OpenCloudOS-Kernel/fs/xfs/libxfs/xfs_inode_fork.c

830 lines
23 KiB
C

/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/log2.h>
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_bmap.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_attr_sf.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_dir2_priv.h"
kmem_zone_t *xfs_ifork_zone;
STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
/*
* Copy inode type and data and attr format specific information from the
* on-disk inode to the in-core inode and fork structures. For fifos, devices,
* and sockets this means set i_rdev to the proper value. For files,
* directories, and symlinks this means to bring in the in-line data or extent
* pointers as well as the attribute fork. For a fork in B-tree format, only
* the root is immediately brought in-core. The rest will be read in later when
* first referenced (see xfs_iread_extents()).
*/
int
xfs_iformat_fork(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct inode *inode = VFS_I(ip);
struct xfs_attr_shortform *atp;
int size;
int error = 0;
xfs_fsize_t di_size;
if (unlikely(be32_to_cpu(dip->di_nextents) +
be16_to_cpu(dip->di_anextents) >
be64_to_cpu(dip->di_nblocks))) {
xfs_warn(ip->i_mount,
"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
(unsigned long long)ip->i_ino,
(int)(be32_to_cpu(dip->di_nextents) +
be16_to_cpu(dip->di_anextents)),
(unsigned long long)
be64_to_cpu(dip->di_nblocks));
XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return -EFSCORRUPTED;
}
if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
(unsigned long long)ip->i_ino,
dip->di_forkoff);
XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return -EFSCORRUPTED;
}
if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
!ip->i_mount->m_rtdev_targp)) {
xfs_warn(ip->i_mount,
"corrupt dinode %Lu, has realtime flag set.",
ip->i_ino);
XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
XFS_ERRLEVEL_LOW, ip->i_mount, dip);
return -EFSCORRUPTED;
}
if (unlikely(xfs_is_reflink_inode(ip) && !S_ISREG(inode->i_mode))) {
xfs_warn(ip->i_mount,
"corrupt dinode %llu, wrong file type for reflink.",
ip->i_ino);
XFS_CORRUPTION_ERROR("xfs_iformat(reflink)",
XFS_ERRLEVEL_LOW, ip->i_mount, dip);
return -EFSCORRUPTED;
}
if (unlikely(xfs_is_reflink_inode(ip) &&
(ip->i_d.di_flags & XFS_DIFLAG_REALTIME))) {
xfs_warn(ip->i_mount,
"corrupt dinode %llu, has reflink+realtime flag set.",
ip->i_ino);
XFS_CORRUPTION_ERROR("xfs_iformat(reflink)",
XFS_ERRLEVEL_LOW, ip->i_mount, dip);
return -EFSCORRUPTED;
}
switch (inode->i_mode & S_IFMT) {
case S_IFIFO:
case S_IFCHR:
case S_IFBLK:
case S_IFSOCK:
if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return -EFSCORRUPTED;
}
ip->i_d.di_size = 0;
inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
break;
case S_IFREG:
case S_IFLNK:
case S_IFDIR:
switch (dip->di_format) {
case XFS_DINODE_FMT_LOCAL:
/*
* no local regular files yet
*/
if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
xfs_warn(ip->i_mount,
"corrupt inode %Lu (local format for regular file).",
(unsigned long long) ip->i_ino);
XFS_CORRUPTION_ERROR("xfs_iformat(4)",
XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return -EFSCORRUPTED;
}
di_size = be64_to_cpu(dip->di_size);
if (unlikely(di_size < 0 ||
di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
xfs_warn(ip->i_mount,
"corrupt inode %Lu (bad size %Ld for local inode).",
(unsigned long long) ip->i_ino,
(long long) di_size);
XFS_CORRUPTION_ERROR("xfs_iformat(5)",
XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return -EFSCORRUPTED;
}
size = (int)di_size;
error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
break;
case XFS_DINODE_FMT_EXTENTS:
error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
break;
case XFS_DINODE_FMT_BTREE:
error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
break;
default:
XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
ip->i_mount);
return -EFSCORRUPTED;
}
break;
default:
XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
return -EFSCORRUPTED;
}
if (error)
return error;
/* Check inline dir contents. */
if (S_ISDIR(inode->i_mode) && dip->di_format == XFS_DINODE_FMT_LOCAL) {
error = xfs_dir2_sf_verify(ip);
