvfree(adapter->tids.tid_tab);
|
|
cxgb4_cleanup_tc_matchall(adapter);
|
|
cxgb4_cleanup_tc_mqprio(adapter);
|
|
cxgb4_cleanup_tc_flower(adapter);
|
|
cxgb4_cleanup_tc_u32(adapter);
|
|
kfree(adapter->sge.egr_map);
|
|
kfree(adapter->sge.ingr_map);
|
|
kfree(adapter->sge.starving_fl);
|
|
kfree(adapter->sge.txq_maperr);
|
|
#ifdef CONFIG_DEBUG_FS
|
|
kfree(adapter->sge.blocked_fl);
|
|
#endif
|
|
disable_msi(adapter);
|
|
|
|
for_each_port(adapter, i)
|
|
if (adapter->port[i]) {
|
|
struct port_info *pi = adap2pinfo(adapter, i);
|
|
|
|
if (pi->viid != 0)
|
|
t4_free_vi(adapter, adapter->mbox, adapter->pf,
|
|
0, pi->viid);
|
|
kfree(adap2pinfo(adapter, i)->rss);
|
|
free_netdev(adapter->port[i]);
|
|
}
|
|
if (adapter->flags & CXGB4_FW_OK)
|
|
t4_fw_bye(adapter, adapter->pf);
|
|
}
|
|
|
|
#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
|
|
NETIF_F_GSO_UDP_L4)
|
|
#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
|
|
NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
|
|
#define SEGMENT_SIZE 128
|
|
|
|
static int t4_get_chip_type(struct adapter *adap, int ver)
|
|
{
|
|
u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
|
|
|
|
switch (ver) {
|
|
case CHELSIO_T4:
|
|
return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
|
|
case CHELSIO_T5:
|
|
return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
|
|
case CHELSIO_T6:
|
|
return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
|
|
default:
|
|
break;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static void cxgb4_mgmt_setup(struct net_device *dev)
|
|
{
|
|
dev->type = ARPHRD_NONE;
|
|
dev->mtu = 0;
|
|
dev->hard_header_len = 0;
|
|
dev->addr_len = 0;
|
|
dev->tx_queue_len = 0;
|
|
dev->flags |= IFF_NOARP;
|
|
dev->priv_flags |= IFF_NO_QUEUE;
|
|
|
|
/* Initialize the device structure. */
|
|
dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
|
|
dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
|
|
}
|
|
|
|
static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
|
|
{
|
|
struct adapter *adap = pci_get_drvdata(pdev);
|
|
int err = 0;
|
|
int current_vfs = pci_num_vf(pdev);
|
|
u32 pcie_fw;
|
|
|
|
pcie_fw = readl(adap->regs + PCIE_FW_A);
|
|
/* Check if fw is initialized */
|
|
if (!(pcie_fw & PCIE_FW_INIT_F)) {
|
|
dev_warn(&pdev->dev, "Device not initialized\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* If any of the VF's is already assigned to Guest OS, then
|
|
* SRIOV for the same cannot be modified
|
|
*/
|
|
if (current_vfs && pci_vfs_assigned(pdev)) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot modify SR-IOV while VFs are assigned\n");
|
|
return current_vfs;
|
|
}
|
|
/* Note that the upper-level code ensures that we're never called with
|
|
* a non-zero "num_vfs" when we already have VFs instantiated. But
|
|
* it never hurts to code defensively.
|
|
*/
|
|
if (num_vfs != 0 && current_vfs != 0)
|
|
return -EBUSY;
|
|
|
|
/* Nothing to do for no change. */
|
|
if (num_vfs == current_vfs)
|
|
return num_vfs;
|
|
|
|
/* Disable SRIOV when zero is passed. */
|
|
if (!num_vfs) {
|
|
pci_disable_sriov(pdev);
|
|
/* free VF Management Interface */
|
|
unregister_netdev(adap->port[0]);
|
|
free_netdev(adap->port[0]);
|
|
adap->port[0] = NULL;
|
|
|
|
/* free VF resources */
|
|
adap->num_vfs = 0;
|
|
kfree(adap->vfinfo);
|
|
adap->vfinfo = NULL;
|
|
return 0;
|
|
}
|
|
|
|
if (!current_vfs) {
|
|
struct fw_pfvf_cmd port_cmd, port_rpl;
|
|
struct net_device *netdev;
|
|
unsigned int pmask, port;
|
|
struct pci_dev *pbridge;
|
|
struct port_info *pi;
|
|
char name[IFNAMSIZ];
|
|
u32 devcap2;
|
|
u16 flags;
|
|
|
|
/* If we want to instantiate Virtual Functions, then our
|
|
* parent bridge's PCI-E needs to support Alternative Routing
|
|
* ID (ARI) because our VFs will show up at function offset 8
|
|
* and above.
