450 lines
12 KiB
C
450 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* This file contains the routines for handling the MMU on those
|
|
* PowerPC implementations where the MMU substantially follows the
|
|
* architecture specification. This includes the 6xx, 7xx, 7xxx,
|
|
* and 8260 implementations but excludes the 8xx and 4xx.
|
|
* -- paulus
|
|
*
|
|
* Derived from arch/ppc/mm/init.c:
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/init.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/memblock.h>
|
|
|
|
#include <asm/prom.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/code-patching.h>
|
|
#include <asm/sections.h>
|
|
|
|
#include <mm/mmu_decl.h>
|
|
|
|
u8 __initdata early_hash[SZ_256K] __aligned(SZ_256K) = {0};
|
|
|
|
static struct hash_pte __initdata *Hash = (struct hash_pte *)early_hash;
|
|
static unsigned long __initdata Hash_size, Hash_mask;
|
|
static unsigned int __initdata hash_mb, hash_mb2;
|
|
unsigned long __initdata _SDR1;
|
|
|
|
struct ppc_bat BATS[8][2]; /* 8 pairs of IBAT, DBAT */
|
|
|
|
static struct batrange { /* stores address ranges mapped by BATs */
|
|
unsigned long start;
|
|
unsigned long limit;
|
|
phys_addr_t phys;
|
|
} bat_addrs[8];
|
|
|
|
#ifdef CONFIG_SMP
|
|
unsigned long mmu_hash_lock;
|
|
#endif
|
|
|
|
/*
|
|
* Return PA for this VA if it is mapped by a BAT, or 0
|
|
*/
|
|
phys_addr_t v_block_mapped(unsigned long va)
|
|
{
|
|
int b;
|
|
for (b = 0; b < ARRAY_SIZE(bat_addrs); ++b)
|
|
if (va >= bat_addrs[b].start && va < bat_addrs[b].limit)
|
|
return bat_addrs[b].phys + (va - bat_addrs[b].start);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return VA for a given PA or 0 if not mapped
|
|
*/
|
|
unsigned long p_block_mapped(phys_addr_t pa)
|
|
{
|
|
int b;
|
|
for (b = 0; b < ARRAY_SIZE(bat_addrs); ++b)
|
|
if (pa >= bat_addrs[b].phys
|
|
&& pa < (bat_addrs[b].limit-bat_addrs[b].start)
|
|
+bat_addrs[b].phys)
|
|
return bat_addrs[b].start+(pa-bat_addrs[b].phys);
|
|
return 0;
|
|
}
|
|
|
|
static int __init find_free_bat(void)
|
|
{
|
|
int b;
|
|
int n = mmu_has_feature(MMU_FTR_USE_HIGH_BATS) ? 8 : 4;
|
|
|
|
for (b = 0; b < n; b++) {
|
|
struct ppc_bat *bat = BATS[b];
|
|
|
|
if (!(bat[1].batu & 3))
|
|
return b;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* This function calculates the size of the larger block usable to map the
|
|
* beginning of an area based on the start address and size of that area:
|
|
* - max block size is 256 on 6xx.
|
|
* - base address must be aligned to the block size. So the maximum block size
|
|
* is identified by the lowest bit set to 1 in the base address (for instance
|
|
* if base is 0x16000000, max size is 0x02000000).
|
|
* - block size has to be a power of two. This is calculated by finding the
|
|
* highest bit set to 1.
|
|
*/
|
|
static unsigned int block_size(unsigned long base, unsigned long top)
|
|
{
|
|
unsigned int max_size = SZ_256M;
|
|
unsigned int base_shift = (ffs(base) - 1) & 31;
|
|
unsigned int block_shift = (fls(top - base) - 1) & 31;
|
|
|
|
return min3(max_size, 1U << base_shift, 1U << block_shift);
|
|
}
|
|
|
|
/*
|
|
* Set up one of the IBAT (block address translation) register pairs.
|
|
* The parameters are not checked; in particular size must be a power
|
|
* of 2 between 128k and 256M.