if (error) {
xfs_idestroy_fork(ip, XFS_DATA_FORK);
return error;
}
}
if (xfs_is_reflink_inode(ip)) {
ASSERT(ip->i_cowfp == NULL);
xfs_ifork_init_cow(ip);
}
if (!XFS_DFORK_Q(dip))
return 0;
ASSERT(ip->i_afp == NULL);
ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
switch (dip->di_aformat) {
case XFS_DINODE_FMT_LOCAL:
atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
size = be16_to_cpu(atp->hdr.totsize);
if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
xfs_warn(ip->i_mount,
"corrupt inode %Lu (bad attr fork size %Ld).",
(unsigned long long) ip->i_ino,
(long long) size);
XFS_CORRUPTION_ERROR("xfs_iformat(8)",
XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
error = -EFSCORRUPTED;
break;
}
error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
break;
case XFS_DINODE_FMT_EXTENTS:
error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
break;
case XFS_DINODE_FMT_BTREE:
error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
break;
default:
error = -EFSCORRUPTED;
break;
}
if (error) {
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
ip->i_afp = NULL;
if (ip->i_cowfp)
kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
ip->i_cowfp = NULL;
xfs_idestroy_fork(ip, XFS_DATA_FORK);
}
return error;
}
void
xfs_init_local_fork(
struct xfs_inode *ip,
int whichfork,
const void *data,
int size)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
int mem_size = size, real_size = 0;
bool zero_terminate;
/*
* If we are using the local fork to store a symlink body we need to
* zero-terminate it so that we can pass it back to the VFS directly.
* Overallocate the in-memory fork by one for that and add a zero
* to terminate it below.
*/
zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
if (zero_terminate)
mem_size++;
if (size) {
real_size = roundup(mem_size, 4);
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
memcpy(ifp->if_u1.if_data, data, size);
if (zero_terminate)
ifp->if_u1.if_data[size] = '\0';
} else {
ifp->if_u1.if_data = NULL;
}
ifp->if_bytes = size;
ifp->if_real_bytes = real_size;
ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT);
ifp->if_flags |= XFS_IFINLINE;
}
/*
* The file is in-lined in the on-disk inode.
*/
STATIC int
xfs_iformat_local(
xfs_inode_t *ip,
xfs_dinode_t *dip,
int whichfork,
int size)
{
/*
* If the size is unreasonable, then something
* is wrong and we just bail out rather than crash in
* kmem_alloc() or memcpy() below.
*/
if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
xfs_warn(ip->i_mount,
"corrupt inode %Lu (bad size %d for local fork, size = %d).",
(unsigned long long) ip->i_ino, size,
XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return -EFSCORRUPTED;
}
xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
return 0;
}
/*
* The file consists of a set of extents all of which fit into the on-disk
* inode.
*/
STATIC int
xfs_iformat_extents(
struct xfs_inode *ip,
struct xfs_dinode *dip,
int whichfork)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
int state = xfs_bmap_fork_to_state(whichfork);
int nex = XFS_DFORK_NEXTENTS(dip, whichfork);
int size = nex * sizeof(xfs_bmbt_rec_t);
struct xfs_iext_cursor icur;
struct xfs_bmbt_rec *dp;
struct xfs_bmbt_irec new;
int i;
/*
* If the number of extents is unreasonable, then something is wrong and
* we just bail out rather than crash in kmem_alloc() or memcpy() below.
*/
if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
(unsigned long long) ip->i_ino, nex);
XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
mp, dip);
return -EFSCORRUPTED;
}
ifp->if_real_bytes = 0;
ifp->if_bytes = 0;
ifp->if_u1.if_root = NULL;
ifp->if_height = 0;
if (size) {
dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
xfs_iext_first(ifp, &icur);
for (i = 0; i < nex; i++, dp++) {
xfs_bmbt_disk_get_all(dp, &new);
if (!xfs_bmbt_validate_extent(mp, whichfork, &new)) {
XFS_ERROR_REPORT("xfs_iformat_extents(2)",
XFS_ERRLEVEL_LOW, mp);
return -EFSCORRUPTED;
}
xfs_iext_insert(ip, &icur, &new, state);
trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
xfs_iext_next(ifp, &icur);
}
}
ifp->if_flags |= XFS_IFEXTENTS;
return 0;
}
/*
* The file has too many extents to fit into
* the inode, so they are in B-tree format.
