OpenCloudOS-Kernel/drivers/scsi/mpt3sas/mpt3sas_base.c

6428 lines
182 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* This is the Fusion MPT base driver providing common API layer interface
* for access to MPT (Message Passing Technology) firmware.
*
* This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
* Copyright (C) 2012-2014 LSI Corporation
* Copyright (C) 2013-2014 Avago Technologies
* (mailto: MPT-FusionLinux.pdl@avagotech.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kdev_t.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/kthread.h>
#include <asm/page.h> /* To get host page size per arch */
#include <linux/aer.h>
#include "mpt3sas_base.h"
static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
/* maximum controller queue depth */
#define MAX_HBA_QUEUE_DEPTH 30000
#define MAX_CHAIN_DEPTH 100000
static int max_queue_depth = -1;
module_param(max_queue_depth, int, 0);
MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
static int max_sgl_entries = -1;
module_param(max_sgl_entries, int, 0);
MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
static int msix_disable = -1;
module_param(msix_disable, int, 0);
MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
static int smp_affinity_enable = 1;
module_param(smp_affinity_enable, int, S_IRUGO);
MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
static int max_msix_vectors = -1;
module_param(max_msix_vectors, int, 0);
MODULE_PARM_DESC(max_msix_vectors,
" max msix vectors");
static int mpt3sas_fwfault_debug;
MODULE_PARM_DESC(mpt3sas_fwfault_debug,
" enable detection of firmware fault and halt firmware - (default=0)");
static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
/**
* _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
*
*/
static int
_scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
{
int ret = param_set_int(val, kp);
struct MPT3SAS_ADAPTER *ioc;
if (ret)
return ret;
/* global ioc spinlock to protect controller list on list operations */
pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
spin_lock(&gioc_lock);
list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
ioc->fwfault_debug = mpt3sas_fwfault_debug;
spin_unlock(&gioc_lock);
return 0;
}
module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
param_get_int, &mpt3sas_fwfault_debug, 0644);
/**
* mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
* @arg: input argument, used to derive ioc
*
* Return 0 if controller is removed from pci subsystem.
* Return -1 for other case.
*/
static int mpt3sas_remove_dead_ioc_func(void *arg)
{
struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
struct pci_dev *pdev;
if ((ioc == NULL))
return -1;
pdev = ioc->pdev;
if ((pdev == NULL))
return -1;
pci_stop_and_remove_bus_device_locked(pdev);
return 0;
}
/**
* _base_fault_reset_work - workq handling ioc fault conditions
* @work: input argument, used to derive ioc
* Context: sleep.
*
* Return nothing.
*/
static void
_base_fault_reset_work(struct work_struct *work)
{
struct MPT3SAS_ADAPTER *ioc =
container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
unsigned long flags;
u32 doorbell;
int rc;
struct task_struct *p;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if (ioc->shost_recovery || ioc->pci_error_recovery)
goto rearm_timer;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
ioc->name);
/* It may be possible that EEH recovery can resolve some of
* pci bus failure issues rather removing the dead ioc function
* by considering controller is in a non-operational state. So
* here priority is given to the EEH recovery. If it doesn't
* not resolve this issue, mpt3sas driver will consider this
* controller to non-operational state and remove the dead ioc
* function.
*/
if (ioc->non_operational_loop++ < 5) {
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
flags);
goto rearm_timer;
}
/*
* Call _scsih_flush_pending_cmds callback so that we flush all
* pending commands back to OS. This call is required to aovid
* deadlock at block layer. Dead IOC will fail to do diag reset,
* and this call is safe since dead ioc will never return any
* command back from HW.
*/
ioc->schedule_dead_ioc_flush_running_cmds(ioc);
/*
* Set remove_host flag early since kernel thread will
* take some time to execute.
*/
ioc->remove_host = 1;
/*Remove the Dead Host */
p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
"%s_dead_ioc_%d", ioc->driver_name, ioc->id);
if (IS_ERR(p))
pr_err(MPT3SAS_FMT
"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
ioc->name, __func__);
else
pr_err(MPT3SAS_FMT
"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
ioc->name, __func__);
return; /* don't rearm timer */
}
ioc->non_operational_loop = 0;
if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
__func__, (rc == 0) ? "success" : "failed");
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
mpt3sas_base_fault_info(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
MPI2_IOC_STATE_OPERATIONAL)
return; /* don't rearm timer */
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
rearm_timer:
if (ioc->fault_reset_work_q)
queue_delayed_work(ioc->fault_reset_work_q,
&ioc->fault_reset_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
/**
* mpt3sas_base_start_watchdog - start the fault_reset_work_q
* @ioc: per adapter object
* Context: sleep.
*
* Return nothing.
*/
void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
if (ioc->fault_reset_work_q)
return;
/* initialize fault polling */
INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
snprintf(ioc->fault_reset_work_q_name,
sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
ioc->driver_name, ioc->id);
ioc->fault_reset_work_q =
create_singlethread_workqueue(ioc->fault_reset_work_q_name);
if (!ioc->fault_reset_work_q) {
pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
ioc->name, __func__, __LINE__);
return;
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if (ioc->fault_reset_work_q)
queue_delayed_work(ioc->fault_reset_work_q,
&ioc->fault_reset_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
/**
* mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
* @ioc: per adapter object
* Context: sleep.
*
* Return nothing.
*/
void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
struct workqueue_struct *wq;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
wq = ioc->fault_reset_work_q;
ioc->fault_reset_work_q = NULL;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
if (wq) {
if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
flush_workqueue(wq);
destroy_workqueue(wq);
}
}
/**
* mpt3sas_base_fault_info - verbose translation of firmware FAULT code
* @ioc: per adapter object
* @fault_code: fault code
*
* Return nothing.
*/
void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
{
pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
ioc->name, fault_code);
}
/**
* mpt3sas_halt_firmware - halt's mpt controller firmware
* @ioc: per adapter object
*
* For debugging timeout related issues. Writing 0xCOFFEE00
* to the doorbell register will halt controller firmware. With
* the purpose to stop both driver and firmware, the enduser can
* obtain a ring buffer from controller UART.
*/
void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
{
u32 doorbell;
if (!ioc->fwfault_debug)
return;
dump_stack();
doorbell = readl(&ioc->chip->Doorbell);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
mpt3sas_base_fault_info(ioc , doorbell);
else {
writel(0xC0FFEE00, &ioc->chip->Doorbell);
pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
ioc->name);
}
if (ioc->fwfault_debug == 2)
for (;;)
;
else
panic("panic in %s\n", __func__);
}
/**
* _base_sas_ioc_info - verbose translation of the ioc status
* @ioc: per adapter object
* @mpi_reply: reply mf payload returned from firmware
* @request_hdr: request mf
*
* Return nothing.
*/
static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
MPI2RequestHeader_t *request_hdr)
{
u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
MPI2_IOCSTATUS_MASK;
char *desc = NULL;
u16 frame_sz;
char *func_str = NULL;
/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
return;
if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
return;
switch (ioc_status) {
/****************************************************************************
* Common IOCStatus values for all replies
****************************************************************************/
case MPI2_IOCSTATUS_INVALID_FUNCTION:
desc = "invalid function";
break;
case MPI2_IOCSTATUS_BUSY:
desc = "busy";
break;
case MPI2_IOCSTATUS_INVALID_SGL:
desc = "invalid sgl";
break;
case MPI2_IOCSTATUS_INTERNAL_ERROR:
desc = "internal error";
break;
case MPI2_IOCSTATUS_INVALID_VPID:
desc = "invalid vpid";
break;
case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
desc = "insufficient resources";
break;
case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
desc = "insufficient power";
break;
case MPI2_IOCSTATUS_INVALID_FIELD:
desc = "invalid field";
break;
case MPI2_IOCSTATUS_INVALID_STATE:
desc = "invalid state";
break;
case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
desc = "op state not supported";
break;
/****************************************************************************
* Config IOCStatus values
****************************************************************************/
case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
desc = "config invalid action";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
desc = "config invalid type";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
desc = "config invalid page";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
desc = "config invalid data";
break;
case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
desc = "config no defaults";
break;
case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
desc = "config cant commit";
break;
/****************************************************************************
* SCSI IO Reply
****************************************************************************/
case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
break;
/****************************************************************************
* For use by SCSI Initiator and SCSI Target end-to-end data protection
****************************************************************************/
case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
desc = "eedp guard error";
break;
case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
desc = "eedp ref tag error";
break;
case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
desc = "eedp app tag error";
break;
/****************************************************************************
* SCSI Target values
****************************************************************************/
case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
desc = "target invalid io index";
break;
case MPI2_IOCSTATUS_TARGET_ABORTED:
desc = "target aborted";
break;
case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
desc = "target no conn retryable";
break;
case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
desc = "target no connection";
break;
case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
desc = "target xfer count mismatch";
break;
case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
desc = "target data offset error";
break;
case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
desc = "target too much write data";
break;
case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
desc = "target iu too short";
break;
case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
desc = "target ack nak timeout";
break;
case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
desc = "target nak received";
break;
/****************************************************************************
* Serial Attached SCSI values
****************************************************************************/
case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
desc = "smp request failed";
break;
case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
desc = "smp data overrun";
break;
/****************************************************************************
* Diagnostic Buffer Post / Diagnostic Release values
****************************************************************************/
case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
desc = "diagnostic released";
break;
default:
break;
}
if (!desc)
return;
switch (request_hdr->Function) {
case MPI2_FUNCTION_CONFIG:
frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
func_str = "config_page";
break;
case MPI2_FUNCTION_SCSI_TASK_MGMT:
frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
func_str = "task_mgmt";
break;
case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
func_str = "sas_iounit_ctl";
break;
case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
frame_sz = sizeof(Mpi2SepRequest_t);
func_str = "enclosure";
break;
case MPI2_FUNCTION_IOC_INIT:
frame_sz = sizeof(Mpi2IOCInitRequest_t);
func_str = "ioc_init";
break;
case MPI2_FUNCTION_PORT_ENABLE:
frame_sz = sizeof(Mpi2PortEnableRequest_t);
func_str = "port_enable";
break;
case MPI2_FUNCTION_SMP_PASSTHROUGH:
frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
func_str = "smp_passthru";
break;
case MPI2_FUNCTION_NVME_ENCAPSULATED:
frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
ioc->sge_size;
func_str = "nvme_encapsulated";
break;
default:
frame_sz = 32;
func_str = "unknown";
break;
}
pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
ioc->name, desc, ioc_status, request_hdr, func_str);
_debug_dump_mf(request_hdr, frame_sz/4);
}
/**
* _base_display_event_data - verbose translation of firmware asyn events
* @ioc: per adapter object
* @mpi_reply: reply mf payload returned from firmware
*
* Return nothing.
*/
static void
_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
Mpi2EventNotificationReply_t *mpi_reply)
{
char *desc = NULL;
u16 event;
if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
return;
event = le16_to_cpu(mpi_reply->Event);
switch (event) {
case MPI2_EVENT_LOG_DATA:
desc = "Log Data";
break;
case MPI2_EVENT_STATE_CHANGE:
desc = "Status Change";
break;
case MPI2_EVENT_HARD_RESET_RECEIVED:
desc = "Hard Reset Received";
break;
case MPI2_EVENT_EVENT_CHANGE:
desc = "Event Change";
break;
case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
desc = "Device Status Change";
break;
case MPI2_EVENT_IR_OPERATION_STATUS:
if (!ioc->hide_ir_msg)
desc = "IR Operation Status";
break;
case MPI2_EVENT_SAS_DISCOVERY:
{
Mpi2EventDataSasDiscovery_t *event_data =
(Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
(event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
"start" : "stop");
if (event_data->DiscoveryStatus)
pr_cont(" discovery_status(0x%08x)",
le32_to_cpu(event_data->DiscoveryStatus));
pr_cont("\n");
return;
}
case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
desc = "SAS Broadcast Primitive";
break;
case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
desc = "SAS Init Device Status Change";
break;
case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
desc = "SAS Init Table Overflow";
break;
case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
desc = "SAS Topology Change List";
break;
case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
desc = "SAS Enclosure Device Status Change";
break;
case MPI2_EVENT_IR_VOLUME:
if (!ioc->hide_ir_msg)
desc = "IR Volume";
break;
case MPI2_EVENT_IR_PHYSICAL_DISK:
if (!ioc->hide_ir_msg)
desc = "IR Physical Disk";
break;
case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
if (!ioc->hide_ir_msg)
desc = "IR Configuration Change List";
break;
case MPI2_EVENT_LOG_ENTRY_ADDED:
if (!ioc->hide_ir_msg)
desc = "Log Entry Added";
break;
case MPI2_EVENT_TEMP_THRESHOLD:
desc = "Temperature Threshold";
break;
case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
desc = "Cable Event";
break;
case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
desc = "PCIE Device Status Change";
break;
case MPI2_EVENT_PCIE_ENUMERATION:
{
Mpi26EventDataPCIeEnumeration_t *event_data =
(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
(event_data->ReasonCode ==
MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
"start" : "stop");
if (event_data->EnumerationStatus)
pr_info("enumeration_status(0x%08x)",
le32_to_cpu(event_data->EnumerationStatus));
pr_info("\n");
return;
}
case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
desc = "PCIE Topology Change List";
break;
}
if (!desc)
return;
pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
}
/**
* _base_sas_log_info - verbose translation of firmware log info
* @ioc: per adapter object
* @log_info: log info
*
* Return nothing.
*/
static void
_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
{
union loginfo_type {
u32 loginfo;
struct {
u32 subcode:16;
u32 code:8;
u32 originator:4;
u32 bus_type:4;
} dw;
};
union loginfo_type sas_loginfo;
char *originator_str = NULL;
sas_loginfo.loginfo = log_info;
if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
return;
/* each nexus loss loginfo */
if (log_info == 0x31170000)
return;
/* eat the loginfos associated with task aborts */
if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
0x31140000 || log_info == 0x31130000))
return;
switch (sas_loginfo.dw.originator) {
case 0:
originator_str = "IOP";
break;
case 1:
originator_str = "PL";
break;
case 2:
if (!ioc->hide_ir_msg)
originator_str = "IR";
else
originator_str = "WarpDrive";
break;
}
pr_warn(MPT3SAS_FMT
"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
ioc->name, log_info,
originator_str, sas_loginfo.dw.code,
sas_loginfo.dw.subcode);
}
/**
* _base_display_reply_info -
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return nothing.
