OpenCloudOS-Kernel/sound/pci/ca0106/ca0106_main.c

1973 lines
59 KiB
C

/*
* Copyright (c) 2004 James Courtier-Dutton <James@superbug.demon.co.uk>
* Driver CA0106 chips. e.g. Sound Blaster Audigy LS and Live 24bit
* Version: 0.0.25
*
* FEATURES currently supported:
* Front, Rear and Center/LFE.
* Surround40 and Surround51.
* Capture from MIC an LINE IN input.
* SPDIF digital playback of PCM stereo and AC3/DTS works.
* (One can use a standard mono mini-jack to one RCA plugs cable.
* or one can use a standard stereo mini-jack to two RCA plugs cable.
* Plug one of the RCA plugs into the Coax input of the external decoder/receiver.)
* ( In theory one could output 3 different AC3 streams at once, to 3 different SPDIF outputs. )
* Notes on how to capture sound:
* The AC97 is used in the PLAYBACK direction.
* The output from the AC97 chip, instead of reaching the speakers, is fed into the Philips 1361T ADC.
* So, to record from the MIC, set the MIC Playback volume to max,
* unmute the MIC and turn up the MASTER Playback volume.
* So, to prevent feedback when capturing, minimise the "Capture feedback into Playback" volume.
*
* The only playback controls that currently do anything are: -
* Analog Front
* Analog Rear
* Analog Center/LFE
* SPDIF Front
* SPDIF Rear
* SPDIF Center/LFE
*
* For capture from Mic in or Line in.
* Digital/Analog ( switch must be in Analog mode for CAPTURE. )
*
* CAPTURE feedback into PLAYBACK
*
* Changelog:
* Support interrupts per period.
* Removed noise from Center/LFE channel when in Analog mode.
* Rename and remove mixer controls.
* 0.0.6
* Use separate card based DMA buffer for periods table list.
* 0.0.7
* Change remove and rename ctrls into lists.
* 0.0.8
* Try to fix capture sources.
* 0.0.9
* Fix AC3 output.
* Enable S32_LE format support.
* 0.0.10
* Enable playback 48000 and 96000 rates. (Rates other that these do not work, even with "plug:front".)
* 0.0.11
* Add Model name recognition.
* 0.0.12
* Correct interrupt timing. interrupt at end of period, instead of in the middle of a playback period.
* Remove redundent "voice" handling.
* 0.0.13
* Single trigger call for multi channels.
* 0.0.14
* Set limits based on what the sound card hardware can do.
* playback periods_min=2, periods_max=8
* capture hw constraints require period_size = n * 64 bytes.
* playback hw constraints require period_size = n * 64 bytes.
* 0.0.15
* Minor updates.
* 0.0.16
* Implement 192000 sample rate.
* 0.0.17
* Add support for SB0410 and SB0413.
* 0.0.18
* Modified Copyright message.
* 0.0.19
* Finally fix support for SB Live 24 bit. SB0410 and SB0413.
* The output codec needs resetting, otherwise all output is muted.
* 0.0.20
* Merge "pci_disable_device(pci);" fixes.
* 0.0.21
* Add 4 capture channels. (SPDIF only comes in on channel 0. )
* Add SPDIF capture using optional digital I/O module for SB Live 24bit. (Analog capture does not yet work.)
* 0.0.22
* Add support for MSI K8N Diamond Motherboard with onboard SB Live 24bit without AC97. From kiksen, bug #901
* 0.0.23
* Implement support for Line-in capture on SB Live 24bit.
* 0.0.24
* Add support for mute control on SB Live 24bit (cards w/ SPI DAC)
* 0.0.25
* Powerdown SPI DAC channels when not in use
*
* BUGS:
* Some stability problems when unloading the snd-ca0106 kernel module.
* --
*
* TODO:
* 4 Capture channels, only one implemented so far.
* Other capture rates apart from 48khz not implemented.
* MIDI
* --
* GENERAL INFO:
* Model: SB0310
* P17 Chip: CA0106-DAT
* AC97 Codec: STAC 9721
* ADC: Philips 1361T (Stereo 24bit)
* DAC: WM8746EDS (6-channel, 24bit, 192Khz)
*
* GENERAL INFO:
* Model: SB0410
* P17 Chip: CA0106-DAT
* AC97 Codec: None
* ADC: WM8775EDS (4 Channel)
* DAC: CS4382 (114 dB, 24-Bit, 192 kHz, 8-Channel D/A Converter with DSD Support)
* SPDIF Out control switches between Mic in and SPDIF out.
* No sound out or mic input working yet.
*
* GENERAL INFO:
* Model: SB0413
* P17 Chip: CA0106-DAT
* AC97 Codec: None.
* ADC: Unknown
* DAC: Unknown
* Trying to handle it like the SB0410.
*
* This code was initially based on code from ALSA's emu10k1x.c which is:
* Copyright (c) by Francisco Moraes <fmoraes@nc.rr.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/ac97_codec.h>
#include <sound/info.h>
MODULE_AUTHOR("James Courtier-Dutton <James@superbug.demon.co.uk>");
MODULE_DESCRIPTION("CA0106");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Creative,SB CA0106 chip}}");
// module parameters (see "Module Parameters")
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
static uint subsystem[SNDRV_CARDS]; /* Force card subsystem model */
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the CA0106 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the CA0106 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable the CA0106 soundcard.");
module_param_array(subsystem, uint, NULL, 0444);
MODULE_PARM_DESC(subsystem, "Force card subsystem model.");
#include "ca0106.h"
static struct snd_ca0106_details ca0106_chip_details[] = {
/* Sound Blaster X-Fi Extreme Audio. This does not have an AC97. 53SB079000000 */
/* It is really just a normal SB Live 24bit. */
/* Tested:
* See ALSA bug#3251
*/
{ .serial = 0x10131102,
.name = "X-Fi Extreme Audio [SBxxxx]",
.gpio_type = 1,
.i2c_adc = 1 } ,
/* Sound Blaster X-Fi Extreme Audio. This does not have an AC97. 53SB079000000 */
/* It is really just a normal SB Live 24bit. */
/*
* CTRL:CA0111-WTLF
* ADC: WM8775SEDS
* DAC: CS4382-KQZ
*/
/* Tested:
* Playback on front, rear, center/lfe speakers
* Capture from Mic in.
* Not-Tested:
* Capture from Line in.
* Playback to digital out.
*/
{ .serial = 0x10121102,
.name = "X-Fi Extreme Audio [SB0790]",
.gpio_type = 1,
.i2c_adc = 1 } ,
/* New Dell Sound Blaster Live! 7.1 24bit. This does not have an AC97. */
/* AudigyLS[SB0310] */
{ .serial = 0x10021102,
.name = "AudigyLS [SB0310]",
.ac97 = 1 } ,
/* Unknown AudigyLS that also says SB0310 on it */
{ .serial = 0x10051102,
.name = "AudigyLS [SB0310b]",
.ac97 = 1 } ,
/* New Sound Blaster Live! 7.1 24bit. This does not have an AC97. 53SB041000001 */
{ .serial = 0x10061102,
.name = "Live! 7.1 24bit [SB0410]",
.gpio_type = 1,
.i2c_adc = 1 } ,
/* New Dell Sound Blaster Live! 7.1 24bit. This does not have an AC97. */
{ .serial = 0x10071102,
.name = "Live! 7.1 24bit [SB0413]",
.gpio_type = 1,
.i2c_adc = 1 } ,
/* New Audigy SE. Has a different DAC. */
/* SB0570:
* CTRL:CA0106-DAT
* ADC: WM8775EDS
* DAC: WM8768GEDS
*/
{ .serial = 0x100a1102,
.name = "Audigy SE [SB0570]",
.gpio_type = 1,
.i2c_adc = 1,
.spi_dac = 0x4021 } ,
/* New Audigy LS. Has a different DAC. */
/* SB0570:
* CTRL:CA0106-DAT
* ADC: WM8775EDS
* DAC: WM8768GEDS
*/
{ .serial = 0x10111102,
.name = "Audigy SE OEM [SB0570a]",
.gpio_type = 1,
.i2c_adc = 1,
.spi_dac = 0x4021 } ,
/* Sound Blaster 5.1vx
* Tested: Playback on front, rear, center/lfe speakers
* Not-Tested: Capture
*/
{ .serial = 0x10041102,
.name = "Sound Blaster 5.1vx [SB1070]",
.gpio_type = 1,
.i2c_adc = 0,
.spi_dac = 0x0124
} ,
/* MSI K8N Diamond Motherboard with onboard SB Live 24bit without AC97 */
/* SB0438
* CTRL:CA0106-DAT
* ADC: WM8775SEDS
* DAC: CS4382-KQZ
*/
{ .serial = 0x10091462,
.name = "MSI K8N Diamond MB [SB0438]",
.gpio_type = 2,
.i2c_adc = 1 } ,
/* MSI K8N Diamond PLUS MB */
{ .serial = 0x10091102,
.name = "MSI K8N Diamond MB",
.gpio_type = 2,
.i2c_adc = 1,
.spi_dac = 0x4021 } ,
/* Giga-byte GA-G1975X mobo
* Novell bnc#395807
*/
/* FIXME: the GPIO and I2C setting aren't tested well */
{ .serial = 0x1458a006,
.name = "Giga-byte GA-G1975X",
.gpio_type = 1,
.i2c_adc = 1 },
/* Shuttle XPC SD31P which has an onboard Creative Labs
* Sound Blaster Live! 24-bit EAX
* high-definition 7.1 audio processor".
