OpenCloudOS-Kernel/kernel/rcu/tree_exp.h

741 lines
22 KiB
C

/*
* RCU expedited grace periods
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2016
*
* Authors: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
/*
* Record the start of an expedited grace period.
*/
static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
{
rcu_seq_start(&rsp->expedited_sequence);
}
/*
* Record the end of an expedited grace period.
*/
static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
{
rcu_seq_end(&rsp->expedited_sequence);
smp_mb(); /* Ensure that consecutive grace periods serialize. */
}
/*
* Take a snapshot of the expedited-grace-period counter.
*/
static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
{
unsigned long s;
smp_mb(); /* Caller's modifications seen first by other CPUs. */
s = rcu_seq_snap(&rsp->expedited_sequence);
trace_rcu_exp_grace_period(rsp->name, s, TPS("snap"));
return s;
}
/*
* Given a counter snapshot from rcu_exp_gp_seq_snap(), return true
* if a full expedited grace period has elapsed since that snapshot
* was taken.
*/
static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
{
return rcu_seq_done(&rsp->expedited_sequence, s);
}
/*
* Reset the ->expmaskinit values in the rcu_node tree to reflect any
* recent CPU-online activity. Note that these masks are not cleared
* when CPUs go offline, so they reflect the union of all CPUs that have
* ever been online. This means that this function normally takes its
* no-work-to-do fastpath.
*/
static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
{
bool done;
unsigned long flags;
unsigned long mask;
unsigned long oldmask;
int ncpus = smp_load_acquire(&rsp->ncpus); /* Order against locking. */
struct rcu_node *rnp;
struct rcu_node *rnp_up;
/* If no new CPUs onlined since last time, nothing to do. */
if (likely(ncpus == rsp->ncpus_snap))
return;
rsp->ncpus_snap = ncpus;
/*
* Each pass through the following loop propagates newly onlined
* CPUs for the current rcu_node structure up the rcu_node tree.
*/
rcu_for_each_leaf_node(rsp, rnp) {
raw_spin_lock_irqsave_rcu_node(rnp, flags);
if (rnp->expmaskinit == rnp->expmaskinitnext) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
continue; /* No new CPUs, nothing to do. */
}
/* Update this node's mask, track old value for propagation. */
oldmask = rnp->expmaskinit;
rnp->expmaskinit = rnp->expmaskinitnext;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
/* If was already nonzero, nothing to propagate. */
if (oldmask)
continue;
/* Propagate the new CPU up the tree. */
mask = rnp->grpmask;
rnp_up = rnp->parent;
done = false;
while (rnp_up) {
raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
if (rnp_up->expmaskinit)
done = true;
rnp_up->expmaskinit |= mask;
raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
if (done)
break;
mask = rnp_up->grpmask;
rnp_up = rnp_up->parent;
}
}
}
/*
* Reset the ->expmask values in the rcu_node tree in preparation for
* a new expedited grace period.
*/
static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
{
unsigned long flags;
struct rcu_node *rnp;
sync_exp_reset_tree_hotplug(rsp);
rcu_for_each_node_breadth_first(rsp, rnp) {
raw_spin_lock_irqsave_rcu_node(rnp, flags);
WARN_ON_ONCE(rnp->expmask);
rnp->expmask = rnp->expmaskinit;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
}
/*
* Return non-zero if there is no RCU expedited grace period in progress
* for the specified rcu_node structure, in other words, if all CPUs and
* tasks covered by the specified rcu_node structure have done their bit
* for the current expedited grace period. Works only for preemptible
* RCU -- other RCU implementation use other means.
*
* Caller must hold the rcu_state's exp_mutex.
*/
static bool sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
return rnp->exp_tasks == NULL &&
READ_ONCE(rnp->expmask) == 0;
}
/*
* Report the exit from RCU read-side critical section for the last task
* that queued itself during or before the current expedited preemptible-RCU
* grace period. This event is reported either to the rcu_node structure on
* which the task was queued or to one of that rcu_node structure's ancestors,
* recursively up the tree. (Calm down, calm down, we do the recursion
* iteratively!)
*
* Caller must hold the rcu_state's exp_mutex and the specified rcu_node
* structure's ->lock.