*/
static void
_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
u16 ioc_status;
u32 loginfo = 0;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (unlikely(!mpi_reply)) {
pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
return;
}
ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
(ioc->logging_level & MPT_DEBUG_REPLY)) {
_base_sas_ioc_info(ioc , mpi_reply,
mpt3sas_base_get_msg_frame(ioc, smid));
}
if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
_base_sas_log_info(ioc, loginfo);
}
if (ioc_status || loginfo) {
ioc_status &= MPI2_IOCSTATUS_MASK;
mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
}
}
/**
* mpt3sas_base_done - base internal command completion routine
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
return 1;
ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
if (mpi_reply) {
ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
}
ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
complete(&ioc->base_cmds.done);
return 1;
}
/**
* _base_async_event - main callback handler for firmware asyn events
* @ioc: per adapter object
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
static u8
_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
{
Mpi2EventNotificationReply_t *mpi_reply;
Mpi2EventAckRequest_t *ack_request;
u16 smid;
struct _event_ack_list *delayed_event_ack;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (!mpi_reply)
return 1;
if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
return 1;
_base_display_event_data(ioc, mpi_reply);
if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
goto out;
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
GFP_ATOMIC);
if (!delayed_event_ack)
goto out;
INIT_LIST_HEAD(&delayed_event_ack->list);
delayed_event_ack->Event = mpi_reply->Event;
delayed_event_ack->EventContext = mpi_reply->EventContext;
list_add_tail(&delayed_event_ack->list,
&ioc->delayed_event_ack_list);
dewtprintk(ioc, pr_info(MPT3SAS_FMT
"DELAYED: EVENT ACK: event (0x%04x)\n",
ioc->name, le16_to_cpu(mpi_reply->Event)));
goto out;
}
ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
ack_request->Event = mpi_reply->Event;
ack_request->EventContext = mpi_reply->EventContext;
ack_request->VF_ID = 0; /* TODO */
ack_request->VP_ID = 0;
ioc->put_smid_default(ioc, smid);
out:
/* scsih callback handler */
mpt3sas_scsih_event_callback(ioc, msix_index, reply);
/* ctl callback handler */
mpt3sas_ctl_event_callback(ioc, msix_index, reply);
return 1;
}
static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
struct scsi_cmnd *cmd;
if (WARN_ON(!smid) ||
WARN_ON(smid >= ioc->hi_priority_smid))
return NULL;
cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
if (cmd)
return scsi_cmd_priv(cmd);
return NULL;
}
/**
* _base_get_cb_idx - obtain the callback index
* @ioc: per adapter object
* @smid: system request message index
*
* Return callback index.
*/
static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
int i;
u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
u8 cb_idx = 0xFF;
if (smid < ioc->hi_priority_smid) {
struct scsiio_tracker *st;
if (smid < ctl_smid) {
st = _get_st_from_smid(ioc, smid);
if (st)
cb_idx = st->cb_idx;
} else if (smid == ctl_smid)
cb_idx = ioc->ctl_cb_idx;
} else if (smid < ioc->internal_smid) {
i = smid - ioc->hi_priority_smid;
cb_idx = ioc->hpr_lookup[i].cb_idx;
} else if (smid <= ioc->hba_queue_depth) {
i = smid - ioc->internal_smid;
cb_idx = ioc->internal_lookup[i].cb_idx;
}
return cb_idx;
}
/**
* _base_mask_interrupts - disable interrupts
* @ioc: per adapter object
*
* Disabling ResetIRQ, Reply and Doorbell Interrupts
*
* Return nothing.
*/
static void
_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
{
u32 him_register;
ioc->mask_interrupts = 1;
him_register = readl(&ioc->chip->HostInterruptMask);
him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
writel(him_register, &ioc->chip->HostInterruptMask);
readl(&ioc->chip->HostInterruptMask);
}
/**
* _base_unmask_interrupts - enable interrupts
* @ioc: per adapter object
*
* Enabling only Reply Interrupts
*
* Return nothing.
*/
static void
_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
{
u32 him_register;
him_register = readl(&ioc->chip->HostInterruptMask);
him_register &= ~MPI2_HIM_RIM;
writel(him_register, &ioc->chip->HostInterruptMask);
ioc->mask_interrupts = 0;
}
union reply_descriptor {
u64 word;
struct {
u32 low;
u32 high;
} u;
};
/**
* _base_interrupt - MPT adapter (IOC) specific interrupt handler.
* @irq: irq number (not used)
* @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
* @r: pt_regs pointer (not used)
*
* Return IRQ_HANDLE if processed, else IRQ_NONE.
*/
static irqreturn_t
_base_interrupt(int irq, void *bus_id)
{
struct adapter_reply_queue *reply_q = bus_id;
union reply_descriptor rd;
u32 completed_cmds;
u8 request_desript_type;
u16 smid;
u8 cb_idx;
u32 reply;
u8 msix_index = reply_q->msix_index;
struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
Mpi2ReplyDescriptorsUnion_t *rpf;
u8 rc;
if (ioc->mask_interrupts)
return IRQ_NONE;
if (!atomic_add_unless(&reply_q->busy, 1, 1))
return IRQ_NONE;
rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
request_desript_type = rpf->Default.ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
atomic_dec(&reply_q->busy);
return IRQ_NONE;
}
completed_cmds = 0;
cb_idx = 0xFF;
do {
rd.word = le64_to_cpu(rpf->Words);
if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
goto out;
reply = 0;
smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
if (request_desript_type ==
MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
request_desript_type ==
MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
request_desript_type ==
MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
rc = mpt_callbacks[cb_idx](ioc, smid,
msix_index, 0);
if (rc)
mpt3sas_base_free_smid(ioc, smid);
}
} else if (request_desript_type ==
MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
reply = le32_to_cpu(
rpf->AddressReply.ReplyFrameAddress);
if (reply > ioc->reply_dma_max_address ||
reply < ioc->reply_dma_min_address)
reply = 0;
if (smid) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
rc = mpt_callbacks[cb_idx](ioc, smid,
msix_index, reply);
if (reply)
_base_display_reply_info(ioc,
smid, msix_index, reply);
if (rc)
mpt3sas_base_free_smid(ioc,
smid);
}
} else {
_base_async_event(ioc, msix_index, reply);
}
/* reply free queue handling */
if (reply) {
ioc->reply_free_host_index =
(ioc->reply_free_host_index ==
(ioc->reply_free_queue_depth - 1)) ?
0 : ioc->reply_free_host_index + 1;
ioc->reply_free[ioc->reply_free_host_index] =
cpu_to_le32(reply);
writel(ioc->reply_free_host_index,
&ioc->chip->ReplyFreeHostIndex);
}
}
rpf->Words = cpu_to_le64(ULLONG_MAX);
reply_q->reply_post_host_index =
(reply_q->reply_post_host_index ==
(ioc->reply_post_queue_depth - 1)) ? 0 :
reply_q->reply_post_host_index + 1;
request_desript_type =
reply_q->reply_post_free[reply_q->reply_post_host_index].
Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
completed_cmds++;
/* Update the reply post host index after continuously
* processing the threshold number of Reply Descriptors.
* So that FW can find enough entries to post the Reply
* Descriptors in the reply descriptor post queue.
*/
if (completed_cmds > ioc->hba_queue_depth/3) {
if (ioc->combined_reply_queue) {
writel(reply_q->reply_post_host_index |
((msix_index & 7) <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
ioc->replyPostRegisterIndex[msix_index/8]);
} else {
writel(reply_q->reply_post_host_index |
(msix_index <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
&ioc->chip->ReplyPostHostIndex);
}
completed_cmds = 1;
}
if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
goto out;
if (!reply_q->reply_post_host_index)
rpf = reply_q->reply_post_free;
else
rpf++;
} while (1);
out:
if (!completed_cmds) {
atomic_dec(&reply_q->busy);
return IRQ_NONE;
}
if (ioc->is_warpdrive) {
writel(reply_q->reply_post_host_index,
ioc->reply_post_host_index[msix_index]);
atomic_dec(&reply_q->busy);
return IRQ_HANDLED;
}
/* Update Reply Post Host Index.
* For those HBA's which support combined reply queue feature
* 1. Get the correct Supplemental Reply Post Host Index Register.
* i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
* Index Register address bank i.e replyPostRegisterIndex[],
* 2. Then update this register with new reply host index value
* in ReplyPostIndex field and the MSIxIndex field with
* msix_index value reduced to a value between 0 and 7,
* using a modulo 8 operation. Since each Supplemental Reply Post
* Host Index Register supports 8 MSI-X vectors.
*
* For other HBA's just update the Reply Post Host Index register with
* new reply host index value in ReplyPostIndex Field and msix_index
* value in MSIxIndex field.
*/
if (ioc->combined_reply_queue)
writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
ioc->replyPostRegisterIndex[msix_index/8]);
else
writel(reply_q->reply_post_host_index | (msix_index <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
&ioc->chip->ReplyPostHostIndex);
atomic_dec(&reply_q->busy);
return IRQ_HANDLED;
}
/**
* _base_is_controller_msix_enabled - is controller support muli-reply queues
* @ioc: per adapter object
*
*/
static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
{
return (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
}
/**
* mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
* @ioc: per adapter object
* Context: non ISR conext
*
* Called when a Task Management request has completed.
*
* Return nothing.
*/
void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q;
/* If MSIX capability is turned off
* then multi-queues are not enabled
*/
if (!_base_is_controller_msix_enabled(ioc))
return;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
if (ioc->shost_recovery || ioc->remove_host ||
ioc->pci_error_recovery)
return;
/* TMs are on msix_index == 0 */
if (reply_q->msix_index == 0)
continue;
synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
}
}
/**
* mpt3sas_base_release_callback_handler - clear interrupt callback handler
* @cb_idx: callback index
*
* Return nothing.
*/
void
mpt3sas_base_release_callback_handler(u8 cb_idx)
{
mpt_callbacks[cb_idx] = NULL;
}
/**
* mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
* @cb_func: callback function
*
* Returns cb_func.
*/
u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
{
u8 cb_idx;
for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
if (mpt_callbacks[cb_idx] == NULL)
break;
mpt_callbacks[cb_idx] = cb_func;
return cb_idx;
}
/**
* mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
*
* Return nothing.
*/
void
mpt3sas_base_initialize_callback_handler(void)
{
u8 cb_idx;
for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
mpt3sas_base_release_callback_handler(cb_idx);
}
/**
* _base_build_zero_len_sge - build zero length sg entry
* @ioc: per adapter object
* @paddr: virtual address for SGE
*
* Create a zero length scatter gather entry to insure the IOCs hardware has
* something to use if the target device goes brain dead and tries
* to send data even when none is asked for.
*
* Return nothing.
*/
static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
{
u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
MPI2_SGE_FLAGS_SHIFT);
ioc->base_add_sg_single(paddr, flags_length, -1);
}
/**
* _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
* @paddr: virtual address for SGE
* @flags_length: SGE flags and data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
{
Mpi2SGESimple32_t *sgel = paddr;
flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
sgel->FlagsLength = cpu_to_le32(flags_length);
sgel->Address = cpu_to_le32(dma_addr);
}
/**
* _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
* @paddr: virtual address for SGE
* @flags_length: SGE flags and data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
{
Mpi2SGESimple64_t *sgel = paddr;
flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
sgel->FlagsLength = cpu_to_le32(flags_length);
sgel->Address = cpu_to_le64(dma_addr);
}
/**
* _base_get_chain_buffer_tracker - obtain chain tracker
* @ioc: per adapter object
* @scmd: SCSI commands of the IO request
*
* Returns chain tracker(from ioc->free_chain_list)
*/
static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd)
{
struct chain_tracker *chain_req;
struct scsiio_tracker *st = scsi_cmd_priv(scmd);
unsigned long flags;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->free_chain_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
dfailprintk(ioc, pr_warn(MPT3SAS_FMT
"chain buffers not available\n", ioc->name));
return NULL;
}
chain_req = list_entry(ioc->free_chain_list.next,
struct chain_tracker, tracker_list);
list_del_init(&chain_req->tracker_list);
list_add_tail(&chain_req->tracker_list, &st->chain_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return chain_req;
}
/**
* _base_build_sg - build generic sg
* @ioc: per adapter object
* @psge: virtual address for SGE
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*
* Return nothing.
*/
static void
_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
u32 sgl_flags;
if (!data_out_sz && !data_in_sz) {
_base_build_zero_len_sge(ioc, psge);
return;
}
if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
/* incr sgel */
psge += ioc->sge_size;
/* READ sgel last */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
}
}
/* IEEE format sgls */
/**
* _base_build_nvme_prp - This function is called for NVMe end devices to build
* a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
* entry of the NVMe message (PRP1). If the data buffer is small enough to be
* described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
* used to describe a larger data buffer. If the data buffer is too large to
* describe using the two PRP entriess inside the NVMe message, then PRP1
* describes the first data memory segment, and PRP2 contains a pointer to a PRP
* list located elsewhere in memory to describe the remaining data memory
* segments. The PRP list will be contiguous.
* The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
* consists of a list of PRP entries to describe a number of noncontigous
* physical memory segments as a single memory buffer, just as a SGL does. Note
* however, that this function is only used by the IOCTL call, so the memory
* given will be guaranteed to be contiguous. There is no need to translate
* non-contiguous SGL into a PRP in this case. All PRPs will describe
* contiguous space that is one page size each.
*
* Each NVMe message contains two PRP entries. The first (PRP1) either contains
* a PRP list pointer or a PRP element, depending upon the command. PRP2
* contains the second PRP element if the memory being described fits within 2
* PRP entries, or a PRP list pointer if the PRP spans more than two entries.
*
* A PRP list pointer contains the address of a PRP list, structured as a linear
* array of PRP entries. Each PRP entry in this list describes a segment of
* physical memory.
*
* Each 64-bit PRP entry comprises an address and an offset field. The address
* always points at the beginning of a 4KB physical memory page, and the offset
* describes where within that 4KB page the memory segment begins. Only the
* first element in a PRP list may contain a non-zero offest, implying that all
* memory segments following the first begin at the start of a 4KB page.
*
* Each PRP element normally describes 4KB of physical memory, with exceptions
* for the first and last elements in the list. If the memory being described
* by the list begins at a non-zero offset within the first 4KB page, then the
* first PRP element will contain a non-zero offset indicating where the region
* begins within the 4KB page. The last memory segment may end before the end
* of the 4KB segment, depending upon the overall size of the memory being
* described by the PRP list.
*
* Since PRP entries lack any indication of size, the overall data buffer length
* is used to determine where the end of the data memory buffer is located, and
* how many PRP entries are required to describe it.
*
* @ioc: per adapter object
* @smid: system request message index for getting asscociated SGL
* @nvme_encap_request: the NVMe request msg frame pointer
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*
* Returns nothing.
*/
static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
int prp_size = NVME_PRP_SIZE;
__le64 *prp_entry, *prp1_entry, *prp2_entry;
__le64 *prp_page;
dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
u32 offset, entry_len;
u32 page_mask_result, page_mask;
size_t length;
/*
* Not all commands require a data transfer. If no data, just return
* without constructing any PRP.
*/
if (!data_in_sz && !data_out_sz)
return;
/*
* Set pointers to PRP1 and PRP2, which are in the NVMe command.
* PRP1 is located at a 24 byte offset from the start of the NVMe
* command. Then set the current PRP entry pointer to PRP1.
*/
prp1_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
NVME_CMD_PRP1_OFFSET);
prp2_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
NVME_CMD_PRP2_OFFSET);
prp_entry = prp1_entry;
/*
* For the PRP entries, use the specially allocated buffer of
* contiguous memory.
*/
prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
/*
* Check if we are within 1 entry of a page boundary we don't
* want our first entry to be a PRP List entry.
*/
page_mask = ioc->page_size - 1;
page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
if (!page_mask_result) {
/* Bump up to next page boundary. */
prp_page = (__le64 *)((u8 *)prp_page + prp_size);
prp_page_dma = prp_page_dma + prp_size;
}
/*
* Set PRP physical pointer, which initially points to the current PRP
* DMA memory page.
*/
prp_entry_dma = prp_page_dma;
/* Get physical address and length of the data buffer. */
if (data_in_sz) {
dma_addr = data_in_dma;
length = data_in_sz;
} else {
dma_addr = data_out_dma;
length = data_out_sz;
}
/* Loop while the length is not zero. */
while (length) {
/*
* Check if we need to put a list pointer here if we are at
* page boundary - prp_size (8 bytes).