* Added using info from andrewvegan in alsa bug #1298
*/
{ .serial = 0x30381297,
.name = "Shuttle XPC SD31P [SD31P]",
.gpio_type = 1,
.i2c_adc = 1 } ,
/* Shuttle XPC SD11G5 which has an onboard Creative Labs
* Sound Blaster Live! 24-bit EAX
* high-definition 7.1 audio processor".
* Fixes ALSA bug#1600
*/
{ .serial = 0x30411297,
.name = "Shuttle XPC SD11G5 [SD11G5]",
.gpio_type = 1,
.i2c_adc = 1 } ,
{ .serial = 0,
.name = "AudigyLS [Unknown]" }
};
/* hardware definition */
static struct snd_pcm_hardware snd_ca0106_playback_hw = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_SYNC_START,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
.rates = (SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_96000 |
SNDRV_PCM_RATE_192000),
.rate_min = 48000,
.rate_max = 192000,
.channels_min = 2, //1,
.channels_max = 2, //6,
.buffer_bytes_max = ((65536 - 64) * 8),
.period_bytes_min = 64,
.period_bytes_max = (65536 - 64),
.periods_min = 2,
.periods_max = 8,
.fifo_size = 0,
};
static struct snd_pcm_hardware snd_ca0106_capture_hw = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
#if 0 /* FIXME: looks like 44.1kHz capture causes noisy output on 48kHz */
.rates = (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000),
.rate_min = 44100,
#else
.rates = (SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000),
.rate_min = 48000,
#endif /* FIXME */
.rate_max = 192000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 65536 - 128,
.period_bytes_min = 64,
.period_bytes_max = 32768 - 64,
.periods_min = 2,
.periods_max = 2,
.fifo_size = 0,
};
unsigned int snd_ca0106_ptr_read(struct snd_ca0106 * emu,
unsigned int reg,
unsigned int chn)
{
unsigned long flags;
unsigned int regptr, val;
regptr = (reg << 16) | chn;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
val = inl(emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
return val;
}
void snd_ca0106_ptr_write(struct snd_ca0106 *emu,
unsigned int reg,
unsigned int chn,
unsigned int data)
{
unsigned int regptr;
unsigned long flags;
regptr = (reg << 16) | chn;
spin_lock_irqsave(&emu->emu_lock, flags);
outl(regptr, emu->port + PTR);
outl(data, emu->port + DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
int snd_ca0106_spi_write(struct snd_ca0106 * emu,
unsigned int data)
{
unsigned int reset, set;
unsigned int reg, tmp;
int n, result;
reg = SPI;
if (data > 0xffff) /* Only 16bit values allowed */
return 1;
tmp = snd_ca0106_ptr_read(emu, reg, 0);
reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
set = reset | 0x10000; /* Set xxx1xxxx */
snd_ca0106_ptr_write(emu, reg, 0, reset | data);
tmp = snd_ca0106_ptr_read(emu, reg, 0); /* write post */
snd_ca0106_ptr_write(emu, reg, 0, set | data);
result = 1;
/* Wait for status bit to return to 0 */
for (n = 0; n < 100; n++) {
udelay(10);
tmp = snd_ca0106_ptr_read(emu, reg, 0);
if (!(tmp & 0x10000)) {
result = 0;
break;
}
}
if (result) /* Timed out */
return 1;
snd_ca0106_ptr_write(emu, reg, 0, reset | data);
tmp = snd_ca0106_ptr_read(emu, reg, 0); /* Write post */
return 0;
}
/* The ADC does not support i2c read, so only write is implemented */
int snd_ca0106_i2c_write(struct snd_ca0106 *emu,
u32 reg,
u32 value)
{
u32 tmp;
int timeout = 0;
int status;
int retry;
if ((reg > 0x7f) || (value > 0x1ff)) {
dev_err(emu->card->dev, "i2c_write: invalid values.\n");
return -EINVAL;
}
tmp = reg << 25 | value << 16;
/*
dev_dbg(emu->card->dev, "I2C-write:reg=0x%x, value=0x%x\n", reg, value);
*/
/* Not sure what this I2C channel controls. */
/* snd_ca0106_ptr_write(emu, I2C_D0, 0, tmp); */
/* This controls the I2C connected to the WM8775 ADC Codec */
snd_ca0106_ptr_write(emu, I2C_D1, 0, tmp);
for (retry = 0; retry < 10; retry++) {
/* Send the data to i2c */
//tmp = snd_ca0106_ptr_read(emu, I2C_A, 0);
//tmp = tmp & ~(I2C_A_ADC_READ|I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD_MASK);
tmp = 0;
tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
snd_ca0106_ptr_write(emu, I2C_A, 0, tmp);
/* Wait till the transaction ends */
while (1) {
status = snd_ca0106_ptr_read(emu, I2C_A, 0);
/*dev_dbg(emu->card->dev, "I2C:status=0x%x\n", status);*/
timeout++;
if ((status & I2C_A_ADC_START) == 0)
break;
if (timeout > 1000)
break;
}
//Read back and see if the transaction is successful
if ((status & I2C_A_ADC_ABORT) == 0)
break;
}
if (retry == 10) {
dev_err(emu->card->dev, "Writing to ADC failed!\n");
return -EINVAL;
}
return 0;
}
static void snd_ca0106_intr_enable(struct snd_ca0106 *emu, unsigned int intrenb)
{
unsigned long flags;
unsigned int intr_enable;
spin_lock_irqsave(&emu->emu_lock, flags);
intr_enable = inl(emu->port + INTE) | intrenb;
outl(intr_enable, emu->port + INTE);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
static void snd_ca0106_intr_disable(struct snd_ca0106 *emu, unsigned int intrenb)
{
unsigned long flags;
unsigned int intr_enable;
spin_lock_irqsave(&emu->emu_lock, flags);
intr_enable = inl(emu->port + INTE) & ~intrenb;
outl(intr_enable, emu->port + INTE);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
static void snd_ca0106_pcm_free_substream(struct snd_pcm_runtime *runtime)
{
kfree(runtime->private_data);
}
static const int spi_dacd_reg[] = {
SPI_DACD0_REG,
SPI_DACD1_REG,
SPI_DACD2_REG,
0,
SPI_DACD4_REG,
};
static const int spi_dacd_bit[] = {
SPI_DACD0_BIT,
SPI_DACD1_BIT,
SPI_DACD2_BIT,
0,
SPI_DACD4_BIT,
};
static void restore_spdif_bits(struct snd_ca0106 *chip, int idx)
{
if (chip->spdif_str_bits[idx] != chip->spdif_bits[idx]) {
chip->spdif_str_bits[idx] = chip->spdif_bits[idx];
snd_ca0106_ptr_write(chip, SPCS0 + idx, 0,
chip->spdif_str_bits[idx]);
}
}
static int snd_ca0106_channel_dac(struct snd_ca0106 *chip,
struct snd_ca0106_details *details,
int channel_id)
{
switch (channel_id) {
case PCM_FRONT_CHANNEL:
return (details->spi_dac & 0xf000) >> (4 * 3);
case PCM_REAR_CHANNEL:
return (details->spi_dac & 0x0f00) >> (4 * 2);
case PCM_CENTER_LFE_CHANNEL:
return (details->spi_dac & 0x00f0) >> (4 * 1);
case PCM_UNKNOWN_CHANNEL:
return (details->spi_dac & 0x000f) >> (4 * 0);
default:
dev_dbg(chip->card->dev, "ca0106: unknown channel_id %d\n",
channel_id);
}
return 0;
}
static int snd_ca0106_pcm_power_dac(struct snd_ca0106 *chip, int channel_id,
int power)
{
if (chip->details->spi_dac) {
const int dac = snd_ca0106_channel_dac(chip, chip->details,
channel_id);
const int reg = spi_dacd_reg[dac];
const int bit = spi_dacd_bit[dac];
if (power)
/* Power up */
chip->spi_dac_reg[reg] &= ~bit;
else
/* Power down */
chip->spi_dac_reg[reg] |= bit;
return snd_ca0106_spi_write(chip, chip->spi_dac_reg[reg]);
}
return 0;
}
/* open_playback callback */
static int snd_ca0106_pcm_open_playback_channel(struct snd_pcm_substream *substream,
int channel_id)
{
struct snd_ca0106 *chip = snd_pcm_substream_chip(substream);
struct snd_ca0106_channel *channel = &(chip->playback_channels[channel_id]);
