4751 lines
124 KiB
C
4751 lines
124 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* NVM Express device driver
|
|
* Copyright (c) 2011-2014, Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/blk-integrity.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pr.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/nvme_ioctl.h>
|
|
#include <linux/pm_qos.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "nvme.h"
|
|
#include "fabrics.h"
|
|
#include <linux/nvme-auth.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace.h"
|
|
|
|
#define NVME_MINORS (1U << MINORBITS)
|
|
|
|
struct nvme_ns_info {
|
|
struct nvme_ns_ids ids;
|
|
u32 nsid;
|
|
__le32 anagrpid;
|
|
bool is_shared;
|
|
bool is_readonly;
|
|
bool is_ready;
|
|
bool is_removed;
|
|
};
|
|
|
|
unsigned int admin_timeout = 60;
|
|
module_param(admin_timeout, uint, 0644);
|
|
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
|
|
EXPORT_SYMBOL_GPL(admin_timeout);
|
|
|
|
unsigned int nvme_io_timeout = 30;
|
|
module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
|
|
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
|
|
EXPORT_SYMBOL_GPL(nvme_io_timeout);
|
|
|
|
static unsigned char shutdown_timeout = 5;
|
|
module_param(shutdown_timeout, byte, 0644);
|
|
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
|
|
|
|
static u8 nvme_max_retries = 5;
|
|
module_param_named(max_retries, nvme_max_retries, byte, 0644);
|
|
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
|
|
|
|
static unsigned long default_ps_max_latency_us = 100000;
|
|
module_param(default_ps_max_latency_us, ulong, 0644);
|
|
MODULE_PARM_DESC(default_ps_max_latency_us,
|
|
"max power saving latency for new devices; use PM QOS to change per device");
|
|
|
|
static bool force_apst;
|
|
module_param(force_apst, bool, 0644);
|
|
MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
|
|
|
|
static unsigned long apst_primary_timeout_ms = 100;
|
|
module_param(apst_primary_timeout_ms, ulong, 0644);
|
|
MODULE_PARM_DESC(apst_primary_timeout_ms,
|
|
"primary APST timeout in ms");
|
|
|
|
static unsigned long apst_secondary_timeout_ms = 2000;
|
|
module_param(apst_secondary_timeout_ms, ulong, 0644);
|
|
MODULE_PARM_DESC(apst_secondary_timeout_ms,
|
|
"secondary APST timeout in ms");
|
|
|
|
static unsigned long apst_primary_latency_tol_us = 15000;
|
|
module_param(apst_primary_latency_tol_us, ulong, 0644);
|
|
MODULE_PARM_DESC(apst_primary_latency_tol_us,
|
|
"primary APST latency tolerance in us");
|
|
|
|
static unsigned long apst_secondary_latency_tol_us = 100000;
|
|
module_param(apst_secondary_latency_tol_us, ulong, 0644);
|
|
MODULE_PARM_DESC(apst_secondary_latency_tol_us,
|
|
"secondary APST latency tolerance in us");
|
|
|
|
/*
|
|
* nvme_wq - hosts nvme related works that are not reset or delete
|
|
* nvme_reset_wq - hosts nvme reset works
|
|
* nvme_delete_wq - hosts nvme delete works
|
|
*
|
|
* nvme_wq will host works such as scan, aen handling, fw activation,
|
|
* keep-alive, periodic reconnects etc. nvme_reset_wq
|
|
* runs reset works which also flush works hosted on nvme_wq for
|
|
* serialization purposes. nvme_delete_wq host controller deletion
|
|
* works which flush reset works for serialization.
