OpenCloudOS-Kernel/kernel/time/timekeeping.c

888 lines
22 KiB
C

/*
* linux/kernel/time/timekeeping.c
*
* Kernel timekeeping code and accessor functions
*
* This code was moved from linux/kernel/timer.c.
* Please see that file for copyright and history logs.
*
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/sysdev.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
#include <linux/stop_machine.h>
/* Structure holding internal timekeeping values. */
struct timekeeper {
/* Current clocksource used for timekeeping. */
struct clocksource *clock;
/* The shift value of the current clocksource. */
int shift;
/* Number of clock cycles in one NTP interval. */
cycle_t cycle_interval;
/* Number of clock shifted nano seconds in one NTP interval. */
u64 xtime_interval;
/* Raw nano seconds accumulated per NTP interval. */
u32 raw_interval;
/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
u64 xtime_nsec;
/* Difference between accumulated time and NTP time in ntp
* shifted nano seconds. */
s64 ntp_error;
/* Shift conversion between clock shifted nano seconds and
* ntp shifted nano seconds. */
int ntp_error_shift;
/* NTP adjusted clock multiplier */
u32 mult;
};
struct timekeeper timekeeper;
/**
* timekeeper_setup_internals - Set up internals to use clocksource clock.
*
* @clock: Pointer to clocksource.
*
* Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
* pair and interval request.
*
* Unless you're the timekeeping code, you should not be using this!
*/
static void timekeeper_setup_internals(struct clocksource *clock)
{
cycle_t interval;
u64 tmp;
timekeeper.clock = clock;
clock->cycle_last = clock->read(clock);
/* Do the ns -> cycle conversion first, using original mult */
tmp = NTP_INTERVAL_LENGTH;
tmp <<= clock->shift;
tmp += clock->mult/2;
do_div(tmp, clock->mult);
if (tmp == 0)
tmp = 1;
interval = (cycle_t) tmp;
timekeeper.cycle_interval = interval;
/* Go back from cycles -> shifted ns */
timekeeper.xtime_interval = (u64) interval * clock->mult;
timekeeper.raw_interval =
((u64) interval * clock->mult) >> clock->shift;
timekeeper.xtime_nsec = 0;
timekeeper.shift = clock->shift;
timekeeper.ntp_error = 0;
timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
/*
* The timekeeper keeps its own mult values for the currently
* active clocksource. These value will be adjusted via NTP
* to counteract clock drifting.
*/
timekeeper.mult = clock->mult;
}
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
cycle_t cycle_now, cycle_delta;
struct clocksource *clock;
/* read clocksource: */
clock = timekeeper.clock;
cycle_now = clock->read(clock);
/* calculate the delta since the last update_wall_time: */
cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
/* return delta convert to nanoseconds using ntp adjusted mult. */
return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
timekeeper.shift);
}
static inline s64 timekeeping_get_ns_raw(void)
{
cycle_t cycle_now, cycle_delta;
struct clocksource *clock;
/* read clocksource: */
clock = timekeeper.clock;
cycle_now = clock->read(clock);
/* calculate the delta since the last update_wall_time: */
cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
/* return delta convert to nanoseconds using ntp adjusted mult. */
return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}
/*
* This read-write spinlock protects us from races in SMP while
* playing with xtime.
*/
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
/*
* The current time
* wall_to_monotonic is what we need to add to xtime (or xtime corrected
* for sub jiffie times) to get to monotonic time. Monotonic is pegged
* at zero at system boot time, so wall_to_monotonic will be negative,
* however, we will ALWAYS keep the tv_nsec part positive so we can use
* the usual normalization.
*
* wall_to_monotonic is moved after resume from suspend for the monotonic
* time not to jump. We need to add total_sleep_time to wall_to_monotonic
* to get the real boot based time offset.
*
* - wall_to_monotonic is no longer the boot time, getboottime must be
* used instead.