struct snd_ca0106_pcm *epcm;
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
if (epcm == NULL)
return -ENOMEM;
epcm->emu = chip;
epcm->substream = substream;
epcm->channel_id=channel_id;
runtime->private_data = epcm;
runtime->private_free = snd_ca0106_pcm_free_substream;
runtime->hw = snd_ca0106_playback_hw;
channel->emu = chip;
channel->number = channel_id;
channel->use = 1;
/*
dev_dbg(chip->card->dev, "open:channel_id=%d, chip=%p, channel=%p\n",
channel_id, chip, channel);
*/
//channel->interrupt = snd_ca0106_pcm_channel_interrupt;
channel->epcm = epcm;
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0)
return err;
snd_pcm_set_sync(substream);
/* Front channel dac should already be on */
if (channel_id != PCM_FRONT_CHANNEL) {
err = snd_ca0106_pcm_power_dac(chip, channel_id, 1);
if (err < 0)
return err;
}
restore_spdif_bits(chip, channel_id);
return 0;
}
/* close callback */
static int snd_ca0106_pcm_close_playback(struct snd_pcm_substream *substream)
{
struct snd_ca0106 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ca0106_pcm *epcm = runtime->private_data;
chip->playback_channels[epcm->channel_id].use = 0;
restore_spdif_bits(chip, epcm->channel_id);
/* Front channel dac should stay on */
if (epcm->channel_id != PCM_FRONT_CHANNEL) {
int err;
err = snd_ca0106_pcm_power_dac(chip, epcm->channel_id, 0);
if (err < 0)
return err;
}
/* FIXME: maybe zero others */
return 0;
}
static int snd_ca0106_pcm_open_playback_front(struct snd_pcm_substream *substream)
{
return snd_ca0106_pcm_open_playback_channel(substream, PCM_FRONT_CHANNEL);
}
static int snd_ca0106_pcm_open_playback_center_lfe(struct snd_pcm_substream *substream)
{
return snd_ca0106_pcm_open_playback_channel(substream, PCM_CENTER_LFE_CHANNEL);
}
static int snd_ca0106_pcm_open_playback_unknown(struct snd_pcm_substream *substream)
{
return snd_ca0106_pcm_open_playback_channel(substream, PCM_UNKNOWN_CHANNEL);
}
static int snd_ca0106_pcm_open_playback_rear(struct snd_pcm_substream *substream)
{
return snd_ca0106_pcm_open_playback_channel(substream, PCM_REAR_CHANNEL);
}
/* open_capture callback */
static int snd_ca0106_pcm_open_capture_channel(struct snd_pcm_substream *substream,
int channel_id)
{
struct snd_ca0106 *chip = snd_pcm_substream_chip(substream);
struct snd_ca0106_channel *channel = &(chip->capture_channels[channel_id]);
struct snd_ca0106_pcm *epcm;
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
epcm = kzalloc(sizeof(*epcm), GFP_KERNEL);
if (epcm == NULL) {
dev_err(chip->card->dev,
"open_capture_channel: failed epcm alloc\n");
return -ENOMEM;
}
epcm->emu = chip;
epcm->substream = substream;
epcm->channel_id=channel_id;
runtime->private_data = epcm;
runtime->private_free = snd_ca0106_pcm_free_substream;
runtime->hw = snd_ca0106_capture_hw;
channel->emu = chip;
channel->number = channel_id;
channel->use = 1;
/*
dev_dbg(chip->card->dev, "open:channel_id=%d, chip=%p, channel=%p\n",
channel_id, chip, channel);
*/
//channel->interrupt = snd_ca0106_pcm_channel_interrupt;
channel->epcm = epcm;
if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
return err;
//snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, &hw_constraints_capture_period_sizes);
if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0)
return err;
return 0;
}
/* close callback */
static int snd_ca0106_pcm_close_capture(struct snd_pcm_substream *substream)
{
struct snd_ca0106 *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ca0106_pcm *epcm = runtime->private_data;
chip->capture_channels[epcm->channel_id].use = 0;
/* FIXME: maybe zero others */
return 0;
}
static int snd_ca0106_pcm_open_0_capture(struct snd_pcm_substream *substream)
{
return snd_ca0106_pcm_open_capture_channel(substream, 0);
}
static int snd_ca0106_pcm_open_1_capture(struct snd_pcm_substream *substream)
{
return snd_ca0106_pcm_open_capture_channel(substream, 1);
}
static int snd_ca0106_pcm_open_2_capture(struct snd_pcm_substream *substream)
{
return snd_ca0106_pcm_open_capture_channel(substream, 2);
}
static int snd_ca0106_pcm_open_3_capture(struct snd_pcm_substream *substream)
{
return snd_ca0106_pcm_open_capture_channel(substream, 3);
}
/* hw_params callback */
static int snd_ca0106_pcm_hw_params_playback(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
/* hw_free callback */
static int snd_ca0106_pcm_hw_free_playback(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
/* hw_params callback */
static int snd_ca0106_pcm_hw_params_capture(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
/* hw_free callback */
static int snd_ca0106_pcm_hw_free_capture(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
/* prepare playback callback */
static int snd_ca0106_pcm_prepare_playback(struct snd_pcm_substream *substream)
{
struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ca0106_pcm *epcm = runtime->private_data;
int channel = epcm->channel_id;
u32 *table_base = (u32 *)(emu->buffer.area+(8*16*channel));
u32 period_size_bytes = frames_to_bytes(runtime, runtime->period_size);
u32 hcfg_mask = HCFG_PLAYBACK_S32_LE;
u32 hcfg_set = 0x00000000;
u32 hcfg;
u32 reg40_mask = 0x30000 << (channel<<1);
u32 reg40_set = 0;
u32 reg40;
/* FIXME: Depending on mixer selection of SPDIF out or not, select the spdif rate or the DAC rate. */
u32 reg71_mask = 0x03030000 ; /* Global. Set SPDIF rate. We only support 44100 to spdif, not to DAC. */
u32 reg71_set = 0;
u32 reg71;
int i;
#if 0 /* debug */
dev_dbg(emu->card->dev,
"prepare:channel_number=%d, rate=%d, format=0x%x, "
"channels=%d, buffer_size=%ld, period_size=%ld, "
"periods=%u, frames_to_bytes=%d\n",
channel, runtime->rate, runtime->format,
runtime->channels, runtime->buffer_size,
runtime->period_size, runtime->periods,
frames_to_bytes(runtime, 1));
dev_dbg(emu->card->dev,
"dma_addr=%x, dma_area=%p, table_base=%p\n",
runtime->dma_addr, runtime->dma_area, table_base);
dev_dbg(emu->card->dev,
"dma_addr=%x, dma_area=%p, dma_bytes(size)=%x\n",
emu->buffer.addr, emu->buffer.area, emu->buffer.bytes);
#endif /* debug */
/* Rate can be set per channel. */
/* reg40 control host to fifo */
/* reg71 controls DAC rate. */
switch (runtime->rate) {
case 44100:
reg40_set = 0x10000 << (channel<<1);
reg71_set = 0x01010000;
break;
case 48000:
reg40_set = 0;
reg71_set = 0;
break;
case 96000:
reg40_set = 0x20000 << (channel<<1);
reg71_set = 0x02020000;
break;
case 192000:
reg40_set = 0x30000 << (channel<<1);
reg71_set = 0x03030000;
break;
default:
reg40_set = 0;
reg71_set = 0;
break;
}
/* Format is a global setting */
/* FIXME: Only let the first channel accessed set this. */
switch (runtime->format) {
case SNDRV_PCM_FORMAT_S16_LE:
hcfg_set = 0;
break;
case SNDRV_PCM_FORMAT_S32_LE:
hcfg_set = HCFG_PLAYBACK_S32_LE;
break;
default:
hcfg_set = 0;
break;
}
hcfg = inl(emu->port + HCFG) ;
hcfg = (hcfg & ~hcfg_mask) | hcfg_set;
outl(hcfg, emu->port + HCFG);