*/
page_mask_result = (prp_entry_dma + prp_size) & page_mask;
if (!page_mask_result) {
/*
* This is the last entry in a PRP List, so we need to
* put a PRP list pointer here. What this does is:
* - bump the current memory pointer to the next
* address, which will be the next full page.
* - set the PRP Entry to point to that page. This
* is now the PRP List pointer.
* - bump the PRP Entry pointer the start of the
* next page. Since all of this PRP memory is
* contiguous, no need to get a new page - it's
* just the next address.
*/
prp_entry_dma++;
*prp_entry = cpu_to_le64(prp_entry_dma);
prp_entry++;
}
/* Need to handle if entry will be part of a page. */
offset = dma_addr & page_mask;
entry_len = ioc->page_size - offset;
if (prp_entry == prp1_entry) {
/*
* Must fill in the first PRP pointer (PRP1) before
* moving on.
*/
*prp1_entry = cpu_to_le64(dma_addr);
/*
* Now point to the second PRP entry within the
* command (PRP2).
*/
prp_entry = prp2_entry;
} else if (prp_entry == prp2_entry) {
/*
* Should the PRP2 entry be a PRP List pointer or just
* a regular PRP pointer? If there is more than one
* more page of data, must use a PRP List pointer.
*/
if (length > ioc->page_size) {
/*
* PRP2 will contain a PRP List pointer because
* more PRP's are needed with this command. The
* list will start at the beginning of the
* contiguous buffer.
*/
*prp2_entry = cpu_to_le64(prp_entry_dma);
/*
* The next PRP Entry will be the start of the
* first PRP List.
*/
prp_entry = prp_page;
} else {
/*
* After this, the PRP Entries are complete.
* This command uses 2 PRP's and no PRP list.
*/
*prp2_entry = cpu_to_le64(dma_addr);
}
} else {
/*
* Put entry in list and bump the addresses.
*
* After PRP1 and PRP2 are filled in, this will fill in
* all remaining PRP entries in a PRP List, one per
* each time through the loop.
*/
*prp_entry = cpu_to_le64(dma_addr);
prp_entry++;
prp_entry_dma++;
}
/*
* Bump the phys address of the command's data buffer by the
* entry_len.
*/
dma_addr += entry_len;
/* Decrement length accounting for last partial page. */
if (entry_len > length)
length = 0;
else
length -= entry_len;
}
}
/**
* base_make_prp_nvme -
* Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
*
* @ioc: per adapter object
* @scmd: SCSI command from the mid-layer
* @mpi_request: mpi request
* @smid: msg Index
* @sge_count: scatter gather element count.
*
* Returns: true: PRPs are built
* false: IEEE SGLs needs to be built
*/
static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd,
Mpi25SCSIIORequest_t *mpi_request,
u16 smid, int sge_count)
{
int sge_len, num_prp_in_chain = 0;
Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
__le64 *curr_buff;
dma_addr_t msg_dma, sge_addr, offset;
u32 page_mask, page_mask_result;
struct scatterlist *sg_scmd;
u32 first_prp_len;
int data_len = scsi_bufflen(scmd);
u32 nvme_pg_size;
nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
/*
* Nvme has a very convoluted prp format. One prp is required
* for each page or partial page. Driver need to split up OS sg_list
* entries if it is longer than one page or cross a page
* boundary. Driver also have to insert a PRP list pointer entry as
* the last entry in each physical page of the PRP list.
*
* NOTE: The first PRP "entry" is actually placed in the first
* SGL entry in the main message as IEEE 64 format. The 2nd
* entry in the main message is the chain element, and the rest
* of the PRP entries are built in the contiguous pcie buffer.
*/
page_mask = nvme_pg_size - 1;
/*
* Native SGL is needed.
* Put a chain element in main message frame that points to the first
* chain buffer.
*
* NOTE: The ChainOffset field must be 0 when using a chain pointer to
* a native SGL.
*/
/* Set main message chain element pointer */
main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
/*
* For NVMe the chain element needs to be the 2nd SG entry in the main
* message.
*/
main_chain_element = (Mpi25IeeeSgeChain64_t *)
((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
/*
* For the PRP entries, use the specially allocated buffer of
* contiguous memory. Normal chain buffers can't be used
* because each chain buffer would need to be the size of an OS
* page (4k).
*/
curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
main_chain_element->Address = cpu_to_le64(msg_dma);
main_chain_element->NextChainOffset = 0;
main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
/* Build first prp, sge need not to be page aligned*/
ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
sg_scmd = scsi_sglist(scmd);
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
offset = sge_addr & page_mask;
first_prp_len = nvme_pg_size - offset;
ptr_first_sgl->Address = cpu_to_le64(sge_addr);
ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
data_len -= first_prp_len;
if (sge_len > first_prp_len) {
sge_addr += first_prp_len;
sge_len -= first_prp_len;
} else if (data_len && (sge_len == first_prp_len)) {
sg_scmd = sg_next(sg_scmd);
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
}
for (;;) {
offset = sge_addr & page_mask;
/* Put PRP pointer due to page boundary*/
page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
if (unlikely(!page_mask_result)) {
scmd_printk(KERN_NOTICE,
scmd, "page boundary curr_buff: 0x%p\n",
curr_buff);
msg_dma += 8;
*curr_buff = cpu_to_le64(msg_dma);
curr_buff++;
num_prp_in_chain++;
}
*curr_buff = cpu_to_le64(sge_addr);
curr_buff++;
msg_dma += 8;
num_prp_in_chain++;
sge_addr += nvme_pg_size;
sge_len -= nvme_pg_size;
data_len -= nvme_pg_size;
if (data_len <= 0)
break;
if (sge_len > 0)
continue;
sg_scmd = sg_next(sg_scmd);
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
}
main_chain_element->Length =
cpu_to_le32(num_prp_in_chain * sizeof(u64));
return;
}
static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
{
u32 data_length = 0;
struct scatterlist *sg_scmd;
bool build_prp = true;
data_length = scsi_bufflen(scmd);
sg_scmd = scsi_sglist(scmd);
/* If Datalenth is <= 16K and number of SGEs entries are <= 2
* we built IEEE SGL
*/
if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
build_prp = false;
return build_prp;
}
/**
* _base_check_pcie_native_sgl - This function is called for PCIe end devices to
* determine if the driver needs to build a native SGL. If so, that native
* SGL is built in the special contiguous buffers allocated especially for
* PCIe SGL creation. If the driver will not build a native SGL, return
* TRUE and a normal IEEE SGL will be built. Currently this routine
* supports NVMe.
* @ioc: per adapter object
* @mpi_request: mf request pointer
* @smid: system request message index
* @scmd: scsi command
* @pcie_device: points to the PCIe device's info
*
* Returns 0 if native SGL was built, 1 if no SGL was built
*/
static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
struct _pcie_device *pcie_device)
{
struct scatterlist *sg_scmd;
int sges_left;
/* Get the SG list pointer and info. */
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device,
"scsi_dma_map failed: request for %d bytes!\n",
scsi_bufflen(scmd));
return 1;
}
/* Check if we need to build a native SG list. */
if (base_is_prp_possible(ioc, pcie_device,
scmd, sges_left) == 0) {
/* We built a native SG list, just return. */
goto out;
}
/*
* Build native NVMe PRP.
*/
base_make_prp_nvme(ioc, scmd, mpi_request,
smid, sges_left);
return 0;
out:
scsi_dma_unmap(scmd);
return 1;
}
/**
* _base_add_sg_single_ieee - add sg element for IEEE format
* @paddr: virtual address for SGE
* @flags: SGE flags
* @chain_offset: number of 128 byte elements from start of segment
* @length: data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
dma_addr_t dma_addr)
{
Mpi25IeeeSgeChain64_t *sgel = paddr;
sgel->Flags = flags;
sgel->NextChainOffset = chain_offset;
sgel->Length = cpu_to_le32(length);
sgel->Address = cpu_to_le64(dma_addr);
}
/**
* _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
* @ioc: per adapter object
* @paddr: virtual address for SGE
*
* Create a zero length scatter gather entry to insure the IOCs hardware has
* something to use if the target device goes brain dead and tries
* to send data even when none is asked for.
*
* Return nothing.
*/
static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
{
u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
}
/**
* _base_build_sg_scmd - main sg creation routine
* pcie_device is unused here!
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
* @unused: unused pcie_device pointer
* Context: none.
*
* The main routine that builds scatter gather table from a given
* scsi request sent via the .queuecommand main handler.
*
* Returns 0 success, anything else error
*/
static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
{
Mpi2SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
struct scatterlist *sg_scmd;
void *sg_local, *chain;
u32 chain_offset;
u32 chain_length;
u32 chain_flags;
int sges_left;
u32 sges_in_segment;
u32 sgl_flags;
u32 sgl_flags_last_element;
u32 sgl_flags_end_buffer;
struct chain_tracker *chain_req;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
/* init scatter gather flags */
sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
if (scmd->sc_data_direction == DMA_TO_DEVICE)
sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
<< MPI2_SGE_FLAGS_SHIFT;
sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
<< MPI2_SGE_FLAGS_SHIFT;
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device,
"pci_map_sg failed: request for %d bytes!\n",
scsi_bufflen(scmd));
return -ENOMEM;
}
sg_local = &mpi_request->SGL;
sges_in_segment = ioc->max_sges_in_main_message;
if (sges_left <= sges_in_segment)
goto fill_in_last_segment;
mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
(sges_in_segment * ioc->sge_size))/4;
/* fill in main message segment when there is a chain following */
while (sges_in_segment) {
if (sges_in_segment == 1)
ioc->base_add_sg_single(sg_local,
sgl_flags_last_element | sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size;
sges_left--;
sges_in_segment--;
}
/* initializing the chain flags and pointers */
chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
do {
sges_in_segment = (sges_left <=
ioc->max_sges_in_chain_message) ? sges_left :
ioc->max_sges_in_chain_message;
chain_offset = (sges_left == sges_in_segment) ?
0 : (sges_in_segment * ioc->sge_size)/4;
chain_length = sges_in_segment * ioc->sge_size;
if (chain_offset) {
chain_offset = chain_offset <<
MPI2_SGE_CHAIN_OFFSET_SHIFT;
chain_length += ioc->sge_size;
}
ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
chain_length, chain_dma);
sg_local = chain;
if (!chain_offset)
goto fill_in_last_segment;
/* fill in chain segments */
while (sges_in_segment) {
if (sges_in_segment == 1)
ioc->base_add_sg_single(sg_local,
sgl_flags_last_element |
sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size;
sges_left--;
sges_in_segment--;
}
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
} while (1);
fill_in_last_segment:
/* fill the last segment */
while (sges_left) {
if (sges_left == 1)
ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size;
sges_left--;
}
return 0;
}
/**
* _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
* @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
* constructed on need.
* Context: none.
*
* The main routine that builds scatter gather table from a given
* scsi request sent via the .queuecommand main handler.
*
* Returns 0 success, anything else error
*/
static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
{
Mpi25SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
struct scatterlist *sg_scmd;
void *sg_local, *chain;
u32 chain_offset;
u32 chain_length;
int sges_left;
u32 sges_in_segment;
u8 simple_sgl_flags;
u8 simple_sgl_flags_last;
u8 chain_sgl_flags;
struct chain_tracker *chain_req;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
/* init scatter gather flags */
simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
simple_sgl_flags_last = simple_sgl_flags |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
/* Check if we need to build a native SG list. */
if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
smid, scmd, pcie_device) == 0)) {
/* We built a native SG list, just return. */
return 0;
}
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device,
"pci_map_sg failed: request for %d bytes!\n",
scsi_bufflen(scmd));
return -ENOMEM;
}
sg_local = &mpi_request->SGL;
sges_in_segment = (ioc->request_sz -
offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
if (sges_left <= sges_in_segment)
goto fill_in_last_segment;
mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
(offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
/* fill in main message segment when there is a chain following */
while (sges_in_segment > 1) {
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
sges_in_segment--;
}
/* initializing the pointers */
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
do {
sges_in_segment = (sges_left <=
ioc->max_sges_in_chain_message) ? sges_left :
ioc->max_sges_in_chain_message;
chain_offset = (sges_left == sges_in_segment) ?
0 : sges_in_segment;
chain_length = sges_in_segment * ioc->sge_size_ieee;
if (chain_offset)
chain_length += ioc->sge_size_ieee;
_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
chain_offset, chain_length, chain_dma);
sg_local = chain;
if (!chain_offset)
goto fill_in_last_segment;
/* fill in chain segments */
while (sges_in_segment) {
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
sges_in_segment--;
}
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
} while (1);
fill_in_last_segment:
/* fill the last segment */
while (sges_left > 0) {
if (sges_left == 1)
_base_add_sg_single_ieee(sg_local,
simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
}
return 0;
}
/**
* _base_build_sg_ieee - build generic sg for IEEE format
* @ioc: per adapter object
* @psge: virtual address for SGE
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*
* Return nothing.
*/
static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
u8 sgl_flags;
if (!data_out_sz && !data_in_sz) {
_base_build_zero_len_sge_ieee(ioc, psge);
return;
}
if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
data_out_dma);
/* incr sgel */
psge += ioc->sge_size_ieee;
/* READ sgel last */
sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
data_in_dma);
}
}
#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
/**
* _base_config_dma_addressing - set dma addressing
* @ioc: per adapter object
* @pdev: PCI device struct
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
{
struct sysinfo s;
u64 consistent_dma_mask;
if (ioc->dma_mask)
consistent_dma_mask = DMA_BIT_MASK(64);
else
consistent_dma_mask = DMA_BIT_MASK(32);
if (sizeof(dma_addr_t) > 4) {
const uint64_t required_mask =
dma_get_required_mask(&pdev->dev);
if ((required_mask > DMA_BIT_MASK(32)) &&
!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
!pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
ioc->base_add_sg_single = &_base_add_sg_single_64;
ioc->sge_size = sizeof(Mpi2SGESimple64_t);
ioc->dma_mask = 64;
goto out;
}
}
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
&& !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
ioc->base_add_sg_single = &_base_add_sg_single_32;
ioc->sge_size = sizeof(Mpi2SGESimple32_t);
ioc->dma_mask = 32;
} else
return -ENODEV;
out:
si_meminfo(&s);
pr_info(MPT3SAS_FMT
"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
return 0;
}
static int
_base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
struct pci_dev *pdev)
{
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
return -ENODEV;
}
return 0;
}
/**
* _base_check_enable_msix - checks MSIX capabable.
* @ioc: per adapter object
*
* Check to see if card is capable of MSIX, and set number
* of available msix vectors
*/
static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
{
int base;
u16 message_control;
/* Check whether controller SAS2008 B0 controller,
* if it is SAS2008 B0 controller use IO-APIC instead of MSIX
*/
if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
return -EINVAL;
}
base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
if (!base) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
ioc->name));
return -EINVAL;
}
/* get msix vector count */
/* NUMA_IO not supported for older controllers */
if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
ioc->msix_vector_count = 1;
else {
pci_read_config_word(ioc->pdev, base + 2, &message_control);
ioc->msix_vector_count = (message_control & 0x3FF) + 1;
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"msix is supported, vector_count(%d)\n",
ioc->name, ioc->msix_vector_count));
return 0;
}
/**
* _base_free_irq - free irq
* @ioc: per adapter object
*
* Freeing respective reply_queue from the list.
*/
static void
_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q, *next;
if (list_empty(&ioc->reply_queue_list))
return;
list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
list_del(&reply_q->list);
free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
reply_q);
kfree(reply_q);
}
}
/**
* _base_request_irq - request irq
* @ioc: per adapter object
* @index: msix index into vector table
*
* Inserting respective reply_queue into the list.