|
|
*/
|
|
pbridge = pdev->bus->self;
|
|
pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
|
|
pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
|
|
|
|
if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
|
|
!(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
|
|
/* Our parent bridge does not support ARI so issue a
|
|
* warning and skip instantiating the VFs. They
|
|
* won't be reachable.
|
|
*/
|
|
dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
|
|
pbridge->bus->number, PCI_SLOT(pbridge->devfn),
|
|
PCI_FUNC(pbridge->devfn));
|
|
return -ENOTSUPP;
|
|
}
|
|
memset(&port_cmd, 0, sizeof(port_cmd));
|
|
port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
|
|
FW_CMD_REQUEST_F |
|
|
FW_CMD_READ_F |
|
|
FW_PFVF_CMD_PFN_V(adap->pf) |
|
|
FW_PFVF_CMD_VFN_V(0));
|
|
port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
|
|
err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
|
|
&port_rpl);
|
|
if (err)
|
|
return err;
|
|
pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
|
|
port = ffs(pmask) - 1;
|
|
/* Allocate VF Management Interface. */
|
|
snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
|
|
adap->pf);
|
|
netdev = alloc_netdev(sizeof(struct port_info),
|
|
name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
|
|
if (!netdev)
|
|
return -ENOMEM;
|
|
|
|
pi = netdev_priv(netdev);
|
|
pi->adapter = adap;
|
|
pi->lport = port;
|
|
pi->tx_chan = port;
|
|
SET_NETDEV_DEV(netdev, &pdev->dev);
|
|
|
|
adap->port[0] = netdev;
|
|
pi->port_id = 0;
|
|
|
|
err = register_netdev(adap->port[0]);
|
|
if (err) {
|
|
pr_info("Unable to register VF mgmt netdev %s\n", name);
|
|
free_netdev(adap->port[0]);
|
|
adap->port[0] = NULL;
|
|
return err;
|
|
}
|
|
/* Allocate and set up VF Information. */
|
|
adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
|
|
sizeof(struct vf_info), GFP_KERNEL);
|
|
if (!adap->vfinfo) {
|
|
unregister_netdev(adap->port[0]);
|
|
free_netdev(adap->port[0]);
|
|
adap->port[0] = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
cxgb4_mgmt_fill_vf_station_mac_addr(adap);
|
|
}
|
|
/* Instantiate the requested number of VFs. */
|
|
err = pci_enable_sriov(pdev, num_vfs);
|
|
if (err) {
|
|
pr_info("Unable to instantiate %d VFs\n", num_vfs);
|
|
if (!current_vfs) {
|
|
unregister_netdev(adap->port[0]);
|
|
free_netdev(adap->port[0]);
|
|
adap->port[0] = NULL;
|
|
kfree(adap->vfinfo);
|
|
adap->vfinfo = NULL;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
adap->num_vfs = num_vfs;
|
|
return num_vfs;
|
|
}
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
#if defined(CONFIG_CHELSIO_TLS_DEVICE)
|
|
|
|
static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
|
|
enum tls_offload_ctx_dir direction,
|
|
struct tls_crypto_info *crypto_info,
|
|
u32 tcp_sn)
|
|
{
|
|
struct adapter *adap = netdev2adap(netdev);
|
|
int ret = 0;
|
|
|
|
mutex_lock(&uld_mutex);
|
|
if (!adap->uld[CXGB4_ULD_CRYPTO].handle) {
|
|