reg40 = snd_ca0106_ptr_read(emu, 0x40, 0);
reg40 = (reg40 & ~reg40_mask) | reg40_set;
snd_ca0106_ptr_write(emu, 0x40, 0, reg40);
reg71 = snd_ca0106_ptr_read(emu, 0x71, 0);
reg71 = (reg71 & ~reg71_mask) | reg71_set;
snd_ca0106_ptr_write(emu, 0x71, 0, reg71);
/* FIXME: Check emu->buffer.size before actually writing to it. */
for(i=0; i < runtime->periods; i++) {
table_base[i*2] = runtime->dma_addr + (i * period_size_bytes);
table_base[i*2+1] = period_size_bytes << 16;
}
snd_ca0106_ptr_write(emu, PLAYBACK_LIST_ADDR, channel, emu->buffer.addr+(8*16*channel));
snd_ca0106_ptr_write(emu, PLAYBACK_LIST_SIZE, channel, (runtime->periods - 1) << 19);
snd_ca0106_ptr_write(emu, PLAYBACK_LIST_PTR, channel, 0);
snd_ca0106_ptr_write(emu, PLAYBACK_DMA_ADDR, channel, runtime->dma_addr);
snd_ca0106_ptr_write(emu, PLAYBACK_PERIOD_SIZE, channel, frames_to_bytes(runtime, runtime->period_size)<<16); // buffer size in bytes
/* FIXME test what 0 bytes does. */
snd_ca0106_ptr_write(emu, PLAYBACK_PERIOD_SIZE, channel, 0); // buffer size in bytes
snd_ca0106_ptr_write(emu, PLAYBACK_POINTER, channel, 0);
snd_ca0106_ptr_write(emu, 0x07, channel, 0x0);
snd_ca0106_ptr_write(emu, 0x08, channel, 0);
snd_ca0106_ptr_write(emu, PLAYBACK_MUTE, 0x0, 0x0); /* Unmute output */
#if 0
snd_ca0106_ptr_write(emu, SPCS0, 0,
SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
SPCS_GENERATIONSTATUS | 0x00001200 |
0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT );
#endif
return 0;
}
/* prepare capture callback */
static int snd_ca0106_pcm_prepare_capture(struct snd_pcm_substream *substream)
{
struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ca0106_pcm *epcm = runtime->private_data;
int channel = epcm->channel_id;
u32 hcfg_mask = HCFG_CAPTURE_S32_LE;
u32 hcfg_set = 0x00000000;
u32 hcfg;
u32 over_sampling=0x2;
u32 reg71_mask = 0x0000c000 ; /* Global. Set ADC rate. */
u32 reg71_set = 0;
u32 reg71;
#if 0 /* debug */
dev_dbg(emu->card->dev,
"prepare:channel_number=%d, rate=%d, format=0x%x, "
"channels=%d, buffer_size=%ld, period_size=%ld, "
"periods=%u, frames_to_bytes=%d\n",
channel, runtime->rate, runtime->format,
runtime->channels, runtime->buffer_size,
runtime->period_size, runtime->periods,
frames_to_bytes(runtime, 1));
dev_dbg(emu->card->dev,
"dma_addr=%x, dma_area=%p, table_base=%p\n",
runtime->dma_addr, runtime->dma_area, table_base);
dev_dbg(emu->card->dev,
"dma_addr=%x, dma_area=%p, dma_bytes(size)=%x\n",
emu->buffer.addr, emu->buffer.area, emu->buffer.bytes);
#endif /* debug */
/* reg71 controls ADC rate. */
switch (runtime->rate) {
case 44100:
reg71_set = 0x00004000;
break;
case 48000:
reg71_set = 0;
break;
case 96000:
reg71_set = 0x00008000;
over_sampling=0xa;
break;
case 192000:
reg71_set = 0x0000c000;
over_sampling=0xa;
break;
default:
reg71_set = 0;
break;
}
/* Format is a global setting */
/* FIXME: Only let the first channel accessed set this. */
switch (runtime->format) {
case SNDRV_PCM_FORMAT_S16_LE:
hcfg_set = 0;
break;
case SNDRV_PCM_FORMAT_S32_LE:
hcfg_set = HCFG_CAPTURE_S32_LE;
break;
default:
hcfg_set = 0;
break;
}
hcfg = inl(emu->port + HCFG) ;
hcfg = (hcfg & ~hcfg_mask) | hcfg_set;
outl(hcfg, emu->port + HCFG);
reg71 = snd_ca0106_ptr_read(emu, 0x71, 0);
reg71 = (reg71 & ~reg71_mask) | reg71_set;
snd_ca0106_ptr_write(emu, 0x71, 0, reg71);
if (emu->details->i2c_adc == 1) { /* The SB0410 and SB0413 use I2C to control ADC. */
snd_ca0106_i2c_write(emu, ADC_MASTER, over_sampling); /* Adjust the over sampler to better suit the capture rate. */
}
/*
dev_dbg(emu->card->dev,
"prepare:channel_number=%d, rate=%d, format=0x%x, channels=%d, "
"buffer_size=%ld, period_size=%ld, frames_to_bytes=%d\n",
channel, runtime->rate, runtime->format, runtime->channels,
runtime->buffer_size, runtime->period_size,
frames_to_bytes(runtime, 1));
*/
snd_ca0106_ptr_write(emu, 0x13, channel, 0);
snd_ca0106_ptr_write(emu, CAPTURE_DMA_ADDR, channel, runtime->dma_addr);
snd_ca0106_ptr_write(emu, CAPTURE_BUFFER_SIZE, channel, frames_to_bytes(runtime, runtime->buffer_size)<<16); // buffer size in bytes
snd_ca0106_ptr_write(emu, CAPTURE_POINTER, channel, 0);
return 0;
}
/* trigger_playback callback */
static int snd_ca0106_pcm_trigger_playback(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime;
struct snd_ca0106_pcm *epcm;
int channel;
int result = 0;
struct snd_pcm_substream *s;
u32 basic = 0;
u32 extended = 0;
u32 bits;
int running = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
running = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
default:
running = 0;
break;
}
snd_pcm_group_for_each_entry(s, substream) {
if (snd_pcm_substream_chip(s) != emu ||
s->stream != SNDRV_PCM_STREAM_PLAYBACK)
continue;
runtime = s->runtime;
epcm = runtime->private_data;
channel = epcm->channel_id;
/* dev_dbg(emu->card->dev, "channel=%d\n", channel); */
epcm->running = running;
basic |= (0x1 << channel);
extended |= (0x10 << channel);
snd_pcm_trigger_done(s, substream);
}
/* dev_dbg(emu->card->dev, "basic=0x%x, extended=0x%x\n",basic, extended); */
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
bits = snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0);
bits |= extended;
snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, bits);
bits = snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0);
bits |= basic;
snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, bits);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
bits = snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0);
bits &= ~basic;
snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, bits);
bits = snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0);
bits &= ~extended;
snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, bits);
break;
default:
result = -EINVAL;
break;
}
return result;
}
/* trigger_capture callback */
static int snd_ca0106_pcm_trigger_capture(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ca0106_pcm *epcm = runtime->private_data;
int channel = epcm->channel_id;
int result = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0) | (0x110000<<channel));
snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0)|(0x100<<channel));
epcm->running = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
snd_ca0106_ptr_write(emu, BASIC_INTERRUPT, 0, snd_ca0106_ptr_read(emu, BASIC_INTERRUPT, 0) & ~(0x100<<channel));
snd_ca0106_ptr_write(emu, EXTENDED_INT_MASK, 0, snd_ca0106_ptr_read(emu, EXTENDED_INT_MASK, 0) & ~(0x110000<<channel));
epcm->running = 0;
break;
default:
result = -EINVAL;
break;
}
return result;
}
/* pointer_playback callback */
static snd_pcm_uframes_t
snd_ca0106_pcm_pointer_playback(struct snd_pcm_substream *substream)
{
struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ca0106_pcm *epcm = runtime->private_data;
unsigned int ptr, prev_ptr;
int channel = epcm->channel_id;
int timeout = 10;
if (!epcm->running)
return 0;
prev_ptr = -1;
do {