*/
struct timespec xtime __attribute__ ((aligned (16)));
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
static struct timespec total_sleep_time;
/*
* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
*/
struct timespec raw_time;
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;
static struct timespec xtime_cache __attribute__ ((aligned (16)));
void update_xtime_cache(u64 nsec)
{
xtime_cache = xtime;
timespec_add_ns(&xtime_cache, nsec);
}
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
xtime.tv_sec += leapsecond;
wall_to_monotonic.tv_sec -= leapsecond;
update_vsyscall(&xtime, timekeeper.clock);
}
#ifdef CONFIG_GENERIC_TIME
/**
* timekeeping_forward_now - update clock to the current time
*
* Forward the current clock to update its state since the last call to
* update_wall_time(). This is useful before significant clock changes,
* as it avoids having to deal with this time offset explicitly.
*/
static void timekeeping_forward_now(void)
{
cycle_t cycle_now, cycle_delta;
struct clocksource *clock;
s64 nsec;
clock = timekeeper.clock;
cycle_now = clock->read(clock);
cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
clock->cycle_last = cycle_now;
nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
timekeeper.shift);
/* If arch requires, add in gettimeoffset() */
nsec += arch_gettimeoffset();
timespec_add_ns(&xtime, nsec);
nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
timespec_add_ns(&raw_time, nsec);
}
/**
* getnstimeofday - Returns the time of day in a timespec
* @ts: pointer to the timespec to be set
*
* Returns the time of day in a timespec.
*/
void getnstimeofday(struct timespec *ts)
{
unsigned long seq;
s64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqbegin(&xtime_lock);
*ts = xtime;
nsecs = timekeeping_get_ns();
/* If arch requires, add in gettimeoffset() */
nsecs += arch_gettimeoffset();
} while (read_seqretry(&xtime_lock, seq));
timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getnstimeofday);
ktime_t ktime_get(void)
{
unsigned int seq;
s64 secs, nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqbegin(&xtime_lock);
secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
nsecs += timekeeping_get_ns();
} while (read_seqretry(&xtime_lock, seq));
/*
* Use ktime_set/ktime_add_ns to create a proper ktime on
* 32-bit architectures without CONFIG_KTIME_SCALAR.
*/
return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);
/**
* ktime_get_ts - get the monotonic clock in timespec format
* @ts: pointer to timespec variable
*
* The function calculates the monotonic clock from the realtime
* clock and the wall_to_monotonic offset and stores the result
* in normalized timespec format in the variable pointed to by @ts.
*/
void ktime_get_ts(struct timespec *ts)
{
struct timespec tomono;
unsigned int seq;
s64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqbegin(&xtime_lock);
*ts = xtime;
tomono = wall_to_monotonic;
nsecs = timekeeping_get_ns();
} while (read_seqretry(&xtime_lock, seq));
set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);
/**
* do_gettimeofday - Returns the time of day in a timeval
* @tv: pointer to the timeval to be set
*
* NOTE: Users should be converted to using getnstimeofday()
*/
void do_gettimeofday(struct timeval *tv)
{
struct timespec now;
getnstimeofday(&now);
tv->tv_sec = now.tv_sec;
tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
/**
* do_settimeofday - Sets the time of day
* @tv: pointer to the timespec variable containing the new time
*
* Sets the time of day to the new time and update NTP and notify hrtimers
*/
int do_settimeofday(struct timespec *tv)
{
struct timespec ts_delta;
unsigned long flags;
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
return -EINVAL;
write_seqlock_irqsave(&xtime_lock, flags);
timekeeping_forward_now();
ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
xtime = *tv;
update_xtime_cache(0);
timekeeper.ntp_error = 0;
ntp_clear();
update_vsyscall(&xtime, timekeeper.clock);
write_sequnlock_irqrestore(&xtime_lock, flags);
/* signal hrtimers about time change */
clock_was_set();
return 0;
}
EXPORT_SYMBOL(do_settimeofday);
/**
* change_clocksource - Swaps clocksources if a new one is available
*
* Accumulates current time interval and initializes new clocksource
*/
static int change_clocksource(void *data)
{
struct clocksource *new, *old;
new = (struct clocksource *) data;
timekeeping_forward_now();
if (!new->enable || new->enable(new) == 0) {
old = timekeeper.clock;
timekeeper_setup_internals(new);
if (old->disable)
old->disable(old);
}
return 0;
}
/**
* timekeeping_notify - Install a new clock source
* @clock: pointer to the clock source
*
* This function is called from clocksource.c after a new, better clock
* source has been registered. The caller holds the clocksource_mutex.