|
|
*/
|
|
struct workqueue_struct *nvme_wq;
|
|
EXPORT_SYMBOL_GPL(nvme_wq);
|
|
|
|
struct workqueue_struct *nvme_reset_wq;
|
|
EXPORT_SYMBOL_GPL(nvme_reset_wq);
|
|
|
|
struct workqueue_struct *nvme_delete_wq;
|
|
EXPORT_SYMBOL_GPL(nvme_delete_wq);
|
|
|
|
static LIST_HEAD(nvme_subsystems);
|
|
static DEFINE_MUTEX(nvme_subsystems_lock);
|
|
|
|
static DEFINE_IDA(nvme_instance_ida);
|
|
static dev_t nvme_ctrl_base_chr_devt;
|
|
static struct class *nvme_class;
|
|
static struct class *nvme_subsys_class;
|
|
|
|
static DEFINE_IDA(nvme_ns_chr_minor_ida);
|
|
static dev_t nvme_ns_chr_devt;
|
|
static struct class *nvme_ns_chr_class;
|
|
|
|
static void nvme_put_subsystem(struct nvme_subsystem *subsys);
|
|
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
|
|
unsigned nsid);
|
|
static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
|
|
struct nvme_command *cmd);
|
|
|
|
void nvme_queue_scan(struct nvme_ctrl *ctrl)
|
|
{
|
|
/*
|
|
* Only new queue scan work when admin and IO queues are both alive
|
|
*/
|
|
if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
|
|
queue_work(nvme_wq, &ctrl->scan_work);
|
|
}
|
|
|
|
/*
|
|
* Use this function to proceed with scheduling reset_work for a controller
|
|
* that had previously been set to the resetting state. This is intended for
|
|
* code paths that can't be interrupted by other reset attempts. A hot removal
|
|
* may prevent this from succeeding.
|
|
*/
|
|
int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (ctrl->state != NVME_CTRL_RESETTING)
|
|
return -EBUSY;
|
|
if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
|
|
|
|
static void nvme_failfast_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
|
|
struct nvme_ctrl, failfast_work);
|
|
|
|
if (ctrl->state != NVME_CTRL_CONNECTING)
|
|
return;
|
|
|
|
set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
|
|
dev_info(ctrl->device, "failfast expired\n");
|
|
nvme_kick_requeue_lists(ctrl);
|
|
}
|
|
|
|
static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
|
|
return;
|
|
|
|
schedule_delayed_work(&ctrl->failfast_work,
|
|
ctrl->opts->fast_io_fail_tmo * HZ);
|
|
}
|
|
|
|
static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (!ctrl->opts)
|
|
return;
|
|
|
|
cancel_delayed_work_sync(&ctrl->failfast_work);
|
|
clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
|
|
}
|
|
|
|
|
|
int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
|
|
return -EBUSY;
|
|
if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
|
|
|
|
int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
|
|
{
|
|
int ret;
|
|
|
|
ret = nvme_reset_ctrl(ctrl);
|
|
if (!ret) {
|
|
flush_work(&ctrl->reset_work);
|
|
if (ctrl->state != NVME_CTRL_LIVE)
|
|
ret = -ENETRESET;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
dev_info(ctrl->device,
|
|
"Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
|
|
|
|
flush_work(&ctrl->reset_work);
|
|
nvme_stop_ctrl(ctrl);
|
|
nvme_remove_namespaces(ctrl);
|
|
ctrl->ops->delete_ctrl(ctrl);
|
|
nvme_uninit_ctrl(ctrl);
|
|
}
|
|
|
|
static void nvme_delete_ctrl_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl =
|
|
container_of(work, struct nvme_ctrl, delete_work);
|
|
|
|
nvme_do_delete_ctrl(ctrl);
|
|
}
|
|
|
|
int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
|
|
return -EBUSY;
|
|
if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
|
|
|
|
void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
|
|
{
|
|
/*
|
|
* Keep a reference until nvme_do_delete_ctrl() complete,
|
|
* since ->delete_ctrl can free the controller.