ptr = snd_ca0106_ptr_read(emu, PLAYBACK_LIST_PTR, channel);
ptr = (ptr >> 3) * runtime->period_size;
ptr += bytes_to_frames(runtime,
snd_ca0106_ptr_read(emu, PLAYBACK_POINTER, channel));
if (ptr >= runtime->buffer_size)
ptr -= runtime->buffer_size;
if (prev_ptr == ptr)
return ptr;
prev_ptr = ptr;
} while (--timeout);
dev_warn(emu->card->dev, "ca0106: unstable DMA pointer!\n");
return 0;
}
/* pointer_capture callback */
static snd_pcm_uframes_t
snd_ca0106_pcm_pointer_capture(struct snd_pcm_substream *substream)
{
struct snd_ca0106 *emu = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ca0106_pcm *epcm = runtime->private_data;
snd_pcm_uframes_t ptr, ptr1, ptr2 = 0;
int channel = epcm->channel_id;
if (!epcm->running)
return 0;
ptr1 = snd_ca0106_ptr_read(emu, CAPTURE_POINTER, channel);
ptr2 = bytes_to_frames(runtime, ptr1);
ptr=ptr2;
if (ptr >= runtime->buffer_size)
ptr -= runtime->buffer_size;
/*
dev_dbg(emu->card->dev, "ptr1 = 0x%lx, ptr2=0x%lx, ptr=0x%lx, "
"buffer_size = 0x%x, period_size = 0x%x, bits=%d, rate=%d\n",
ptr1, ptr2, ptr, (int)runtime->buffer_size,
(int)runtime->period_size, (int)runtime->frame_bits,
(int)runtime->rate);
*/
return ptr;
}
/* operators */
static const struct snd_pcm_ops snd_ca0106_playback_front_ops = {
.open = snd_ca0106_pcm_open_playback_front,
.close = snd_ca0106_pcm_close_playback,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ca0106_pcm_hw_params_playback,
.hw_free = snd_ca0106_pcm_hw_free_playback,
.prepare = snd_ca0106_pcm_prepare_playback,
.trigger = snd_ca0106_pcm_trigger_playback,
.pointer = snd_ca0106_pcm_pointer_playback,
};
static const struct snd_pcm_ops snd_ca0106_capture_0_ops = {
.open = snd_ca0106_pcm_open_0_capture,
.close = snd_ca0106_pcm_close_capture,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ca0106_pcm_hw_params_capture,
.hw_free = snd_ca0106_pcm_hw_free_capture,
.prepare = snd_ca0106_pcm_prepare_capture,
.trigger = snd_ca0106_pcm_trigger_capture,
.pointer = snd_ca0106_pcm_pointer_capture,
};
static const struct snd_pcm_ops snd_ca0106_capture_1_ops = {
.open = snd_ca0106_pcm_open_1_capture,
.close = snd_ca0106_pcm_close_capture,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ca0106_pcm_hw_params_capture,
.hw_free = snd_ca0106_pcm_hw_free_capture,
.prepare = snd_ca0106_pcm_prepare_capture,
.trigger = snd_ca0106_pcm_trigger_capture,
.pointer = snd_ca0106_pcm_pointer_capture,
};
static const struct snd_pcm_ops snd_ca0106_capture_2_ops = {
.open = snd_ca0106_pcm_open_2_capture,
.close = snd_ca0106_pcm_close_capture,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ca0106_pcm_hw_params_capture,
.hw_free = snd_ca0106_pcm_hw_free_capture,
.prepare = snd_ca0106_pcm_prepare_capture,
.trigger = snd_ca0106_pcm_trigger_capture,
.pointer = snd_ca0106_pcm_pointer_capture,
};
static const struct snd_pcm_ops snd_ca0106_capture_3_ops = {
.open = snd_ca0106_pcm_open_3_capture,
.close = snd_ca0106_pcm_close_capture,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ca0106_pcm_hw_params_capture,
.hw_free = snd_ca0106_pcm_hw_free_capture,
.prepare = snd_ca0106_pcm_prepare_capture,
.trigger = snd_ca0106_pcm_trigger_capture,
.pointer = snd_ca0106_pcm_pointer_capture,
};
static const struct snd_pcm_ops snd_ca0106_playback_center_lfe_ops = {
.open = snd_ca0106_pcm_open_playback_center_lfe,
.close = snd_ca0106_pcm_close_playback,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ca0106_pcm_hw_params_playback,
.hw_free = snd_ca0106_pcm_hw_free_playback,
.prepare = snd_ca0106_pcm_prepare_playback,
.trigger = snd_ca0106_pcm_trigger_playback,
.pointer = snd_ca0106_pcm_pointer_playback,
};
static const struct snd_pcm_ops snd_ca0106_playback_unknown_ops = {
.open = snd_ca0106_pcm_open_playback_unknown,
.close = snd_ca0106_pcm_close_playback,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ca0106_pcm_hw_params_playback,
.hw_free = snd_ca0106_pcm_hw_free_playback,
.prepare = snd_ca0106_pcm_prepare_playback,
.trigger = snd_ca0106_pcm_trigger_playback,
.pointer = snd_ca0106_pcm_pointer_playback,
};
static const struct snd_pcm_ops snd_ca0106_playback_rear_ops = {
.open = snd_ca0106_pcm_open_playback_rear,
.close = snd_ca0106_pcm_close_playback,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ca0106_pcm_hw_params_playback,
.hw_free = snd_ca0106_pcm_hw_free_playback,
.prepare = snd_ca0106_pcm_prepare_playback,
.trigger = snd_ca0106_pcm_trigger_playback,
.pointer = snd_ca0106_pcm_pointer_playback,
};
static unsigned short snd_ca0106_ac97_read(struct snd_ac97 *ac97,
unsigned short reg)
{
struct snd_ca0106 *emu = ac97->private_data;
unsigned long flags;
unsigned short val;
spin_lock_irqsave(&emu->emu_lock, flags);
outb(reg, emu->port + AC97ADDRESS);
val = inw(emu->port + AC97DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
return val;
}
static void snd_ca0106_ac97_write(struct snd_ac97 *ac97,
unsigned short reg, unsigned short val)
{
struct snd_ca0106 *emu = ac97->private_data;
unsigned long flags;
spin_lock_irqsave(&emu->emu_lock, flags);
outb(reg, emu->port + AC97ADDRESS);
outw(val, emu->port + AC97DATA);
spin_unlock_irqrestore(&emu->emu_lock, flags);
}
static int snd_ca0106_ac97(struct snd_ca0106 *chip)
{
struct snd_ac97_bus *pbus;
struct snd_ac97_template ac97;
int err;
static struct snd_ac97_bus_ops ops = {
.write = snd_ca0106_ac97_write,
.read = snd_ca0106_ac97_read,
};
if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0)
return err;
pbus->no_vra = 1; /* we don't need VRA */
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
ac97.scaps = AC97_SCAP_NO_SPDIF;
return snd_ac97_mixer(pbus, &ac97, &chip->ac97);
}
static void ca0106_stop_chip(struct snd_ca0106 *chip);
static int snd_ca0106_free(struct snd_ca0106 *chip)
{
if (chip->res_port != NULL) {
/* avoid access to already used hardware */
ca0106_stop_chip(chip);
}
if (chip->irq >= 0)
free_irq(chip->irq, chip);
// release the data
#if 1
if (chip->buffer.area)
snd_dma_free_pages(&chip->buffer);
#endif
// release the i/o port
release_and_free_resource(chip->res_port);
pci_disable_device(chip->pci);
kfree(chip);
return 0;
}
static int snd_ca0106_dev_free(struct snd_device *device)
{
struct snd_ca0106 *chip = device->device_data;
return snd_ca0106_free(chip);
}
static irqreturn_t snd_ca0106_interrupt(int irq, void *dev_id)
{
unsigned int status;
struct snd_ca0106 *chip = dev_id;
int i;
int mask;
unsigned int stat76;
struct snd_ca0106_channel *pchannel;
status = inl(chip->port + IPR);
if (! status)
return IRQ_NONE;
stat76 = snd_ca0106_ptr_read(chip, EXTENDED_INT, 0);
/*
dev_dbg(emu->card->dev, "interrupt status = 0x%08x, stat76=0x%08x\n",
status, stat76);
dev_dbg(emu->card->dev, "ptr=0x%08x\n",
snd_ca0106_ptr_read(chip, PLAYBACK_POINTER, 0));
*/
mask = 0x11; /* 0x1 for one half, 0x10 for the other half period. */
for(i = 0; i < 4; i++) {
pchannel = &(chip->playback_channels[i]);
if (stat76 & mask) {