*/
void timekeeping_notify(struct clocksource *clock)
{
if (timekeeper.clock == clock)
return;
stop_machine(change_clocksource, clock, NULL);
tick_clock_notify();
}
#else /* GENERIC_TIME */
static inline void timekeeping_forward_now(void) { }
/**
* ktime_get - get the monotonic time in ktime_t format
*
* returns the time in ktime_t format
*/
ktime_t ktime_get(void)
{
struct timespec now;
ktime_get_ts(&now);
return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get);
/**
* ktime_get_ts - get the monotonic clock in timespec format
* @ts: pointer to timespec variable
*
* The function calculates the monotonic clock from the realtime
* clock and the wall_to_monotonic offset and stores the result
* in normalized timespec format in the variable pointed to by @ts.
*/
void ktime_get_ts(struct timespec *ts)
{
struct timespec tomono;
unsigned long seq;
do {
seq = read_seqbegin(&xtime_lock);
getnstimeofday(ts);
tomono = wall_to_monotonic;
} while (read_seqretry(&xtime_lock, seq));
set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
ts->tv_nsec + tomono.tv_nsec);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);
#endif /* !GENERIC_TIME */
/**
* ktime_get_real - get the real (wall-) time in ktime_t format
*
* returns the time in ktime_t format
*/
ktime_t ktime_get_real(void)
{
struct timespec now;
getnstimeofday(&now);
return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
/**
* getrawmonotonic - Returns the raw monotonic time in a timespec
* @ts: pointer to the timespec to be set
*
* Returns the raw monotonic time (completely un-modified by ntp)
*/
void getrawmonotonic(struct timespec *ts)
{
unsigned long seq;
s64 nsecs;
do {
seq = read_seqbegin(&xtime_lock);
nsecs = timekeeping_get_ns_raw();
*ts = raw_time;
} while (read_seqretry(&xtime_lock, seq));
timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);
/**
* timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
*/
int timekeeping_valid_for_hres(void)
{
unsigned long seq;
int ret;
do {
seq = read_seqbegin(&xtime_lock);
ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
} while (read_seqretry(&xtime_lock, seq));
return ret;
}
/**
* read_persistent_clock - Return time from the persistent clock.
*
* Weak dummy function for arches that do not yet support it.
* Reads the time from the battery backed persistent clock.
* Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
*
* XXX - Do be sure to remove it once all arches implement it.
*/
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
{
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
/**
* read_boot_clock - Return time of the system start.
*
* Weak dummy function for arches that do not yet support it.
* Function to read the exact time the system has been started.
* Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
*
* XXX - Do be sure to remove it once all arches implement it.
*/
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
/*
* timekeeping_init - Initializes the clocksource and common timekeeping values
*/
void __init timekeeping_init(void)
{
struct clocksource *clock;
unsigned long flags;
struct timespec now, boot;
read_persistent_clock(&now);
read_boot_clock(&boot);
write_seqlock_irqsave(&xtime_lock, flags);
ntp_init();
clock = clocksource_default_clock();
if (clock->enable)
clock->enable(clock);
timekeeper_setup_internals(clock);
xtime.tv_sec = now.tv_sec;
xtime.tv_nsec = now.tv_nsec;
raw_time.tv_sec = 0;
raw_time.tv_nsec = 0;
if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
boot.tv_sec = xtime.tv_sec;
boot.tv_nsec = xtime.tv_nsec;
}
set_normalized_timespec(&wall_to_monotonic,
-boot.tv_sec, -boot.tv_nsec);
update_xtime_cache(0);
total_sleep_time.tv_sec = 0;
total_sleep_time.tv_nsec = 0;
write_sequnlock_irqrestore(&xtime_lock, flags);
}
/* time in seconds when suspend began */
static struct timespec timekeeping_suspend_time;
/**
* timekeeping_resume - Resumes the generic timekeeping subsystem.