* Allocate a buffer for the root of the B-tree
* and copy the root into it. The i_extents
* field will remain NULL until all of the
* extents are read in (when they are needed).
*/
STATIC int
xfs_iformat_btree(
xfs_inode_t *ip,
xfs_dinode_t *dip,
int whichfork)
{
struct xfs_mount *mp = ip->i_mount;
xfs_bmdr_block_t *dfp;
xfs_ifork_t *ifp;
/* REFERENCED */
int nrecs;
int size;
int level;
ifp = XFS_IFORK_PTR(ip, whichfork);
dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
size = XFS_BMAP_BROOT_SPACE(mp, dfp);
nrecs = be16_to_cpu(dfp->bb_numrecs);
level = be16_to_cpu(dfp->bb_level);
/*
* blow out if -- fork has less extents than can fit in
* fork (fork shouldn't be a btree format), root btree
* block has more records than can fit into the fork,
* or the number of extents is greater than the number of
* blocks.
*/
if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
XFS_IFORK_MAXEXT(ip, whichfork) ||
XFS_BMDR_SPACE_CALC(nrecs) >
XFS_DFORK_SIZE(dip, mp, whichfork) ||
XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) ||
level == 0 || level > XFS_BTREE_MAXLEVELS) {
xfs_warn(mp, "corrupt inode %Lu (btree).",
(unsigned long long) ip->i_ino);
XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
mp, dip);
return -EFSCORRUPTED;
}
ifp->if_broot_bytes = size;
ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
ASSERT(ifp->if_broot != NULL);
/*
* Copy and convert from the on-disk structure
* to the in-memory structure.
*/
xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
ifp->if_broot, size);
ifp->if_flags &= ~XFS_IFEXTENTS;
ifp->if_flags |= XFS_IFBROOT;
ifp->if_real_bytes = 0;
ifp->if_bytes = 0;
ifp->if_u1.if_root = NULL;
ifp->if_height = 0;
return 0;
}
/*
* Reallocate the space for if_broot based on the number of records
* being added or deleted as indicated in rec_diff. Move the records
* and pointers in if_broot to fit the new size. When shrinking this
* will eliminate holes between the records and pointers created by
* the caller. When growing this will create holes to be filled in
* by the caller.
*
* The caller must not request to add more records than would fit in
* the on-disk inode root. If the if_broot is currently NULL, then
* if we are adding records, one will be allocated. The caller must also
* not request that the number of records go below zero, although
* it can go to zero.
*
* ip -- the inode whose if_broot area is changing
* ext_diff -- the change in the number of records, positive or negative,
* requested for the if_broot array.
*/
void
xfs_iroot_realloc(
xfs_inode_t *ip,
int rec_diff,
int whichfork)
{
struct xfs_mount *mp = ip->i_mount;
int cur_max;
xfs_ifork_t *ifp;
struct xfs_btree_block *new_broot;
int new_max;
size_t new_size;
char *np;
char *op;
/*
* Handle the degenerate case quietly.
*/
if (rec_diff == 0) {
return;
}
ifp = XFS_IFORK_PTR(ip, whichfork);
if (rec_diff > 0) {
/*
* If there wasn't any memory allocated before, just
* allocate it now and get out.
*/
if (ifp->if_broot_bytes == 0) {
new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
ifp->if_broot_bytes = (int)new_size;
return;
}
/*
* If there is already an existing if_broot, then we need
* to realloc() it and shift the pointers to their new
* location. The records don't change location because
* they are kept butted up against the btree block header.