/* FIXME: Select the correct substream for period elapsed */
if(pchannel->use) {
snd_pcm_period_elapsed(pchannel->epcm->substream);
/* dev_dbg(emu->card->dev, "interrupt [%d] used\n", i); */
}
}
/*
dev_dbg(emu->card->dev, "channel=%p\n", pchannel);
dev_dbg(emu->card->dev, "interrupt stat76[%d] = %08x, use=%d, channel=%d\n", i, stat76, pchannel->use, pchannel->number);
*/
mask <<= 1;
}
mask = 0x110000; /* 0x1 for one half, 0x10 for the other half period. */
for(i = 0; i < 4; i++) {
pchannel = &(chip->capture_channels[i]);
if (stat76 & mask) {
/* FIXME: Select the correct substream for period elapsed */
if(pchannel->use) {
snd_pcm_period_elapsed(pchannel->epcm->substream);
/* dev_dbg(emu->card->dev, "interrupt [%d] used\n", i); */
}
}
/*
dev_dbg(emu->card->dev, "channel=%p\n", pchannel);
dev_dbg(emu->card->dev, "interrupt stat76[%d] = %08x, use=%d, channel=%d\n", i, stat76, pchannel->use, pchannel->number);
*/
mask <<= 1;
}
snd_ca0106_ptr_write(chip, EXTENDED_INT, 0, stat76);
if (chip->midi.dev_id &&
(status & (chip->midi.ipr_tx|chip->midi.ipr_rx))) {
if (chip->midi.interrupt)
chip->midi.interrupt(&chip->midi, status);
else
chip->midi.interrupt_disable(&chip->midi, chip->midi.tx_enable | chip->midi.rx_enable);
}
// acknowledge the interrupt if necessary
outl(status, chip->port+IPR);
return IRQ_HANDLED;
}
static const struct snd_pcm_chmap_elem surround_map[] = {
{ .channels = 2,
.map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
{ }
};
static const struct snd_pcm_chmap_elem clfe_map[] = {
{ .channels = 2,
.map = { SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
{ }
};
static const struct snd_pcm_chmap_elem side_map[] = {
{ .channels = 2,
.map = { SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
{ }
};
static int snd_ca0106_pcm(struct snd_ca0106 *emu, int device)
{
struct snd_pcm *pcm;
struct snd_pcm_substream *substream;
const struct snd_pcm_chmap_elem *map = NULL;
int err;
err = snd_pcm_new(emu->card, "ca0106", device, 1, 1, &pcm);
if (err < 0)
return err;
pcm->private_data = emu;
switch (device) {
case 0:
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_front_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_0_ops);
map = snd_pcm_std_chmaps;
break;
case 1:
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_rear_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_1_ops);
map = surround_map;
break;
case 2:
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_center_lfe_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_2_ops);
map = clfe_map;
break;
case 3:
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ca0106_playback_unknown_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ca0106_capture_3_ops);
map = side_map;
break;
}
pcm->info_flags = 0;
strcpy(pcm->name, "CA0106");
for(substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
substream;
substream = substream->next) {
if ((err = snd_pcm_lib_preallocate_pages(substream,
SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(emu->pci),
64*1024, 64*1024)) < 0) /* FIXME: 32*1024 for sound buffer, between 32and64 for Periods table. */
return err;
}
for (substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream;
substream;
substream = substream->next) {
if ((err = snd_pcm_lib_preallocate_pages(substream,
SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(emu->pci),
64*1024, 64*1024)) < 0)
return err;
}
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, map, 2,
1 << 2, NULL);
if (err < 0)
return err;
emu->pcm[device] = pcm;
return 0;
}
#define SPI_REG(reg, value) (((reg) << SPI_REG_SHIFT) | (value))
static unsigned int spi_dac_init[] = {
SPI_REG(SPI_LDA1_REG, SPI_DA_BIT_0dB), /* 0dB dig. attenuation */
SPI_REG(SPI_RDA1_REG, SPI_DA_BIT_0dB),
SPI_REG(SPI_PL_REG, SPI_PL_BIT_L_L | SPI_PL_BIT_R_R | SPI_IZD_BIT),
SPI_REG(SPI_FMT_REG, SPI_FMT_BIT_I2S | SPI_IWL_BIT_24),
SPI_REG(SPI_LDA2_REG, SPI_DA_BIT_0dB),
SPI_REG(SPI_RDA2_REG, SPI_DA_BIT_0dB),
SPI_REG(SPI_LDA3_REG, SPI_DA_BIT_0dB),
SPI_REG(SPI_RDA3_REG, SPI_DA_BIT_0dB),
SPI_REG(SPI_MASTDA_REG, SPI_DA_BIT_0dB),
SPI_REG(9, 0x00),
SPI_REG(SPI_MS_REG, SPI_DACD0_BIT | SPI_DACD1_BIT | SPI_DACD2_BIT),
SPI_REG(12, 0x00),
SPI_REG(SPI_LDA4_REG, SPI_DA_BIT_0dB),
SPI_REG(SPI_RDA4_REG, SPI_DA_BIT_0dB | SPI_DA_BIT_UPDATE),
SPI_REG(SPI_DACD4_REG, SPI_DACD4_BIT),
};
static unsigned int i2c_adc_init[][2] = {
{ 0x17, 0x00 }, /* Reset */
{ 0x07, 0x00 }, /* Timeout */
{ 0x0b, 0x22 }, /* Interface control */
{ 0x0c, 0x22 }, /* Master mode control */
{ 0x0d, 0x08 }, /* Powerdown control */
{ 0x0e, 0xcf }, /* Attenuation Left 0x01 = -103dB, 0xff = 24dB */
{ 0x0f, 0xcf }, /* Attenuation Right 0.5dB steps */
{ 0x10, 0x7b }, /* ALC Control 1 */
{ 0x11, 0x00 }, /* ALC Control 2 */
{ 0x12, 0x32 }, /* ALC Control 3 */
{ 0x13, 0x00 }, /* Noise gate control */
{ 0x14, 0xa6 }, /* Limiter control */
{ 0x15, ADC_MUX_LINEIN }, /* ADC Mixer control */
};
static void ca0106_init_chip(struct snd_ca0106 *chip, int resume)
{
int ch;
unsigned int def_bits;
outl(0, chip->port + INTE);
/*
* Init to 0x02109204 :
* Clock accuracy = 0 (1000ppm)
* Sample Rate = 2 (48kHz)
* Audio Channel = 1 (Left of 2)
* Source Number = 0 (Unspecified)
* Generation Status = 1 (Original for Cat Code 12)
* Cat Code = 12 (Digital Signal Mixer)
* Mode = 0 (Mode 0)
* Emphasis = 0 (None)
* CP = 1 (Copyright unasserted)
* AN = 0 (Audio data)
* P = 0 (Consumer)
*/
def_bits =
SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 |
SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC |
SPCS_GENERATIONSTATUS | 0x00001200 |
0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT;
if (!resume) {
chip->spdif_str_bits[0] = chip->spdif_bits[0] = def_bits;
chip->spdif_str_bits[1] = chip->spdif_bits[1] = def_bits;
chip->spdif_str_bits[2] = chip->spdif_bits[2] = def_bits;
chip->spdif_str_bits[3] = chip->spdif_bits[3] = def_bits;
}
/* Only SPCS1 has been tested */
snd_ca0106_ptr_write(chip, SPCS1, 0, chip->spdif_str_bits[1]);
snd_ca0106_ptr_write(chip, SPCS0, 0, chip->spdif_str_bits[0]);
snd_ca0106_ptr_write(chip, SPCS2, 0, chip->spdif_str_bits[2]);
snd_ca0106_ptr_write(chip, SPCS3, 0, chip->spdif_str_bits[3]);
snd_ca0106_ptr_write(chip, PLAYBACK_MUTE, 0, 0x00fc0000);
snd_ca0106_ptr_write(chip, CAPTURE_MUTE, 0, 0x00fc0000);
/* Write 0x8000 to AC97_REC_GAIN to mute it. */
outb(AC97_REC_GAIN, chip->port + AC97ADDRESS);
outw(0x8000, chip->port + AC97DATA);
#if 0 /* FIXME: what are these? */
snd_ca0106_ptr_write(chip, SPCS0, 0, 0x2108006);
snd_ca0106_ptr_write(chip, 0x42, 0, 0x2108006);
snd_ca0106_ptr_write(chip, 0x43, 0, 0x2108006);
snd_ca0106_ptr_write(chip, 0x44, 0, 0x2108006);
#endif
/* OSS drivers set this. */
/* snd_ca0106_ptr_write(chip, SPDIF_SELECT2, 0, 0xf0f003f); */
/* Analog or Digital output */
snd_ca0106_ptr_write(chip, SPDIF_SELECT1, 0, 0xf);
/* 0x0b000000 for digital, 0x000b0000 for analog, from win2000 drivers.