dev_err(adap->pdev_dev, "chcr driver is not loaded\n");
|
|
ret = -EOPNOTSUPP;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) {
|
|
dev_err(adap->pdev_dev,
|
|
"chcr driver has no registered tlsdev_ops()\n");
|
|
ret = -EOPNOTSUPP;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_add(netdev, sk,
|
|
direction,
|
|
crypto_info,
|
|
tcp_sn);
|
|
/* if there is a failure, clear the refcount */
|
|
if (ret)
|
|
cxgb4_set_ktls_feature(adap,
|
|
FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
|
|
out_unlock:
|
|
mutex_unlock(&uld_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void cxgb4_ktls_dev_del(struct net_device *netdev,
|
|
struct tls_context *tls_ctx,
|
|
enum tls_offload_ctx_dir direction)
|
|
{
|
|
struct adapter *adap = netdev2adap(netdev);
|
|
|
|
mutex_lock(&uld_mutex);
|
|
if (!adap->uld[CXGB4_ULD_CRYPTO].handle) {
|
|
dev_err(adap->pdev_dev, "chcr driver is not loaded\n");
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) {
|
|
dev_err(adap->pdev_dev,
|
|
"chcr driver has no registered tlsdev_ops\n");
|
|
goto out_unlock;
|
|
}
|
|
|
|
adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
|
|
direction);
|
|
cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&uld_mutex);
|
|
}
|
|
|
|
static const struct tlsdev_ops cxgb4_ktls_ops = {
|
|
.tls_dev_add = cxgb4_ktls_dev_add,
|
|
.tls_dev_del = cxgb4_ktls_dev_del,
|
|
};
|
|
#endif /* CONFIG_CHELSIO_TLS_DEVICE */
|
|
|
|
static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *netdev;
|
|
struct adapter *adapter;
|
|
static int adap_idx = 1;
|
|
int s_qpp, qpp, num_seg;
|
|
struct port_info *pi;
|
|
bool highdma = false;
|
|
enum chip_type chip;
|
|
void __iomem *regs;
|
|
int func, chip_ver;
|
|
u16 device_id;
|
|
int i, err;
|
|
u32 whoami;
|
|
|
|
err = pci_request_regions(pdev, KBUILD_MODNAME);
|
|
if (err) {
|
|
/* Just info, some other driver may have claimed the device. */
|
|
dev_info(&pdev->dev, "cannot obtain PCI resources\n");
|
|
return err;
|
|
}
|
|
|
|
err = pci_enable_device(pdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev, "cannot enable PCI device\n");
|
|
goto out_release_regions;
|
|
}
|
|
|
|
regs = pci_ioremap_bar(pdev, 0);
|
|
if (!regs) {
|
|
dev_err(&pdev->dev, "cannot map device registers\n");
|
|
err = -ENOMEM;
|
|
goto out_disable_device;
|
|
}
|
|
|
|
adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
|
|
if (!adapter) {
|
|
err = -ENOMEM;
|
|
goto out_unmap_bar0;
|
|
}
|
|
|
|
adapter->regs = regs;
|
|
err = t4_wait_dev_ready(regs);
|
|
if (err < 0)
|
|
goto out_free_adapter;
|
|
|
|
/* We control everything through one PF */
|
|
whoami = t4_read_reg(adapter, PL_WHOAMI_A);
|
|
pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
|
|
chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
|
|
if ((int)chip < 0) {
|
|
dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
|
|
err = chip;
|
|
goto out_free_adapter;
|
|
}
|
|
chip_ver = CHELSIO_CHIP_VERSION(chip);
|
|
func = chip_ver <= CHELSIO_T5 ?
|
|
SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
|
|
|
|
adapter->pdev = pdev;
|
|
adapter->pdev_dev = &pdev->dev;
|
|
adapter->name = pci_name(pdev);
|
|
adapter->mbox = func;
|
|
adapter->pf = func;
|
|
adapter->params.chip = chip;
|
|
adapter->adap_idx = adap_idx;
|
|
adapter->msg_enable = DFLT_MSG_ENABLE;
|
|
adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
|
|
(sizeof(struct mbox_cmd) *
|
|
T4_OS_LOG_MBOX_CMDS),
|
|
GFP_KERNEL);
|
|
if (!adapter->mbox_log) {
|
|
err = -ENOMEM;
|
|
goto out_free_adapter;
|
|
}
|
|
spin_lock_init(&adapter->mbox_lock);
|
|
INIT_LIST_HEAD(&adapter->mlist.list);
|
|
adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
|
|
pci_set_drvdata(pdev, adapter);
|
|
|
|
if (func != ent->driver_data) {
|
|
pci_disable_device(pdev);
|
|
pci_save_state(pdev); /* to restore SR-IOV later */
|
|
return 0;
|
|
}
|
|
|
|
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
|
|
highdma = true;
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
|
|
if (err) {
|
|
dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
|
|
"coherent allocations\n");
|
|
goto out_free_adapter;
|
|
}
|
|
} else {
|
|
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (err) {
|
|
dev_err(&pdev->dev, "no usable DMA configuration\n");
|
|
goto out_free_adapter;
|
|
}
|
|
}
|
|
|
|
pci_enable_pcie_error_reporting(pdev);
|
|
pci_set_master(pdev);
|
|
pci_save_state(pdev);
|
|
adap_idx++;
|
|
adapter->workq = create_singlethread_workqueue("cxgb4");
|
|
if (!adapter->workq) {
|
|
err = -ENOMEM;
|
|
goto out_free_adapter;
|
|
}
|
|
|
|
/* PCI device has been enabled */
|
|
adapter->flags |= CXGB4_DEV_ENABLED;
|
|
memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
|
|
|
|
/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
|
|
* Ingress Packet Data to Free List Buffers in order to allow for
|
|
* chipset performance optimizations between the Root Complex and
|
|
* Memory Controllers. (Messages to the associated Ingress Queue
|
|
* notifying new Packet Placement in the Free Lists Buffers will be
|
|
* send without the Relaxed Ordering Attribute thus guaranteeing that
|
|
* all preceding PCIe Transaction Layer Packets will be processed
|
|
* first.) But some Root Complexes have various issues with Upstream
|
|
* Transaction Layer Packets with the Relaxed Ordering Attribute set.
|
|
* The PCIe devices which under the Root Complexes will be cleared the
|
|
* Relaxed Ordering bit in the configuration space, So we check our
|
|
* PCIe configuration space to see if it's flagged with advice against
|
|
* using Relaxed Ordering.
|
|
*/
|
|
if (!pcie_relaxed_ordering_enabled(pdev))
|
|
adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
|
|
|
|
spin_lock_init(&adapter->stats_lock);
|
|
spin_lock_init(&adapter->tid_release_lock);
|
|
spin_lock_init(&adapter->win0_lock);
|
|
|
|
INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
|
|
INIT_WORK(&adapter->db_full_task, process_db_full);
|
|
INIT_WORK(&adapter->db_drop_task, process_db_drop);
|
|
INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
|
|
|
|
err = t4_prep_adapter(adapter);
|
|
if (err)
|
|
goto out_free_adapter;
|
|
|
|
if (is_kdump_kernel()) {
|
|
/* Collect hardware state and append to /proc/vmcore */
|
|
err = cxgb4_cudbg_vmcore_add_dump(adapter);
|
|
if (err) {
|
|
dev_warn(adapter->pdev_dev,
|
|
"Fail collecting vmcore device dump, err: %d. Continuing\n",
|
|
err);
|
|
err = 0;
|
|
}
|
|
}
|
|
|
|
if (!is_t4(adapter->params.chip)) {
|
|
s_qpp = (QUEUESPERPAGEPF0_S +
|
|
(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
|
|
adapter->pf);
|
|
qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
|
|
SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
|
|
num_seg = PAGE_SIZE / SEGMENT_SIZE;
|
|
|
|
/* Each segment size is 128B. Write coalescing is enabled only
|
|
* when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
|
|
* queue is less no of segments that can be accommodated in
|
|
* a page size.
|
|
*/
|
|
if (qpp > num_seg) {
|
|
dev_err(&pdev->dev,
|
|
"Incorrect number of egress queues per page\n");
|
|
err = -EINVAL;
|
|
goto out_free_adapter;
|
|
}
|
|
adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
|
|
pci_resource_len(pdev, 2));
|
|
if (!adapter->bar2) {
|
|
dev_err(&pdev->dev, "cannot map device bar2 region\n");
|
|
err = -ENOMEM;
|
|
goto out_free_adapter;
|
|
}
|
|
}
|
|
|
|
setup_memwin(adapter);
|
|
err = adap_init0(adapter, 0);
|
|
#ifdef CONFIG_DEBUG_FS
|
|
bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
|
|
#endif
|
|
setup_memwin_rdma(adapter);
|
|
if (err)
|
|
goto out_unmap_bar;
|
|
|
|
/* configure SGE_STAT_CFG_A to read WC stats */
|
|
if (!is_t4(adapter->params.chip))
|
|
t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
|
|
(is_t5(adapter->params.chip) ? STATMODE_V(0) :
|
|
T6_STATMODE_V(0)));
|
|
|
|
/* Initialize hash mac addr list */
|
|
INIT_LIST_HEAD(&adapter->mac_hlist);
|
|
|
|
for_each_port(adapter, i) {
|
|
/* For supporting MQPRIO Offload, need some extra
|
|
* queues for each ETHOFLD TIDs. Keep it equal to
|
|
* MAX_ATIDs for now. Once we connect to firmware
|
|
* later and query the EOTID params, we'll come to
|
|
* know the actual # of EOTIDs supported.
|
|
*/
|
|
netdev = alloc_etherdev_mq(sizeof(struct port_info),
|
|
MAX_ETH_QSETS + MAX_ATIDS);
|
|
if (!netdev) {
|
|
err = -ENOMEM;
|
|
goto out_free_dev;
|
|
}
|
|
|
|
SET_NETDEV_DEV(netdev, &pdev->dev);
|
|
|
|
adapter->port[i] = netdev;
|
|
pi = netdev_priv(netdev);
|
|
pi->adapter = adapter;
|
|
pi->xact_addr_filt = -1;
|
|
pi->port_id = i;
|
|
netdev->irq = pdev->irq;
|
|
|
|
netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
|
|
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
|
|
NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
|
|
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
|
|
NETIF_F_HW_TC;
|
|
|
|
if (chip_ver > CHELSIO_T5) {
|
|
netdev->hw_enc_features |= NETIF_F_IP_CSUM |
|
|
NETIF_F_IPV6_CSUM |
|
|
NETIF_F_RXCSUM |
|
|
NETIF_F_GSO_UDP_TUNNEL |
|
|
NETIF_F_GSO_UDP_TUNNEL_CSUM |
|
|
NETIF_F_TSO | NETIF_F_TSO6;
|
|
|
|
netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
|
|
NETIF_F_GSO_UDP_TUNNEL_CSUM |
|
|
NETIF_F_HW_TLS_RECORD;
|
|
}
|
|
|
|
if (highdma)
|
|
netdev->hw_features |= NETIF_F_HIGHDMA;
|
|
netdev->features |= netdev->hw_features;
|
|
netdev->vlan_features = netdev->features & VLAN_FEAT;
|
|
#if defined(CONFIG_CHELSIO_TLS_DEVICE)
|
|
if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
|
|
netdev->hw_features |= NETIF_F_HW_TLS_TX;
|
|
netdev->tlsdev_ops = &cxgb4_ktls_ops;
|
|
/* initialize the refcount */
|
|
refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
|
|
}
|
|
#endif
|
|
netdev->priv_flags |= IFF_UNICAST_FLT;
|
|
|
|
/* MTU range: 81 - 9600 */
|
|
netdev->min_mtu = 81; /* accommodate SACK */
|
|
netdev->max_mtu = MAX_MTU;
|
|
|
|
netdev->netdev_ops = &cxgb4_netdev_ops;
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
netdev->dcbnl_ops = &cxgb4_dcb_ops;
|
|
cxgb4_dcb_state_init(netdev);
|
|
cxgb4_dcb_version_init(netdev);
|
|
#endif
|
|
cxgb4_set_ethtool_ops(netdev);
|
|
}
|
|
|
|
cxgb4_init_ethtool_dump(adapter);
|
|
|
|
pci_set_drvdata(pdev, adapter);
|
|
|
|
if (adapter->flags & CXGB4_FW_OK) {
|
|
err = t4_port_init(adapter, func, func, 0);
|
|
if (err)
|
|
goto out_free_dev;
|
|
} else if (adapter->params.nports == 1) {
|
|
/* If we don't have a connection to the firmware -- possibly
|
|
* because of an error -- grab the raw VPD parameters so we
|
|
* can set the proper MAC Address on the debug network
|
|
* interface that we've created.
|
|
*/
|
|
u8 hw_addr[ETH_ALEN];
|
|
u8 *na = adapter->params.vpd.na;
|
|
|
|
err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
|
|
if (!err) {
|
|
for (i = 0; i < ETH_ALEN; i++)
|
|
hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
|
|
hex2val(na[2 * i + 1]));
|
|
t4_set_hw_addr(adapter, 0, hw_addr);
|
|
}
|
|
}
|
|
|
|
if (!(adapter->flags & CXGB4_FW_OK))
|
|
goto fw_attach_fail;
|
|
|
|
/* Configure queues and allocate tables now, they can be needed as
|
|
* soon as the first register_netdev completes.
|
|
*/
|
|
err = cfg_queues(adapter);
|
|
if (err)
|
|
goto out_free_dev;
|
|
|
|
adapter->smt = t4_init_smt();
|
|
if (!adapter->smt) {
|
|
/* We tolerate a lack of SMT, giving up some functionality */
|
|
dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
|
|
}
|
|
|
|
adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
|
|
if (!adapter->l2t) {
|
|
/* We tolerate a lack of L2T, giving up some functionality */
|
|
dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
|
|
adapter->params.offload = 0;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
if (chip_ver <= CHELSIO_T5 &&
|
|
(!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
|
|
/* CLIP functionality is not present in hardware,
|
|
* hence disable all offload features
|
|
*/
|
|
dev_warn(&pdev->dev,
|
|
"CLIP not enabled in hardware, continuing\n");
|
|
adapter->params.offload = 0;
|
|
} else {
|
|
adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
|
|
adapter->clipt_end);
|
|
if (!adapter->clipt) {
|
|
/* We tolerate a lack of clip_table, giving up
|
|
* some functionality
|
|
*/
|
|
dev_warn(&pdev->dev,
|
|
"could not allocate Clip table, continuing\n");
|
|
adapter->params.offload = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for_each_port(adapter, i) {
|
|
pi = adap2pinfo(adapter, i);
|
|
pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
|
|
if (!pi->sched_tbl)
|
|
dev_warn(&pdev->dev,
|
|
"could not activate scheduling on port %d\n",
|
|
i);
|
|
}
|
|
|
|
if (tid_init(&adapter->tids) < 0) {
|
|
dev_warn(&pdev->dev, "could not allocate TID table, "
|
|
"continuing\n");
|
|
adapter->params.offload = 0;
|
|
} else {
|
|
adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
|
|
if (!adapter->tc_u32)
|
|
dev_warn(&pdev->dev,
|
|
"could not offload tc u32, continuing\n");
|
|
|
|
if (cxgb4_init_tc_flower(adapter))
|
|
dev_warn(&pdev->dev,
|
|
"could not offload tc flower, continuing\n");
|
|
|
|
if (cxgb4_init_tc_mqprio(adapter))
|
|
dev_warn(&pdev->dev,
|
|
"could not offload tc mqprio, continuing\n");
|
|
|
|
if (cxgb4_init_tc_matchall(adapter))
|
|
dev_warn(&pdev->dev,
|
|
"could not offload tc matchall, continuing\n");
|
|
}
|
|
|
|
if (is_offload(adapter) || is_hashfilter(adapter)) {
|
|
if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
|
|
u32 hash_base, hash_reg;
|
|
|
|
if (chip_ver <= CHELSIO_T5) {
|
|
hash_reg = LE_DB_TID_HASHBASE_A;
|
|
hash_base = t4_read_reg(adapter, hash_reg);
|
|
adapter->tids.hash_base = hash_base / 4;
|
|
} else {
|
|
hash_reg = T6_LE_DB_HASH_TID_BASE_A;
|
|
hash_base = t4_read_reg(adapter, hash_reg);
|
|
adapter->tids.hash_base = hash_base;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See what interrupts we'll be using */
|
|
if (msi > 1 && enable_msix(adapter) == 0)
|
|
adapter->flags |= CXGB4_USING_MSIX;
|
|
else if (msi > 0 && pci_enable_msi(pdev) == 0) {
|
|
adapter->flags |= CXGB4_USING_MSI;
|
|
if (msi > 1)
|
|
free_msix_info(adapter);
|
|
}
|
|
|
|
/* check for PCI Express bandwidth capabiltites */
|
|
pcie_print_link_status(pdev);
|
|
|
|
cxgb4_init_mps_ref_entries(adapter);
|
|
|
|
err = init_rss(adapter);
|
|
if (err)
|
|
goto out_free_dev;
|
|
|
|
err = setup_non_data_intr(adapter);
|
|
if (err) {
|
|
dev_err(adapter->pdev_dev,
|
|
"Non Data interrupt allocation failed, err: %d\n", err);
|
|
goto out_free_dev;
|
|
}
|
|
|
|
err = setup_fw_sge_queues(adapter);
|
|
if (err) {
|
|
dev_err(adapter->pdev_dev,
|
|
"FW sge queue allocation failed, err %d", err);
|
|
goto out_free_dev;
|
|
}
|
|
|
|
fw_attach_fail:
|
|
/*
|
|
* The card is now ready to go. If any errors occur during device
|
|
* registration we do not fail the whole card but rather proceed only
|
|
* with the ports we manage to register successfully. However we must
|
|
* register at least one net device.
|
|
*/
|
|
for_each_port(adapter, i) {
|
|
pi = adap2pinfo(adapter, i);
|
|
adapter->port[i]->dev_port = pi->lport;
|
|
netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
|
|
netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
|
|
|
|
netif_carrier_off(adapter->port[i]);
|
|
|
|
err = register_netdev(adapter->port[i]);
|
|
if (err)
|
|
break;
|
|
adapter->chan_map[pi->tx_chan] = i;
|
|
print_port_info(adapter->port[i]);
|
|
}
|
|
if (i == 0) {
|
|
dev_err(&pdev->dev, "could not register any net devices\n");
|
|
goto out_free_dev;
|
|
}
|
|
if (err) {
|
|
dev_warn(&pdev->dev, "only %d net devices registered\n", i);
|
|
err = 0;
|
|
}
|
|
|
|
if (cxgb4_debugfs_root) {
|
|
adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
|
|
cxgb4_debugfs_root);
|
|
setup_debugfs(adapter);
|
|
}
|
|
|
|
/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
|
|
pdev->needs_freset = 1;
|
|
|
|
if (is_uld(adapter))
|
|
cxgb4_uld_enable(adapter);
|
|
|
|
if (!is_t4(adapter->params.chip))
|
|
cxgb4_ptp_init(adapter);
|
|
|
|
if (IS_REACHABLE(CONFIG_THERMAL) &&
|
|
!is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
|
|
cxgb4_thermal_init(adapter);
|
|
|
|
print_adapter_info(adapter);
|
|
return 0;
|
|
|
|
out_free_dev:
|
|
t4_free_sge_resources(adapter);
|
|
free_some_resources(adapter);
|
|
if (adapter->flags & CXGB4_USING_MSIX)
|
|
free_msix_info(adapter);
|
|
if (adapter->num_uld || adapter->num_ofld_uld)
|
|
t4_uld_mem_free(adapter);
|
|
out_unmap_bar:
|
|
if (!is_t4(adapter->params.chip))
|
|
iounmap(adapter->bar2);
|
|
out_free_adapter:
|
|
if (adapter->workq)
|
|
destroy_workqueue(adapter->workq);
|
|
|
|
kfree(adapter->mbox_log);
|
|
kfree(adapter);
|
|
out_unmap_bar0:
|
|
iounmap(regs);
|
|
out_disable_device:
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
pci_disable_device(pdev);
|
|
out_release_regions:
|
|
pci_release_regions(pdev);
|
|
return err;
|
|
}
|
|
|
|
static void remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct adapter *adapter = pci_get_drvdata(pdev);
|
|
struct hash_mac_addr *entry, *tmp;
|
|
|
|
if (!adapter) {
|
|
pci_release_regions(pdev);
|
|
return;
|
|
}
|
|
|
|
/* If we allocated filters, free up state associated with any
|
|
* valid filters ...
|
|
*/
|
|
clear_all_filters(adapter);
|
|
|
|
adapter->flags |= CXGB4_SHUTTING_DOWN;
|
|
|
|
if (adapter->pf == 4) {
|
|
int i;
|
|
|
|
/* Tear down per-adapter Work Queue first since it can contain
|
|
* references to our adapter data structure.