*/
cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
new_max = cur_max + rec_diff;
new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
KM_SLEEP | KM_NOFS);
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
ifp->if_broot_bytes);
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
(int)new_size);
ifp->if_broot_bytes = (int)new_size;
ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
XFS_IFORK_SIZE(ip, whichfork));
memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
return;
}
/*
* rec_diff is less than 0. In this case, we are shrinking the
* if_broot buffer. It must already exist. If we go to zero
* records, just get rid of the root and clear the status bit.
*/
ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
new_max = cur_max + rec_diff;
ASSERT(new_max >= 0);
if (new_max > 0)
new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
else
new_size = 0;
if (new_size > 0) {
new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
/*
* First copy over the btree block header.
*/
memcpy(new_broot, ifp->if_broot,
XFS_BMBT_BLOCK_LEN(ip->i_mount));
} else {
new_broot = NULL;
ifp->if_flags &= ~XFS_IFBROOT;
}
/*
* Only copy the records and pointers if there are any.
*/
if (new_max > 0) {
/*
* First copy the records.
*/
op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
/*
* Then copy the pointers.
*/
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
ifp->if_broot_bytes);
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
(int)new_size);
memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
}
kmem_free(ifp->if_broot);
ifp->if_broot = new_broot;
ifp->if_broot_bytes = (int)new_size;
if (ifp->if_broot)
ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
XFS_IFORK_SIZE(ip, whichfork));
return;
}
/*
* This is called when the amount of space needed for if_data
* is increased or decreased. The change in size is indicated by
* the number of bytes that need to be added or deleted in the
* byte_diff parameter.
*
* If the amount of space needed has decreased below the size of the
* inline buffer, then switch to using the inline buffer. Otherwise,
* use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
* to what is needed.
*
* ip -- the inode whose if_data area is changing
* byte_diff -- the change in the number of bytes, positive or negative,
* requested for the if_data array.
*/
void
xfs_idata_realloc(
xfs_inode_t *ip,
int byte_diff,
int whichfork)
{
xfs_ifork_t *ifp;
int new_size;
int real_size;
if (byte_diff == 0) {
return;
}
ifp = XFS_IFORK_PTR(ip, whichfork);
new_size = (int)ifp->if_bytes + byte_diff;
ASSERT(new_size >= 0);
if (new_size == 0) {
kmem_free(ifp->if_u1.if_data);
ifp->if_u1.if_data = NULL;
real_size = 0;
} else {
/*
* Stuck with malloc/realloc.
* For inline data, the underlying buffer must be
* a multiple of 4 bytes in size so that it can be
* logged and stay on word boundaries. We enforce
* that here.
*/
real_size = roundup(new_size, 4);
if (ifp->if_u1.if_data == NULL) {
ASSERT(ifp->if_real_bytes == 0);
ifp->if_u1.if_data = kmem_alloc(real_size,
KM_SLEEP | KM_NOFS);
} else {
/*
* Only do the realloc if the underlying size
* is really changing.
*/
if (ifp->if_real_bytes != real_size) {
ifp->if_u1.if_data =
kmem_realloc(ifp->if_u1.if_data,
real_size,
KM_SLEEP | KM_NOFS);
}
}
}
ifp->if_real_bytes = real_size;
ifp->if_bytes = new_size;
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
}
void
xfs_idestroy_fork(
xfs_inode_t *ip,
int whichfork)
{
xfs_ifork_t *ifp;
ifp = XFS_IFORK_PTR(ip, whichfork);
if (ifp->if_broot != NULL) {
kmem_free(ifp->if_broot);
ifp->if_broot = NULL;
}
/*
* If the format is local, then we can't have an extents
* array so just look for an inline data array. If we're
* not local then we may or may not have an extents list,
* so check and free it up if we do.
*/
if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
if (ifp->if_u1.if_data != NULL) {
ASSERT(ifp->if_real_bytes != 0);
kmem_free(ifp->if_u1.if_data);
ifp->if_u1.if_data = NULL;
ifp->if_real_bytes = 0;
}
} else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) {
xfs_iext_destroy(ifp);
}
ASSERT(ifp->if_real_bytes == 0);
if (whichfork == XFS_ATTR_FORK) {
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
ip->i_afp = NULL;
} else if (whichfork == XFS_COW_FORK) {
kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
ip->i_cowfp = NULL;
}
}
/*
* Convert in-core extents to on-disk form
*
* In the case of the data fork, the in-core and on-disk fork sizes can be
* different due to delayed allocation extents. We only copy on-disk extents
* here, so callers must always use the physical fork size to determine the
* size of the buffer passed to this routine. We will return the size actually
* used.