|
|
*/
|
|
nvme_get_ctrl(ctrl);
|
|
if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
|
|
nvme_do_delete_ctrl(ctrl);
|
|
nvme_put_ctrl(ctrl);
|
|
}
|
|
|
|
static blk_status_t nvme_error_status(u16 status)
|
|
{
|
|
switch (status & 0x7ff) {
|
|
case NVME_SC_SUCCESS:
|
|
return BLK_STS_OK;
|
|
case NVME_SC_CAP_EXCEEDED:
|
|
return BLK_STS_NOSPC;
|
|
case NVME_SC_LBA_RANGE:
|
|
case NVME_SC_CMD_INTERRUPTED:
|
|
case NVME_SC_NS_NOT_READY:
|
|
return BLK_STS_TARGET;
|
|
case NVME_SC_BAD_ATTRIBUTES:
|
|
case NVME_SC_ONCS_NOT_SUPPORTED:
|
|
case NVME_SC_INVALID_OPCODE:
|
|
case NVME_SC_INVALID_FIELD:
|
|
case NVME_SC_INVALID_NS:
|
|
return BLK_STS_NOTSUPP;
|
|
case NVME_SC_WRITE_FAULT:
|
|
case NVME_SC_READ_ERROR:
|
|
case NVME_SC_UNWRITTEN_BLOCK:
|
|
case NVME_SC_ACCESS_DENIED:
|
|
case NVME_SC_READ_ONLY:
|
|
case NVME_SC_COMPARE_FAILED:
|
|
return BLK_STS_MEDIUM;
|
|
case NVME_SC_GUARD_CHECK:
|
|
case NVME_SC_APPTAG_CHECK:
|
|
case NVME_SC_REFTAG_CHECK:
|
|
case NVME_SC_INVALID_PI:
|
|
return BLK_STS_PROTECTION;
|
|
case NVME_SC_RESERVATION_CONFLICT:
|
|
return BLK_STS_RESV_CONFLICT;
|
|
case NVME_SC_HOST_PATH_ERROR:
|
|
return BLK_STS_TRANSPORT;
|
|
case NVME_SC_ZONE_TOO_MANY_ACTIVE:
|
|
return BLK_STS_ZONE_ACTIVE_RESOURCE;
|
|
case NVME_SC_ZONE_TOO_MANY_OPEN:
|
|
return BLK_STS_ZONE_OPEN_RESOURCE;
|
|
default:
|
|
return BLK_STS_IOERR;
|
|
}
|
|
}
|
|
|
|
static void nvme_retry_req(struct request *req)
|
|
{
|
|
unsigned long delay = 0;
|
|
u16 crd;
|
|
|
|
/* The mask and shift result must be <= 3 */
|
|
crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
|
|
if (crd)
|
|
delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
|
|
|
|
nvme_req(req)->retries++;
|
|
blk_mq_requeue_request(req, false);
|
|
blk_mq_delay_kick_requeue_list(req->q, delay);
|
|
}
|
|
|
|
static void nvme_log_error(struct request *req)
|
|
{
|
|
struct nvme_ns *ns = req->q->queuedata;
|
|
struct nvme_request *nr = nvme_req(req);
|
|
|
|
if (ns) {
|
|
pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
|
|
ns->disk ? ns->disk->disk_name : "?",
|
|
nvme_get_opcode_str(nr->cmd->common.opcode),
|
|
nr->cmd->common.opcode,
|
|
(unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
|
|
(unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
|
|
nvme_get_error_status_str(nr->status),
|
|
nr->status >> 8 & 7, /* Status Code Type */
|
|
nr->status & 0xff, /* Status Code */
|
|
nr->status & NVME_SC_MORE ? "MORE " : "",
|
|
nr->status & NVME_SC_DNR ? "DNR " : "");
|
|
return;
|
|
}
|
|
|
|
pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
|
|
dev_name(nr->ctrl->device),
|
|
nvme_get_admin_opcode_str(nr->cmd->common.opcode),
|
|
nr->cmd->common.opcode,
|
|
nvme_get_error_status_str(nr->status),
|
|
nr->status >> 8 & 7, /* Status Code Type */
|
|
nr->status & 0xff, /* Status Code */
|
|
nr->status & NVME_SC_MORE ? "MORE " : "",
|
|
nr->status & NVME_SC_DNR ? "DNR " : "");