*/
static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
bool wake, unsigned long flags)
__releases(rnp->lock)
{
unsigned long mask;
for (;;) {
if (!sync_rcu_preempt_exp_done(rnp)) {
if (!rnp->expmask)
rcu_initiate_boost(rnp, flags);
else
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
break;
}
if (rnp->parent == NULL) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
if (wake) {
smp_mb(); /* EGP done before wake_up(). */
swake_up(&rsp->expedited_wq);
}
break;
}
mask = rnp->grpmask;
raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
rnp = rnp->parent;
raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
WARN_ON_ONCE(!(rnp->expmask & mask));
rnp->expmask &= ~mask;
}
}
/*
* Report expedited quiescent state for specified node. This is a
* lock-acquisition wrapper function for __rcu_report_exp_rnp().
*
* Caller must hold the rcu_state's exp_mutex.
*/
static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
struct rcu_node *rnp, bool wake)
{
unsigned long flags;
raw_spin_lock_irqsave_rcu_node(rnp, flags);
__rcu_report_exp_rnp(rsp, rnp, wake, flags);
}
/*
* Report expedited quiescent state for multiple CPUs, all covered by the
* specified leaf rcu_node structure. Caller must hold the rcu_state's
* exp_mutex.
*/
static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
unsigned long mask, bool wake)
{
unsigned long flags;
raw_spin_lock_irqsave_rcu_node(rnp, flags);
if (!(rnp->expmask & mask)) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
return;
}
rnp->expmask &= ~mask;
__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
}
/*
* Report expedited quiescent state for specified rcu_data (CPU).
*/
static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
bool wake)
{
rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
}
/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
static bool sync_exp_work_done(struct rcu_state *rsp, atomic_long_t *stat,
unsigned long s)
{
if (rcu_exp_gp_seq_done(rsp, s)) {
trace_rcu_exp_grace_period(rsp->name, s, TPS("done"));
/* Ensure test happens before caller kfree(). */
smp_mb__before_atomic(); /* ^^^ */
atomic_long_inc(stat);
return true;
}
return false;
}
/*
* Funnel-lock acquisition for expedited grace periods. Returns true
* if some other task completed an expedited grace period that this task
* can piggy-back on, and with no mutex held. Otherwise, returns false
* with the mutex held, indicating that the caller must actually do the
* expedited grace period.
*/
static bool exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
{
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
struct rcu_node *rnp = rdp->mynode;
struct rcu_node *rnp_root = rcu_get_root(rsp);
/* Low-contention fastpath. */
if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s) &&
(rnp == rnp_root ||
ULONG_CMP_LT(READ_ONCE(rnp_root->exp_seq_rq), s)) &&
mutex_trylock(&rsp->exp_mutex))
goto fastpath;
/*
* Each pass through the following loop works its way up
* the rcu_node tree, returning if others have done the work or
* otherwise falls through to acquire rsp->exp_mutex. The mapping
* from CPU to rcu_node structure can be inexact, as it is just
* promoting locality and is not strictly needed for correctness.
*/
for (; rnp != NULL; rnp = rnp->parent) {
if (sync_exp_work_done(rsp, &rdp->exp_workdone1, s))
return true;
/* Work not done, either wait here or go up. */
spin_lock(&rnp->exp_lock);
if (ULONG_CMP_GE(rnp->exp_seq_rq, s)) {
/* Someone else doing GP, so wait for them. */
spin_unlock(&rnp->exp_lock);
trace_rcu_exp_funnel_lock(rsp->name, rnp->level,
rnp->grplo, rnp->grphi,
TPS("wait"));
wait_event(rnp->exp_wq[rcu_seq_ctr(s) & 0x3],
sync_exp_work_done(rsp,
&rdp->exp_workdone2, s));
return true;
}
rnp->exp_seq_rq = s; /* Followers can wait on us. */
spin_unlock(&rnp->exp_lock);
trace_rcu_exp_funnel_lock(rsp->name, rnp->level, rnp->grplo,
rnp->grphi, TPS("nxtlvl"));
}
mutex_lock(&rsp->exp_mutex);
fastpath:
if (sync_exp_work_done(rsp, &rdp->exp_workdone3, s)) {
mutex_unlock(&rsp->exp_mutex);
return true;
}
rcu_exp_gp_seq_start(rsp);
trace_rcu_exp_grace_period(rsp->name, s, TPS("start"));
return false;
}
/* Invoked on each online non-idle CPU for expedited quiescent state. */
static void sync_sched_exp_handler(void *data)
{
struct rcu_data *rdp;
struct rcu_node *rnp;
struct rcu_state *rsp = data;
rdp = this_cpu_ptr(rsp->rda);
rnp = rdp->mynode;
if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
return;
if (rcu_is_cpu_rrupt_from_idle()) {
rcu_report_exp_rdp(&rcu_sched_state,
this_cpu_ptr(&rcu_sched_data), true);
return;
}
__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
/* Store .exp before .rcu_urgent_qs. */
smp_store_release(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs), true);
resched_cpu(smp_processor_id());
}
/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
static void sync_sched_exp_online_cleanup(int cpu)
{
struct rcu_data *rdp;
int ret;
struct rcu_node *rnp;
struct rcu_state *rsp = &rcu_sched_state;
rdp = per_cpu_ptr(rsp->rda, cpu);
rnp = rdp->mynode;
if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
return;
ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
WARN_ON_ONCE(ret);
}
/*
* Select the nodes that the upcoming expedited grace period needs
* to wait for.