*/
static int
_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
{
struct pci_dev *pdev = ioc->pdev;
struct adapter_reply_queue *reply_q;
int r;
reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
if (!reply_q) {
pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
ioc->name, (int)sizeof(struct adapter_reply_queue));
return -ENOMEM;
}
reply_q->ioc = ioc;
reply_q->msix_index = index;
atomic_set(&reply_q->busy, 0);
if (ioc->msix_enable)
snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
ioc->driver_name, ioc->id, index);
else
snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
ioc->driver_name, ioc->id);
r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
IRQF_SHARED, reply_q->name, reply_q);
if (r) {
pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
reply_q->name, pci_irq_vector(pdev, index));
kfree(reply_q);
return -EBUSY;
}
INIT_LIST_HEAD(&reply_q->list);
list_add_tail(&reply_q->list, &ioc->reply_queue_list);
return 0;
}
/**
* _base_assign_reply_queues - assigning msix index for each cpu
* @ioc: per adapter object
*
* The enduser would need to set the affinity via /proc/irq/#/smp_affinity
*
* It would nice if we could call irq_set_affinity, however it is not
* an exported symbol
*/
static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
{
unsigned int cpu, nr_cpus, nr_msix, index = 0;
struct adapter_reply_queue *reply_q;
if (!_base_is_controller_msix_enabled(ioc))
return;
memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
nr_cpus = num_online_cpus();
nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
ioc->facts.MaxMSIxVectors);
if (!nr_msix)
return;
if (smp_affinity_enable) {
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
reply_q->msix_index);
if (!mask) {
pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
ioc->name, reply_q->msix_index);
continue;
}
for_each_cpu(cpu, mask)
ioc->cpu_msix_table[cpu] = reply_q->msix_index;
}
return;
}
cpu = cpumask_first(cpu_online_mask);
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
unsigned int i, group = nr_cpus / nr_msix;
if (cpu >= nr_cpus)
break;
if (index < nr_cpus % nr_msix)
group++;
for (i = 0 ; i < group ; i++) {
ioc->cpu_msix_table[cpu] = reply_q->msix_index;
cpu = cpumask_next(cpu, cpu_online_mask);
}
index++;
}
}
/**
* _base_disable_msix - disables msix
* @ioc: per adapter object
*
*/
static void
_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
{
if (!ioc->msix_enable)
return;
pci_disable_msix(ioc->pdev);
ioc->msix_enable = 0;
}
/**
* _base_enable_msix - enables msix, failback to io_apic
* @ioc: per adapter object
*
*/
static int
_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
{
int r;
int i, local_max_msix_vectors;
u8 try_msix = 0;
unsigned int irq_flags = PCI_IRQ_MSIX;
if (msix_disable == -1 || msix_disable == 0)
try_msix = 1;
if (!try_msix)
goto try_ioapic;
if (_base_check_enable_msix(ioc) != 0)
goto try_ioapic;
ioc->reply_queue_count = min_t(int, ioc->cpu_count,
ioc->msix_vector_count);
printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
ioc->cpu_count, max_msix_vectors);
if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
local_max_msix_vectors = (reset_devices) ? 1 : 8;
else
local_max_msix_vectors = max_msix_vectors;
if (local_max_msix_vectors > 0)
ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
ioc->reply_queue_count);
else if (local_max_msix_vectors == 0)
goto try_ioapic;
if (ioc->msix_vector_count < ioc->cpu_count)
smp_affinity_enable = 0;
if (smp_affinity_enable)
irq_flags |= PCI_IRQ_AFFINITY;
r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
irq_flags);
if (r < 0) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT
"pci_alloc_irq_vectors failed (r=%d) !!!\n",
ioc->name, r));
goto try_ioapic;
}
ioc->msix_enable = 1;
ioc->reply_queue_count = r;
for (i = 0; i < ioc->reply_queue_count; i++) {
r = _base_request_irq(ioc, i);
if (r) {
_base_free_irq(ioc);
_base_disable_msix(ioc);
goto try_ioapic;
}
}
return 0;
/* failback to io_apic interrupt routing */
try_ioapic:
ioc->reply_queue_count = 1;
r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
if (r < 0) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT
"pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
ioc->name, r));
} else
r = _base_request_irq(ioc, 0);
return r;
}
/**
* mpt3sas_base_unmap_resources - free controller resources
* @ioc: per adapter object
*/
static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
ioc->name, __func__));
_base_free_irq(ioc);
_base_disable_msix(ioc);
if (ioc->combined_reply_queue) {
kfree(ioc->replyPostRegisterIndex);
ioc->replyPostRegisterIndex = NULL;
}
if (ioc->chip_phys) {
iounmap(ioc->chip);
ioc->chip_phys = 0;
}
if (pci_is_enabled(pdev)) {
pci_release_selected_regions(ioc->pdev, ioc->bars);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
}
/**
* mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
u32 memap_sz;
u32 pio_sz;
int i, r = 0;
u64 pio_chip = 0;
u64 chip_phys = 0;
struct adapter_reply_queue *reply_q;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
ioc->name, __func__));
ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
if (pci_enable_device_mem(pdev)) {
pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
ioc->name);
ioc->bars = 0;
return -ENODEV;
}
if (pci_request_selected_regions(pdev, ioc->bars,
ioc->driver_name)) {
pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
ioc->name);
ioc->bars = 0;
r = -ENODEV;
goto out_fail;
}
/* AER (Advanced Error Reporting) hooks */
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
if (_base_config_dma_addressing(ioc, pdev) != 0) {
pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
ioc->name, pci_name(pdev));
r = -ENODEV;
goto out_fail;
}
for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
(!memap_sz || !pio_sz); i++) {
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
if (pio_sz)
continue;
pio_chip = (u64)pci_resource_start(pdev, i);
pio_sz = pci_resource_len(pdev, i);
} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
if (memap_sz)
continue;
ioc->chip_phys = pci_resource_start(pdev, i);
chip_phys = (u64)ioc->chip_phys;
memap_sz = pci_resource_len(pdev, i);
ioc->chip = ioremap(ioc->chip_phys, memap_sz);
}
}
if (ioc->chip == NULL) {
pr_err(MPT3SAS_FMT "unable to map adapter memory! "
" or resource not found\n", ioc->name);
r = -EINVAL;
goto out_fail;
}
_base_mask_interrupts(ioc);
r = _base_get_ioc_facts(ioc);
if (r)
goto out_fail;
if (!ioc->rdpq_array_enable_assigned) {
ioc->rdpq_array_enable = ioc->rdpq_array_capable;
ioc->rdpq_array_enable_assigned = 1;
}
r = _base_enable_msix(ioc);
if (r)
goto out_fail;
/* Use the Combined reply queue feature only for SAS3 C0 & higher
* revision HBAs and also only when reply queue count is greater than 8
*/
if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
/* Determine the Supplemental Reply Post Host Index Registers
* Addresse. Supplemental Reply Post Host Index Registers
* starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
* each register is at offset bytes of
* MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
*/
ioc->replyPostRegisterIndex = kcalloc(
ioc->combined_reply_index_count,
sizeof(resource_size_t *), GFP_KERNEL);
if (!ioc->replyPostRegisterIndex) {
dfailprintk(ioc, printk(MPT3SAS_FMT
"allocation for reply Post Register Index failed!!!\n",
ioc->name));
r = -ENOMEM;
goto out_fail;
}
for (i = 0; i < ioc->combined_reply_index_count; i++) {
ioc->replyPostRegisterIndex[i] = (resource_size_t *)
((u8 *)&ioc->chip->Doorbell +
MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
(i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
}
} else
ioc->combined_reply_queue = 0;
if (ioc->is_warpdrive) {
ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
&ioc->chip->ReplyPostHostIndex;
for (i = 1; i < ioc->cpu_msix_table_sz; i++)
ioc->reply_post_host_index[i] =
(resource_size_t __iomem *)
((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
* 4)));
}
list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
"IO-APIC enabled"),
pci_irq_vector(ioc->pdev, reply_q->msix_index));
pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
ioc->name, (unsigned long long)pio_chip, pio_sz);
/* Save PCI configuration state for recovery from PCI AER/EEH errors */
pci_save_state(pdev);
return 0;
out_fail:
mpt3sas_base_unmap_resources(ioc);
return r;
}
/**
* mpt3sas_base_get_msg_frame - obtain request mf pointer
* @ioc: per adapter object
* @smid: system request message index(smid zero is invalid)
*
* Returns virt pointer to message frame.
*/
void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->request + (smid * ioc->request_sz));
}
/**
* mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns virt pointer to sense buffer.
*/
void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns phys pointer to the low 32bit address of the sense buffer.
*/
__le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns virt pointer to a PCIe SGL.
*/
void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
}
/**
* mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns phys pointer to the address of the PCIe buffer.
*/
dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
}
/**
* mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
* @ioc: per adapter object
* @phys_addr: lower 32 physical addr of the reply
*
* Converts 32bit lower physical addr into a virt address.
*/
void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
{
if (!phys_addr)
return NULL;
return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
}
static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
{
return ioc->cpu_msix_table[raw_smp_processor_id()];
}
/**
* mpt3sas_base_get_smid - obtain a free smid from internal queue
* @ioc: per adapter object
* @cb_idx: callback index
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
{
unsigned long flags;
struct request_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->internal_free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
pr_err(MPT3SAS_FMT "%s: smid not available\n",
ioc->name, __func__);
return 0;
}
request = list_entry(ioc->internal_free_list.next,
struct request_tracker, tracker_list);
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
/**
* mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
* @ioc: per adapter object
* @cb_idx: callback index
* @scmd: pointer to scsi command object
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
struct scsi_cmnd *scmd)
{
struct scsiio_tracker *request = scsi_cmd_priv(scmd);
unsigned int tag = scmd->request->tag;
u16 smid;
smid = tag + 1;
request->cb_idx = cb_idx;
request->msix_io = _base_get_msix_index(ioc);
request->smid = smid;
INIT_LIST_HEAD(&request->chain_list);
return smid;
}
/**
* mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
* @ioc: per adapter object
* @cb_idx: callback index
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
{
unsigned long flags;
struct request_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->hpr_free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return 0;
}
request = list_entry(ioc->hpr_free_list.next,
struct request_tracker, tracker_list);
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
static void
_base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
{
/*
* See _wait_for_commands_to_complete() call with regards to this code.
*/
if (ioc->shost_recovery && ioc->pending_io_count) {
ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
if (ioc->pending_io_count == 0)
wake_up(&ioc->reset_wq);
}
}
void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
struct scsiio_tracker *st)
{
if (WARN_ON(st->smid == 0))
return;
st->cb_idx = 0xFF;
st->direct_io = 0;
if (!list_empty(&st->chain_list)) {
unsigned long flags;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
list_splice_init(&st->chain_list, &ioc->free_chain_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
}
}
/**
* mpt3sas_base_free_smid - put smid back on free_list
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
unsigned long flags;
int i;
if (smid < ioc->hi_priority_smid) {
struct scsiio_tracker *st;
st = _get_st_from_smid(ioc, smid);
if (!st) {
_base_recovery_check(ioc);
return;
}
mpt3sas_base_clear_st(ioc, st);
_base_recovery_check(ioc);
return;
}
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (smid < ioc->internal_smid) {
/* hi-priority */
i = smid - ioc->hi_priority_smid;
ioc->hpr_lookup[i].cb_idx = 0xFF;
list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
} else if (smid <= ioc->hba_queue_depth) {
/* internal queue */
i = smid - ioc->internal_smid;
ioc->internal_lookup[i].cb_idx = 0xFF;
list_add(&ioc->internal_lookup[i].tracker_list,
&ioc->internal_free_list);
}
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
}
/**
* _base_writeq - 64 bit write to MMIO
* @ioc: per adapter object
* @b: data payload
* @addr: address in MMIO space
* @writeq_lock: spin lock
*
* Glue for handling an atomic 64 bit word to MMIO. This special handling takes
* care of 32 bit environment where its not quarenteed to send the entire word
* in one transfer.
*/
#if defined(writeq) && defined(CONFIG_64BIT)
static inline void
_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
writeq(cpu_to_le64(b), addr);
}
#else
static inline void
_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
unsigned long flags;
__u64 data_out = cpu_to_le64(b);
spin_lock_irqsave(writeq_lock, flags);
writel((u32)(data_out), addr);
writel((u32)(data_out >> 32), (addr + 4));
spin_unlock_irqrestore(writeq_lock, flags);
}
#endif
/**
* _base_put_smid_scsi_io - send SCSI_IO request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*
* Return nothing.
*/
static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_fast_path - send fast path request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*
* Return nothing.
*/
static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSIIO.RequestFlags =
MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_hi_priority - send Task Management request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
* Return nothing.
*/
static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 msix_task)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
descriptor.HighPriority.MSIxIndex = msix_task;
descriptor.HighPriority.SMID = cpu_to_le16(smid);
descriptor.HighPriority.LMID = 0;
descriptor.HighPriority.Reserved1 = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_nvme_encap - send NVMe encapsulated request to
* firmware
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
static void
_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.Default.RequestFlags =
MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
descriptor.Default.SMID = cpu_to_le16(smid);
descriptor.Default.LMID = 0;
descriptor.Default.DescriptorTypeDependent = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_default - Default, primarily used for config pages
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
static void
_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
descriptor.Default.SMID = cpu_to_le16(smid);
descriptor.Default.LMID = 0;
descriptor.Default.DescriptorTypeDependent = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
* Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle, unused in this function, for function type match
*
* Return nothing.
*/
static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 handle)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
descriptor.MSIxIndex = _base_get_msix_index(ioc);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_fast_path_atomic - send fast path request to firmware
* using Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle, unused in this function, for function type match
* Return nothing
*/
static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 handle)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
descriptor.MSIxIndex = _base_get_msix_index(ioc);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_hi_priority_atomic - send Task Management request to
* firmware using Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
* @msix_task: msix_task will be same as msix of IO incase of task abort else 0
*
* Return nothing.
*/
static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 msix_task)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
descriptor.MSIxIndex = msix_task;
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_nvme_encap_atomic - send NVMe encapsulated request to
* firmware using Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
static void
_base_put_smid_nvme_encap_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
descriptor.MSIxIndex = _base_get_msix_index(ioc);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_default - Default, primarily used for config pages
* use Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
descriptor.MSIxIndex = _base_get_msix_index(ioc);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_display_OEMs_branding - Display branding string
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
{
if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
return;
switch (ioc->pdev->subsystem_vendor) {
case PCI_VENDOR_ID_INTEL:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2008:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_INTEL_RMS2LL080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS2LL080_BRANDING);
break;
case MPT2SAS_INTEL_RMS2LL040_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS2LL040_BRANDING);
break;
case MPT2SAS_INTEL_SSD910_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_SSD910_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
case MPI2_MFGPAGE_DEVID_SAS2308_2:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_INTEL_RS25GB008_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RS25GB008_BRANDING);
break;
case MPT2SAS_INTEL_RMS25JB080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25JB080_BRANDING);
break;
case MPT2SAS_INTEL_RMS25JB040_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25JB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25KB080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25KB080_BRANDING);
break;
case MPT2SAS_INTEL_RMS25KB040_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25KB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25LB040_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25LB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25LB080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_INTEL_RMS25LB080_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_INTEL_RMS3JC080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RMS3JC080_BRANDING);
break;
case MPT3SAS_INTEL_RS3GC008_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3GC008_BRANDING);
break;
case MPT3SAS_INTEL_RS3FC044_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3FC044_BRANDING);
break;
case MPT3SAS_INTEL_RS3UC080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3UC080_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
default:
pr_info(MPT3SAS_FMT
"Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
case PCI_VENDOR_ID_DELL:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2008:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_PERC_H200_BRANDING);
break;
case MPT2SAS_DELL_6GBPS_SAS_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_DELL_6GBPS_SAS_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_DELL_12G_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_DELL_12G_HBA_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
default:
pr_info(MPT3SAS_FMT
"Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
ioc->pdev->subsystem_device);
break;
}
break;
case PCI_VENDOR_ID_CISCO:
switch (ioc->pdev->device) {
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
case MPI25_MFGPAGE_DEVID_SAS3108_1:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
);
break;
default:
pr_info(MPT3SAS_FMT
"Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
default:
pr_info(MPT3SAS_FMT
"Cisco SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
case MPT2SAS_HP_3PAR_SSVID:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2004:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
case MPI2_MFGPAGE_DEVID_SAS2308_2:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_HP_2_4_INTERNAL_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_HP_2_4_INTERNAL_BRANDING);
break;
case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
break;
case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
break;
case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
default:
pr_info(MPT3SAS_FMT
"HP SAS HBA: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
default:
break;
}
}
/**
* _base_display_ioc_capabilities - Disply IOC's capabilities.