|
|
*/
|
|
static void setibat(int index, unsigned long virt, phys_addr_t phys,
|
|
unsigned int size, pgprot_t prot)
|
|
{
|
|
unsigned int bl = (size >> 17) - 1;
|
|
int wimgxpp;
|
|
struct ppc_bat *bat = BATS[index];
|
|
unsigned long flags = pgprot_val(prot);
|
|
|
|
if (!cpu_has_feature(CPU_FTR_NEED_COHERENT))
|
|
flags &= ~_PAGE_COHERENT;
|
|
|
|
wimgxpp = (flags & _PAGE_COHERENT) | (_PAGE_EXEC ? BPP_RX : BPP_XX);
|
|
bat[0].batu = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */
|
|
bat[0].batl = BAT_PHYS_ADDR(phys) | wimgxpp;
|
|
if (flags & _PAGE_USER)
|
|
bat[0].batu |= 1; /* Vp = 1 */
|
|
}
|
|
|
|
static void clearibat(int index)
|
|
{
|
|
struct ppc_bat *bat = BATS[index];
|
|
|
|
bat[0].batu = 0;
|
|
bat[0].batl = 0;
|
|
}
|
|
|
|
static unsigned long __init __mmu_mapin_ram(unsigned long base, unsigned long top)
|
|
{
|
|
int idx;
|
|
|
|
while ((idx = find_free_bat()) != -1 && base != top) {
|
|
unsigned int size = block_size(base, top);
|
|
|
|
if (size < 128 << 10)
|
|
break;
|
|
setbat(idx, PAGE_OFFSET + base, base, size, PAGE_KERNEL_X);
|
|
base += size;
|
|
}
|
|
|
|
return base;
|
|
}
|
|
|
|
unsigned long __init mmu_mapin_ram(unsigned long base, unsigned long top)
|
|
{
|
|
unsigned long done;
|
|
unsigned long border = (unsigned long)__init_begin - PAGE_OFFSET;
|
|
|
|
|
|
if (debug_pagealloc_enabled_or_kfence() || __map_without_bats) {
|
|
pr_debug_once("Read-Write memory mapped without BATs\n");
|
|
if (base >= border)
|
|
return base;
|
|
if (top >= border)
|
|
top = border;
|
|
}
|
|
|
|
if (!strict_kernel_rwx_enabled() || base >= border || top <= border)
|
|
return __mmu_mapin_ram(base, top);
|
|
|
|
done = __mmu_mapin_ram(base, border);
|
|
if (done != border)
|
|
return done;
|
|
|
|
return __mmu_mapin_ram(border, top);
|
|
}
|
|
|
|
static bool is_module_segment(unsigned long addr)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_MODULES))
|
|
return false;
|
|
if (addr < ALIGN_DOWN(MODULES_VADDR, SZ_256M))
|
|
return false;
|
|
if (addr > ALIGN(MODULES_END, SZ_256M) - 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void mmu_mark_initmem_nx(void)
|
|
{
|
|
int nb = mmu_has_feature(MMU_FTR_USE_HIGH_BATS) ? 8 : 4;
|
|
int i;
|
|
unsigned long base = (unsigned long)_stext - PAGE_OFFSET;
|
|
unsigned long top = ALIGN((unsigned long)_etext - PAGE_OFFSET, SZ_128K);
|
|
unsigned long border = (unsigned long)__init_begin - PAGE_OFFSET;
|
|
unsigned long size;
|
|
|
|
for (i = 0; i < nb - 1 && base < top;) {
|
|
size = block_size(base, top);
|
|
setibat(i++, PAGE_OFFSET + base, base, size, PAGE_KERNEL_TEXT);
|
|
base += size;
|
|
}
|
|
if (base < top) {
|
|
size = block_size(base, top);
|
|
if ((top - base) > size) {
|
|
size <<= 1;
|
|
if (strict_kernel_rwx_enabled() && base + size > border)
|
|
pr_warn("Some RW data is getting mapped X. "
|
|
"Adjust CONFIG_DATA_SHIFT to avoid that.\n");
|
|
}
|
|
setibat(i++, PAGE_OFFSET + base, base, size, PAGE_KERNEL_TEXT);
|
|
base += size;
|
|
}
|
|
for (; i < nb; i++)
|
|
clearibat(i);
|
|
|
|
update_bats();
|
|
|
|
for (i = TASK_SIZE >> 28; i < 16; i++) {
|
|
/* Do not set NX on VM space for modules */
|
|
if (is_module_segment(i << 28))
|
|
continue;
|
|
|
|
mtsr(mfsr(i << 28) | 0x10000000, i << 28);
|
|
}
|
|
}
|
|
|
|
void mmu_mark_rodata_ro(void)
|
|
{
|
|
int nb = mmu_has_feature(MMU_FTR_USE_HIGH_BATS) ? 8 : 4;
|
|
int i;
|
|
|
|
for (i = 0; i < nb; i++) {
|
|
struct ppc_bat *bat = BATS[i];
|
|
|
|
if (bat_addrs[i].start < (unsigned long)__init_begin)
|
|
bat[1].batl = (bat[1].batl & ~BPP_RW) | BPP_RX;
|
|
}
|
|
|
|
update_bats();
|
|
}
|
|
|
|
/*
|
|
* Set up one of the I/D BAT (block address translation) register pairs.