*/
static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
smp_call_func_t func)
{
int cpu;
unsigned long flags;
unsigned long mask_ofl_test;
unsigned long mask_ofl_ipi;
int ret;
struct rcu_node *rnp;
sync_exp_reset_tree(rsp);
rcu_for_each_leaf_node(rsp, rnp) {
raw_spin_lock_irqsave_rcu_node(rnp, flags);
/* Each pass checks a CPU for identity, offline, and idle. */
mask_ofl_test = 0;
for_each_leaf_node_possible_cpu(rnp, cpu) {
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
rdp->exp_dynticks_snap =
rcu_dynticks_snap(rdp->dynticks);
if (raw_smp_processor_id() == cpu ||
rcu_dynticks_in_eqs(rdp->exp_dynticks_snap) ||
!(rnp->qsmaskinitnext & rdp->grpmask))
mask_ofl_test |= rdp->grpmask;
}
mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
/*
* Need to wait for any blocked tasks as well. Note that
* additional blocking tasks will also block the expedited
* GP until such time as the ->expmask bits are cleared.
*/
if (rcu_preempt_has_tasks(rnp))
rnp->exp_tasks = rnp->blkd_tasks.next;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
/* IPI the remaining CPUs for expedited quiescent state. */
for_each_leaf_node_possible_cpu(rnp, cpu) {
unsigned long mask = leaf_node_cpu_bit(rnp, cpu);
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
if (!(mask_ofl_ipi & mask))
continue;
retry_ipi:
if (rcu_dynticks_in_eqs_since(rdp->dynticks,
rdp->exp_dynticks_snap)) {
mask_ofl_test |= mask;
continue;
}
ret = smp_call_function_single(cpu, func, rsp, 0);
if (!ret) {
mask_ofl_ipi &= ~mask;
continue;
}
/* Failed, raced with CPU hotplug operation. */
raw_spin_lock_irqsave_rcu_node(rnp, flags);
if ((rnp->qsmaskinitnext & mask) &&
(rnp->expmask & mask)) {
/* Online, so delay for a bit and try again. */
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
schedule_timeout_uninterruptible(1);
goto retry_ipi;
}
/* CPU really is offline, so we can ignore it. */
if (!(rnp->expmask & mask))
mask_ofl_ipi &= ~mask;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
/* Report quiescent states for those that went offline. */
mask_ofl_test |= mask_ofl_ipi;
if (mask_ofl_test)
rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
}
}
static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
{
int cpu;
unsigned long jiffies_stall;
unsigned long jiffies_start;
unsigned long mask;
int ndetected;
struct rcu_node *rnp;
struct rcu_node *rnp_root = rcu_get_root(rsp);
int ret;
jiffies_stall = rcu_jiffies_till_stall_check();
jiffies_start = jiffies;
for (;;) {
ret = swait_event_timeout(
rsp->expedited_wq,
sync_rcu_preempt_exp_done(rnp_root),
jiffies_stall);
if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
return;
WARN_ON(ret < 0); /* workqueues should not be signaled. */
if (rcu_cpu_stall_suppress)
continue;
panic_on_rcu_stall();
pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
rsp->name);
ndetected = 0;
rcu_for_each_leaf_node(rsp, rnp) {
ndetected += rcu_print_task_exp_stall(rnp);
for_each_leaf_node_possible_cpu(rnp, cpu) {
struct rcu_data *rdp;
mask = leaf_node_cpu_bit(rnp, cpu);
if (!(rnp->expmask & mask))
continue;
ndetected++;
rdp = per_cpu_ptr(rsp->rda, cpu);
pr_cont(" %d-%c%c%c", cpu,
"O."[!!cpu_online(cpu)],
"o."[!!(rdp->grpmask & rnp->expmaskinit)],
"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
}
}
pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
jiffies - jiffies_start, rsp->expedited_sequence,
rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
if (ndetected) {
pr_err("blocking rcu_node structures:");
rcu_for_each_node_breadth_first(rsp, rnp) {
if (rnp == rnp_root)
continue; /* printed unconditionally */
if (sync_rcu_preempt_exp_done(rnp))
continue;
pr_cont(" l=%u:%d-%d:%#lx/%c",
rnp->level, rnp->grplo, rnp->grphi,
rnp->expmask,
".T"[!!rnp->exp_tasks]);
}
pr_cont("\n");
}
rcu_for_each_leaf_node(rsp, rnp) {
for_each_leaf_node_possible_cpu(rnp, cpu) {
mask = leaf_node_cpu_bit(rnp, cpu);
if (!(rnp->expmask & mask))
continue;
dump_cpu_task(cpu);
}
}
jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
}
}
/*
* Wait for the current expedited grace period to complete, and then
* wake up everyone who piggybacked on the just-completed expedited
* grace period. Also update all the ->exp_seq_rq counters as needed
* in order to avoid counter-wrap problems.