*/
int
xfs_iextents_copy(
struct xfs_inode *ip,
struct xfs_bmbt_rec *dp,
int whichfork)
{
int state = xfs_bmap_fork_to_state(whichfork);
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
struct xfs_iext_cursor icur;
struct xfs_bmbt_irec rec;
int copied = 0;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
ASSERT(ifp->if_bytes > 0);
for_each_xfs_iext(ifp, &icur, &rec) {
if (isnullstartblock(rec.br_startblock))
continue;
ASSERT(xfs_bmbt_validate_extent(ip->i_mount, whichfork, &rec));
xfs_bmbt_disk_set_all(dp, &rec);
trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
copied += sizeof(struct xfs_bmbt_rec);
dp++;
}
ASSERT(copied > 0);
ASSERT(copied <= ifp->if_bytes);
return copied;
}
/*
* Each of the following cases stores data into the same region
* of the on-disk inode, so only one of them can be valid at
* any given time. While it is possible to have conflicting formats
* and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
* in EXTENTS format, this can only happen when the fork has
* changed formats after being modified but before being flushed.
* In these cases, the format always takes precedence, because the
* format indicates the current state of the fork.
*/
void
xfs_iflush_fork(
xfs_inode_t *ip,
xfs_dinode_t *dip,
xfs_inode_log_item_t *iip,
int whichfork)
{
char *cp;
xfs_ifork_t *ifp;
xfs_mount_t *mp;
static const short brootflag[2] =
{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
static const short dataflag[2] =
{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
static const short extflag[2] =
{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
if (!iip)
return;
ifp = XFS_IFORK_PTR(ip, whichfork);
/*
* This can happen if we gave up in iformat in an error path,
* for the attribute fork.
*/
if (!ifp) {
ASSERT(whichfork == XFS_ATTR_FORK);
return;
}
cp = XFS_DFORK_PTR(dip, whichfork);
mp = ip->i_mount;
switch (XFS_IFORK_FORMAT(ip, whichfork)) {
case XFS_DINODE_FMT_LOCAL:
if ((iip->ili_fields & dataflag[whichfork]) &&
(ifp->if_bytes > 0)) {
ASSERT(ifp->if_u1.if_data != NULL);
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
}
break;
case XFS_DINODE_FMT_EXTENTS:
ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
!(iip->ili_fields & extflag[whichfork]));
if ((iip->ili_fields & extflag[whichfork]) &&
(ifp->if_bytes > 0)) {
ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
whichfork);
}
break;
case XFS_DINODE_FMT_BTREE:
if ((iip->ili_fields & brootflag[whichfork]) &&
(ifp->if_broot_bytes > 0)) {
ASSERT(ifp->if_broot != NULL);
ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
XFS_IFORK_SIZE(ip, whichfork));
xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
(xfs_bmdr_block_t *)cp,
XFS_DFORK_SIZE(dip, mp, whichfork));
}
break;
case XFS_DINODE_FMT_DEV:
if (iip->ili_fields & XFS_ILOG_DEV) {
ASSERT(whichfork == XFS_DATA_FORK);
xfs_dinode_put_rdev(dip,
linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
}
break;
default:
ASSERT(0);
break;
}
}
/* Convert bmap state flags to an inode fork. */
struct xfs_ifork *
xfs_iext_state_to_fork(
struct xfs_inode *ip,
int state)
{
if (state & BMAP_COWFORK)
return ip->i_cowfp;
else if (state & BMAP_ATTRFORK)
return ip->i_afp;
return &ip->i_df;
}
/*
* Initialize an inode's copy-on-write fork.
*/
void
xfs_ifork_init_cow(
struct xfs_inode *ip)
{
if (ip->i_cowfp)
return;
ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone,
KM_SLEEP | KM_NOFS);
ip->i_cowfp->if_flags = XFS_IFEXTENTS;
ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
ip->i_cnextents = 0;
}