|
|
* The parameters are not checked; in particular size must be a power
|
|
* of 2 between 128k and 256M.
|
|
* On 603+, only set IBAT when _PAGE_EXEC is set
|
|
*/
|
|
void __init setbat(int index, unsigned long virt, phys_addr_t phys,
|
|
unsigned int size, pgprot_t prot)
|
|
{
|
|
unsigned int bl;
|
|
int wimgxpp;
|
|
struct ppc_bat *bat;
|
|
unsigned long flags = pgprot_val(prot);
|
|
|
|
if (index == -1)
|
|
index = find_free_bat();
|
|
if (index == -1) {
|
|
pr_err("%s: no BAT available for mapping 0x%llx\n", __func__,
|
|
(unsigned long long)phys);
|
|
return;
|
|
}
|
|
bat = BATS[index];
|
|
|
|
if ((flags & _PAGE_NO_CACHE) ||
|
|
(cpu_has_feature(CPU_FTR_NEED_COHERENT) == 0))
|
|
flags &= ~_PAGE_COHERENT;
|
|
|
|
bl = (size >> 17) - 1;
|
|
/* Do DBAT first */
|
|
wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
|
|
| _PAGE_COHERENT | _PAGE_GUARDED);
|
|
wimgxpp |= (flags & _PAGE_RW)? BPP_RW: BPP_RX;
|
|
bat[1].batu = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */
|
|
bat[1].batl = BAT_PHYS_ADDR(phys) | wimgxpp;
|
|
if (flags & _PAGE_USER)
|
|
bat[1].batu |= 1; /* Vp = 1 */
|
|
if (flags & _PAGE_GUARDED) {
|
|
/* G bit must be zero in IBATs */
|
|
flags &= ~_PAGE_EXEC;
|
|
}
|
|
if (flags & _PAGE_EXEC)
|
|
bat[0] = bat[1];
|
|
else
|
|
bat[0].batu = bat[0].batl = 0;
|
|
|
|
bat_addrs[index].start = virt;
|
|
bat_addrs[index].limit = virt + ((bl + 1) << 17) - 1;
|
|
bat_addrs[index].phys = phys;
|
|
}
|
|
|
|
/*
|
|
* Preload a translation in the hash table
|
|
*/
|
|
static void hash_preload(struct mm_struct *mm, unsigned long ea)
|
|
{
|
|
pmd_t *pmd;
|
|
|
|
if (!mmu_has_feature(MMU_FTR_HPTE_TABLE))
|
|
return;
|
|
pmd = pmd_off(mm, ea);
|
|
if (!pmd_none(*pmd))
|
|
add_hash_page(mm->context.id, ea, pmd_val(*pmd));
|
|
}
|
|
|
|
/*
|
|
* This is called at the end of handling a user page fault, when the
|
|
* fault has been handled by updating a PTE in the linux page tables.
|
|
* We use it to preload an HPTE into the hash table corresponding to
|
|
* the updated linux PTE.
|
|
*
|
|
* This must always be called with the pte lock held.
|
|
*/
|
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
|
|
pte_t *ptep)
|
|
{
|
|
if (!mmu_has_feature(MMU_FTR_HPTE_TABLE))
|
|
return;
|
|
/*
|
|
* We don't need to worry about _PAGE_PRESENT here because we are
|
|
* called with either mm->page_table_lock held or ptl lock held
|
|
*/
|
|
|
|
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
|
|
if (!pte_young(*ptep) || address >= TASK_SIZE)
|
|
return;
|
|
|
|
/* We have to test for regs NULL since init will get here first thing at boot */
|
|
if (!current->thread.regs)
|
|
return;
|
|
|
|
/* We also avoid filling the hash if not coming from a fault */
|
|
if (TRAP(current->thread.regs) != 0x300 && TRAP(current->thread.regs) != 0x400)
|
|
return;
|
|
|
|
hash_preload(vma->vm_mm, address);
|
|
}
|
|
|
|
/*
|
|
* Initialize the hash table and patch the instructions in hashtable.S.
|
|
*/
|
|
void __init MMU_init_hw(void)
|
|
{
|
|
unsigned int n_hpteg, lg_n_hpteg;
|
|
|
|
if (!mmu_has_feature(MMU_FTR_HPTE_TABLE))
|
|
return;
|
|
|
|
if ( ppc_md.progress ) ppc_md.progress("hash:enter", 0x105);
|
|
|
|
#define LG_HPTEG_SIZE 6 /* 64 bytes per HPTEG */
|
|
#define SDR1_LOW_BITS ((n_hpteg - 1) >> 10)
|
|
#define MIN_N_HPTEG 1024 /* min 64kB hash table */
|
|
|
|
/*
|
|
* Allow 1 HPTE (1/8 HPTEG) for each page of memory.