*/
static void rcu_exp_wait_wake(struct rcu_state *rsp, unsigned long s)
{
struct rcu_node *rnp;
synchronize_sched_expedited_wait(rsp);
rcu_exp_gp_seq_end(rsp);
trace_rcu_exp_grace_period(rsp->name, s, TPS("end"));
/*
* Switch over to wakeup mode, allowing the next GP, but -only- the
* next GP, to proceed.
*/
mutex_lock(&rsp->exp_wake_mutex);
rcu_for_each_node_breadth_first(rsp, rnp) {
if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s)) {
spin_lock(&rnp->exp_lock);
/* Recheck, avoid hang in case someone just arrived. */
if (ULONG_CMP_LT(rnp->exp_seq_rq, s))
rnp->exp_seq_rq = s;
spin_unlock(&rnp->exp_lock);
}
smp_mb(); /* All above changes before wakeup. */
wake_up_all(&rnp->exp_wq[rcu_seq_ctr(rsp->expedited_sequence) & 0x3]);
}
trace_rcu_exp_grace_period(rsp->name, s, TPS("endwake"));
mutex_unlock(&rsp->exp_wake_mutex);
}
/* Let the workqueue handler know what it is supposed to do. */
struct rcu_exp_work {
smp_call_func_t rew_func;
struct rcu_state *rew_rsp;
unsigned long rew_s;
struct work_struct rew_work;
};
/*
* Common code to drive an expedited grace period forward, used by
* workqueues and mid-boot-time tasks.
*/
static void rcu_exp_sel_wait_wake(struct rcu_state *rsp,
smp_call_func_t func, unsigned long s)
{
/* Initialize the rcu_node tree in preparation for the wait. */
sync_rcu_exp_select_cpus(rsp, func);
/* Wait and clean up, including waking everyone. */
rcu_exp_wait_wake(rsp, s);
}
/*
* Work-queue handler to drive an expedited grace period forward.
*/
static void wait_rcu_exp_gp(struct work_struct *wp)
{
struct rcu_exp_work *rewp;
rewp = container_of(wp, struct rcu_exp_work, rew_work);
rcu_exp_sel_wait_wake(rewp->rew_rsp, rewp->rew_func, rewp->rew_s);
}
/*
* Given an rcu_state pointer and a smp_call_function() handler, kick
* off the specified flavor of expedited grace period.