|
|
}
|
|
|
|
enum nvme_disposition {
|
|
COMPLETE,
|
|
RETRY,
|
|
FAILOVER,
|
|
AUTHENTICATE,
|
|
};
|
|
|
|
static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
|
|
{
|
|
if (likely(nvme_req(req)->status == 0))
|
|
return COMPLETE;
|
|
|
|
if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
|
|
return AUTHENTICATE;
|
|
|
|
if (blk_noretry_request(req) ||
|
|
(nvme_req(req)->status & NVME_SC_DNR) ||
|
|
nvme_req(req)->retries >= nvme_max_retries)
|
|
return COMPLETE;
|
|
|
|
if (req->cmd_flags & REQ_NVME_MPATH) {
|
|
if (nvme_is_path_error(nvme_req(req)->status) ||
|
|
blk_queue_dying(req->q))
|
|
return FAILOVER;
|
|
} else {
|
|
if (blk_queue_dying(req->q))
|
|
return COMPLETE;
|
|
}
|
|
|
|
return RETRY;
|
|
}
|
|
|
|
static inline void nvme_end_req_zoned(struct request *req)
|
|
{
|
|
if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
|
|
req_op(req) == REQ_OP_ZONE_APPEND)
|
|
req->__sector = nvme_lba_to_sect(req->q->queuedata,
|
|
le64_to_cpu(nvme_req(req)->result.u64));
|
|
}
|
|
|
|
static inline void nvme_end_req(struct request *req)
|
|
{
|
|
blk_status_t status = nvme_error_status(nvme_req(req)->status);
|
|
|
|
if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
|
|
nvme_log_error(req);
|
|
nvme_end_req_zoned(req);
|
|
nvme_trace_bio_complete(req);
|
|
if (req->cmd_flags & REQ_NVME_MPATH)
|
|
nvme_mpath_end_request(req);
|
|
blk_mq_end_request(req, status);
|
|
}
|
|
|
|
void nvme_complete_rq(struct request *req)
|
|
{
|
|
struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
|
|
|
|
trace_nvme_complete_rq(req);
|
|
nvme_cleanup_cmd(req);
|
|
|
|
/*
|
|
* Completions of long-running commands should not be able to
|
|
* defer sending of periodic keep alives, since the controller
|
|
* may have completed processing such commands a long time ago
|
|
* (arbitrarily close to command submission time).
|
|
* req->deadline - req->timeout is the command submission time
|
|
* in jiffies.
|
|
*/
|
|
if (ctrl->kas &&
|
|
req->deadline - req->timeout >= ctrl->ka_last_check_time)
|
|
ctrl->comp_seen = true;
|
|
|
|
switch (nvme_decide_disposition(req)) {
|
|
case COMPLETE:
|
|
nvme_end_req(req);
|
|
return;
|
|
case RETRY:
|
|
nvme_retry_req(req);
|
|
return;
|
|
case FAILOVER:
|
|
nvme_failover_req(req);
|
|
return;
|
|
case AUTHENTICATE:
|
|
#ifdef CONFIG_NVME_AUTH
|
|
queue_work(nvme_wq, &ctrl->dhchap_auth_work);
|
|
nvme_retry_req(req);
|
|
#else
|
|
nvme_end_req(req);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_complete_rq);
|
|
|
|
void nvme_complete_batch_req(struct request *req)
|
|
{
|
|
trace_nvme_complete_rq(req);
|
|
nvme_cleanup_cmd(req);
|
|
nvme_end_req_zoned(req);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
|
|
|
|
/*
|
|
* Called to unwind from ->queue_rq on a failed command submission so that the
|
|
* multipathing code gets called to potentially failover to another path.
|
|
* The caller needs to unwind all transport specific resource allocations and
|
|
* must return propagate the return value.
|
|
*/
|
|
blk_status_t nvme_host_path_error(struct request *req)
|
|
{
|
|
nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
|
|
blk_mq_set_request_complete(req);
|
|
nvme_complete_rq(req);
|
|
return BLK_STS_OK;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_host_path_error);
|
|
|
|
bool nvme_cancel_request(struct request *req, void *data)
|
|
{
|
|
dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
|
|
"Cancelling I/O %d", req->tag);
|
|
|
|
/* don't abort one completed or idle request */
|
|
if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
|
|
return true;
|
|
|
|
nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
|
|
nvme_req(req)->flags |= NVME_REQ_CANCELLED;
|
|
blk_mq_complete_request(req);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_cancel_request);
|
|
|
|
void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (ctrl->tagset) {
|
|
blk_mq_tagset_busy_iter(ctrl->tagset,
|
|
nvme_cancel_request, ctrl);
|
|
blk_mq_tagset_wait_completed_request(ctrl->tagset);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
|
|
|
|
void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (ctrl->admin_tagset) {
|
|
blk_mq_tagset_busy_iter(ctrl->admin_tagset,
|
|
nvme_cancel_request, ctrl);
|
|
blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
|
|
|
|
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
|
|
enum nvme_ctrl_state new_state)
|
|
{
|
|
enum nvme_ctrl_state old_state;
|
|
unsigned long flags;
|
|
bool changed = false;
|
|
|
|
spin_lock_irqsave(&ctrl->lock, flags);
|
|
|
|
old_state = ctrl->state;
|
|
switch (new_state) {
|
|
case NVME_CTRL_LIVE:
|
|
switch (old_state) {
|
|
case NVME_CTRL_NEW:
|
|
case NVME_CTRL_RESETTING:
|
|
case NVME_CTRL_CONNECTING:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case NVME_CTRL_RESETTING:
|
|
switch (old_state) {
|
|
case NVME_CTRL_NEW:
|
|
case NVME_CTRL_LIVE:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case NVME_CTRL_CONNECTING:
|
|
switch (old_state) {
|
|
case NVME_CTRL_NEW:
|
|
case NVME_CTRL_RESETTING:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case NVME_CTRL_DELETING:
|
|
switch (old_state) {
|
|
case NVME_CTRL_LIVE:
|
|
case NVME_CTRL_RESETTING:
|
|
case NVME_CTRL_CONNECTING:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case NVME_CTRL_DELETING_NOIO:
|
|
switch (old_state) {
|
|
case NVME_CTRL_DELETING:
|
|
case NVME_CTRL_DEAD:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case NVME_CTRL_DEAD:
|
|
switch (old_state) {
|
|
case NVME_CTRL_DELETING:
|
|
changed = true;
|
|
fallthrough;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (changed) {
|
|
ctrl->state = new_state;
|
|
wake_up_all(&ctrl->state_wq);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ctrl->lock, flags);
|
|
if (!changed)
|
|
return false;
|
|
|
|
if (ctrl->state == NVME_CTRL_LIVE) {
|
|
if (old_state == NVME_CTRL_CONNECTING)
|
|
nvme_stop_failfast_work(ctrl);
|
|
nvme_kick_requeue_lists(ctrl);
|
|
} else if (ctrl->state == NVME_CTRL_CONNECTING &&
|
|
old_state == NVME_CTRL_RESETTING) {
|
|
nvme_start_failfast_work(ctrl);
|
|
}
|
|
return changed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
|
|
|
|
/*
|
|
* Returns true for sink states that can't ever transition back to live.
|
|
*/
|
|
static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
|
|
{
|
|
switch (ctrl->state) {
|
|
case NVME_CTRL_NEW:
|
|
case NVME_CTRL_LIVE:
|
|
case NVME_CTRL_RESETTING:
|
|
case NVME_CTRL_CONNECTING:
|
|
return false;
|
|
case NVME_CTRL_DELETING:
|
|
case NVME_CTRL_DELETING_NOIO:
|
|
case NVME_CTRL_DEAD:
|
|
return true;
|
|
default:
|
|
WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Waits for the controller state to be resetting, or returns false if it is
|
|
* not possible to ever transition to that state.
|
|
*/
|
|
bool nvme_wait_reset(struct nvme_ctrl *ctrl)
|
|
{
|
|
wait_event(ctrl->state_wq,
|
|
nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
|
|
nvme_state_terminal(ctrl));
|
|
return ctrl->state == NVME_CTRL_RESETTING;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_wait_reset);
|
|
|
|
static void nvme_free_ns_head(struct kref *ref)
|
|
{
|
|
struct nvme_ns_head *head =
|
|
container_of(ref, struct nvme_ns_head, ref);
|
|
|
|
nvme_mpath_remove_disk(head);
|
|
ida_free(&head->subsys->ns_ida, head->instance);
|
|
cleanup_srcu_struct(&head->srcu);
|
|
nvme_put_subsystem(head->subsys);
|
|
kfree(head);
|
|
}
|
|
|
|
bool nvme_tryget_ns_head(struct nvme_ns_head *head)
|
|
{
|
|
return kref_get_unless_zero(&head->ref);
|
|
}
|
|
|
|
void nvme_put_ns_head(struct nvme_ns_head *head)
|
|
{
|
|
kref_put(&head->ref, nvme_free_ns_head);
|
|
}
|
|
|
|
static void nvme_free_ns(struct kref *kref)
|
|
{
|
|
struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
|
|
|
|
put_disk(ns->disk);
|
|
nvme_put_ns_head(ns->head);
|
|
nvme_put_ctrl(ns->ctrl);
|
|
kfree(ns);
|
|
}
|
|
|
|
static inline bool nvme_get_ns(struct nvme_ns *ns)
|
|
{
|
|
return kref_get_unless_zero(&ns->kref);
|
|
}
|
|
|
|
void nvme_put_ns(struct nvme_ns *ns)
|
|
{
|
|
kref_put(&ns->kref, nvme_free_ns);
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
|
|
|
|
static inline void nvme_clear_nvme_request(struct request *req)
|
|
{
|
|
nvme_req(req)->status = 0;
|
|
nvme_req(req)->retries = 0;
|
|
nvme_req(req)->flags = 0;
|
|
req->rq_flags |= RQF_DONTPREP;
|
|
}
|
|
|
|
/* initialize a passthrough request */
|
|
void nvme_init_request(struct request *req, struct nvme_command *cmd)
|
|
{
|
|
if (req->q->queuedata)
|
|
req->timeout = NVME_IO_TIMEOUT;
|
|
else /* no queuedata implies admin queue */
|
|
req->timeout = NVME_ADMIN_TIMEOUT;
|
|
|
|
/* passthru commands should let the driver set the SGL flags */
|
|
cmd->common.flags &= ~NVME_CMD_SGL_ALL;
|
|
|
|
req->cmd_flags |= REQ_FAILFAST_DRIVER;
|
|
if (req->mq_hctx->type == HCTX_TYPE_POLL)
|
|
req->cmd_flags |= REQ_POLLED;
|
|
nvme_clear_nvme_request(req);
|
|
req->rq_flags |= RQF_QUIET;
|
|
memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_init_request);
|
|
|
|
/*
|
|
* For something we're not in a state to send to the device the default action
|
|
* is to busy it and retry it after the controller state is recovered. However,
|
|
* if the controller is deleting or if anything is marked for failfast or
|
|
* nvme multipath it is immediately failed.
|
|
*
|
|
* Note: commands used to initialize the controller will be marked for failfast.
|
|
* Note: nvme cli/ioctl commands are marked for failfast.
|
|
*/
|
|
blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
|
|
struct request *rq)
|
|
{
|
|
if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
|
|
ctrl->state != NVME_CTRL_DELETING &&
|
|
ctrl->state != NVME_CTRL_DEAD &&
|
|
!test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
|
|
!blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
|
|
return BLK_STS_RESOURCE;
|
|
return nvme_host_path_error(rq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
|
|
|
|
bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
|
|
bool queue_live)
|
|
{
|
|
struct nvme_request *req = nvme_req(rq);
|
|
|
|
/*
|
|
* currently we have a problem sending passthru commands
|
|
* on the admin_q if the controller is not LIVE because we can't
|
|
* make sure that they are going out after the admin connect,
|
|
* controller enable and/or other commands in the initialization
|
|
* sequence. until the controller will be LIVE, fail with
|
|
* BLK_STS_RESOURCE so that they will be rescheduled.
|
|
*/
|
|
if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
|
|
return false;
|
|
|
|
if (ctrl->ops->flags & NVME_F_FABRICS) {
|
|
/*
|
|
* Only allow commands on a live queue, except for the connect
|
|
* command, which is require to set the queue live in the
|
|
* appropinquate states.
|
|
*/
|
|
switch (ctrl->state) {
|
|
case NVME_CTRL_CONNECTING:
|
|
if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
|
|
(req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
|
|
req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
|
|
req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
|
|
return true;
|
|
break;
|
|
default:
|
|
break;
|
|
case NVME_CTRL_DEAD:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return queue_live;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__nvme_check_ready);
|
|
|
|
static inline void nvme_setup_flush(struct nvme_ns *ns,
|
|
struct nvme_command *cmnd)
|
|
{
|
|
memset(cmnd, 0, sizeof(*cmnd));
|
|
cmnd->common.opcode = nvme_cmd_flush;
|
|
cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
|
|
}
|
|
|
|
static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
|
|
struct nvme_command *cmnd)
|
|
{
|
|
unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
|
|
struct nvme_dsm_range *range;
|
|
struct bio *bio;
|
|
|
|
/*
|
|
* Some devices do not consider the DSM 'Number of Ranges' field when
|
|
* determining how much data to DMA. Always allocate memory for maximum
|
|
* number of segments to prevent device reading beyond end of buffer.
|
|
*/
|
|
static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
|
|
|
|
range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
|
|
if (!range) {
|
|
/*
|
|
* If we fail allocation our range, fallback to the controller
|
|
* discard page. If that's also busy, it's safe to return
|
|
* busy, as we know we can make progress once that's freed.
|
|
*/
|
|
if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
|
|
return BLK_STS_RESOURCE;
|
|
|
|
range = page_address(ns->ctrl->discard_page);
|
|
}
|
|
|
|
if (queue_max_discard_segments(req->q) == 1) {
|
|
u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
|
|
u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
|
|
|
|
range[0].cattr = cpu_to_le32(0);
|
|
range[0].nlb = cpu_to_le32(nlb);
|
|
range[0].slba = cpu_to_le64(slba);
|
|
n = 1;
|
|
} else {
|
|
__rq_for_each_bio(bio, req) {
|
|
u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
|
|
u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
|
|
|
|
if (n < segments) {
|
|
range[n].cattr = cpu_to_le32(0);
|
|
range[n].nlb = cpu_to_le32(nlb);
|
|
range[n].slba = cpu_to_le64(slba);
|
|
}
|
|
n++;
|
|
}
|
|
}
|
|
|
|
if (WARN_ON_ONCE(n != segments)) {
|
|