|
|
* This is less than the recommended amount, but then
|
|
* Linux ain't AIX.
|
|
*/
|
|
n_hpteg = total_memory / (PAGE_SIZE * 8);
|
|
if (n_hpteg < MIN_N_HPTEG)
|
|
n_hpteg = MIN_N_HPTEG;
|
|
lg_n_hpteg = __ilog2(n_hpteg);
|
|
if (n_hpteg & (n_hpteg - 1)) {
|
|
++lg_n_hpteg; /* round up if not power of 2 */
|
|
n_hpteg = 1 << lg_n_hpteg;
|
|
}
|
|
Hash_size = n_hpteg << LG_HPTEG_SIZE;
|
|
|
|
/*
|
|
* Find some memory for the hash table.
|
|
*/
|
|
if ( ppc_md.progress ) ppc_md.progress("hash:find piece", 0x322);
|
|
Hash = memblock_alloc(Hash_size, Hash_size);
|
|
if (!Hash)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
|
|
__func__, Hash_size, Hash_size);
|
|
_SDR1 = __pa(Hash) | SDR1_LOW_BITS;
|
|
|
|
pr_info("Total memory = %lldMB; using %ldkB for hash table\n",
|
|
(unsigned long long)(total_memory >> 20), Hash_size >> 10);
|
|
|
|
|
|
Hash_mask = n_hpteg - 1;
|
|
hash_mb2 = hash_mb = 32 - LG_HPTEG_SIZE - lg_n_hpteg;
|
|
if (lg_n_hpteg > 16)
|
|
hash_mb2 = 16 - LG_HPTEG_SIZE;
|
|
}
|
|
|
|
void __init MMU_init_hw_patch(void)
|
|
{
|
|
unsigned int hmask = Hash_mask >> (16 - LG_HPTEG_SIZE);
|
|
unsigned int hash = (unsigned int)Hash - PAGE_OFFSET;
|
|
|
|
if (!mmu_has_feature(MMU_FTR_HPTE_TABLE))
|
|
return;
|
|
|
|
if (ppc_md.progress)
|
|
ppc_md.progress("hash:patch", 0x345);
|
|
if (ppc_md.progress)
|
|
ppc_md.progress("hash:done", 0x205);
|
|
|
|
/* WARNING: Make sure nothing can trigger a KASAN check past this point */
|
|
|
|
/*
|
|
* Patch up the instructions in hashtable.S:create_hpte
|
|
*/
|
|
modify_instruction_site(&patch__hash_page_A0, 0xffff, hash >> 16);
|
|
modify_instruction_site(&patch__hash_page_A1, 0x7c0, hash_mb << 6);
|
|
modify_instruction_site(&patch__hash_page_A2, 0x7c0, hash_mb2 << 6);
|
|
modify_instruction_site(&patch__hash_page_B, 0xffff, hmask);
|
|
modify_instruction_site(&patch__hash_page_C, 0xffff, hmask);
|
|
|
|
/*
|
|
* Patch up the instructions in hashtable.S:flush_hash_page
|
|
*/
|
|
modify_instruction_site(&patch__flush_hash_A0, 0xffff, hash >> 16);
|
|
modify_instruction_site(&patch__flush_hash_A1, 0x7c0, hash_mb << 6);
|
|
modify_instruction_site(&patch__flush_hash_A2, 0x7c0, hash_mb2 << 6);
|
|
modify_instruction_site(&patch__flush_hash_B, 0xffff, hmask);
|
|
}
|
|
|
|
void setup_initial_memory_limit(phys_addr_t first_memblock_base,
|
|
phys_addr_t first_memblock_size)
|
|
{
|
|
/* We don't currently support the first MEMBLOCK not mapping 0
|
|
* physical on those processors
|
|
*/
|
|
BUG_ON(first_memblock_base != 0);
|
|
|
|
memblock_set_current_limit(min_t(u64, first_memblock_size, SZ_256M));
|
|
}
|
|
|
|
void __init print_system_hash_info(void)
|
|
{
|
|
pr_info("Hash_size = 0x%lx\n", Hash_size);
|
|
if (Hash_mask)
|
|
pr_info("Hash_mask = 0x%lx\n", Hash_mask);
|
|
}
|
|
|
|
void __init early_init_mmu(void)
|
|
{
|
|
}
|