*/
static void _synchronize_rcu_expedited(struct rcu_state *rsp,
smp_call_func_t func)
{
struct rcu_data *rdp;
struct rcu_exp_work rew;
struct rcu_node *rnp;
unsigned long s;
/* If expedited grace periods are prohibited, fall back to normal. */
if (rcu_gp_is_normal()) {
wait_rcu_gp(rsp->call);
return;
}
/* Take a snapshot of the sequence number. */
s = rcu_exp_gp_seq_snap(rsp);
if (exp_funnel_lock(rsp, s))
return; /* Someone else did our work for us. */
/* Ensure that load happens before action based on it. */
if (unlikely(rcu_scheduler_active == RCU_SCHEDULER_INIT)) {
/* Direct call during scheduler init and early_initcalls(). */
rcu_exp_sel_wait_wake(rsp, func, s);
} else {
/* Marshall arguments & schedule the expedited grace period. */
rew.rew_func = func;
rew.rew_rsp = rsp;
rew.rew_s = s;
INIT_WORK_ONSTACK(&rew.rew_work, wait_rcu_exp_gp);
schedule_work(&rew.rew_work);
}
/* Wait for expedited grace period to complete. */
rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
rnp = rcu_get_root(rsp);
wait_event(rnp->exp_wq[rcu_seq_ctr(s) & 0x3],
sync_exp_work_done(rsp, &rdp->exp_workdone0, s));
smp_mb(); /* Workqueue actions happen before return. */
/* Let the next expedited grace period start. */
mutex_unlock(&rsp->exp_mutex);
}
/**
* synchronize_sched_expedited - Brute-force RCU-sched grace period
*
* Wait for an RCU-sched grace period to elapse, but use a "big hammer"
* approach to force the grace period to end quickly. This consumes
* significant time on all CPUs and is unfriendly to real-time workloads,
* so is thus not recommended for any sort of common-case code. In fact,
* if you are using synchronize_sched_expedited() in a loop, please
* restructure your code to batch your updates, and then use a single
* synchronize_sched() instead.
*
* This implementation can be thought of as an application of sequence
* locking to expedited grace periods, but using the sequence counter to
* determine when someone else has already done the work instead of for
* retrying readers.
*/
void synchronize_sched_expedited(void)
{
struct rcu_state *rsp = &rcu_sched_state;
RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
lock_is_held(&rcu_lock_map) ||
lock_is_held(&rcu_sched_lock_map),
"Illegal synchronize_sched_expedited() in RCU read-side critical section");
/* If only one CPU, this is automatically a grace period. */
if (rcu_blocking_is_gp())
return;
_synchronize_rcu_expedited(rsp, sync_sched_exp_handler);
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
#ifdef CONFIG_PREEMPT_RCU
/*
* Remote handler for smp_call_function_single(). If there is an
* RCU read-side critical section in effect, request that the
* next rcu_read_unlock() record the quiescent state up the
* ->expmask fields in the rcu_node tree. Otherwise, immediately
* report the quiescent state.
*/
static void sync_rcu_exp_handler(void *info)
{
struct rcu_data *rdp;
struct rcu_state *rsp = info;
struct task_struct *t = current;
/*
* Within an RCU read-side critical section, request that the next
* rcu_read_unlock() report. Unless this RCU read-side critical
* section has already blocked, in which case it is already set
* up for the expedited grace period to wait on it.
*/
if (t->rcu_read_lock_nesting > 0 &&
!t->rcu_read_unlock_special.b.blocked) {
t->rcu_read_unlock_special.b.exp_need_qs = true;
return;
}
/*
* We are either exiting an RCU read-side critical section (negative
* values of t->rcu_read_lock_nesting) or are not in one at all
* (zero value of t->rcu_read_lock_nesting). Or we are in an RCU
* read-side critical section that blocked before this expedited
* grace period started. Either way, we can immediately report
* the quiescent state.
*/
rdp = this_cpu_ptr(rsp->rda);
rcu_report_exp_rdp(rsp, rdp, true);
}
/**
* synchronize_rcu_expedited - Brute-force RCU grace period
*
* Wait for an RCU-preempt grace period, but expedite it. The basic
* idea is to IPI all non-idle non-nohz online CPUs. The IPI handler
* checks whether the CPU is in an RCU-preempt critical section, and
* if so, it sets a flag that causes the outermost rcu_read_unlock()
* to report the quiescent state. On the other hand, if the CPU is
* not in an RCU read-side critical section, the IPI handler reports
* the quiescent state immediately.
*
* Although this is a greate improvement over previous expedited
* implementations, it is still unfriendly to real-time workloads, so is
* thus not recommended for any sort of common-case code. In fact, if
* you are using synchronize_rcu_expedited() in a loop, please restructure
* your code to batch your updates, and then Use a single synchronize_rcu()
* instead.
*/
void synchronize_rcu_expedited(void)
{
struct rcu_state *rsp = rcu_state_p;
RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
lock_is_held(&rcu_lock_map) ||
lock_is_held(&rcu_sched_lock_map),
"Illegal synchronize_rcu_expedited() in RCU read-side critical section");
if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
return;
_synchronize_rcu_expedited(rsp, sync_rcu_exp_handler);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
#else /* #ifdef CONFIG_PREEMPT_RCU */
/*
* Wait for an rcu-preempt grace period, but make it happen quickly.
* But because preemptible RCU does not exist, map to rcu-sched.
*/
void synchronize_rcu_expedited(void)
{
synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */