OpenCloudOS-Kernel/drivers/gpu/drm/tegra/dc.c

3284 lines
90 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012 Avionic Design GmbH
* Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/iommu.h>
#include <linux/interconnect.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_opp.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <soc/tegra/common.h>
#include <soc/tegra/pmc.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_blend.h>
#include <drm/drm_debugfs.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_vblank.h>
#include "dc.h"
#include "drm.h"
#include "gem.h"
#include "hub.h"
#include "plane.h"
static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state);
static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
{
stats->frames = 0;
stats->vblank = 0;
stats->underflow = 0;
stats->overflow = 0;
}
/* Reads the active copy of a register. */
static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
{
u32 value;
tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
value = tegra_dc_readl(dc, offset);
tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
return value;
}
static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
unsigned int offset)
{
if (offset >= 0x500 && offset <= 0x638) {
offset = 0x000 + (offset - 0x500);
return plane->offset + offset;
}
if (offset >= 0x700 && offset <= 0x719) {
offset = 0x180 + (offset - 0x700);
return plane->offset + offset;
}
if (offset >= 0x800 && offset <= 0x839) {
offset = 0x1c0 + (offset - 0x800);
return plane->offset + offset;
}
dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
return plane->offset + offset;
}
static inline u32 tegra_plane_readl(struct tegra_plane *plane,
unsigned int offset)
{
return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
}
static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
unsigned int offset)
{
tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
}
bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
{
struct device_node *np = dc->dev->of_node;
struct of_phandle_iterator it;
int err;
of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
if (it.node == dev->of_node)
return true;
return false;
}
/*
* Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
* *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
* Latching happens mmediately if the display controller is in STOP mode or
* on the next frame boundary otherwise.
*
* Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
* ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
* are written. When the *_ACT_REQ bits are written, the ARM copy is latched
* into the ACTIVE copy, either immediately if the display controller is in
* STOP mode, or at the next frame boundary otherwise.
*/
void tegra_dc_commit(struct tegra_dc *dc)
{
tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
}
static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
unsigned int bpp)
{
fixed20_12 outf = dfixed_init(out);
fixed20_12 inf = dfixed_init(in);
u32 dda_inc;
int max;
if (v)
max = 15;
else {
switch (bpp) {
case 2:
max = 8;
break;
default:
WARN_ON_ONCE(1);
fallthrough;
case 4:
max = 4;
break;
}
}
outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
inf.full -= dfixed_const(1);
dda_inc = dfixed_div(inf, outf);
dda_inc = min_t(u32, dda_inc, dfixed_const(max));
return dda_inc;
}
static inline u32 compute_initial_dda(unsigned int in)
{
fixed20_12 inf = dfixed_init(in);
return dfixed_frac(inf);
}
static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
{
u32 background[3] = {
BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
};
u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
BLEND_COLOR_KEY_NONE;
u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
struct tegra_plane_state *state;
u32 blending[2];
unsigned int i;
/* disable blending for non-overlapping case */
tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
state = to_tegra_plane_state(plane->base.state);
if (state->opaque) {
/*
* Since custom fix-weight blending isn't utilized and weight
* of top window is set to max, we can enforce dependent
* blending which in this case results in transparent bottom
* window if top window is opaque and if top window enables
* alpha blending, then bottom window is getting alpha value
* of 1 minus the sum of alpha components of the overlapping
* plane.
*/
background[0] |= BLEND_CONTROL_DEPENDENT;
background[1] |= BLEND_CONTROL_DEPENDENT;
/*
* The region where three windows overlap is the intersection
* of the two regions where two windows overlap. It contributes
* to the area if all of the windows on top of it have an alpha
* component.
*/
switch (state->base.normalized_zpos) {
case 0:
if (state->blending[0].alpha &&
state->blending[1].alpha)
background[2] |= BLEND_CONTROL_DEPENDENT;
break;
case 1:
background[2] |= BLEND_CONTROL_DEPENDENT;
break;
}
} else {
/*
* Enable alpha blending if pixel format has an alpha
* component.
*/
foreground |= BLEND_CONTROL_ALPHA;
/*
* If any of the windows on top of this window is opaque, it
* will completely conceal this window within that area. If
* top window has an alpha component, it is blended over the
* bottom window.
*/
for (i = 0; i < 2; i++) {
if (state->blending[i].alpha &&
state->blending[i].top)
background[i] |= BLEND_CONTROL_DEPENDENT;
}
switch (state->base.normalized_zpos) {
case 0:
if (state->blending[0].alpha &&
state->blending[1].alpha)
background[2] |= BLEND_CONTROL_DEPENDENT;
break;
case 1:
/*
* When both middle and topmost windows have an alpha,
* these windows a mixed together and then the result
* is blended over the bottom window.
*/
if (state->blending[0].alpha &&
state->blending[0].top)
background[2] |= BLEND_CONTROL_ALPHA;
if (state->blending[1].alpha &&
state->blending[1].top)
background[2] |= BLEND_CONTROL_ALPHA;
break;
}
}
switch (state->base.normalized_zpos) {
case 0:
tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
break;
case 1:
/*
* If window B / C is topmost, then X / Y registers are
* matching the order of blending[...] state indices,
* otherwise a swap is required.
*/
if (!state->blending[0].top && state->blending[1].top) {
blending[0] = foreground;
blending[1] = background[1];
} else {
blending[0] = background[0];
blending[1] = foreground;
}
tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
break;
case 2:
tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
break;
}
}
static void tegra_plane_setup_blending(struct tegra_plane *plane,
const struct tegra_dc_window *window)
{
u32 value;
value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
}
static bool
tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
const struct tegra_dc_window *window)
{
struct tegra_dc *dc = plane->dc;
if (window->src.w == window->dst.w)
return false;
if (plane->index == 0 && dc->soc->has_win_a_without_filters)
return false;
return true;
}
static bool
tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
const struct tegra_dc_window *window)
{
struct tegra_dc *dc = plane->dc;
if (window->src.h == window->dst.h)
return false;
if (plane->index == 0 && dc->soc->has_win_a_without_filters)
return false;
if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
return false;
return true;
}
static void tegra_dc_setup_window(struct tegra_plane *plane,
const struct tegra_dc_window *window)
{
unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
struct tegra_dc *dc = plane->dc;
unsigned int planes;
u32 value;
bool yuv;
/*
* For YUV planar modes, the number of bytes per pixel takes into
* account only the luma component and therefore is 1.
*/
yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
if (!yuv)
bpp = window->bits_per_pixel / 8;
else
bpp = (planes > 1) ? 1 : 2;
tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
tegra_plane_writel(plane, value, DC_WIN_POSITION);
value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
tegra_plane_writel(plane, value, DC_WIN_SIZE);
h_offset = window->src.x * bpp;
v_offset = window->src.y;
h_size = window->src.w * bpp;
v_size = window->src.h;
if (window->reflect_x)
h_offset += (window->src.w - 1) * bpp;
if (window->reflect_y)
v_offset += window->src.h - 1;
value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
/*
* For DDA computations the number of bytes per pixel for YUV planar
* modes needs to take into account all Y, U and V components.
*/
if (yuv && planes > 1)
bpp = 2;
h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
h_dda = compute_initial_dda(window->src.x);
v_dda = compute_initial_dda(window->src.y);
tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
if (yuv && planes > 1) {
tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
if (planes > 2)
tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
value = window->stride[1] << 16 | window->stride[0];
tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
} else {
tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
}
tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
if (dc->soc->supports_block_linear) {
unsigned long height = window->tiling.value;
switch (window->tiling.mode) {
case TEGRA_BO_TILING_MODE_PITCH:
value = DC_WINBUF_SURFACE_KIND_PITCH;
break;
case TEGRA_BO_TILING_MODE_TILED:
value = DC_WINBUF_SURFACE_KIND_TILED;
break;
case TEGRA_BO_TILING_MODE_BLOCK:
value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
DC_WINBUF_SURFACE_KIND_BLOCK;
break;
}
tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
} else {
switch (window->tiling.mode) {
case TEGRA_BO_TILING_MODE_PITCH:
value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
DC_WIN_BUFFER_ADDR_MODE_LINEAR;
break;
case TEGRA_BO_TILING_MODE_TILED:
value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
DC_WIN_BUFFER_ADDR_MODE_TILE;
break;
case TEGRA_BO_TILING_MODE_BLOCK:
/*
* No need to handle this here because ->atomic_check
* will already have filtered it out.
*/
break;
}
tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
}
value = WIN_ENABLE;
if (yuv) {
/* setup default colorspace conversion coefficients */
tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
value |= CSC_ENABLE;
} else if (window->bits_per_pixel < 24) {
value |= COLOR_EXPAND;
}
if (window->reflect_x)
value |= H_DIRECTION;
if (window->reflect_y)
value |= V_DIRECTION;
if (tegra_plane_use_horizontal_filtering(plane, window)) {
/*
* Enable horizontal 6-tap filter and set filtering
* coefficients to the default values defined in TRM.
*/
tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
value |= H_FILTER;
}
if (tegra_plane_use_vertical_filtering(plane, window)) {
unsigned int i, k;
/*
* Enable vertical 2-tap filter and set filtering
* coefficients to the default values defined in TRM.
*/
for (i = 0, k = 128; i < 16; i++, k -= 8)
tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
value |= V_FILTER;
}
tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
if (dc->soc->has_legacy_blending)
tegra_plane_setup_blending_legacy(plane);
else
tegra_plane_setup_blending(plane, window);
}
static const u32 tegra20_primary_formats[] = {
DRM_FORMAT_ARGB4444,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGB565,
DRM_FORMAT_RGBA5551,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_ARGB8888,
/* non-native formats */
DRM_FORMAT_XRGB1555,
DRM_FORMAT_RGBX5551,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_XRGB8888,
};
static const u64 tegra20_modifiers[] = {
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
DRM_FORMAT_MOD_INVALID
};
static const u32 tegra114_primary_formats[] = {
DRM_FORMAT_ARGB4444,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGB565,
DRM_FORMAT_RGBA5551,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_ARGB8888,
/* new on Tegra114 */
DRM_FORMAT_ABGR4444,
DRM_FORMAT_ABGR1555,
DRM_FORMAT_BGRA5551,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_RGBX5551,
DRM_FORMAT_XBGR1555,
DRM_FORMAT_BGRX5551,
DRM_FORMAT_BGR565,
DRM_FORMAT_BGRA8888,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
};
static const u32 tegra124_primary_formats[] = {
DRM_FORMAT_ARGB4444,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGB565,
DRM_FORMAT_RGBA5551,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_ARGB8888,
/* new on Tegra114 */
DRM_FORMAT_ABGR4444,
DRM_FORMAT_ABGR1555,
DRM_FORMAT_BGRA5551,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_RGBX5551,
DRM_FORMAT_XBGR1555,
DRM_FORMAT_BGRX5551,
DRM_FORMAT_BGR565,
DRM_FORMAT_BGRA8888,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
/* new on Tegra124 */
DRM_FORMAT_RGBX8888,
DRM_FORMAT_BGRX8888,
};
static const u64 tegra124_modifiers[] = {
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
DRM_FORMAT_MOD_INVALID
};
static int tegra_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
DRM_MODE_REFLECT_X |
DRM_MODE_REFLECT_Y;
unsigned int rotation = new_plane_state->rotation;
struct tegra_bo_tiling *tiling = &plane_state->tiling;
struct tegra_plane *tegra = to_tegra_plane(plane);
struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
int err;
plane_state->peak_memory_bandwidth = 0;
plane_state->avg_memory_bandwidth = 0;
/* no need for further checks if the plane is being disabled */
if (!new_plane_state->crtc) {
plane_state->total_peak_memory_bandwidth = 0;
return 0;
}
err = tegra_plane_format(new_plane_state->fb->format->format,
&plane_state->format,
&plane_state->swap);
if (err < 0)
return err;
/*
* Tegra20 and Tegra30 are special cases here because they support
* only variants of specific formats with an alpha component, but not
* the corresponding opaque formats. However, the opaque formats can
* be emulated by disabling alpha blending for the plane.
*/
if (dc->soc->has_legacy_blending) {
err = tegra_plane_setup_legacy_state(tegra, plane_state);
if (err < 0)
return err;
}
err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
if (err < 0)
return err;
if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
!dc->soc->supports_block_linear) {
DRM_ERROR("hardware doesn't support block linear mode\n");
return -EINVAL;
}
/*
* Older userspace used custom BO flag in order to specify the Y
* reflection, while modern userspace uses the generic DRM rotation
* property in order to achieve the same result. The legacy BO flag
* duplicates the DRM rotation property when both are set.
*/
if (tegra_fb_is_bottom_up(new_plane_state->fb))
rotation |= DRM_MODE_REFLECT_Y;
rotation = drm_rotation_simplify(rotation, supported_rotation);
if (rotation & DRM_MODE_REFLECT_X)
plane_state->reflect_x = true;
else
plane_state->reflect_x = false;
if (rotation & DRM_MODE_REFLECT_Y)
plane_state->reflect_y = true;
else
plane_state->reflect_y = false;
/*
* Tegra doesn't support different strides for U and V planes so we
* error out if the user tries to display a framebuffer with such a
* configuration.
*/
if (new_plane_state->fb->format->num_planes > 2) {
if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
DRM_ERROR("unsupported UV-plane configuration\n");
return -EINVAL;
}
}
err = tegra_plane_state_add(tegra, new_plane_state);
if (err < 0)
return err;
return 0;
}
static void tegra_plane_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
plane);
struct tegra_plane *p = to_tegra_plane(plane);
u32 value;
/* rien ne va plus */
if (!old_state || !old_state->crtc)
return;
value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
value &= ~WIN_ENABLE;
tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
}
static void tegra_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
plane);
struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
struct drm_framebuffer *fb = new_state->fb;
struct tegra_plane *p = to_tegra_plane(plane);
struct tegra_dc_window window;
unsigned int i;
/* rien ne va plus */
if (!new_state->crtc || !new_state->fb)
return;
if (!new_state->visible)
return tegra_plane_atomic_disable(plane, state);
memset(&window, 0, sizeof(window));
window.src.x = new_state->src.x1 >> 16;
window.src.y = new_state->src.y1 >> 16;
window.src.w = drm_rect_width(&new_state->src) >> 16;
window.src.h = drm_rect_height(&new_state->src) >> 16;
window.dst.x = new_state->dst.x1;
window.dst.y = new_state->dst.y1;
window.dst.w = drm_rect_width(&new_state->dst);
window.dst.h = drm_rect_height(&new_state->dst);
window.bits_per_pixel = fb->format->cpp[0] * 8;
window.reflect_x = tegra_plane_state->reflect_x;
window.reflect_y = tegra_plane_state->reflect_y;
/* copy from state */
window.zpos = new_state->normalized_zpos;
window.tiling = tegra_plane_state->tiling;
window.format = tegra_plane_state->format;
window.swap = tegra_plane_state->swap;
for (i = 0; i < fb->format->num_planes; i++) {
window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
/*
* Tegra uses a shared stride for UV planes. Framebuffers are
* already checked for this in the tegra_plane_atomic_check()
* function, so it's safe to ignore the V-plane pitch here.
*/
if (i < 2)
window.stride[i] = fb->pitches[i];
}
tegra_dc_setup_window(p, &window);
}
static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
.prepare_fb = tegra_plane_prepare_fb,
.cleanup_fb = tegra_plane_cleanup_fb,
.atomic_check = tegra_plane_atomic_check,
.atomic_disable = tegra_plane_atomic_disable,
.atomic_update = tegra_plane_atomic_update,
};
static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
{
/*
* Ideally this would use drm_crtc_mask(), but that would require the
* CRTC to already be in the mode_config's list of CRTCs. However, it
* will only be added to that list in the drm_crtc_init_with_planes()
* (in tegra_dc_init()), which in turn requires registration of these
* planes. So we have ourselves a nice little chicken and egg problem
* here.
*
* We work around this by manually creating the mask from the number
* of CRTCs that have been registered, and should therefore always be
* the same as drm_crtc_index() after registration.
*/
return 1 << drm->mode_config.num_crtc;
}
static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
struct tegra_dc *dc)
{
unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
struct tegra_plane *plane;
unsigned int num_formats;
const u64 *modifiers;
const u32 *formats;
int err;
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return ERR_PTR(-ENOMEM);
/* Always use window A as primary window */
plane->offset = 0xa00;
plane->index = 0;
plane->dc = dc;
num_formats = dc->soc->num_primary_formats;
formats = dc->soc->primary_formats;
modifiers = dc->soc->modifiers;
err = tegra_plane_interconnect_init(plane);
if (err) {
kfree(plane);
return ERR_PTR(err);
}
err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
&tegra_plane_funcs, formats,
num_formats, modifiers, type, NULL);
if (err < 0) {
kfree(plane);
return ERR_PTR(err);
}
drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
err = drm_plane_create_rotation_property(&plane->base,
DRM_MODE_ROTATE_0,
DRM_MODE_ROTATE_0 |
DRM_MODE_ROTATE_180 |
DRM_MODE_REFLECT_X |
DRM_MODE_REFLECT_Y);
if (err < 0)
dev_err(dc->dev, "failed to create rotation property: %d\n",
err);
return &plane->base;
}
static const u32 tegra_legacy_cursor_plane_formats[] = {
DRM_FORMAT_RGBA8888,
};
static const u32 tegra_cursor_plane_formats[] = {
DRM_FORMAT_ARGB8888,
};
static int tegra_cursor_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
struct tegra_plane *tegra = to_tegra_plane(plane);
int err;
plane_state->peak_memory_bandwidth = 0;
plane_state->avg_memory_bandwidth = 0;
/* no need for further checks if the plane is being disabled */
if (!new_plane_state->crtc) {
plane_state->total_peak_memory_bandwidth = 0;
return 0;
}
/* scaling not supported for cursor */
if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
(new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
return -EINVAL;
/* only square cursors supported */
if (new_plane_state->src_w != new_plane_state->src_h)
return -EINVAL;
if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
return -EINVAL;
err = tegra_plane_state_add(tegra, new_plane_state);
if (err < 0)
return err;
return 0;
}
static void __tegra_cursor_atomic_update(struct drm_plane *plane,
struct drm_plane_state *new_state)
{
struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
struct tegra_drm *tegra = plane->dev->dev_private;
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
u64 dma_mask = *dc->dev->dma_mask;
#endif
unsigned int x, y;
u32 value = 0;
/* rien ne va plus */
if (!new_state->crtc || !new_state->fb)
return;
/*
* Legacy display supports hardware clipping of the cursor, but
* nvdisplay relies on software to clip the cursor to the screen.
*/
if (!dc->soc->has_nvdisplay)
value |= CURSOR_CLIP_DISPLAY;
switch (new_state->crtc_w) {
case 32:
value |= CURSOR_SIZE_32x32;
break;
case 64:
value |= CURSOR_SIZE_64x64;
break;
case 128:
value |= CURSOR_SIZE_128x128;
break;
case 256:
value |= CURSOR_SIZE_256x256;
break;
default:
WARN(1, "cursor size %ux%u not supported\n",
new_state->crtc_w, new_state->crtc_h);
return;
}
value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
#endif
/* enable cursor and set blend mode */
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value |= CURSOR_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
value &= ~CURSOR_DST_BLEND_MASK;
value &= ~CURSOR_SRC_BLEND_MASK;
if (dc->soc->has_nvdisplay)
value &= ~CURSOR_COMPOSITION_MODE_XOR;
else
value |= CURSOR_MODE_NORMAL;
value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
value |= CURSOR_ALPHA;
tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
/* nvdisplay relies on software for clipping */
if (dc->soc->has_nvdisplay) {
struct drm_rect src;
x = new_state->dst.x1;
y = new_state->dst.y1;
drm_rect_fp_to_int(&src, &new_state->src);
value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
value = (drm_rect_height(&src) & tegra->vmask) << 16 |
(drm_rect_width(&src) & tegra->hmask);
tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
} else {
x = new_state->crtc_x;
y = new_state->crtc_y;
}
/* position the cursor */
value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
}
static void tegra_cursor_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
__tegra_cursor_atomic_update(plane, new_state);
}
static void tegra_cursor_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
plane);
struct tegra_dc *dc;
u32 value;
/* rien ne va plus */
if (!old_state || !old_state->crtc)
return;
dc = to_tegra_dc(old_state->crtc);
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value &= ~CURSOR_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
}
static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
struct drm_crtc_state *crtc_state;
int min_scale, max_scale;
int err;
crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
if (WARN_ON(!crtc_state))
return -EINVAL;
if (!crtc_state->active)
return -EINVAL;
if (plane->state->crtc != new_state->crtc ||
plane->state->src_w != new_state->src_w ||
plane->state->src_h != new_state->src_h ||
plane->state->crtc_w != new_state->crtc_w ||
plane->state->crtc_h != new_state->crtc_h ||
plane->state->fb != new_state->fb ||
plane->state->fb == NULL)
return -EINVAL;
min_scale = (1 << 16) / 8;
max_scale = (8 << 16) / 1;
err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
true, true);
if (err < 0)
return err;
if (new_state->visible != plane->state->visible)
return -EINVAL;
return 0;
}
static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
plane->state->src_x = new_state->src_x;
plane->state->src_y = new_state->src_y;
plane->state->crtc_x = new_state->crtc_x;
plane->state->crtc_y = new_state->crtc_y;
if (new_state->visible) {
struct tegra_plane *p = to_tegra_plane(plane);
u32 value;
__tegra_cursor_atomic_update(plane, new_state);
value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
}
}
static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
.prepare_fb = tegra_plane_prepare_fb,
.cleanup_fb = tegra_plane_cleanup_fb,
.atomic_check = tegra_cursor_atomic_check,
.atomic_update = tegra_cursor_atomic_update,
.atomic_disable = tegra_cursor_atomic_disable,
.atomic_async_check = tegra_cursor_atomic_async_check,
.atomic_async_update = tegra_cursor_atomic_async_update,
};
static const uint64_t linear_modifiers[] = {
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
};
static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
struct tegra_dc *dc)
{
unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
struct tegra_plane *plane;
unsigned int num_formats;
const u32 *formats;
int err;
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return ERR_PTR(-ENOMEM);
/*
* This index is kind of fake. The cursor isn't a regular plane, but
* its update and activation request bits in DC_CMD_STATE_CONTROL do
* use the same programming. Setting this fake index here allows the
* code in tegra_add_plane_state() to do the right thing without the
* need to special-casing the cursor plane.
*/
plane->index = 6;
plane->dc = dc;
if (!dc->soc->has_nvdisplay) {
num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
formats = tegra_legacy_cursor_plane_formats;
err = tegra_plane_interconnect_init(plane);
if (err) {
kfree(plane);
return ERR_PTR(err);
}
} else {
num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
formats = tegra_cursor_plane_formats;
}
err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
&tegra_plane_funcs, formats,
num_formats, linear_modifiers,
DRM_PLANE_TYPE_CURSOR, NULL);
if (err < 0) {
kfree(plane);
return ERR_PTR(err);
}
drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
drm_plane_create_zpos_immutable_property(&plane->base, 255);
return &plane->base;
}
static const u32 tegra20_overlay_formats[] = {
DRM_FORMAT_ARGB4444,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGB565,
DRM_FORMAT_RGBA5551,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_ARGB8888,
/* non-native formats */
DRM_FORMAT_XRGB1555,
DRM_FORMAT_RGBX5551,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_XRGB8888,
/* planar formats */
DRM_FORMAT_UYVY,
DRM_FORMAT_YUYV,
DRM_FORMAT_YUV420,
DRM_FORMAT_YUV422,
};
static const u32 tegra114_overlay_formats[] = {
DRM_FORMAT_ARGB4444,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGB565,
DRM_FORMAT_RGBA5551,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_ARGB8888,
/* new on Tegra114 */
DRM_FORMAT_ABGR4444,
DRM_FORMAT_ABGR1555,
DRM_FORMAT_BGRA5551,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_RGBX5551,
DRM_FORMAT_XBGR1555,
DRM_FORMAT_BGRX5551,
DRM_FORMAT_BGR565,
DRM_FORMAT_BGRA8888,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
/* planar formats */
DRM_FORMAT_UYVY,
DRM_FORMAT_YUYV,
DRM_FORMAT_YUV420,
DRM_FORMAT_YUV422,
/* semi-planar formats */
DRM_FORMAT_NV12,
DRM_FORMAT_NV21,
DRM_FORMAT_NV16,
DRM_FORMAT_NV61,
DRM_FORMAT_NV24,
DRM_FORMAT_NV42,
};
static const u32 tegra124_overlay_formats[] = {
DRM_FORMAT_ARGB4444,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_RGB565,
DRM_FORMAT_RGBA5551,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_ARGB8888,
/* new on Tegra114 */
DRM_FORMAT_ABGR4444,
DRM_FORMAT_ABGR1555,
DRM_FORMAT_BGRA5551,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_RGBX5551,
DRM_FORMAT_XBGR1555,
DRM_FORMAT_BGRX5551,
DRM_FORMAT_BGR565,
DRM_FORMAT_BGRA8888,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
/* new on Tegra124 */
DRM_FORMAT_RGBX8888,
DRM_FORMAT_BGRX8888,
/* planar formats */
DRM_FORMAT_UYVY,
DRM_FORMAT_YUYV,
DRM_FORMAT_YVYU,
DRM_FORMAT_VYUY,
DRM_FORMAT_YUV420, /* YU12 */
DRM_FORMAT_YUV422, /* YU16 */
DRM_FORMAT_YUV444, /* YU24 */
/* semi-planar formats */
DRM_FORMAT_NV12,
DRM_FORMAT_NV21,
DRM_FORMAT_NV16,
DRM_FORMAT_NV61,
DRM_FORMAT_NV24,
DRM_FORMAT_NV42,
};
static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
struct tegra_dc *dc,
unsigned int index,
bool cursor)
{
unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
struct tegra_plane *plane;
unsigned int num_formats;
enum drm_plane_type type;
const u32 *formats;
int err;
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return ERR_PTR(-ENOMEM);
plane->offset = 0xa00 + 0x200 * index;
plane->index = index;
plane->dc = dc;
num_formats = dc->soc->num_overlay_formats;
formats = dc->soc->overlay_formats;
err = tegra_plane_interconnect_init(plane);
if (err) {
kfree(plane);
return ERR_PTR(err);
}
if (!cursor)
type = DRM_PLANE_TYPE_OVERLAY;
else
type = DRM_PLANE_TYPE_CURSOR;
err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
&tegra_plane_funcs, formats,
num_formats, linear_modifiers,
type, NULL);
if (err < 0) {
kfree(plane);
return ERR_PTR(err);
}
drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
err = drm_plane_create_rotation_property(&plane->base,
DRM_MODE_ROTATE_0,
DRM_MODE_ROTATE_0 |
DRM_MODE_ROTATE_180 |
DRM_MODE_REFLECT_X |
DRM_MODE_REFLECT_Y);
if (err < 0)
dev_err(dc->dev, "failed to create rotation property: %d\n",
err);
return &plane->base;
}
static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
struct tegra_dc *dc)
{
struct drm_plane *plane, *primary = NULL;
unsigned int i, j;
for (i = 0; i < dc->soc->num_wgrps; i++) {
const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
if (wgrp->dc == dc->pipe) {
for (j = 0; j < wgrp->num_windows; j++) {
unsigned int index = wgrp->windows[j];
plane = tegra_shared_plane_create(drm, dc,
wgrp->index,
index);
if (IS_ERR(plane))
return plane;
/*
* Choose the first shared plane owned by this
* head as the primary plane.
*/
if (!primary) {
plane->type = DRM_PLANE_TYPE_PRIMARY;
primary = plane;
}
}
}
}
return primary;
}
static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
struct tegra_dc *dc)
{
struct drm_plane *planes[2], *primary;
unsigned int planes_num;
unsigned int i;
int err;
primary = tegra_primary_plane_create(drm, dc);
if (IS_ERR(primary))
return primary;
if (dc->soc->supports_cursor)
planes_num = 2;
else
planes_num = 1;
for (i = 0; i < planes_num; i++) {
planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
false);
if (IS_ERR(planes[i])) {
err = PTR_ERR(planes[i]);
while (i--)
planes[i]->funcs->destroy(planes[i]);
primary->funcs->destroy(primary);
return ERR_PTR(err);
}
}
return primary;
}
static void tegra_dc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
}
static void tegra_crtc_reset(struct drm_crtc *crtc)
{
struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
if (crtc->state)
tegra_crtc_atomic_destroy_state(crtc, crtc->state);
__drm_atomic_helper_crtc_reset(crtc, &state->base);
}
static struct drm_crtc_state *
tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct tegra_dc_state *state = to_dc_state(crtc->state);
struct tegra_dc_state *copy;
copy = kmalloc(sizeof(*copy), GFP_KERNEL);
if (!copy)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
copy->clk = state->clk;
copy->pclk = state->pclk;
copy->div = state->div;
copy->planes = state->planes;
return &copy->base;
}
static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
__drm_atomic_helper_crtc_destroy_state(state);
kfree(state);
}
#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
static const struct debugfs_reg32 tegra_dc_regs[] = {
DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
DEBUGFS_REG32(DC_CMD_INT_STATUS),
DEBUGFS_REG32(DC_CMD_INT_MASK),
DEBUGFS_REG32(DC_CMD_INT_ENABLE),
DEBUGFS_REG32(DC_CMD_INT_TYPE),
DEBUGFS_REG32(DC_CMD_INT_POLARITY),
DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
DEBUGFS_REG32(DC_COM_CRC_CONTROL),
DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
DEBUGFS_REG32(DC_COM_SPI_CONTROL),
DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
DEBUGFS_REG32(DC_COM_GPIO_CTRL),
DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
DEBUGFS_REG32(DC_DISP_BACK_PORCH),
DEBUGFS_REG32(DC_DISP_ACTIVE),
DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
DEBUGFS_REG32(DC_DISP_M0_CONTROL),
DEBUGFS_REG32(DC_DISP_M1_CONTROL),
DEBUGFS_REG32(DC_DISP_DI_CONTROL),
DEBUGFS_REG32(DC_DISP_PP_CONTROL),
DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
DEBUGFS_REG32(DC_DISP_SD_CONTROL),
DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
DEBUGFS_REG32(DC_WIN_POSITION),
DEBUGFS_REG32(DC_WIN_SIZE),
DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
DEBUGFS_REG32(DC_WIN_DDA_INC),
DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
DEBUGFS_REG32(DC_WIN_DV_CONTROL),
DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
DEBUGFS_REG32(DC_WINBUF_START_ADDR),
DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
};
static int tegra_dc_show_regs(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct tegra_dc *dc = node->info_ent->data;
unsigned int i;
int err = 0;
drm_modeset_lock(&dc->base.mutex, NULL);
if (!dc->base.state->active) {
err = -EBUSY;
goto unlock;
}
for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
unsigned int offset = tegra_dc_regs[i].offset;
seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
offset, tegra_dc_readl(dc, offset));
}
unlock:
drm_modeset_unlock(&dc->base.mutex);
return err;
}
static int tegra_dc_show_crc(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct tegra_dc *dc = node->info_ent->data;
int err = 0;
u32 value;
drm_modeset_lock(&dc->base.mutex, NULL);
if (!dc->base.state->active) {
err = -EBUSY;
goto unlock;
}
value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
tegra_dc_commit(dc);
drm_crtc_wait_one_vblank(&dc->base);
drm_crtc_wait_one_vblank(&dc->base);
value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
seq_printf(s, "%08x\n", value);
tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
unlock:
drm_modeset_unlock(&dc->base.mutex);
return err;
}
static int tegra_dc_show_stats(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct tegra_dc *dc = node->info_ent->data;
seq_printf(s, "frames: %lu\n", dc->stats.frames);
seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
return 0;
}
static struct drm_info_list debugfs_files[] = {
{ "regs", tegra_dc_show_regs, 0, NULL },
{ "crc", tegra_dc_show_crc, 0, NULL },
{ "stats", tegra_dc_show_stats, 0, NULL },
};
static int tegra_dc_late_register(struct drm_crtc *crtc)
{
unsigned int i, count = ARRAY_SIZE(debugfs_files);
struct drm_minor *minor = crtc->dev->primary;
struct dentry *root;
struct tegra_dc *dc = to_tegra_dc(crtc);
#ifdef CONFIG_DEBUG_FS
root = crtc->debugfs_entry;
#else
root = NULL;
#endif
dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
GFP_KERNEL);
if (!dc->debugfs_files)
return -ENOMEM;
for (i = 0; i < count; i++)
dc->debugfs_files[i].data = dc;
drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
return 0;
}
static void tegra_dc_early_unregister(struct drm_crtc *crtc)
{
unsigned int count = ARRAY_SIZE(debugfs_files);
struct drm_minor *minor = crtc->dev->primary;
struct tegra_dc *dc = to_tegra_dc(crtc);
drm_debugfs_remove_files(dc->debugfs_files, count, minor);
kfree(dc->debugfs_files);
dc->debugfs_files = NULL;
}
static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
/* XXX vblank syncpoints don't work with nvdisplay yet */
if (dc->syncpt && !dc->soc->has_nvdisplay)
return host1x_syncpt_read(dc->syncpt);
/* fallback to software emulated VBLANK counter */
return (u32)drm_crtc_vblank_count(&dc->base);
}
static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
u32 value;
value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
value |= VBLANK_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
return 0;
}
static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
u32 value;
value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
value &= ~VBLANK_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
}
static const struct drm_crtc_funcs tegra_crtc_funcs = {
.page_flip = drm_atomic_helper_page_flip,
.set_config = drm_atomic_helper_set_config,
.destroy = tegra_dc_destroy,
.reset = tegra_crtc_reset,
.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
.late_register = tegra_dc_late_register,
.early_unregister = tegra_dc_early_unregister,
.get_vblank_counter = tegra_dc_get_vblank_counter,
.enable_vblank = tegra_dc_enable_vblank,
.disable_vblank = tegra_dc_disable_vblank,
};
static int tegra_dc_set_timings(struct tegra_dc *dc,
struct drm_display_mode *mode)
{
unsigned int h_ref_to_sync = 1;
unsigned int v_ref_to_sync = 1;
unsigned long value;
if (!dc->soc->has_nvdisplay) {
tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
value = (v_ref_to_sync << 16) | h_ref_to_sync;
tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
}
value = ((mode->vsync_end - mode->vsync_start) << 16) |
((mode->hsync_end - mode->hsync_start) << 0);
tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
value = ((mode->vtotal - mode->vsync_end) << 16) |
((mode->htotal - mode->hsync_end) << 0);
tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
value = ((mode->vsync_start - mode->vdisplay) << 16) |
((mode->hsync_start - mode->hdisplay) << 0);
tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
value = (mode->vdisplay << 16) | mode->hdisplay;
tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
return 0;
}
/**
* tegra_dc_state_setup_clock - check clock settings and store them in atomic
* state
* @dc: display controller
* @crtc_state: CRTC atomic state
* @clk: parent clock for display controller
* @pclk: pixel clock
* @div: shift clock divider
*
* Returns:
* 0 on success or a negative error-code on failure.
*/
int tegra_dc_state_setup_clock(struct tegra_dc *dc,
struct drm_crtc_state *crtc_state,
struct clk *clk, unsigned long pclk,
unsigned int div)
{
struct tegra_dc_state *state = to_dc_state(crtc_state);
if (!clk_has_parent(dc->clk, clk))
return -EINVAL;
state->clk = clk;
state->pclk = pclk;
state->div = div;
return 0;
}
static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
struct tegra_dc_state *state)
{
unsigned long rate, pstate;
struct dev_pm_opp *opp;
int err;
if (!dc->has_opp_table)
return;
/* calculate actual pixel clock rate which depends on internal divider */
rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
/* find suitable OPP for the rate */
opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
/*
* Very high resolution modes may results in a clock rate that is
* above the characterized maximum. In this case it's okay to fall
* back to the characterized maximum.
*/
if (opp == ERR_PTR(-ERANGE))
opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
if (IS_ERR(opp)) {
dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
rate, opp);
return;
}
pstate = dev_pm_opp_get_required_pstate(opp, 0);
dev_pm_opp_put(opp);
/*
* The minimum core voltage depends on the pixel clock rate (which
* depends on internal clock divider of the CRTC) and not on the
* rate of the display controller clock. This is why we're not using
* dev_pm_opp_set_rate() API and instead controlling the power domain
* directly.
*/
err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
if (err)
dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
pstate, err);
}
static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
struct tegra_dc_state *state)
{
int err;
err = clk_set_parent(dc->clk, state->clk);
if (err < 0)
dev_err(dc->dev, "failed to set parent clock: %d\n", err);
/*
* Outputs may not want to change the parent clock rate. This is only
* relevant to Tegra20 where only a single display PLL is available.
* Since that PLL would typically be used for HDMI, an internal LVDS
* panel would need to be driven by some other clock such as PLL_P
* which is shared with other peripherals. Changing the clock rate
* should therefore be avoided.
*/
if (state->pclk > 0) {
err = clk_set_rate(state->clk, state->pclk);
if (err < 0)
dev_err(dc->dev,
"failed to set clock rate to %lu Hz\n",
state->pclk);
err = clk_set_rate(dc->clk, state->pclk);
if (err < 0)
dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
dc->clk, state->pclk, err);
}
DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
state->div);
DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
tegra_dc_update_voltage_state(dc, state);
}
static void tegra_dc_stop(struct tegra_dc *dc)
{
u32 value;
/* stop the display controller */
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
value &= ~DISP_CTRL_MODE_MASK;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
tegra_dc_commit(dc);
}
static bool tegra_dc_idle(struct tegra_dc *dc)
{
u32 value;
value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
return (value & DISP_CTRL_MODE_MASK) == 0;
}
static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
{
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_before(jiffies, timeout)) {
if (tegra_dc_idle(dc))
return 0;
usleep_range(1000, 2000);
}
dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
return -ETIMEDOUT;
}
static void
tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
struct drm_atomic_state *state,
bool prepare_bandwidth_transition)
{
const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
const struct drm_plane_state *old_plane_state;
const struct drm_crtc_state *old_crtc_state;
struct tegra_dc_window window, old_window;
struct tegra_dc *dc = to_tegra_dc(crtc);
struct tegra_plane *tegra;
struct drm_plane *plane;
if (dc->soc->has_nvdisplay)
return;
old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
if (!crtc->state->active) {
if (!old_crtc_state->active)
return;
/*
* When CRTC is disabled on DPMS, the state of attached planes
* is kept unchanged. Hence we need to enforce removal of the
* bandwidths from the ICC paths.
*/
drm_atomic_crtc_for_each_plane(plane, crtc) {
tegra = to_tegra_plane(plane);
icc_set_bw(tegra->icc_mem, 0, 0);
icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
}
return;
}
for_each_old_plane_in_state(old_crtc_state->state, plane,
old_plane_state, i) {
old_tegra_state = to_const_tegra_plane_state(old_plane_state);
new_tegra_state = to_const_tegra_plane_state(plane->state);
tegra = to_tegra_plane(plane);
/*
* We're iterating over the global atomic state and it contains
* planes from another CRTC, hence we need to filter out the
* planes unrelated to this CRTC.
*/
if (tegra->dc != dc)
continue;
new_avg_bw = new_tegra_state->avg_memory_bandwidth;
old_avg_bw = old_tegra_state->avg_memory_bandwidth;
new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
/*
* See the comment related to !crtc->state->active above,
* which explains why bandwidths need to be updated when
* CRTC is turning ON.
*/
if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
old_crtc_state->active)
continue;
window.src.h = drm_rect_height(&plane->state->src) >> 16;
window.dst.h = drm_rect_height(&plane->state->dst);
old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
old_window.dst.h = drm_rect_height(&old_plane_state->dst);
/*
* During the preparation phase (atomic_begin), the memory
* freq should go high before the DC changes are committed
* if bandwidth requirement goes up, otherwise memory freq
* should to stay high if BW requirement goes down. The
* opposite applies to the completion phase (post_commit).
*/
if (prepare_bandwidth_transition) {
new_avg_bw = max(old_avg_bw, new_avg_bw);
new_peak_bw = max(old_peak_bw, new_peak_bw);
if (tegra_plane_use_vertical_filtering(tegra, &old_window))
window = old_window;
}
icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
if (tegra_plane_use_vertical_filtering(tegra, &window))
icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
else
icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
}
}
static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
u32 value;
int err;
if (!tegra_dc_idle(dc)) {
tegra_dc_stop(dc);
/*
* Ignore the return value, there isn't anything useful to do
* in case this fails.
*/
tegra_dc_wait_idle(dc, 100);
}
/*
* This should really be part of the RGB encoder driver, but clearing
* these bits has the side-effect of stopping the display controller.
* When that happens no VBLANK interrupts will be raised. At the same
* time the encoder is disabled before the display controller, so the
* above code is always going to timeout waiting for the controller
* to go idle.
*
* Given the close coupling between the RGB encoder and the display
* controller doing it here is still kind of okay. None of the other
* encoder drivers require these bits to be cleared.
*
* XXX: Perhaps given that the display controller is switched off at
* this point anyway maybe clearing these bits isn't even useful for
* the RGB encoder?
*/
if (dc->rgb) {
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
}
tegra_dc_stats_reset(&dc->stats);
drm_crtc_vblank_off(crtc);
spin_lock_irq(&crtc->dev->event_lock);
if (crtc->state->event) {
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
}
spin_unlock_irq(&crtc->dev->event_lock);
err = host1x_client_suspend(&dc->client);
if (err < 0)
dev_err(dc->dev, "failed to suspend: %d\n", err);
if (dc->has_opp_table) {
err = dev_pm_genpd_set_performance_state(dc->dev, 0);
if (err)
dev_err(dc->dev,
"failed to clear power domain state: %d\n", err);
}
}
static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
struct tegra_dc *dc = to_tegra_dc(crtc);
u32 value;
int err;
/* apply PLL changes */
tegra_dc_set_clock_rate(dc, crtc_state);
err = host1x_client_resume(&dc->client);
if (err < 0) {
dev_err(dc->dev, "failed to resume: %d\n", err);
return;
}
/* initialize display controller */
if (dc->syncpt) {
u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
if (dc->soc->has_nvdisplay)
enable = 1 << 31;
else
enable = 1 << 8;
value = SYNCPT_CNTRL_NO_STALL;
tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
value = enable | syncpt;
tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
}
if (dc->soc->has_nvdisplay) {
value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
DSC_OBUF_UF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
VBLANK_INT | FRAME_END_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
FRAME_END_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
} else {
value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
/* initialize timer */
value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
}
if (dc->soc->supports_background_color)
tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
else
tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
/* apply pixel clock changes */
if (!dc->soc->has_nvdisplay) {
value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
}
/* program display mode */
tegra_dc_set_timings(dc, mode);
/* interlacing isn't supported yet, so disable it */
if (dc->soc->supports_interlacing) {
value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
value &= ~INTERLACE_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
}
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
value &= ~DISP_CTRL_MODE_MASK;
value |= DISP_CTRL_MODE_C_DISPLAY;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
if (!dc->soc->has_nvdisplay) {
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
}
/* enable underflow reporting and display red for missing pixels */
if (dc->soc->has_nvdisplay) {
value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
}
if (dc->rgb) {
/* XXX: parameterize? */
value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
}
tegra_dc_commit(dc);
drm_crtc_vblank_on(crtc);
}
static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
unsigned long flags;
tegra_crtc_update_memory_bandwidth(crtc, state, true);
if (crtc->state->event) {
spin_lock_irqsave(&crtc->dev->event_lock, flags);
if (drm_crtc_vblank_get(crtc) != 0)
drm_crtc_send_vblank_event(crtc, crtc->state->event);
else
drm_crtc_arm_vblank_event(crtc, crtc->state->event);
spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
crtc->state->event = NULL;
}
}
static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
struct tegra_dc *dc = to_tegra_dc(crtc);
u32 value;
value = dc_state->planes << 8 | GENERAL_UPDATE;
tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
value = dc_state->planes | GENERAL_ACT_REQ;
tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
}
static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
{
const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
const struct drm_format_info *fmt = state->fb->format;
unsigned int src_w = drm_rect_width(&state->src) >> 16;
unsigned int dst_w = drm_rect_width(&state->dst);
if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
return false;
if (soc->supports_cursor)
return true;
if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
return false;
return true;
}
static unsigned long
tegra_plane_overlap_mask(struct drm_crtc_state *state,
const struct drm_plane_state *plane_state)
{
const struct drm_plane_state *other_state;
const struct tegra_plane *tegra;
unsigned long overlap_mask = 0;
struct drm_plane *plane;
struct drm_rect rect;
if (!plane_state->visible || !plane_state->fb)
return 0;
/*
* Data-prefetch FIFO will easily help to overcome temporal memory
* pressure if other plane overlaps with the cursor plane.
*/
if (tegra_plane_is_cursor(plane_state))
return 0;
drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
rect = plane_state->dst;
tegra = to_tegra_plane(other_state->plane);
if (!other_state->visible || !other_state->fb)
continue;
/*
* Ignore cursor plane overlaps because it's not practical to
* assume that it contributes to the bandwidth in overlapping
* area if window width is small.
*/
if (tegra_plane_is_cursor(other_state))
continue;
if (drm_rect_intersect(&rect, &other_state->dst))
overlap_mask |= BIT(tegra->index);
}
return overlap_mask;
}
static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
bool all_planes_overlap_simultaneously = true;
const struct tegra_plane_state *tegra_state;
const struct drm_plane_state *plane_state;
struct tegra_dc *dc = to_tegra_dc(crtc);
struct drm_crtc_state *new_state;
struct tegra_plane *tegra;
struct drm_plane *plane;
/*
* The nv-display uses shared planes. The algorithm below assumes
* maximum 3 planes per-CRTC, this assumption isn't applicable to
* the nv-display. Note that T124 support has additional windows,
* but currently they aren't supported by the driver.
*/
if (dc->soc->has_nvdisplay)
return 0;
new_state = drm_atomic_get_new_crtc_state(state, crtc);
/*
* For overlapping planes pixel's data is fetched for each plane at
* the same time, hence bandwidths are accumulated in this case.
* This needs to be taken into account for calculating total bandwidth
* consumed by all planes.
*
* Here we get the overlapping state of each plane, which is a
* bitmask of plane indices telling with what planes there is an
* overlap. Note that bitmask[plane] includes BIT(plane) in order
* to make further code nicer and simpler.
*/
drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
tegra_state = to_const_tegra_plane_state(plane_state);
tegra = to_tegra_plane(plane);
if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
return -EINVAL;
plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
mask = tegra_plane_overlap_mask(new_state, plane_state);
overlap_mask[tegra->index] = mask;
if (hweight_long(mask) != 3)
all_planes_overlap_simultaneously = false;
}
/*
* Then we calculate maximum bandwidth of each plane state.
* The bandwidth includes the plane BW + BW of the "simultaneously"
* overlapping planes, where "simultaneously" means areas where DC
* fetches from the planes simultaneously during of scan-out process.
*
* For example, if plane A overlaps with planes B and C, but B and C
* don't overlap, then the peak bandwidth will be either in area where
* A-and-B or A-and-C planes overlap.
*
* The plane_peak_bw[] contains peak memory bandwidth values of
* each plane, this information is needed by interconnect provider
* in order to set up latency allowance based on the peak BW, see
* tegra_crtc_update_memory_bandwidth().
*/
drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
/*
* Note that plane's atomic check doesn't touch the
* total_peak_memory_bandwidth of enabled plane, hence the
* current state contains the old bandwidth state from the
* previous CRTC commit.
*/
tegra_state = to_const_tegra_plane_state(plane_state);
tegra = to_tegra_plane(plane);
for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
if (i == tegra->index)
continue;
if (all_planes_overlap_simultaneously)
overlap_bw += plane_peak_bw[i];
else
overlap_bw = max(overlap_bw, plane_peak_bw[i]);
}
new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
old_peak_bw = tegra_state->total_peak_memory_bandwidth;
/*
* If plane's peak bandwidth changed (for example plane isn't
* overlapped anymore) and plane isn't in the atomic state,
* then add plane to the state in order to have the bandwidth
* updated.
*/
if (old_peak_bw != new_peak_bw) {
struct tegra_plane_state *new_tegra_state;
struct drm_plane_state *new_plane_state;
new_plane_state = drm_atomic_get_plane_state(state, plane);
if (IS_ERR(new_plane_state))
return PTR_ERR(new_plane_state);
new_tegra_state = to_tegra_plane_state(new_plane_state);
new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
}
}
return 0;
}
static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
int err;
err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
if (err)
return err;
return 0;
}
void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
/*
* Display bandwidth is allowed to go down only once hardware state
* is known to be armed, i.e. state was committed and VBLANK event
* received.
*/
tegra_crtc_update_memory_bandwidth(crtc, state, false);
}
static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
.atomic_check = tegra_crtc_atomic_check,
.atomic_begin = tegra_crtc_atomic_begin,
.atomic_flush = tegra_crtc_atomic_flush,
.atomic_enable = tegra_crtc_atomic_enable,
.atomic_disable = tegra_crtc_atomic_disable,
};
static irqreturn_t tegra_dc_irq(int irq, void *data)
{
struct tegra_dc *dc = data;
unsigned long status;
status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
if (status & FRAME_END_INT) {
/*
dev_dbg(dc->dev, "%s(): frame end\n", __func__);
*/
dc->stats.frames_total++;
dc->stats.frames++;
}
if (status & VBLANK_INT) {
/*
dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
*/
drm_crtc_handle_vblank(&dc->base);
dc->stats.vblank_total++;
dc->stats.vblank++;
}
if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
/*
dev_dbg(dc->dev, "%s(): underflow\n", __func__);
*/
dc->stats.underflow_total++;
dc->stats.underflow++;
}
if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
/*
dev_dbg(dc->dev, "%s(): overflow\n", __func__);
*/
dc->stats.overflow_total++;
dc->stats.overflow++;
}
if (status & HEAD_UF_INT) {
dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
dc->stats.underflow_total++;
dc->stats.underflow++;
}
return IRQ_HANDLED;
}
static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
{
unsigned int i;
if (!dc->soc->wgrps)
return true;
for (i = 0; i < dc->soc->num_wgrps; i++) {
const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
return true;
}
return false;
}
static int tegra_dc_early_init(struct host1x_client *client)
{
struct drm_device *drm = dev_get_drvdata(client->host);
struct tegra_drm *tegra = drm->dev_private;
tegra->num_crtcs++;
return 0;
}
static int tegra_dc_init(struct host1x_client *client)
{
struct drm_device *drm = dev_get_drvdata(client->host);
unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
struct tegra_dc *dc = host1x_client_to_dc(client);
struct tegra_drm *tegra = drm->dev_private;
struct drm_plane *primary = NULL;
struct drm_plane *cursor = NULL;
int err;
/*
* DC has been reset by now, so VBLANK syncpoint can be released
* for general use.
*/
host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
/*
* XXX do not register DCs with no window groups because we cannot
* assign a primary plane to them, which in turn will cause KMS to
* crash.
*/
if (!tegra_dc_has_window_groups(dc))
return 0;
/*
* Set the display hub as the host1x client parent for the display
* controller. This is needed for the runtime reference counting that
* ensures the display hub is always powered when any of the display
* controllers are.
*/
if (dc->soc->has_nvdisplay)
client->parent = &tegra->hub->client;
dc->syncpt = host1x_syncpt_request(client, flags);
if (!dc->syncpt)
dev_warn(dc->dev, "failed to allocate syncpoint\n");
err = host1x_client_iommu_attach(client);
if (err < 0 && err != -ENODEV) {
dev_err(client->dev, "failed to attach to domain: %d\n", err);
return err;
}
if (dc->soc->wgrps)
primary = tegra_dc_add_shared_planes(drm, dc);
else
primary = tegra_dc_add_planes(drm, dc);
if (IS_ERR(primary)) {
err = PTR_ERR(primary);
goto cleanup;
}
if (dc->soc->supports_cursor) {
cursor = tegra_dc_cursor_plane_create(drm, dc);
if (IS_ERR(cursor)) {
err = PTR_ERR(cursor);
goto cleanup;
}
} else {
/* dedicate one overlay to mouse cursor */
cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
if (IS_ERR(cursor)) {
err = PTR_ERR(cursor);
goto cleanup;
}
}
err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
&tegra_crtc_funcs, NULL);
if (err < 0)
goto cleanup;
drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
/*
* Keep track of the minimum pitch alignment across all display
* controllers.
*/
if (dc->soc->pitch_align > tegra->pitch_align)
tegra->pitch_align = dc->soc->pitch_align;
/* track maximum resolution */
if (dc->soc->has_nvdisplay)
drm->mode_config.max_width = drm->mode_config.max_height = 16384;
else
drm->mode_config.max_width = drm->mode_config.max_height = 4096;
err = tegra_dc_rgb_init(drm, dc);
if (err < 0 && err != -ENODEV) {
dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
goto cleanup;
}
err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
dev_name(dc->dev), dc);
if (err < 0) {
dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
err);
goto cleanup;
}
/*
* Inherit the DMA parameters (such as maximum segment size) from the
* parent host1x device.
*/
client->dev->dma_parms = client->host->dma_parms;
return 0;
cleanup:
if (!IS_ERR_OR_NULL(cursor))
drm_plane_cleanup(cursor);
if (!IS_ERR(primary))
drm_plane_cleanup(primary);
host1x_client_iommu_detach(client);
host1x_syncpt_put(dc->syncpt);
return err;
}
static int tegra_dc_exit(struct host1x_client *client)
{
struct tegra_dc *dc = host1x_client_to_dc(client);
int err;
if (!tegra_dc_has_window_groups(dc))
return 0;
/* avoid a dangling pointer just in case this disappears */
client->dev->dma_parms = NULL;
devm_free_irq(dc->dev, dc->irq, dc);
err = tegra_dc_rgb_exit(dc);
if (err) {
dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
return err;
}
host1x_client_iommu_detach(client);
host1x_syncpt_put(dc->syncpt);
return 0;
}
static int tegra_dc_late_exit(struct host1x_client *client)
{
struct drm_device *drm = dev_get_drvdata(client->host);
struct tegra_drm *tegra = drm->dev_private;
tegra->num_crtcs--;
return 0;
}
static int tegra_dc_runtime_suspend(struct host1x_client *client)
{
struct tegra_dc *dc = host1x_client_to_dc(client);
struct device *dev = client->dev;
int err;
err = reset_control_assert(dc->rst);
if (err < 0) {
dev_err(dev, "failed to assert reset: %d\n", err);
return err;
}
if (dc->soc->has_powergate)
tegra_powergate_power_off(dc->powergate);
clk_disable_unprepare(dc->clk);
pm_runtime_put_sync(dev);
return 0;
}
static int tegra_dc_runtime_resume(struct host1x_client *client)
{
struct tegra_dc *dc = host1x_client_to_dc(client);
struct device *dev = client->dev;
int err;
err = pm_runtime_resume_and_get(dev);
if (err < 0) {
dev_err(dev, "failed to get runtime PM: %d\n", err);
return err;
}
if (dc->soc->has_powergate) {
err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
dc->rst);
if (err < 0) {
dev_err(dev, "failed to power partition: %d\n", err);
goto put_rpm;
}
} else {
err = clk_prepare_enable(dc->clk);
if (err < 0) {
dev_err(dev, "failed to enable clock: %d\n", err);
goto put_rpm;
}
err = reset_control_deassert(dc->rst);
if (err < 0) {
dev_err(dev, "failed to deassert reset: %d\n", err);
goto disable_clk;
}
}
return 0;
disable_clk:
clk_disable_unprepare(dc->clk);
put_rpm:
pm_runtime_put_sync(dev);
return err;
}
static const struct host1x_client_ops dc_client_ops = {
.early_init = tegra_dc_early_init,
.init = tegra_dc_init,
.exit = tegra_dc_exit,
.late_exit = tegra_dc_late_exit,
.suspend = tegra_dc_runtime_suspend,
.resume = tegra_dc_runtime_resume,
};
static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
.supports_background_color = false,
.supports_interlacing = false,
.supports_cursor = false,
.supports_block_linear = false,
.supports_sector_layout = false,
.has_legacy_blending = true,
.pitch_align = 8,
.has_powergate = false,
.coupled_pm = true,
.has_nvdisplay = false,
.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
.primary_formats = tegra20_primary_formats,
.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
.overlay_formats = tegra20_overlay_formats,
.modifiers = tegra20_modifiers,
.has_win_a_without_filters = true,
.has_win_b_vfilter_mem_client = true,
.has_win_c_without_vert_filter = true,
.plane_tiled_memory_bandwidth_x2 = false,
.has_pll_d2_out0 = false,
};
static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
.supports_background_color = false,
.supports_interlacing = false,
.supports_cursor = false,
.supports_block_linear = false,
.supports_sector_layout = false,
.has_legacy_blending = true,
.pitch_align = 8,
.has_powergate = false,
.coupled_pm = false,
.has_nvdisplay = false,
.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
.primary_formats = tegra20_primary_formats,
.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
.overlay_formats = tegra20_overlay_formats,
.modifiers = tegra20_modifiers,
.has_win_a_without_filters = false,
.has_win_b_vfilter_mem_client = true,
.has_win_c_without_vert_filter = false,
.plane_tiled_memory_bandwidth_x2 = true,
.has_pll_d2_out0 = true,
};
static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
.supports_background_color = false,
.supports_interlacing = false,
.supports_cursor = false,
.supports_block_linear = false,
.supports_sector_layout = false,
.has_legacy_blending = true,
.pitch_align = 64,
.has_powergate = true,
.coupled_pm = false,
.has_nvdisplay = false,
.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
.primary_formats = tegra114_primary_formats,
.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
.overlay_formats = tegra114_overlay_formats,
.modifiers = tegra20_modifiers,
.has_win_a_without_filters = false,
.has_win_b_vfilter_mem_client = false,
.has_win_c_without_vert_filter = false,
.plane_tiled_memory_bandwidth_x2 = true,
.has_pll_d2_out0 = true,
};
static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
.supports_background_color = true,
.supports_interlacing = true,
.supports_cursor = true,
.supports_block_linear = true,
.supports_sector_layout = false,
.has_legacy_blending = false,
.pitch_align = 64,
.has_powergate = true,
.coupled_pm = false,
.has_nvdisplay = false,
.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
.primary_formats = tegra124_primary_formats,
.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
.overlay_formats = tegra124_overlay_formats,
.modifiers = tegra124_modifiers,
.has_win_a_without_filters = false,
.has_win_b_vfilter_mem_client = false,
.has_win_c_without_vert_filter = false,
.plane_tiled_memory_bandwidth_x2 = false,
.has_pll_d2_out0 = true,
};
static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
.supports_background_color = true,
.supports_interlacing = true,
.supports_cursor = true,
.supports_block_linear = true,
.supports_sector_layout = false,
.has_legacy_blending = false,
.pitch_align = 64,
.has_powergate = true,
.coupled_pm = false,
.has_nvdisplay = false,
.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
.primary_formats = tegra114_primary_formats,
.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
.overlay_formats = tegra114_overlay_formats,
.modifiers = tegra124_modifiers,
.has_win_a_without_filters = false,
.has_win_b_vfilter_mem_client = false,
.has_win_c_without_vert_filter = false,
.plane_tiled_memory_bandwidth_x2 = false,
.has_pll_d2_out0 = true,
};
static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
{
.index = 0,
.dc = 0,
.windows = (const unsigned int[]) { 0 },
.num_windows = 1,
}, {
.index = 1,
.dc = 1,
.windows = (const unsigned int[]) { 1 },
.num_windows = 1,
}, {
.index = 2,
.dc = 1,
.windows = (const unsigned int[]) { 2 },
.num_windows = 1,
}, {
.index = 3,
.dc = 2,
.windows = (const unsigned int[]) { 3 },
.num_windows = 1,
}, {
.index = 4,
.dc = 2,
.windows = (const unsigned int[]) { 4 },
.num_windows = 1,
}, {
.index = 5,
.dc = 2,
.windows = (const unsigned int[]) { 5 },
.num_windows = 1,
},
};
static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
.supports_background_color = true,
.supports_interlacing = true,
.supports_cursor = true,
.supports_block_linear = true,
.supports_sector_layout = false,
.has_legacy_blending = false,
.pitch_align = 64,
.has_powergate = false,
.coupled_pm = false,
.has_nvdisplay = true,
.wgrps = tegra186_dc_wgrps,
.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
.plane_tiled_memory_bandwidth_x2 = false,
.has_pll_d2_out0 = false,
};
static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
{
.index = 0,
.dc = 0,
.windows = (const unsigned int[]) { 0 },
.num_windows = 1,
}, {
.index = 1,
.dc = 1,
.windows = (const unsigned int[]) { 1 },
.num_windows = 1,
}, {
.index = 2,
.dc = 1,
.windows = (const unsigned int[]) { 2 },
.num_windows = 1,
}, {
.index = 3,
.dc = 2,
.windows = (const unsigned int[]) { 3 },
.num_windows = 1,
}, {
.index = 4,
.dc = 2,
.windows = (const unsigned int[]) { 4 },
.num_windows = 1,
}, {
.index = 5,
.dc = 2,
.windows = (const unsigned int[]) { 5 },
.num_windows = 1,
},
};
static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
.supports_background_color = true,
.supports_interlacing = true,
.supports_cursor = true,
.supports_block_linear = true,
.supports_sector_layout = true,
.has_legacy_blending = false,
.pitch_align = 64,
.has_powergate = false,
.coupled_pm = false,
.has_nvdisplay = true,
.wgrps = tegra194_dc_wgrps,
.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
.plane_tiled_memory_bandwidth_x2 = false,
.has_pll_d2_out0 = false,
};
static const struct of_device_id tegra_dc_of_match[] = {
{
.compatible = "nvidia,tegra194-dc",
.data = &tegra194_dc_soc_info,
}, {
.compatible = "nvidia,tegra186-dc",
.data = &tegra186_dc_soc_info,
}, {
.compatible = "nvidia,tegra210-dc",
.data = &tegra210_dc_soc_info,
}, {
.compatible = "nvidia,tegra124-dc",
.data = &tegra124_dc_soc_info,
}, {
.compatible = "nvidia,tegra114-dc",
.data = &tegra114_dc_soc_info,
}, {
.compatible = "nvidia,tegra30-dc",
.data = &tegra30_dc_soc_info,
}, {
.compatible = "nvidia,tegra20-dc",
.data = &tegra20_dc_soc_info,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
static int tegra_dc_parse_dt(struct tegra_dc *dc)
{
struct device_node *np;
u32 value = 0;
int err;
err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
if (err < 0) {
dev_err(dc->dev, "missing \"nvidia,head\" property\n");
/*
* If the nvidia,head property isn't present, try to find the
* correct head number by looking up the position of this
* display controller's node within the device tree. Assuming
* that the nodes are ordered properly in the DTS file and
* that the translation into a flattened device tree blob
* preserves that ordering this will actually yield the right
* head number.
*
* If those assumptions don't hold, this will still work for
* cases where only a single display controller is used.
*/
for_each_matching_node(np, tegra_dc_of_match) {
if (np == dc->dev->of_node) {
of_node_put(np);
break;
}
value++;
}
}
dc->pipe = value;
return 0;
}
static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
{
struct tegra_dc *dc = dev_get_drvdata(dev);
unsigned int pipe = (unsigned long)(void *)data;
return dc->pipe == pipe;
}
static int tegra_dc_couple(struct tegra_dc *dc)
{
/*
* On Tegra20, DC1 requires DC0 to be taken out of reset in order to
* be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
* POWER_CONTROL registers during CRTC enabling.
*/
if (dc->soc->coupled_pm && dc->pipe == 1) {
struct device *companion;
struct tegra_dc *parent;
companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
tegra_dc_match_by_pipe);
if (!companion)
return -EPROBE_DEFER;
parent = dev_get_drvdata(companion);
dc->client.parent = &parent->client;
dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
}
return 0;
}
static int tegra_dc_init_opp_table(struct tegra_dc *dc)
{
struct tegra_core_opp_params opp_params = {};
int err;
err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
if (err && err != -ENODEV)
return err;
if (err)
dc->has_opp_table = false;
else
dc->has_opp_table = true;
return 0;
}
static int tegra_dc_probe(struct platform_device *pdev)
{
u64 dma_mask = dma_get_mask(pdev->dev.parent);
struct tegra_dc *dc;
int err;
err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
if (err < 0) {
dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
return err;
}
dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
if (!dc)
return -ENOMEM;
dc->soc = of_device_get_match_data(&pdev->dev);
INIT_LIST_HEAD(&dc->list);
dc->dev = &pdev->dev;
err = tegra_dc_parse_dt(dc);
if (err < 0)
return err;
err = tegra_dc_couple(dc);
if (err < 0)
return err;
dc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(dc->clk)) {
dev_err(&pdev->dev, "failed to get clock\n");
return PTR_ERR(dc->clk);
}
dc->rst = devm_reset_control_get(&pdev->dev, "dc");
if (IS_ERR(dc->rst)) {
dev_err(&pdev->dev, "failed to get reset\n");
return PTR_ERR(dc->rst);
}
/* assert reset and disable clock */
err = clk_prepare_enable(dc->clk);
if (err < 0)
return err;
usleep_range(2000, 4000);
err = reset_control_assert(dc->rst);
if (err < 0) {
clk_disable_unprepare(dc->clk);
return err;
}
usleep_range(2000, 4000);
clk_disable_unprepare(dc->clk);
if (dc->soc->has_powergate) {
if (dc->pipe == 0)
dc->powergate = TEGRA_POWERGATE_DIS;
else
dc->powergate = TEGRA_POWERGATE_DISB;
tegra_powergate_power_off(dc->powergate);
}
err = tegra_dc_init_opp_table(dc);
if (err < 0)
return err;
dc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dc->regs))
return PTR_ERR(dc->regs);
dc->irq = platform_get_irq(pdev, 0);
if (dc->irq < 0)
return -ENXIO;
err = tegra_dc_rgb_probe(dc);
if (err < 0 && err != -ENODEV)
return dev_err_probe(&pdev->dev, err,
"failed to probe RGB output\n");
platform_set_drvdata(pdev, dc);
pm_runtime_enable(&pdev->dev);
INIT_LIST_HEAD(&dc->client.list);
dc->client.ops = &dc_client_ops;
dc->client.dev = &pdev->dev;
err = host1x_client_register(&dc->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to register host1x client: %d\n",
err);
goto disable_pm;
}
return 0;
disable_pm:
pm_runtime_disable(&pdev->dev);
tegra_dc_rgb_remove(dc);
return err;
}
static void tegra_dc_remove(struct platform_device *pdev)
{
struct tegra_dc *dc = platform_get_drvdata(pdev);
host1x_client_unregister(&dc->client);
tegra_dc_rgb_remove(dc);
pm_runtime_disable(&pdev->dev);
}
struct platform_driver tegra_dc_driver = {
.driver = {
.name = "tegra-dc",
.of_match_table = tegra_dc_of_match,
},
.probe = tegra_dc_probe,
.remove_new = tegra_dc_remove,
};