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
{
int i = 0;
char desc[16];
u32 iounit_pg1_flags;
u32 bios_version;
bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
strncpy(desc, ioc->manu_pg0.ChipName, 16);
pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
"ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
ioc->name, desc,
(ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
(ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
(ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
ioc->facts.FWVersion.Word & 0x000000FF,
ioc->pdev->revision,
(bios_version & 0xFF000000) >> 24,
(bios_version & 0x00FF0000) >> 16,
(bios_version & 0x0000FF00) >> 8,
bios_version & 0x000000FF);
_base_display_OEMs_branding(ioc);
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
pr_info("%sNVMe", i ? "," : "");
i++;
}
pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
pr_info("Initiator");
i++;
}
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
pr_info("%sTarget", i ? "," : "");
i++;
}
i = 0;
pr_info("), ");
pr_info("Capabilities=(");
if (!ioc->hide_ir_msg) {
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
pr_info("Raid");
i++;
}
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
pr_info("%sTLR", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
pr_info("%sMulticast", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
pr_info("%sBIDI Target", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
pr_info("%sEEDP", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
pr_info("%sSnapshot Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
pr_info("%sDiag Trace Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
pr_info("%sDiag Extended Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
pr_info("%sTask Set Full", i ? "," : "");
i++;
}
iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
pr_info("%sNCQ", i ? "," : "");
i++;
}
pr_info(")\n");
}
/**
* mpt3sas_base_update_missing_delay - change the missing delay timers
* @ioc: per adapter object
* @device_missing_delay: amount of time till device is reported missing
* @io_missing_delay: interval IO is returned when there is a missing device
*
* Return nothing.
*
* Passed on the command line, this function will modify the device missing
* delay, as well as the io missing delay. This should be called at driver
* load time.
*/
void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
u16 device_missing_delay, u8 io_missing_delay)
{
u16 dmd, dmd_new, dmd_orignal;
u8 io_missing_delay_original;
u16 sz;
Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
Mpi2ConfigReply_t mpi_reply;
u8 num_phys = 0;
u16 ioc_status;
mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
if (!num_phys)
return;
sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
sizeof(Mpi2SasIOUnit1PhyData_t));
sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
if (!sas_iounit_pg1) {
pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
sas_iounit_pg1, sz))) {
pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
/* device missing delay */
dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
else
dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
dmd_orignal = dmd;
if (device_missing_delay > 0x7F) {
dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
device_missing_delay;
dmd = dmd / 16;
dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
} else
dmd = device_missing_delay;
sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
/* io missing delay */
io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
sz)) {
if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
dmd_new = (dmd &
MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
else
dmd_new =
dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
ioc->name, dmd_orignal, dmd_new);
pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
ioc->name, io_missing_delay_original,
io_missing_delay);
ioc->device_missing_delay = dmd_new;
ioc->io_missing_delay = io_missing_delay;
}
out:
kfree(sas_iounit_pg1);
}
/**
* _base_static_config_pages - static start of day config pages
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2ConfigReply_t mpi_reply;
u32 iounit_pg1_flags;
mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
if (ioc->ir_firmware)
mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
&ioc->manu_pg10);
/*
* Ensure correct T10 PI operation if vendor left EEDPTagMode
* flag unset in NVDATA.
*/
mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
if (ioc->manu_pg11.EEDPTagMode == 0) {
pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
ioc->name);
ioc->manu_pg11.EEDPTagMode &= ~0x3;
ioc->manu_pg11.EEDPTagMode |= 0x1;
mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
&ioc->manu_pg11);
}
mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
_base_display_ioc_capabilities(ioc);
/*
* Enable task_set_full handling in iounit_pg1 when the
* facts capabilities indicate that its supported.
*/
iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
if ((ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
iounit_pg1_flags &=
~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
else
iounit_pg1_flags |=
MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
if (ioc->iounit_pg8.NumSensors)
ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
}
/**
* _base_release_memory_pools - release memory
* @ioc: per adapter object
*
* Free memory allocated from _base_allocate_memory_pools.
*
* Return nothing.
*/
static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
{
int i = 0;
struct reply_post_struct *rps;
dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
if (ioc->request) {
pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
ioc->request, ioc->request_dma);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"request_pool(0x%p): free\n",
ioc->name, ioc->request));
ioc->request = NULL;
}
if (ioc->sense) {
dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
dma_pool_destroy(ioc->sense_dma_pool);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"sense_pool(0x%p): free\n",
ioc->name, ioc->sense));
ioc->sense = NULL;
}
if (ioc->reply) {
dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
dma_pool_destroy(ioc->reply_dma_pool);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_pool(0x%p): free\n",
ioc->name, ioc->reply));
ioc->reply = NULL;
}
if (ioc->reply_free) {
dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
ioc->reply_free_dma);
dma_pool_destroy(ioc->reply_free_dma_pool);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_free_pool(0x%p): free\n",
ioc->name, ioc->reply_free));
ioc->reply_free = NULL;
}
if (ioc->reply_post) {
do {
rps = &ioc->reply_post[i];
if (rps->reply_post_free) {
dma_pool_free(
ioc->reply_post_free_dma_pool,
rps->reply_post_free,
rps->reply_post_free_dma);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_post_free_pool(0x%p): free\n",
ioc->name, rps->reply_post_free));
rps->reply_post_free = NULL;
}
} while (ioc->rdpq_array_enable &&
(++i < ioc->reply_queue_count));
dma_pool_destroy(ioc->reply_post_free_dma_pool);
kfree(ioc->reply_post);
}
if (ioc->pcie_sgl_dma_pool) {
for (i = 0; i < ioc->scsiio_depth; i++) {
dma_pool_free(ioc->pcie_sgl_dma_pool,
ioc->pcie_sg_lookup[i].pcie_sgl,
ioc->pcie_sg_lookup[i].pcie_sgl_dma);
}
if (ioc->pcie_sgl_dma_pool)
dma_pool_destroy(ioc->pcie_sgl_dma_pool);
}
if (ioc->config_page) {
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"config_page(0x%p): free\n", ioc->name,
ioc->config_page));
pci_free_consistent(ioc->pdev, ioc->config_page_sz,
ioc->config_page, ioc->config_page_dma);
}
kfree(ioc->hpr_lookup);
kfree(ioc->internal_lookup);
if (ioc->chain_lookup) {
for (i = 0; i < ioc->chain_depth; i++) {
if (ioc->chain_lookup[i].chain_buffer)
dma_pool_free(ioc->chain_dma_pool,
ioc->chain_lookup[i].chain_buffer,
ioc->chain_lookup[i].chain_buffer_dma);
}
dma_pool_destroy(ioc->chain_dma_pool);
free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
ioc->chain_lookup = NULL;
}
}
/**
* _base_allocate_memory_pools - allocate start of day memory pools
* @ioc: per adapter object
*
* Returns 0 success, anything else error
*/
static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
{
struct mpt3sas_facts *facts;
u16 max_sge_elements;
u16 chains_needed_per_io;
u32 sz, total_sz, reply_post_free_sz;
u32 retry_sz;
u16 max_request_credit, nvme_blocks_needed;
unsigned short sg_tablesize;
u16 sge_size;
int i;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
retry_sz = 0;
facts = &ioc->facts;
/* command line tunables for max sgl entries */
if (max_sgl_entries != -1)
sg_tablesize = max_sgl_entries;
else {
if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
sg_tablesize = MPT2SAS_SG_DEPTH;
else
sg_tablesize = MPT3SAS_SG_DEPTH;
}
/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
if (reset_devices)
sg_tablesize = min_t(unsigned short, sg_tablesize,
MPT_KDUMP_MIN_PHYS_SEGMENTS);
if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
sg_tablesize = min_t(unsigned short, sg_tablesize,
SG_MAX_SEGMENTS);
pr_warn(MPT3SAS_FMT
"sg_tablesize(%u) is bigger than kernel"
" defined SG_CHUNK_SIZE(%u)\n", ioc->name,
sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
}
ioc->shost->sg_tablesize = sg_tablesize;
ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
(facts->RequestCredit / 4));
if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
INTERNAL_SCSIIO_CMDS_COUNT)) {
pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
Credits, it has just %d number of credits\n",
ioc->name, facts->RequestCredit);
return -ENOMEM;
}
ioc->internal_depth = 10;
}
ioc->hi_priority_depth = ioc->internal_depth - (5);
/* command line tunables for max controller queue depth */
if (max_queue_depth != -1 && max_queue_depth != 0) {
max_request_credit = min_t(u16, max_queue_depth +
ioc->internal_depth, facts->RequestCredit);
if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
max_request_credit = MAX_HBA_QUEUE_DEPTH;
} else if (reset_devices)
max_request_credit = min_t(u16, facts->RequestCredit,
(MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
else
max_request_credit = min_t(u16, facts->RequestCredit,
MAX_HBA_QUEUE_DEPTH);
/* Firmware maintains additional facts->HighPriorityCredit number of
* credits for HiPriprity Request messages, so hba queue depth will be
* sum of max_request_credit and high priority queue depth.
*/
ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
/* request frame size */
ioc->request_sz = facts->IOCRequestFrameSize * 4;
/* reply frame size */
ioc->reply_sz = facts->ReplyFrameSize * 4;
/* chain segment size */
if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
if (facts->IOCMaxChainSegmentSize)
ioc->chain_segment_sz =
facts->IOCMaxChainSegmentSize *
MAX_CHAIN_ELEMT_SZ;
else
/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
MAX_CHAIN_ELEMT_SZ;
} else
ioc->chain_segment_sz = ioc->request_sz;
/* calculate the max scatter element size */
sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
retry_allocation:
total_sz = 0;
/* calculate number of sg elements left over in the 1st frame */
max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
sizeof(Mpi2SGEIOUnion_t)) + sge_size);
ioc->max_sges_in_main_message = max_sge_elements/sge_size;
/* now do the same for a chain buffer */
max_sge_elements = ioc->chain_segment_sz - sge_size;
ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
/*
* MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
*/
chains_needed_per_io = ((ioc->shost->sg_tablesize -
ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
+ 1;
if (chains_needed_per_io > facts->MaxChainDepth) {
chains_needed_per_io = facts->MaxChainDepth;
ioc->shost->sg_tablesize = min_t(u16,
ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
* chains_needed_per_io), ioc->shost->sg_tablesize);
}
ioc->chains_needed_per_io = chains_needed_per_io;
/* reply free queue sizing - taking into account for 64 FW events */
ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
/* calculate reply descriptor post queue depth */
ioc->reply_post_queue_depth = ioc->hba_queue_depth +
ioc->reply_free_queue_depth + 1 ;
/* align the reply post queue on the next 16 count boundary */
if (ioc->reply_post_queue_depth % 16)
ioc->reply_post_queue_depth += 16 -
(ioc->reply_post_queue_depth % 16);
if (ioc->reply_post_queue_depth >
facts->MaxReplyDescriptorPostQueueDepth) {
ioc->reply_post_queue_depth =
facts->MaxReplyDescriptorPostQueueDepth -
(facts->MaxReplyDescriptorPostQueueDepth % 16);
ioc->hba_queue_depth =
((ioc->reply_post_queue_depth - 64) / 2) - 1;
ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
"sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
"chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
ioc->chains_needed_per_io));
/* reply post queue, 16 byte align */
reply_post_free_sz = ioc->reply_post_queue_depth *
sizeof(Mpi2DefaultReplyDescriptor_t);
sz = reply_post_free_sz;
if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
sz *= ioc->reply_queue_count;
ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
(ioc->reply_queue_count):1,
sizeof(struct reply_post_struct), GFP_KERNEL);
if (!ioc->reply_post) {
pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
ioc->name);
goto out;
}
ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
&ioc->pdev->dev, sz, 16, 0);
if (!ioc->reply_post_free_dma_pool) {
pr_err(MPT3SAS_FMT
"reply_post_free pool: dma_pool_create failed\n",
ioc->name);
goto out;
}
i = 0;
do {
ioc->reply_post[i].reply_post_free =
dma_pool_alloc(ioc->reply_post_free_dma_pool,
GFP_KERNEL,
&ioc->reply_post[i].reply_post_free_dma);
if (!ioc->reply_post[i].reply_post_free) {
pr_err(MPT3SAS_FMT
"reply_post_free pool: dma_pool_alloc failed\n",
ioc->name);
goto out;
}
memset(ioc->reply_post[i].reply_post_free, 0, sz);
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"reply post free pool (0x%p): depth(%d),"
"element_size(%d), pool_size(%d kB)\n", ioc->name,
ioc->reply_post[i].reply_post_free,
ioc->reply_post_queue_depth, 8, sz/1024));
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_post_free_dma = (0x%llx)\n", ioc->name,
(unsigned long long)
ioc->reply_post[i].reply_post_free_dma));
total_sz += sz;
} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
if (ioc->dma_mask == 64) {
if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
pr_warn(MPT3SAS_FMT
"no suitable consistent DMA mask for %s\n",
ioc->name, pci_name(ioc->pdev));
goto out;
}
}
ioc->scsiio_depth = ioc->hba_queue_depth -
ioc->hi_priority_depth - ioc->internal_depth;
/* set the scsi host can_queue depth
* with some internal commands that could be outstanding
*/
ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"scsi host: can_queue depth (%d)\n",
ioc->name, ioc->shost->can_queue));
/* contiguous pool for request and chains, 16 byte align, one extra "
* "frame for smid=0
*/
ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
/* hi-priority queue */
sz += (ioc->hi_priority_depth * ioc->request_sz);
/* internal queue */
sz += (ioc->internal_depth * ioc->request_sz);
ioc->request_dma_sz = sz;
ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
if (!ioc->request) {
pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
"failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
"total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
goto out;
retry_sz = 64;
ioc->hba_queue_depth -= retry_sz;
_base_release_memory_pools(ioc);
goto retry_allocation;
}
if (retry_sz)
pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
"succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
"total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
/* hi-priority queue */
ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
ioc->request_sz);
ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
ioc->request_sz);
/* internal queue */
ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
ioc->request_sz);
ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
ioc->request_sz);
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
(ioc->hba_queue_depth * ioc->request_sz)/1024));
dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
ioc->name, (unsigned long long) ioc->request_dma));
total_sz += sz;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
ioc->name, ioc->request, ioc->scsiio_depth));
ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
sz = ioc->chain_depth * sizeof(struct chain_tracker);
ioc->chain_pages = get_order(sz);
ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
GFP_KERNEL, ioc->chain_pages);
if (!ioc->chain_lookup) {
pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
ioc->name);
goto out;
}
ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
ioc->chain_segment_sz, 16, 0);
if (!ioc->chain_dma_pool) {
pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
ioc->name);
goto out;
}
for (i = 0; i < ioc->chain_depth; i++) {
ioc->chain_lookup[i].chain_buffer = dma_pool_alloc(
ioc->chain_dma_pool , GFP_KERNEL,
&ioc->chain_lookup[i].chain_buffer_dma);
if (!ioc->chain_lookup[i].chain_buffer) {
ioc->chain_depth = i;
goto chain_done;
}
total_sz += ioc->chain_segment_sz;
}
chain_done:
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
((ioc->chain_depth * ioc->chain_segment_sz))/1024));
/* initialize hi-priority queue smid's */
ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
sizeof(struct request_tracker), GFP_KERNEL);
if (!ioc->hpr_lookup) {
pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
ioc->name);
goto out;
}
ioc->hi_priority_smid = ioc->scsiio_depth + 1;
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"hi_priority(0x%p): depth(%d), start smid(%d)\n",
ioc->name, ioc->hi_priority,
ioc->hi_priority_depth, ioc->hi_priority_smid));
/* initialize internal queue smid's */
ioc->internal_lookup = kcalloc(ioc->internal_depth,
sizeof(struct request_tracker), GFP_KERNEL);
if (!ioc->internal_lookup) {
pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
ioc->name);
goto out;
}
ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"internal(0x%p): depth(%d), start smid(%d)\n",
ioc->name, ioc->internal,
ioc->internal_depth, ioc->internal_smid));
/*
* The number of NVMe page sized blocks needed is:
* (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
* ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
* that is placed in the main message frame. 8 is the size of each PRP
* entry or PRP list pointer entry. 8 is subtracted from page_size
* because of the PRP list pointer entry at the end of a page, so this
* is not counted as a PRP entry. The 1 added page is a round up.
*
* To avoid allocation failures due to the amount of memory that could
* be required for NVMe PRP's, only each set of NVMe blocks will be
* contiguous, so a new set is allocated for each possible I/O.
*/
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
nvme_blocks_needed =
(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
nvme_blocks_needed++;
sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
if (!ioc->pcie_sg_lookup) {
pr_info(MPT3SAS_FMT
"PCIe SGL lookup: kzalloc failed\n", ioc->name);
goto out;
}
sz = nvme_blocks_needed * ioc->page_size;
ioc->pcie_sgl_dma_pool =
dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
if (!ioc->pcie_sgl_dma_pool) {
pr_info(MPT3SAS_FMT
"PCIe SGL pool: dma_pool_create failed\n",
ioc->name);
goto out;
}
for (i = 0; i < ioc->scsiio_depth; i++) {
ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
ioc->pcie_sgl_dma_pool, GFP_KERNEL,
&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
pr_info(MPT3SAS_FMT
"PCIe SGL pool: dma_pool_alloc failed\n",
ioc->name);
goto out;
}
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
"element_size(%d), pool_size(%d kB)\n", ioc->name,
ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
total_sz += sz * ioc->scsiio_depth;
}
/* sense buffers, 4 byte align */
sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4, 0);
if (!ioc->sense_dma_pool) {
pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
ioc->name);
goto out;
}
ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
&ioc->sense_dma);
if (!ioc->sense) {
pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
ioc->name);
goto out;
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"sense pool(0x%p): depth(%d), element_size(%d), pool_size"
"(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
SCSI_SENSE_BUFFERSIZE, sz/1024));
dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
ioc->name, (unsigned long long)ioc->sense_dma));
total_sz += sz;
/* reply pool, 4 byte align */
sz = ioc->reply_free_queue_depth * ioc->reply_sz;
ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4, 0);
if (!ioc->reply_dma_pool) {
pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
ioc->name);
goto out;
}
ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
&ioc->reply_dma);
if (!ioc->reply) {
pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
ioc->name);
goto out;
}
ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
ioc->name, ioc->reply,
ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
ioc->name, (unsigned long long)ioc->reply_dma));
total_sz += sz;
/* reply free queue, 16 byte align */
sz = ioc->reply_free_queue_depth * 4;
ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
&ioc->pdev->dev, sz, 16, 0);
if (!ioc->reply_free_dma_pool) {
pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
ioc->name);
goto out;
}
ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
&ioc->reply_free_dma);
if (!ioc->reply_free) {
pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
ioc->name);
goto out;
}
memset(ioc->reply_free, 0, sz);
dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
"depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_free_dma (0x%llx)\n",
ioc->name, (unsigned long long)ioc->reply_free_dma));
total_sz += sz;
ioc->config_page_sz = 512;
ioc->config_page = pci_alloc_consistent(ioc->pdev,
ioc->config_page_sz, &ioc->config_page_dma);
if (!ioc->config_page) {
pr_err(MPT3SAS_FMT
"config page: dma_pool_alloc failed\n",
ioc->name);
goto out;
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"config page(0x%p): size(%d)\n",
ioc->name, ioc->config_page, ioc->config_page_sz));
dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
ioc->name, (unsigned long long)ioc->config_page_dma));
total_sz += ioc->config_page_sz;
pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
ioc->name, total_sz/1024);
pr_info(MPT3SAS_FMT
"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
ioc->name, ioc->shost->can_queue, facts->RequestCredit);
pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
ioc->name, ioc->shost->sg_tablesize);
return 0;
out:
return -ENOMEM;
}
/**
* mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
* @ioc: Pointer to MPT_ADAPTER structure
* @cooked: Request raw or cooked IOC state
*
* Returns all IOC Doorbell register bits if cooked==0, else just the
* Doorbell bits in MPI_IOC_STATE_MASK.
*/
u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
{
u32 s, sc;
s = readl(&ioc->chip->Doorbell);
sc = s & MPI2_IOC_STATE_MASK;
return cooked ? sc : s;
}
/**
* _base_wait_on_iocstate - waiting on a particular ioc state
* @ioc_state: controller state { READY, OPERATIONAL, or RESET }
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
{
u32 count, cntdn;
u32 current_state;
count = 0;
cntdn = 1000 * timeout;
do {
current_state = mpt3sas_base_get_iocstate(ioc, 1);
if (current_state == ioc_state)
return 0;
if (count && current_state == MPI2_IOC_STATE_FAULT)
break;
usleep_range(1000, 1500);
count++;
} while (--cntdn);
return current_state;
}
/**
* _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
* a write to the doorbell)
* @ioc: per adapter object
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*
* Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
*/
static int
_base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 int_status;
count = 0;
cntdn = 1000 * timeout;
do {
int_status = readl(&ioc->chip->HostInterruptStatus);
if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"%s: successful count(%d), timeout(%d)\n",
ioc->name, __func__, count, timeout));
return 0;
}
usleep_range(1000, 1500);
count++;
} while (--cntdn);
pr_err(MPT3SAS_FMT
"%s: failed due to timeout count(%d), int_status(%x)!\n",
ioc->name, __func__, count, int_status);
return -EFAULT;
}
static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 int_status;
count = 0;
cntdn = 2000 * timeout;
do {
int_status = readl(&ioc->chip->HostInterruptStatus);
if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"%s: successful count(%d), timeout(%d)\n",
ioc->name, __func__, count, timeout));
return 0;
}
udelay(500);
count++;
} while (--cntdn);
pr_err(MPT3SAS_FMT
"%s: failed due to timeout count(%d), int_status(%x)!\n",
ioc->name, __func__, count, int_status);
return -EFAULT;
}
/**
* _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
* @ioc: per adapter object
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*
* Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
* doorbell.
*/
static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 int_status;
u32 doorbell;
count = 0;
cntdn = 1000 * timeout;
do {
int_status = readl(&ioc->chip->HostInterruptStatus);
if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"%s: successful count(%d), timeout(%d)\n",
ioc->name, __func__, count, timeout));
return 0;
} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
doorbell = readl(&ioc->chip->Doorbell);
if ((doorbell & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_FAULT) {
mpt3sas_base_fault_info(ioc , doorbell);
return -EFAULT;
}
} else if (int_status == 0xFFFFFFFF)
goto out;
usleep_range(1000, 1500);
count++;
} while (--cntdn);
out:
pr_err(MPT3SAS_FMT
"%s: failed due to timeout count(%d), int_status(%x)!\n",
ioc->name, __func__, count, int_status);
return -EFAULT;
}
/**
* _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
* @ioc: per adapter object
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*
*/
static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 doorbell_reg;
count = 0;
cntdn = 1000 * timeout;
do {
doorbell_reg = readl(&ioc->chip->Doorbell);
if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"%s: successful count(%d), timeout(%d)\n",
ioc->name, __func__, count, timeout));
return 0;
}
usleep_range(1000, 1500);
count++;
} while (--cntdn);
pr_err(MPT3SAS_FMT
"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
ioc->name, __func__, count, doorbell_reg);
return -EFAULT;
}
/**
* _base_send_ioc_reset - send doorbell reset
* @ioc: per adapter object
* @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
{
u32 ioc_state;
int r = 0;
if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
ioc->name, __func__);
return -EFAULT;
}
if (!(ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
return -EFAULT;
pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
&ioc->chip->Doorbell);
if ((_base_wait_for_doorbell_ack(ioc, 15))) {
r = -EFAULT;
goto out;
}
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
if (ioc_state) {
pr_err(MPT3SAS_FMT
"%s: failed going to ready state (ioc_state=0x%x)\n",
ioc->name, __func__, ioc_state);
r = -EFAULT;
goto out;
}
out:
pr_info(MPT3SAS_FMT "message unit reset: %s\n",
ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
return r;
}
/**
* _base_handshake_req_reply_wait - send request thru doorbell interface
* @ioc: per adapter object
* @request_bytes: request length
* @request: pointer having request payload
* @reply_bytes: reply length
* @reply: pointer to reply payload
* @timeout: timeout in second
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
u32 *request, int reply_bytes, u16 *reply, int timeout)
{
MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
int i;
u8 failed;
__le32 *mfp;
/* make sure doorbell is not in use */
if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
pr_err(MPT3SAS_FMT
"doorbell is in use (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
/* clear pending doorbell interrupts from previous state changes */
if (readl(&ioc->chip->HostInterruptStatus) &
MPI2_HIS_IOC2SYS_DB_STATUS)
writel(0, &ioc->chip->HostInterruptStatus);
/* send message to ioc */
writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
&ioc->chip->Doorbell);
if ((_base_spin_on_doorbell_int(ioc, 5))) {
pr_err(MPT3SAS_FMT
"doorbell handshake int failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
writel(0, &ioc->chip->HostInterruptStatus);
if ((_base_wait_for_doorbell_ack(ioc, 5))) {
pr_err(MPT3SAS_FMT
"doorbell handshake ack failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
/* send message 32-bits at a time */
for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
if ((_base_wait_for_doorbell_ack(ioc, 5)))
failed = 1;
}
if (failed) {
pr_err(MPT3SAS_FMT
"doorbell handshake sending request failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
/* now wait for the reply */
if ((_base_wait_for_doorbell_int(ioc, timeout))) {
pr_err(MPT3SAS_FMT
"doorbell handshake int failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
/* read the first two 16-bits, it gives the total length of the reply */
reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
if ((_base_wait_for_doorbell_int(ioc, 5))) {
pr_err(MPT3SAS_FMT
"doorbell handshake int failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
for (i = 2; i < default_reply->MsgLength * 2; i++) {
if ((_base_wait_for_doorbell_int(ioc, 5))) {
pr_err(MPT3SAS_FMT
"doorbell handshake int failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
if (i >= reply_bytes/2) /* overflow case */
readl(&ioc->chip->Doorbell);
else
reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
}
_base_wait_for_doorbell_int(ioc, 5);
if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
}
writel(0, &ioc->chip->HostInterruptStatus);
if (ioc->logging_level & MPT_DEBUG_INIT) {
mfp = (__le32 *)reply;
pr_info("\toffset:data\n");
for (i = 0; i < reply_bytes/4; i++)
pr_info("\t[0x%02x]:%08x\n", i*4,
le32_to_cpu(mfp[i]));
}
return 0;
}
/**
* mpt3sas_base_sas_iounit_control - send sas iounit control to FW
* @ioc: per adapter object
* @mpi_reply: the reply payload from FW
* @mpi_request: the request payload sent to FW
*
* The SAS IO Unit Control Request message allows the host to perform low-level
* operations, such as resets on the PHYs of the IO Unit, also allows the host
* to obtain the IOC assigned device handles for a device if it has other
* identifying information about the device, in addition allows the host to
* remove IOC resources associated with the device.
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
Mpi2SasIoUnitControlReply_t *mpi_reply,
Mpi2SasIoUnitControlRequest_t *mpi_request)
{
u16 smid;
u32 ioc_state;
bool issue_reset = false;
int rc;
void *request;
u16 wait_state_count;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
mutex_lock(&ioc->base_cmds.mutex);
if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
wait_state_count = 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
if (wait_state_count++ == 10) {
pr_err(MPT3SAS_FMT
"%s: failed due to ioc not operational\n",
ioc->name, __func__);
rc = -EFAULT;
goto out;
}
ssleep(1);
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
pr_info(MPT3SAS_FMT
"%s: waiting for operational state(count=%d)\n",
ioc->name, __func__, wait_state_count);
}
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->base_cmds.status = MPT3_CMD_PENDING;
request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
ioc->ioc_link_reset_in_progress = 1;
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->base_cmds.done,
msecs_to_jiffies(10000));
if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
ioc->ioc_link_reset_in_progress)
ioc->ioc_link_reset_in_progress = 0;
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
pr_err(MPT3SAS_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2SasIoUnitControlRequest_t)/4);
if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
issue_reset = true;
goto issue_host_reset;
}
if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
memcpy(mpi_reply, ioc->base_cmds.reply,
sizeof(Mpi2SasIoUnitControlReply_t));
else
memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
goto out;
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
rc = -EFAULT;
out:
mutex_unlock(&ioc->base_cmds.mutex);
return rc;
}
/**
* mpt3sas_base_scsi_enclosure_processor - sending request to sep device
* @ioc: per adapter object
* @mpi_reply: the reply payload from FW
* @mpi_request: the request payload sent to FW
*
* The SCSI Enclosure Processor request message causes the IOC to
* communicate with SES devices to control LED status signals.
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
{
u16 smid;
u32 ioc_state;
bool issue_reset = false;
int rc;
void *request;
u16 wait_state_count;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
mutex_lock(&ioc->base_cmds.mutex);
if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
wait_state_count = 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
if (wait_state_count++ == 10) {
pr_err(MPT3SAS_FMT
"%s: failed due to ioc not operational\n",
ioc->name, __func__);
rc = -EFAULT;
goto out;
}
ssleep(1);
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
pr_info(MPT3SAS_FMT
"%s: waiting for operational state(count=%d)\n",
ioc->name,
__func__, wait_state_count);
}
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->base_cmds.status = MPT3_CMD_PENDING;
request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->base_cmds.done,
msecs_to_jiffies(10000));
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
pr_err(MPT3SAS_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2SepRequest_t)/4);
if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
issue_reset = false;
goto issue_host_reset;
}
if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
memcpy(mpi_reply, ioc->base_cmds.reply,
sizeof(Mpi2SepReply_t));
else
memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
goto out;
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
rc = -EFAULT;
out:
mutex_unlock(&ioc->base_cmds.mutex);
return rc;
}
/**
* _base_get_port_facts - obtain port facts reply and save in ioc
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
{
Mpi2PortFactsRequest_t mpi_request;
Mpi2PortFactsReply_t mpi_reply;
struct mpt3sas_port_facts *pfacts;
int mpi_reply_sz, mpi_request_sz, r;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
memset(&mpi_request, 0, mpi_request_sz);
mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
mpi_request.PortNumber = port;
r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
(u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
if (r != 0) {
pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
ioc->name, __func__, r);
return r;
}
pfacts = &ioc->pfacts[port];
memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
pfacts->PortNumber = mpi_reply.PortNumber;
pfacts->VP_ID = mpi_reply.VP_ID;
pfacts->VF_ID = mpi_reply.VF_ID;
pfacts->MaxPostedCmdBuffers =
le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
return 0;
}
/**
* _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
* @ioc: per adapter object
* @timeout:
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 ioc_state;
int rc;
dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
if (ioc->pci_error_recovery) {
dfailprintk(ioc, printk(MPT3SAS_FMT
"%s: host in pci error recovery\n", ioc->name, __func__));
return -EFAULT;
}
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
ioc->name, __func__, ioc_state));
if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
(ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
return 0;
if (ioc_state & MPI2_DOORBELL_USED) {
dhsprintk(ioc, printk(MPT3SAS_FMT
"unexpected doorbell active!\n", ioc->name));
goto issue_diag_reset;
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_base_fault_info(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
goto issue_diag_reset;
}
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
if (ioc_state) {
dfailprintk(ioc, printk(MPT3SAS_FMT
"%s: failed going to ready state (ioc_state=0x%x)\n",
ioc->name, __func__, ioc_state));
return -EFAULT;
}
issue_diag_reset:
rc = _base_diag_reset(ioc);
return rc;
}
/**
* _base_get_ioc_facts - obtain ioc facts reply and save in ioc
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2IOCFactsRequest_t mpi_request;
Mpi2IOCFactsReply_t mpi_reply;
struct mpt3sas_facts *facts;
int mpi_reply_sz, mpi_request_sz, r;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
r = _base_wait_for_iocstate(ioc, 10);
if (r) {
dfailprintk(ioc, printk(MPT3SAS_FMT
"%s: failed getting to correct state\n",
ioc->name, __func__));
return r;
}
mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
memset(&mpi_request, 0, mpi_request_sz);
mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
(u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
if (r != 0) {
pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
ioc->name, __func__, r);
return r;
}
facts = &ioc->facts;
memset(facts, 0, sizeof(struct mpt3sas_facts));
facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
facts->VP_ID = mpi_reply.VP_ID;
facts->VF_ID = mpi_reply.VF_ID;
facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
facts->MaxChainDepth = mpi_reply.MaxChainDepth;
facts->WhoInit = mpi_reply.WhoInit;
facts->NumberOfPorts = mpi_reply.NumberOfPorts;
facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
facts->MaxReplyDescriptorPostQueueDepth =
le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
ioc->ir_firmware = 1;
if ((facts->IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
ioc->rdpq_array_capable = 1;
if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
ioc->atomic_desc_capable = 1;
facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
facts->IOCRequestFrameSize =
le16_to_cpu(mpi_reply.IOCRequestFrameSize);
if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
facts->IOCMaxChainSegmentSize =
le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
}
facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
ioc->shost->max_id = -1;
facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
facts->HighPriorityCredit =
le16_to_cpu(mpi_reply.HighPriorityCredit);
facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
/*
* Get the Page Size from IOC Facts. If it's 0, default to 4k.
*/
ioc->page_size = 1 << facts->CurrentHostPageSize;
if (ioc->page_size == 1) {
pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
"default host page size to 4k\n", ioc->name);
ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
ioc->name, facts->CurrentHostPageSize));
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"hba queue depth(%d), max chains per io(%d)\n",
ioc->name, facts->RequestCredit,
facts->MaxChainDepth));
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"request frame size(%d), reply frame size(%d)\n", ioc->name,
facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
return 0;
}
/**
* _base_send_ioc_init - send ioc_init to firmware
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2IOCInitRequest_t mpi_request;
Mpi2IOCInitReply_t mpi_reply;
int i, r = 0;
ktime_t current_time;
u16 ioc_status;
u32 reply_post_free_array_sz = 0;
Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
dma_addr_t reply_post_free_array_dma;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
mpi_request.VF_ID = 0; /* TODO */
mpi_request.VP_ID = 0;
mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
if (_base_is_controller_msix_enabled(ioc))
mpi_request.HostMSIxVectors = ioc->reply_queue_count;
mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
mpi_request.ReplyDescriptorPostQueueDepth =
cpu_to_le16(ioc->reply_post_queue_depth);
mpi_request.ReplyFreeQueueDepth =
cpu_to_le16(ioc->reply_free_queue_depth);
mpi_request.SenseBufferAddressHigh =
cpu_to_le32((u64)ioc->sense_dma >> 32);
mpi_request.SystemReplyAddressHigh =
cpu_to_le32((u64)ioc->reply_dma >> 32);
mpi_request.SystemRequestFrameBaseAddress =
cpu_to_le64((u64)ioc->request_dma);
mpi_request.ReplyFreeQueueAddress =
cpu_to_le64((u64)ioc->reply_free_dma);
if (ioc->rdpq_array_enable) {
reply_post_free_array_sz = ioc->reply_queue_count *
sizeof(Mpi2IOCInitRDPQArrayEntry);
reply_post_free_array = pci_alloc_consistent(ioc->pdev,
reply_post_free_array_sz, &reply_post_free_array_dma);
if (!reply_post_free_array) {
pr_err(MPT3SAS_FMT
"reply_post_free_array: pci_alloc_consistent failed\n",
ioc->name);
r = -ENOMEM;
goto out;
}
memset(reply_post_free_array, 0, reply_post_free_array_sz);
for (i = 0; i < ioc->reply_queue_count; i++)
reply_post_free_array[i].RDPQBaseAddress =
cpu_to_le64(
(u64)ioc->reply_post[i].reply_post_free_dma);
mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
mpi_request.ReplyDescriptorPostQueueAddress =
cpu_to_le64((u64)reply_post_free_array_dma);
} else {
mpi_request.ReplyDescriptorPostQueueAddress =
cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
}
/* This time stamp specifies number of milliseconds
* since epoch ~ midnight January 1, 1970.
*/
current_time = ktime_get_real();
mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
if (ioc->logging_level & MPT_DEBUG_INIT) {
__le32 *mfp;
int i;
mfp = (__le32 *)&mpi_request;
pr_info("\toffset:data\n");
for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
pr_info("\t[0x%02x]:%08x\n", i*4,
le32_to_cpu(mfp[i]));
}
r = _base_handshake_req_reply_wait(ioc,
sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
if (r != 0) {
pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
ioc->name, __func__, r);
goto out;
}
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
mpi_reply.IOCLogInfo) {
pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
r = -EIO;
}
out:
if (reply_post_free_array)
pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
reply_post_free_array,
reply_post_free_array_dma);
return r;
}
/**
* mpt3sas_port_enable_done - command completion routine for port enable
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
u16 ioc_status;
if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
return 1;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (!mpi_reply)
return 1;
if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
return 1;
ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
ioc->port_enable_failed = 1;
if (ioc->is_driver_loading) {
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
mpt3sas_port_enable_complete(ioc);
return 1;
} else {
ioc->start_scan_failed = ioc_status;
ioc->start_scan = 0;
return 1;
}
}
complete(&ioc->port_enable_cmds.done);
return 1;
}
/**
* _base_send_port_enable - send port_enable(discovery stuff) to firmware
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2PortEnableRequest_t *mpi_request;
Mpi2PortEnableReply_t *mpi_reply;
int r = 0;
u16 smid;
u16 ioc_status;
pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
ioc->name, __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
return -EAGAIN;
}
ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->port_enable_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
init_completion(&ioc->port_enable_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
pr_err(MPT3SAS_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2PortEnableRequest_t)/4);
if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
r = -EFAULT;
else
r = -ETIME;
goto out;
}
mpi_reply = ioc->port_enable_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
ioc->name, __func__, ioc_status);
r = -EFAULT;
goto out;
}
out:
ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
"SUCCESS" : "FAILED"));
return r;
}
/**
* mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2PortEnableRequest_t *mpi_request;
u16 smid;
pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
ioc->name, __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
return -EAGAIN;
}
ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->port_enable_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
ioc->put_smid_default(ioc, smid);
return 0;
}
/**
* _base_determine_wait_on_discovery - desposition
* @ioc: per adapter object
*
* Decide whether to wait on discovery to complete. Used to either
* locate boot device, or report volumes ahead of physical devices.
*
* Returns 1 for wait, 0 for don't wait
*/
static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
{
/* We wait for discovery to complete if IR firmware is loaded.
* The sas topology events arrive before PD events, so we need time to
* turn on the bit in ioc->pd_handles to indicate PD
* Also, it maybe required to report Volumes ahead of physical
* devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
*/
if (ioc->ir_firmware)
return 1;
/* if no Bios, then we don't need to wait */
if (!ioc->bios_pg3.BiosVersion)
return 0;
/* Bios is present, then we drop down here.
*
* If there any entries in the Bios Page 2, then we wait
* for discovery to complete.
*/
/* Current Boot Device */
if ((ioc->bios_pg2.CurrentBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
/* Request Boot Device */
(ioc->bios_pg2.ReqBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
/* Alternate Request Boot Device */
(ioc->bios_pg2.ReqAltBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
return 0;
return 1;
}
/**
* _base_unmask_events - turn on notification for this event
* @ioc: per adapter object
* @event: firmware event
*
* The mask is stored in ioc->event_masks.
*/
static void
_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
{
u32 desired_event;
if (event >= 128)
return;
desired_event = (1 << (event % 32));
if (event < 32)
ioc->event_masks[0] &= ~desired_event;
else if (event < 64)
ioc->event_masks[1] &= ~desired_event;
else if (event < 96)
ioc->event_masks[2] &= ~desired_event;
else if (event < 128)
ioc->event_masks[3] &= ~desired_event;
}
/**
* _base_event_notification - send event notification
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_event_notification(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2EventNotificationRequest_t *mpi_request;
u16 smid;
int r = 0;
int i;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
ioc->name, __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
return -EAGAIN;
}
ioc->base_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
mpi_request->VF_ID = 0; /* TODO */
mpi_request->VP_ID = 0;
for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
mpi_request->EventMasks[i] =
cpu_to_le32(ioc->event_masks[i]);
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
pr_err(MPT3SAS_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2EventNotificationRequest_t)/4);
if (ioc->base_cmds.status & MPT3_CMD_RESET)
r = -EFAULT;
else
r = -ETIME;
} else
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
ioc->name, __func__));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
return r;
}
/**
* mpt3sas_base_validate_event_type - validating event types
* @ioc: per adapter object
* @event: firmware event
*
* This will turn on firmware event notification when application
* ask for that event. We don't mask events that are already enabled.
*/
void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
{
int i, j;
u32 event_mask, desired_event;
u8 send_update_to_fw;
for (i = 0, send_update_to_fw = 0; i <
MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
event_mask = ~event_type[i];
desired_event = 1;
for (j = 0; j < 32; j++) {
if (!(event_mask & desired_event) &&
(ioc->event_masks[i] & desired_event)) {
ioc->event_masks[i] &= ~desired_event;
send_update_to_fw = 1;
}
desired_event = (desired_event << 1);
}
}
if (!send_update_to_fw)
return;
mutex_lock(&ioc->base_cmds.mutex);
_base_event_notification(ioc);
mutex_unlock(&ioc->base_cmds.mutex);
}
/**
* _base_diag_reset - the "big hammer" start of day reset
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
{
u32 host_diagnostic;
u32 ioc_state;
u32 count;
u32 hcb_size;
pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
ioc->name));
count = 0;
do {
/* Write magic sequence to WriteSequence register
* Loop until in diagnostic mode
*/
drsprintk(ioc, pr_info(MPT3SAS_FMT
"write magic sequence\n", ioc->name));
writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
/* wait 100 msec */
msleep(100);
if (count++ > 20)
goto out;
host_diagnostic = readl(&ioc->chip->HostDiagnostic);
drsprintk(ioc, pr_info(MPT3SAS_FMT
"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
ioc->name, count, host_diagnostic));
} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
hcb_size = readl(&ioc->chip->HCBSize);
drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
ioc->name));
writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
&ioc->chip->HostDiagnostic);
/*This delay allows the chip PCIe hardware time to finish reset tasks*/
msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
/* Approximately 300 second max wait */
for (count = 0; count < (300000000 /
MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
host_diagnostic = readl(&ioc->chip->HostDiagnostic);
if (host_diagnostic == 0xFFFFFFFF)
goto out;
if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
break;
msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
}
if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
drsprintk(ioc, pr_info(MPT3SAS_FMT
"restart the adapter assuming the HCB Address points to good F/W\n",
ioc->name));
host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
writel(host_diagnostic, &ioc->chip->HostDiagnostic);
drsprintk(ioc, pr_info(MPT3SAS_FMT
"re-enable the HCDW\n", ioc->name));
writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
&ioc->chip->HCBSize);
}
drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
ioc->name));
writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
&ioc->chip->HostDiagnostic);
drsprintk(ioc, pr_info(MPT3SAS_FMT
"disable writes to the diagnostic register\n", ioc->name));
writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
drsprintk(ioc, pr_info(MPT3SAS_FMT
"Wait for FW to go to the READY state\n", ioc->name));
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
if (ioc_state) {
pr_err(MPT3SAS_FMT
"%s: failed going to ready state (ioc_state=0x%x)\n",
ioc->name, __func__, ioc_state);
goto out;
}
pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
return 0;
out:
pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
return -EFAULT;
}
/**
* _base_make_ioc_ready - put controller in READY state
* @ioc: per adapter object
* @type: FORCE_BIG_HAMMER or SOFT_RESET
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
{
u32 ioc_state;
int rc;
int count;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
if (ioc->pci_error_recovery)
return 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
ioc->name, __func__, ioc_state));
/* if in RESET state, it should move to READY state shortly */
count = 0;
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
while ((ioc_state & MPI2_IOC_STATE_MASK) !=
MPI2_IOC_STATE_READY) {
if (count++ == 10) {
pr_err(MPT3SAS_FMT
"%s: failed going to ready state (ioc_state=0x%x)\n",
ioc->name, __func__, ioc_state);
return -EFAULT;
}
ssleep(1);
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
}
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
return 0;
if (ioc_state & MPI2_DOORBELL_USED) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"unexpected doorbell active!\n",
ioc->name));
goto issue_diag_reset;
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_base_fault_info(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
goto issue_diag_reset;
}
if (type == FORCE_BIG_HAMMER)
goto issue_diag_reset;
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
if (!(_base_send_ioc_reset(ioc,
MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
return 0;
}
issue_diag_reset:
rc = _base_diag_reset(ioc);
return rc;
}
/**
* _base_make_ioc_operational - put controller in OPERATIONAL state
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
{
int r, i, index;
unsigned long flags;
u32 reply_address;
u16 smid;
struct _tr_list *delayed_tr, *delayed_tr_next;
struct _sc_list *delayed_sc, *delayed_sc_next;
struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
u8 hide_flag;
struct adapter_reply_queue *reply_q;
Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
/* clean the delayed target reset list */
list_for_each_entry_safe(delayed_tr, delayed_tr_next,
&ioc->delayed_tr_list, list) {
list_del(&delayed_tr->list);
kfree(delayed_tr);
}
list_for_each_entry_safe(delayed_tr, delayed_tr_next,
&ioc->delayed_tr_volume_list, list) {
list_del(&delayed_tr->list);
kfree(delayed_tr);
}
list_for_each_entry_safe(delayed_sc, delayed_sc_next,
&ioc->delayed_sc_list, list) {
list_del(&delayed_sc->list);
kfree(delayed_sc);
}
list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
&ioc->delayed_event_ack_list, list) {
list_del(&delayed_event_ack->list);
kfree(delayed_event_ack);
}
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
/* hi-priority queue */
INIT_LIST_HEAD(&ioc->hpr_free_list);
smid = ioc->hi_priority_smid;
for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
ioc->hpr_lookup[i].cb_idx = 0xFF;
ioc->hpr_lookup[i].smid = smid;
list_add_tail(&ioc->hpr_lookup[i].tracker_list,
&ioc->hpr_free_list);
}
/* internal queue */
INIT_LIST_HEAD(&ioc->internal_free_list);
smid = ioc->internal_smid;
for (i = 0; i < ioc->internal_depth; i++, smid++) {
ioc->internal_lookup[i].cb_idx = 0xFF;
ioc->internal_lookup[i].smid = smid;
list_add_tail(&ioc->internal_lookup[i].tracker_list,
&ioc->internal_free_list);
}
/* chain pool */
INIT_LIST_HEAD(&ioc->free_chain_list);
for (i = 0; i < ioc->chain_depth; i++)
list_add_tail(&ioc->chain_lookup[i].tracker_list,
&ioc->free_chain_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
/* initialize Reply Free Queue */
for (i = 0, reply_address = (u32)ioc->reply_dma ;
i < ioc->reply_free_queue_depth ; i++, reply_address +=
ioc->reply_sz)
ioc->reply_free[i] = cpu_to_le32(reply_address);
/* initialize reply queues */
if (ioc->is_driver_loading)
_base_assign_reply_queues(ioc);
/* initialize Reply Post Free Queue */
index = 0;
reply_post_free_contig = ioc->reply_post[0].reply_post_free;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
/*
* If RDPQ is enabled, switch to the next allocation.