|
|
*/
|
|
destroy_workqueue(adapter->workq);
|
|
|
|
if (is_uld(adapter)) {
|
|
detach_ulds(adapter);
|
|
t4_uld_clean_up(adapter);
|
|
}
|
|
|
|
adap_free_hma_mem(adapter);
|
|
|
|
disable_interrupts(adapter);
|
|
|
|
cxgb4_free_mps_ref_entries(adapter);
|
|
|
|
for_each_port(adapter, i)
|
|
if (adapter->port[i]->reg_state == NETREG_REGISTERED)
|
|
unregister_netdev(adapter->port[i]);
|
|
|
|
debugfs_remove_recursive(adapter->debugfs_root);
|
|
|
|
if (!is_t4(adapter->params.chip))
|
|
cxgb4_ptp_stop(adapter);
|
|
if (IS_REACHABLE(CONFIG_THERMAL))
|
|
cxgb4_thermal_remove(adapter);
|
|
|
|
if (adapter->flags & CXGB4_FULL_INIT_DONE)
|
|
cxgb_down(adapter);
|
|
|
|
if (adapter->flags & CXGB4_USING_MSIX)
|
|
free_msix_info(adapter);
|
|
if (adapter->num_uld || adapter->num_ofld_uld)
|
|
t4_uld_mem_free(adapter);
|
|
free_some_resources(adapter);
|
|
list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
|
|
list) {
|
|
list_del(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
t4_cleanup_clip_tbl(adapter);
|
|
#endif
|
|
if (!is_t4(adapter->params.chip))
|
|
iounmap(adapter->bar2);
|
|
}
|
|
#ifdef CONFIG_PCI_IOV
|
|
else {
|
|
cxgb4_iov_configure(adapter->pdev, 0);
|
|
}
|
|
#endif
|
|
iounmap(adapter->regs);
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
if ((adapter->flags & CXGB4_DEV_ENABLED)) {
|
|
pci_disable_device(pdev);
|
|
adapter->flags &= ~CXGB4_DEV_ENABLED;
|
|
}
|
|
pci_release_regions(pdev);
|
|
kfree(adapter->mbox_log);
|
|
synchronize_rcu();
|
|
kfree(adapter);
|
|
}
|
|
|
|
/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
|
|
* delivery. This is essentially a stripped down version of the PCI remove()
|
|
* function where we do the minimal amount of work necessary to shutdown any
|
|
* further activity.
|
|
*/
|
|
static void shutdown_one(struct pci_dev *pdev)
|
|
{
|
|
struct adapter *adapter = pci_get_drvdata(pdev);
|
|
|
|
/* As with remove_one() above (see extended comment), we only want do
|
|
* do cleanup on PCI Devices which went all the way through init_one()
|
|
* ...
|
|
*/
|
|
if (!adapter) {
|
|
pci_release_regions(pdev);
|
|
return;
|
|
}
|
|
|
|
adapter->flags |= CXGB4_SHUTTING_DOWN;
|
|
|
|
if (adapter->pf == 4) {
|
|
int i;
|
|
|
|
for_each_port(adapter, i)
|
|
if (adapter->port[i]->reg_state == NETREG_REGISTERED)
|
|
cxgb_close(adapter->port[i]);
|
|
|
|
rtnl_lock();
|
|
cxgb4_mqprio_stop_offload(adapter);
|
|
rtnl_unlock();
|
|
|
|
if (is_uld(adapter)) {
|
|
detach_ulds(adapter);
|
|
t4_uld_clean_up(adapter);
|
|
}
|
|
|
|
disable_interrupts(adapter);
|
|
disable_msi(adapter);
|
|
|
|
t4_sge_stop(adapter);
|
|
if (adapter->flags & CXGB4_FW_OK)
|
|
t4_fw_bye(adapter, adapter->mbox);
|
|
}
|
|
}
|
|
|
|
static struct pci_driver cxgb4_driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.id_table = cxgb4_pci_tbl,
|
|
.probe = init_one,
|
|
.remove = remove_one,
|
|
.shutdown = shutdown_one,
|
|
#ifdef CONFIG_PCI_IOV
|
|
.sriov_configure = cxgb4_iov_configure,
|
|
#endif
|
|
.err_handler = &cxgb4_eeh,
|
|
};
|
|
|
|
static int __init cxgb4_init_module(void)
|
|
{
|
|
int ret;
|
|
|
|
cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
|
|
|
|
ret = pci_register_driver(&cxgb4_driver);
|
|
if (ret < 0)
|
|
goto err_pci;
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
if (!inet6addr_registered) {
|
|
ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
|
|
if (ret)
|
|
pci_unregister_driver(&cxgb4_driver);
|
|
else
|
|
inet6addr_registered = true;
|
|
}
|
|
#endif
|
|
|
|
if (ret == 0)
|
|
return ret;
|
|
|
|
err_pci:
|
|
debugfs_remove(cxgb4_debugfs_root);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit cxgb4_cleanup_module(void)
|
|
{
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
if (inet6addr_registered) {
|
|
unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
|
|
inet6addr_registered = false;
|
|
}
|
|
#endif
|
|
pci_unregister_driver(&cxgb4_driver);
|
|
debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
|
|
}
|
|
|
|
module_init(cxgb4_init_module);
|
|
module_exit(cxgb4_cleanup_module);
|