* @dev: unused
*
* This is for the generic clocksource timekeeping.
* xtime/wall_to_monotonic/jiffies/etc are
* still managed by arch specific suspend/resume code.
*/
static int timekeeping_resume(struct sys_device *dev)
{
unsigned long flags;
struct timespec ts;
read_persistent_clock(&ts);
clocksource_resume();
write_seqlock_irqsave(&xtime_lock, flags);
if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
ts = timespec_sub(ts, timekeeping_suspend_time);
xtime = timespec_add_safe(xtime, ts);
wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
total_sleep_time = timespec_add_safe(total_sleep_time, ts);
}
update_xtime_cache(0);
/* re-base the last cycle value */
timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
timekeeper.ntp_error = 0;
timekeeping_suspended = 0;
write_sequnlock_irqrestore(&xtime_lock, flags);
touch_softlockup_watchdog();
clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
/* Resume hrtimers */
hres_timers_resume();
return 0;
}
static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
{
unsigned long flags;
read_persistent_clock(&timekeeping_suspend_time);
write_seqlock_irqsave(&xtime_lock, flags);
timekeeping_forward_now();
timekeeping_suspended = 1;
write_sequnlock_irqrestore(&xtime_lock, flags);
clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
return 0;
}
/* sysfs resume/suspend bits for timekeeping */
static struct sysdev_class timekeeping_sysclass = {
.name = "timekeeping",
.resume = timekeeping_resume,
.suspend = timekeeping_suspend,
};
static struct sys_device device_timer = {
.id = 0,
.cls = &timekeeping_sysclass,
};
static int __init timekeeping_init_device(void)
{
int error = sysdev_class_register(&timekeeping_sysclass);
if (!error)
error = sysdev_register(&device_timer);
return error;
}
device_initcall(timekeeping_init_device);
/*
* If the error is already larger, we look ahead even further
* to compensate for late or lost adjustments.
*/
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
s64 *offset)
{
s64 tick_error, i;
u32 look_ahead, adj;
s32 error2, mult;
/*
* Use the current error value to determine how much to look ahead.
* The larger the error the slower we adjust for it to avoid problems
* with losing too many ticks, otherwise we would overadjust and
* produce an even larger error. The smaller the adjustment the
* faster we try to adjust for it, as lost ticks can do less harm
* here. This is tuned so that an error of about 1 msec is adjusted
* within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
*/
error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
error2 = abs(error2);
for (look_ahead = 0; error2 > 0; look_ahead++)
error2 >>= 2;
/*
* Now calculate the error in (1 << look_ahead) ticks, but first
* remove the single look ahead already included in the error.
*/
tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
tick_error -= timekeeper.xtime_interval >> 1;
error = ((error - tick_error) >> look_ahead) + tick_error;
/* Finally calculate the adjustment shift value. */
i = *interval;
mult = 1;
if (error < 0) {
error = -error;
*interval = -*interval;
*offset = -*offset;
mult = -1;
}
for (adj = 0; error > i; adj++)
error >>= 1;
*interval <<= adj;
*offset <<= adj;
return mult << adj;
}
/*
* Adjust the multiplier to reduce the error value,
* this is optimized for the most common adjustments of -1,0,1,
* for other values we can do a bit more work.
*/
static void timekeeping_adjust(s64 offset)
{
s64 error, interval = timekeeper.cycle_interval;
int adj;
error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
if (error > interval) {
error >>= 2;
if (likely(error <= interval))
adj = 1;
else
adj = timekeeping_bigadjust(error, &interval, &offset);
} else if (error < -interval) {
error >>= 2;
if (likely(error >= -interval)) {
adj = -1;
interval = -interval;
offset = -offset;
} else
adj = timekeeping_bigadjust(error, &interval, &offset);
} else
return;
timekeeper.mult += adj;
timekeeper.xtime_interval += interval;
timekeeper.xtime_nsec -= offset;
timekeeper.ntp_error -= (interval - offset) <<
timekeeper.ntp_error_shift;
}
/**
* update_wall_time - Uses the current clocksource to increment the wall time
*
* Called from the timer interrupt, must hold a write on xtime_lock.
*/
void update_wall_time(void)
{
struct clocksource *clock;
cycle_t offset;
u64 nsecs;
/* Make sure we're fully resumed: */
if (unlikely(timekeeping_suspended))
return;
clock = timekeeper.clock;
#ifdef CONFIG_GENERIC_TIME
offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
#else
offset = timekeeper.cycle_interval;
#endif
timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
/* normally this loop will run just once, however in the
* case of lost or late ticks, it will accumulate correctly.
*/
while (offset >= timekeeper.cycle_interval) {
u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
/* accumulate one interval */
offset -= timekeeper.cycle_interval;
clock->cycle_last += timekeeper.cycle_interval;
timekeeper.xtime_nsec += timekeeper.xtime_interval;
if (timekeeper.xtime_nsec >= nsecps) {
timekeeper.xtime_nsec -= nsecps;
xtime.tv_sec++;
second_overflow();
}
raw_time.tv_nsec += timekeeper.raw_interval;
if (raw_time.tv_nsec >= NSEC_PER_SEC) {
raw_time.tv_nsec -= NSEC_PER_SEC;
raw_time.tv_sec++;
}
/* accumulate error between NTP and clock interval */
timekeeper.ntp_error += tick_length;
timekeeper.ntp_error -= timekeeper.xtime_interval <<
timekeeper.ntp_error_shift;
}
/* correct the clock when NTP error is too big */
timekeeping_adjust(offset);
/*
* Since in the loop above, we accumulate any amount of time
* in xtime_nsec over a second into xtime.tv_sec, its possible for
* xtime_nsec to be fairly small after the loop. Further, if we're
* slightly speeding the clocksource up in timekeeping_adjust(),
* its possible the required corrective factor to xtime_nsec could
* cause it to underflow.
*
* Now, we cannot simply roll the accumulated second back, since
* the NTP subsystem has been notified via second_overflow. So
* instead we push xtime_nsec forward by the amount we underflowed,
* and add that amount into the error.
*
* We'll correct this error next time through this function, when
* xtime_nsec is not as small.
*/
if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
s64 neg = -(s64)timekeeper.xtime_nsec;
timekeeper.xtime_nsec = 0;
timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
}
/* store full nanoseconds into xtime after rounding it up and
* add the remainder to the error difference.
*/
xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
timekeeper.ntp_error += timekeeper.xtime_nsec <<
timekeeper.ntp_error_shift;
nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
update_xtime_cache(nsecs);
/* check to see if there is a new clocksource to use */
update_vsyscall(&xtime, timekeeper.clock);
}
/**
* getboottime - Return the real time of system boot.
* @ts: pointer to the timespec to be set
*
* Returns the time of day in a timespec.
*
* This is based on the wall_to_monotonic offset and the total suspend
* time. Calls to settimeofday will affect the value returned (which
* basically means that however wrong your real time clock is at boot time,
* you get the right time here).
*/
void getboottime(struct timespec *ts)
{
struct timespec boottime = {
.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
};
set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
}
/**
* monotonic_to_bootbased - Convert the monotonic time to boot based.
* @ts: pointer to the timespec to be converted
*/
void monotonic_to_bootbased(struct timespec *ts)
{
*ts = timespec_add_safe(*ts, total_sleep_time);
}
unsigned long get_seconds(void)
{
return xtime_cache.tv_sec;
}
EXPORT_SYMBOL(get_seconds);
struct timespec __current_kernel_time(void)
{
return xtime_cache;
}
struct timespec current_kernel_time(void)
{
struct timespec now;
unsigned long seq;
do {
seq = read_seqbegin(&xtime_lock);
now = xtime_cache;
} while (read_seqretry(&xtime_lock, seq));
return now;
}
EXPORT_SYMBOL(current_kernel_time);
struct timespec get_monotonic_coarse(void)
{
struct timespec now, mono;
unsigned long seq;
do {
seq = read_seqbegin(&xtime_lock);
now = xtime_cache;
mono = wall_to_monotonic;
} while (read_seqretry(&xtime_lock, seq));
set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
now.tv_nsec + mono.tv_nsec);
return now;
}