* Otherwise advance within the contiguous region.
*/
if (ioc->rdpq_array_enable) {
reply_q->reply_post_free =
ioc->reply_post[index++].reply_post_free;
} else {
reply_q->reply_post_free = reply_post_free_contig;
reply_post_free_contig += ioc->reply_post_queue_depth;
}
reply_q->reply_post_host_index = 0;
for (i = 0; i < ioc->reply_post_queue_depth; i++)
reply_q->reply_post_free[i].Words =
cpu_to_le64(ULLONG_MAX);
if (!_base_is_controller_msix_enabled(ioc))
goto skip_init_reply_post_free_queue;
}
skip_init_reply_post_free_queue:
r = _base_send_ioc_init(ioc);
if (r)
return r;
/* initialize reply free host index */
ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
/* initialize reply post host index */
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
if (ioc->combined_reply_queue)
writel((reply_q->msix_index & 7)<<
MPI2_RPHI_MSIX_INDEX_SHIFT,
ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
else
writel(reply_q->msix_index <<
MPI2_RPHI_MSIX_INDEX_SHIFT,
&ioc->chip->ReplyPostHostIndex);
if (!_base_is_controller_msix_enabled(ioc))
goto skip_init_reply_post_host_index;
}
skip_init_reply_post_host_index:
_base_unmask_interrupts(ioc);
r = _base_event_notification(ioc);
if (r)
return r;
_base_static_config_pages(ioc);
if (ioc->is_driver_loading) {
if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
== 0x80) {
hide_flag = (u8) (
le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
MFG_PAGE10_HIDE_SSDS_MASK);
if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
ioc->mfg_pg10_hide_flag = hide_flag;
}
ioc->wait_for_discovery_to_complete =
_base_determine_wait_on_discovery(ioc);
return r; /* scan_start and scan_finished support */
}
r = _base_send_port_enable(ioc);
if (r)
return r;
return r;
}
/**
* mpt3sas_base_free_resources - free resources controller resources
* @ioc: per adapter object
*
* Return nothing.
*/
void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
{
dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
/* synchronizing freeing resource with pci_access_mutex lock */
mutex_lock(&ioc->pci_access_mutex);
if (ioc->chip_phys && ioc->chip) {
_base_mask_interrupts(ioc);
ioc->shost_recovery = 1;
_base_make_ioc_ready(ioc, SOFT_RESET);
ioc->shost_recovery = 0;
}
mpt3sas_base_unmap_resources(ioc);
mutex_unlock(&ioc->pci_access_mutex);
return;
}
/**
* mpt3sas_base_attach - attach controller instance
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
{
int r, i;
int cpu_id, last_cpu_id = 0;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
/* setup cpu_msix_table */
ioc->cpu_count = num_online_cpus();
for_each_online_cpu(cpu_id)
last_cpu_id = cpu_id;
ioc->cpu_msix_table_sz = last_cpu_id + 1;
ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
ioc->reply_queue_count = 1;
if (!ioc->cpu_msix_table) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT
"allocation for cpu_msix_table failed!!!\n",
ioc->name));
r = -ENOMEM;
goto out_free_resources;
}
if (ioc->is_warpdrive) {
ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
sizeof(resource_size_t *), GFP_KERNEL);
if (!ioc->reply_post_host_index) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
"for reply_post_host_index failed!!!\n",
ioc->name));
r = -ENOMEM;
goto out_free_resources;
}
}
ioc->rdpq_array_enable_assigned = 0;
ioc->dma_mask = 0;
r = mpt3sas_base_map_resources(ioc);
if (r)
goto out_free_resources;
pci_set_drvdata(ioc->pdev, ioc->shost);
r = _base_get_ioc_facts(ioc);
if (r)
goto out_free_resources;
switch (ioc->hba_mpi_version_belonged) {
case MPI2_VERSION:
ioc->build_sg_scmd = &_base_build_sg_scmd;
ioc->build_sg = &_base_build_sg;
ioc->build_zero_len_sge = &_base_build_zero_len_sge;
break;
case MPI25_VERSION:
case MPI26_VERSION:
/*
* In SAS3.0,
* SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
* Target Status - all require the IEEE formated scatter gather
* elements.
*/
ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
ioc->build_sg = &_base_build_sg_ieee;
ioc->build_nvme_prp = &_base_build_nvme_prp;
ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
break;
}
if (ioc->atomic_desc_capable) {
ioc->put_smid_default = &_base_put_smid_default_atomic;
ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
ioc->put_smid_nvme_encap = &_base_put_smid_nvme_encap_atomic;
} else {
ioc->put_smid_default = &_base_put_smid_default;
ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
ioc->put_smid_fast_path = &_base_put_smid_fast_path;
ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
ioc->put_smid_nvme_encap = &_base_put_smid_nvme_encap;
}
/*
* These function pointers for other requests that don't
* the require IEEE scatter gather elements.
*
* For example Configuration Pages and SAS IOUNIT Control don't.
*/
ioc->build_sg_mpi = &_base_build_sg;
ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
r = _base_make_ioc_ready(ioc, SOFT_RESET);
if (r)
goto out_free_resources;
ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
if (!ioc->pfacts) {
r = -ENOMEM;
goto out_free_resources;
}
for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
r = _base_get_port_facts(ioc, i);
if (r)
goto out_free_resources;
}
r = _base_allocate_memory_pools(ioc);
if (r)
goto out_free_resources;
init_waitqueue_head(&ioc->reset_wq);
/* allocate memory pd handle bitmask list */
ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
if (ioc->facts.MaxDevHandle % 8)
ioc->pd_handles_sz++;
ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
GFP_KERNEL);
if (!ioc->pd_handles) {
r = -ENOMEM;
goto out_free_resources;
}
ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
GFP_KERNEL);
if (!ioc->blocking_handles) {
r = -ENOMEM;
goto out_free_resources;
}
/* allocate memory for pending OS device add list */
ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
if (ioc->facts.MaxDevHandle % 8)
ioc->pend_os_device_add_sz++;
ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
GFP_KERNEL);
if (!ioc->pend_os_device_add)
goto out_free_resources;
ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
ioc->device_remove_in_progress =
kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
if (!ioc->device_remove_in_progress)
goto out_free_resources;
ioc->fwfault_debug = mpt3sas_fwfault_debug;
/* base internal command bits */
mutex_init(&ioc->base_cmds.mutex);
ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
/* port_enable command bits */
ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
/* transport internal command bits */
ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->transport_cmds.mutex);
/* scsih internal command bits */
ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->scsih_cmds.mutex);
/* task management internal command bits */
ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->tm_cmds.mutex);
/* config page internal command bits */
ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->config_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->config_cmds.mutex);
/* ctl module internal command bits */
ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->ctl_cmds.mutex);
if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
!ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
!ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
!ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
r = -ENOMEM;
goto out_free_resources;
}
for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
ioc->event_masks[i] = -1;
/* here we enable the events we care about */
_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
if (ioc->is_gen35_ioc) {
_base_unmask_events(ioc,
MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
_base_unmask_events(ioc,
MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
}
}
r = _base_make_ioc_operational(ioc);
if (r)
goto out_free_resources;
ioc->non_operational_loop = 0;
ioc->got_task_abort_from_ioctl = 0;
return 0;
out_free_resources:
ioc->remove_host = 1;
mpt3sas_base_free_resources(ioc);
_base_release_memory_pools(ioc);
pci_set_drvdata(ioc->pdev, NULL);
kfree(ioc->cpu_msix_table);
if (ioc->is_warpdrive)
kfree(ioc->reply_post_host_index);
kfree(ioc->pd_handles);
kfree(ioc->blocking_handles);
kfree(ioc->device_remove_in_progress);
kfree(ioc->pend_os_device_add);
kfree(ioc->tm_cmds.reply);
kfree(ioc->transport_cmds.reply);
kfree(ioc->scsih_cmds.reply);
kfree(ioc->config_cmds.reply);
kfree(ioc->base_cmds.reply);
kfree(ioc->port_enable_cmds.reply);
kfree(ioc->ctl_cmds.reply);
kfree(ioc->ctl_cmds.sense);
kfree(ioc->pfacts);
ioc->ctl_cmds.reply = NULL;
ioc->base_cmds.reply = NULL;
ioc->tm_cmds.reply = NULL;
ioc->scsih_cmds.reply = NULL;
ioc->transport_cmds.reply = NULL;
ioc->config_cmds.reply = NULL;
ioc->pfacts = NULL;
return r;
}
/**
* mpt3sas_base_detach - remove controller instance
* @ioc: per adapter object
*
* Return nothing.
*/
void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
{
dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
mpt3sas_base_stop_watchdog(ioc);
mpt3sas_base_free_resources(ioc);
_base_release_memory_pools(ioc);
pci_set_drvdata(ioc->pdev, NULL);
kfree(ioc->cpu_msix_table);
if (ioc->is_warpdrive)
kfree(ioc->reply_post_host_index);
kfree(ioc->pd_handles);
kfree(ioc->blocking_handles);
kfree(ioc->device_remove_in_progress);
kfree(ioc->pend_os_device_add);
kfree(ioc->pfacts);
kfree(ioc->ctl_cmds.reply);
kfree(ioc->ctl_cmds.sense);
kfree(ioc->base_cmds.reply);
kfree(ioc->port_enable_cmds.reply);
kfree(ioc->tm_cmds.reply);
kfree(ioc->transport_cmds.reply);
kfree(ioc->scsih_cmds.reply);
kfree(ioc->config_cmds.reply);
}
/**
* _base_reset_handler - reset callback handler (for base)
* @ioc: per adapter object
* @reset_phase: phase
*
* The handler for doing any required cleanup or initialization.
*
* The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
* MPT3_IOC_DONE_RESET
*
* Return nothing.
*/
static void
_base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
{
mpt3sas_scsih_reset_handler(ioc, reset_phase);
mpt3sas_ctl_reset_handler(ioc, reset_phase);
switch (reset_phase) {
case MPT3_IOC_PRE_RESET:
dtmprintk(ioc, pr_info(MPT3SAS_FMT
"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
break;
case MPT3_IOC_AFTER_RESET:
dtmprintk(ioc, pr_info(MPT3SAS_FMT
"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
ioc->transport_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
complete(&ioc->transport_cmds.done);
}
if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
ioc->base_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
complete(&ioc->base_cmds.done);
}
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
ioc->port_enable_failed = 1;
ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
if (ioc->is_driver_loading) {
ioc->start_scan_failed =
MPI2_IOCSTATUS_INTERNAL_ERROR;
ioc->start_scan = 0;
ioc->port_enable_cmds.status =
MPT3_CMD_NOT_USED;
} else
complete(&ioc->port_enable_cmds.done);
}
if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
ioc->config_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
ioc->config_cmds.smid = USHRT_MAX;
complete(&ioc->config_cmds.done);
}
break;
case MPT3_IOC_DONE_RESET:
dtmprintk(ioc, pr_info(MPT3SAS_FMT
"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
break;
}
}
/**
* _wait_for_commands_to_complete - reset controller
* @ioc: Pointer to MPT_ADAPTER structure
*
* This function is waiting 10s for all pending commands to complete
* prior to putting controller in reset.
*/
static void
_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
{
u32 ioc_state;
ioc->pending_io_count = 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
return;
/* pending command count */
ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
if (!ioc->pending_io_count)
return;
/* wait for pending commands to complete */
wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
}
/**
* mpt3sas_base_hard_reset_handler - reset controller
* @ioc: Pointer to MPT_ADAPTER structure
* @type: FORCE_BIG_HAMMER or SOFT_RESET
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
enum reset_type type)
{
int r;
unsigned long flags;
u32 ioc_state;
u8 is_fault = 0, is_trigger = 0;
dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
__func__));
if (ioc->pci_error_recovery) {
pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
ioc->name, __func__);
r = 0;
goto out_unlocked;
}
if (mpt3sas_fwfault_debug)
mpt3sas_halt_firmware(ioc);
/* wait for an active reset in progress to complete */
if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
do {
ssleep(1);
} while (ioc->shost_recovery == 1);
dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
__func__));
return ioc->ioc_reset_in_progress_status;
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
ioc->shost_recovery = 1;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_REGISTERED) &&
(!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_RELEASED))) {
is_trigger = 1;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
is_fault = 1;
}
_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
_wait_for_commands_to_complete(ioc);
_base_mask_interrupts(ioc);
r = _base_make_ioc_ready(ioc, type);
if (r)
goto out;
_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
/* If this hard reset is called while port enable is active, then
* there is no reason to call make_ioc_operational
*/
if (ioc->is_driver_loading && ioc->port_enable_failed) {
ioc->remove_host = 1;
r = -EFAULT;
goto out;
}
r = _base_get_ioc_facts(ioc);
if (r)
goto out;
if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
panic("%s: Issue occurred with flashing controller firmware."
"Please reboot the system and ensure that the correct"
" firmware version is running\n", ioc->name);
r = _base_make_ioc_operational(ioc);
if (!r)
_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
out:
dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
ioc->ioc_reset_in_progress_status = r;
ioc->shost_recovery = 0;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
ioc->ioc_reset_count++;
mutex_unlock(&ioc->reset_in_progress_mutex);
out_unlocked:
if ((r == 0) && is_trigger) {
if (is_fault)
mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
else
mpt3sas_trigger_master(ioc,
MASTER_TRIGGER_ADAPTER_RESET);
}
dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
__func__));
return r;
}