* Use 0x000f0000 for surround71
*/
snd_ca0106_ptr_write(chip, SPDIF_SELECT2, 0, 0x000f0000);
chip->spdif_enable = 0; /* Set digital SPDIF output off */
/*snd_ca0106_ptr_write(chip, 0x45, 0, 0);*/ /* Analogue out */
/*snd_ca0106_ptr_write(chip, 0x45, 0, 0xf00);*/ /* Digital out */
/* goes to 0x40c80000 when doing SPDIF IN/OUT */
snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 0, 0x40c81000);
/* (Mute) CAPTURE feedback into PLAYBACK volume.
* Only lower 16 bits matter.
*/
snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 1, 0xffffffff);
/* SPDIF IN Volume */
snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 2, 0x30300000);
/* SPDIF IN Volume, 0x70 = (vol & 0x3f) | 0x40 */
snd_ca0106_ptr_write(chip, CAPTURE_CONTROL, 3, 0x00700000);
snd_ca0106_ptr_write(chip, PLAYBACK_ROUTING1, 0, 0x32765410);
snd_ca0106_ptr_write(chip, PLAYBACK_ROUTING2, 0, 0x76767676);
snd_ca0106_ptr_write(chip, CAPTURE_ROUTING1, 0, 0x32765410);
snd_ca0106_ptr_write(chip, CAPTURE_ROUTING2, 0, 0x76767676);
for (ch = 0; ch < 4; ch++) {
/* Only high 16 bits matter */
snd_ca0106_ptr_write(chip, CAPTURE_VOLUME1, ch, 0x30303030);
snd_ca0106_ptr_write(chip, CAPTURE_VOLUME2, ch, 0x30303030);
#if 0 /* Mute */
snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME1, ch, 0x40404040);
snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME2, ch, 0x40404040);
snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME1, ch, 0xffffffff);
snd_ca0106_ptr_write(chip, PLAYBACK_VOLUME2, ch, 0xffffffff);
#endif
}
if (chip->details->i2c_adc == 1) {
/* Select MIC, Line in, TAD in, AUX in */
snd_ca0106_ptr_write(chip, CAPTURE_SOURCE, 0x0, 0x333300e4);
/* Default to CAPTURE_SOURCE to i2s in */
if (!resume)
chip->capture_source = 3;
} else if (chip->details->ac97 == 1) {
/* Default to AC97 in */
snd_ca0106_ptr_write(chip, CAPTURE_SOURCE, 0x0, 0x444400e4);
/* Default to CAPTURE_SOURCE to AC97 in */
if (!resume)
chip->capture_source = 4;
} else {
/* Select MIC, Line in, TAD in, AUX in */
snd_ca0106_ptr_write(chip, CAPTURE_SOURCE, 0x0, 0x333300e4);
/* Default to Set CAPTURE_SOURCE to i2s in */
if (!resume)
chip->capture_source = 3;
}
if (chip->details->gpio_type == 2) {
/* The SB0438 use GPIO differently. */
/* FIXME: Still need to find out what the other GPIO bits do.
* E.g. For digital spdif out.
*/
outl(0x0, chip->port+GPIO);
/* outl(0x00f0e000, chip->port+GPIO); */ /* Analog */
outl(0x005f5301, chip->port+GPIO); /* Analog */
} else if (chip->details->gpio_type == 1) {
/* The SB0410 and SB0413 use GPIO differently. */
/* FIXME: Still need to find out what the other GPIO bits do.
* E.g. For digital spdif out.
*/
outl(0x0, chip->port+GPIO);
/* outl(0x00f0e000, chip->port+GPIO); */ /* Analog */
outl(0x005f5301, chip->port+GPIO); /* Analog */
} else {
outl(0x0, chip->port+GPIO);
outl(0x005f03a3, chip->port+GPIO); /* Analog */
/* outl(0x005f02a2, chip->port+GPIO); */ /* SPDIF */
}
snd_ca0106_intr_enable(chip, 0x105); /* Win2000 uses 0x1e0 */
/* outl(HCFG_LOCKSOUNDCACHE|HCFG_AUDIOENABLE, chip->port+HCFG); */
/* 0x1000 causes AC3 to fails. Maybe it effects 24 bit output. */
/* outl(0x00001409, chip->port+HCFG); */
/* outl(0x00000009, chip->port+HCFG); */
/* AC97 2.0, Enable outputs. */
outl(HCFG_AC97 | HCFG_AUDIOENABLE, chip->port+HCFG);
if (chip->details->i2c_adc == 1) {
/* The SB0410 and SB0413 use I2C to control ADC. */
int size, n;
size = ARRAY_SIZE(i2c_adc_init);
/* dev_dbg(emu->card->dev, "I2C:array size=0x%x\n", size); */
for (n = 0; n < size; n++)
snd_ca0106_i2c_write(chip, i2c_adc_init[n][0],
i2c_adc_init[n][1]);
for (n = 0; n < 4; n++) {
chip->i2c_capture_volume[n][0] = 0xcf;
chip->i2c_capture_volume[n][1] = 0xcf;
}
chip->i2c_capture_source = 2; /* Line in */
/* Enable Line-in capture. MIC in currently untested. */
/* snd_ca0106_i2c_write(chip, ADC_MUX, ADC_MUX_LINEIN); */
}
if (chip->details->spi_dac) {
/* The SB0570 use SPI to control DAC. */
int size, n;
size = ARRAY_SIZE(spi_dac_init);
for (n = 0; n < size; n++) {
int reg = spi_dac_init[n] >> SPI_REG_SHIFT;
snd_ca0106_spi_write(chip, spi_dac_init[n]);
if (reg < ARRAY_SIZE(chip->spi_dac_reg))
chip->spi_dac_reg[reg] = spi_dac_init[n];
}
/* Enable front dac only */
snd_ca0106_pcm_power_dac(chip, PCM_FRONT_CHANNEL, 1);
}
}
static void ca0106_stop_chip(struct snd_ca0106 *chip)
{
/* disable interrupts */
snd_ca0106_ptr_write(chip, BASIC_INTERRUPT, 0, 0);
outl(0, chip->port + INTE);
snd_ca0106_ptr_write(chip, EXTENDED_INT_MASK, 0, 0);
udelay(1000);
/* disable audio */
/* outl(HCFG_LOCKSOUNDCACHE, chip->port + HCFG); */
outl(0, chip->port + HCFG);
/* FIXME: We need to stop and DMA transfers here.
* But as I am not sure how yet, we cannot from the dma pages.
* So we can fix: snd-malloc: Memory leak? pages not freed = 8
*/
}
static int snd_ca0106_create(int dev, struct snd_card *card,
struct pci_dev *pci,
struct snd_ca0106 **rchip)
{
struct snd_ca0106 *chip;
struct snd_ca0106_details *c;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_ca0106_dev_free,
};
*rchip = NULL;
err = pci_enable_device(pci);
if (err < 0)
return err;
if (dma_set_mask(&pci->dev, DMA_BIT_MASK(32)) < 0 ||
dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(32)) < 0) {
dev_err(card->dev, "error to set 32bit mask DMA\n");
pci_disable_device(pci);
return -ENXIO;
}
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (chip == NULL) {
pci_disable_device(pci);
return -ENOMEM;
}
chip->card = card;
chip->pci = pci;
chip->irq = -1;
spin_lock_init(&chip->emu_lock);
chip->port = pci_resource_start(pci, 0);
chip->res_port = request_region(chip->port, 0x20, "snd_ca0106");
if (!chip->res_port) {
snd_ca0106_free(chip);
dev_err(card->dev, "cannot allocate the port\n");
return -EBUSY;
}
if (request_irq(pci->irq, snd_ca0106_interrupt,
IRQF_SHARED, KBUILD_MODNAME, chip)) {
snd_ca0106_free(chip);
dev_err(card->dev, "cannot grab irq\n");
return -EBUSY;
}
chip->irq = pci->irq;
/* This stores the periods table. */
if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
1024, &chip->buffer) < 0) {
snd_ca0106_free(chip);
return -ENOMEM;
}
pci_set_master(pci);
/* read serial */
pci_read_config_dword(pci, PCI_SUBSYSTEM_VENDOR_ID, &chip->serial);
pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &chip->model);
dev_info(card->dev, "Model %04x Rev %08x Serial %08x\n",
chip->model, pci->revision, chip->serial);
strcpy(card->driver, "CA0106");
strcpy(card->shortname, "CA0106");
for (c = ca0106_chip_details; c->serial; c++) {
if (subsystem[dev]) {
if (c->serial == subsystem[dev])
break;
} else if (c->serial == chip->serial)
break;
}
chip->details = c;
if (subsystem[dev]) {
dev_info(card->dev, "Sound card name=%s, "
"subsystem=0x%x. Forced to subsystem=0x%x\n",
c->name, chip->serial, subsystem[dev]);
}
sprintf(card->longname, "%s at 0x%lx irq %i",
c->name, chip->port, chip->irq);
ca0106_init_chip(chip, 0);
err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
if (err < 0) {
snd_ca0106_free(chip);
return err;
}
*rchip = chip;
return 0;
}
static void ca0106_midi_interrupt_enable(struct snd_ca_midi *midi, int intr)
{
snd_ca0106_intr_enable((struct snd_ca0106 *)(midi->dev_id), intr);
}
static void ca0106_midi_interrupt_disable(struct snd_ca_midi *midi, int intr)
{
snd_ca0106_intr_disable((struct snd_ca0106 *)(midi->dev_id), intr);
}
static unsigned char ca0106_midi_read(struct snd_ca_midi *midi, int idx)
{
return (unsigned char)snd_ca0106_ptr_read((struct snd_ca0106 *)(midi->dev_id),
midi->port + idx, 0);
}
static void ca0106_midi_write(struct snd_ca_midi *midi, int data, int idx)
{
snd_ca0106_ptr_write((struct snd_ca0106 *)(midi->dev_id), midi->port + idx, 0, data);
}
static struct snd_card *ca0106_dev_id_card(void *dev_id)
{
return ((struct snd_ca0106 *)dev_id)->card;
}
static int ca0106_dev_id_port(void *dev_id)
{
return ((struct snd_ca0106 *)dev_id)->port;
}
static int snd_ca0106_midi(struct snd_ca0106 *chip, unsigned int channel)
{
struct snd_ca_midi *midi;
char *name;
int err;
if (channel == CA0106_MIDI_CHAN_B) {
name = "CA0106 MPU-401 (UART) B";
midi = &chip->midi2;
midi->tx_enable = INTE_MIDI_TX_B;
midi->rx_enable = INTE_MIDI_RX_B;
midi->ipr_tx = IPR_MIDI_TX_B;
midi->ipr_rx = IPR_MIDI_RX_B;
midi->port = MIDI_UART_B_DATA;
} else {
name = "CA0106 MPU-401 (UART)";
midi = &chip->midi;
midi->tx_enable = INTE_MIDI_TX_A;
midi->rx_enable = INTE_MIDI_TX_B;
midi->ipr_tx = IPR_MIDI_TX_A;
midi->ipr_rx = IPR_MIDI_RX_A;
midi->port = MIDI_UART_A_DATA;
}
midi->reset = CA0106_MPU401_RESET;
midi->enter_uart = CA0106_MPU401_ENTER_UART;
midi->ack = CA0106_MPU401_ACK;
midi->input_avail = CA0106_MIDI_INPUT_AVAIL;
midi->output_ready = CA0106_MIDI_OUTPUT_READY;
midi->channel = channel;
midi->interrupt_enable = ca0106_midi_interrupt_enable;
midi->interrupt_disable = ca0106_midi_interrupt_disable;
midi->read = ca0106_midi_read;
midi->write = ca0106_midi_write;
midi->get_dev_id_card = ca0106_dev_id_card;
midi->get_dev_id_port = ca0106_dev_id_port;
midi->dev_id = chip;
if ((err = ca_midi_init(chip, midi, 0, name)) < 0)
return err;
return 0;
}
static int snd_ca0106_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct snd_ca0106 *chip;
int i, err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev]) {
dev++;
return -ENOENT;
}
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
0, &card);
if (err < 0)
return err;
err = snd_ca0106_create(dev, card, pci, &chip);
if (err < 0)
goto error;
card->private_data = chip;
for (i = 0; i < 4; i++) {
err = snd_ca0106_pcm(chip, i);
if (err < 0)
goto error;
}
if (chip->details->ac97 == 1) {
/* The SB0410 and SB0413 do not have an AC97 chip. */
err = snd_ca0106_ac97(chip);
if (err < 0)
goto error;
}
err = snd_ca0106_mixer(chip);
if (err < 0)
goto error;
dev_dbg(card->dev, "probe for MIDI channel A ...");
err = snd_ca0106_midi(chip, CA0106_MIDI_CHAN_A);
if (err < 0)
goto error;
dev_dbg(card->dev, " done.\n");
#ifdef CONFIG_SND_PROC_FS
snd_ca0106_proc_init(chip);
#endif
err = snd_card_register(card);
if (err < 0)
goto error;
pci_set_drvdata(pci, card);
dev++;
return 0;
error:
snd_card_free(card);
return err;
}
static void snd_ca0106_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
}
#ifdef CONFIG_PM_SLEEP
static int snd_ca0106_suspend(struct device *dev)
{
struct snd_card *card = dev_get_drvdata(dev);
struct snd_ca0106 *chip = card->private_data;
int i;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
for (i = 0; i < 4; i++)
snd_pcm_suspend_all(chip->pcm[i]);
if (chip->details->ac97)
snd_ac97_suspend(chip->ac97);
snd_ca0106_mixer_suspend(chip);
ca0106_stop_chip(chip);
return 0;
}
static int snd_ca0106_resume(struct device *dev)
{
struct snd_card *card = dev_get_drvdata(dev);
struct snd_ca0106 *chip = card->private_data;
int i;
ca0106_init_chip(chip, 1);
if (chip->details->ac97)
snd_ac97_resume(chip->ac97);
snd_ca0106_mixer_resume(chip);
if (chip->details->spi_dac) {
for (i = 0; i < ARRAY_SIZE(chip->spi_dac_reg); i++)
snd_ca0106_spi_write(chip, chip->spi_dac_reg[i]);
}
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
static SIMPLE_DEV_PM_OPS(snd_ca0106_pm, snd_ca0106_suspend, snd_ca0106_resume);
#define SND_CA0106_PM_OPS &snd_ca0106_pm
#else
#define SND_CA0106_PM_OPS NULL
#endif
// PCI IDs
static const struct pci_device_id snd_ca0106_ids[] = {
{ PCI_VDEVICE(CREATIVE, 0x0007), 0 }, /* Audigy LS or Live 24bit */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_ca0106_ids);
// pci_driver definition
static struct pci_driver ca0106_driver = {
.name = KBUILD_MODNAME,
.id_table = snd_ca0106_ids,
.probe = snd_ca0106_probe,
.remove = snd_ca0106_remove,
.driver = {
.pm = SND_CA0106_PM_OPS,
},
};
module_pci_driver(ca0106_driver);