if (virt_to_page(range) == ns->ctrl->discard_page)
|
|
clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
|
|
else
|
|
kfree(range);
|
|
return BLK_STS_IOERR;
|
|
}
|
|
|
|
memset(cmnd, 0, sizeof(*cmnd));
|
|
cmnd->dsm.opcode = nvme_cmd_dsm;
|
|
cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
|
|
cmnd->dsm.nr = cpu_to_le32(segments - 1);
|
|
cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
|
|
|
|
bvec_set_virt(&req->special_vec, range, alloc_size);
|
|
req->rq_flags |= RQF_SPECIAL_PAYLOAD;
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
|
|
struct request *req)
|
|
{
|
|
u32 upper, lower;
|
|
u64 ref48;
|
|
|
|
/* both rw and write zeroes share the same reftag format */
|
|
switch (ns->guard_type) {
|
|
case NVME_NVM_NS_16B_GUARD:
|
|
cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
|
|
break;
|
|
case NVME_NVM_NS_64B_GUARD:
|
|
ref48 = ext_pi_ref_tag(req);
|
|
lower = lower_32_bits(ref48);
|
|
upper = upper_32_bits(ref48);
|
|
|
|
cmnd->rw.reftag = cpu_to_le32(lower);
|
|
cmnd->rw.cdw3 = cpu_to_le32(upper);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
|
|
struct request *req, struct nvme_command *cmnd)
|
|
{
|
|
memset(cmnd, 0, sizeof(*cmnd));
|
|
|
|
if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
|
|
return nvme_setup_discard(ns, req, cmnd);
|
|
|
|
cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
|
|
cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
|
|
cmnd->write_zeroes.slba =
|
|
cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
|
|
cmnd->write_zeroes.length =
|
|
cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
|
|
|
|
if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
|
|
cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
|
|
|
|
if (nvme_ns_has_pi(ns)) {
|
|
cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
|
|
|
|
switch (ns->pi_type) {
|
|
case NVME_NS_DPS_PI_TYPE1:
|
|
case NVME_NS_DPS_PI_TYPE2:
|
|
nvme_set_ref_tag(ns, cmnd, req);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
|
|
struct request *req, struct nvme_command *cmnd,
|
|
enum nvme_opcode op)
|
|
{
|
|
u16 control = 0;
|
|
u32 dsmgmt = 0;
|
|
|
|
if (req->cmd_flags & REQ_FUA)
|
|
control |= NVME_RW_FUA;
|
|
if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
|
|
control |= NVME_RW_LR;
|
|
|
|
if (req->cmd_flags & REQ_RAHEAD)
|
|
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
|
|
|
|
cmnd->rw.opcode = op;
|
|
cmnd->rw.flags = 0;
|
|
cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
|
|
cmnd->rw.cdw2 = 0;
|
|
cmnd->rw.cdw3 = 0;
|
|
cmnd->rw.metadata = 0;
|
|
cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
|
|
cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
|
|
cmnd->rw.reftag = 0;
|
|
cmnd->rw.apptag = 0;
|
|
cmnd->rw.appmask = 0;
|
|
|
|
if (ns->ms) {
|
|
/*
|
|
* If formated with metadata, the block layer always provides a
|
|
* metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
|
|
* we enable the PRACT bit for protection information or set the
|
|
* namespace capacity to zero to prevent any I/O.
|
|
*/
|
|
if (!blk_integrity_rq(req)) {
|
|
if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
|
|
return BLK_STS_NOTSUPP;
|
|
control |= NVME_RW_PRINFO_PRACT;
|
|
}
|
|
|
|
switch (ns->pi_type) {
|
|
case NVME_NS_DPS_PI_TYPE3:
|
|
control |= NVME_RW_PRINFO_PRCHK_GUARD;
|
|
break;
|
|
case NVME_NS_DPS_PI_TYPE1:
|
|
case NVME_NS_DPS_PI_TYPE2:
|
|
control |= NVME_RW_PRINFO_PRCHK_GUARD |
|
|
NVME_RW_PRINFO_PRCHK_REF;
|
|
if (op == nvme_cmd_zone_append)
|
|
control |= NVME_RW_APPEND_PIREMAP;
|
|
nvme_set_ref_tag(ns, cmnd, req);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cmnd->rw.control = cpu_to_le16(control);
|
|
cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
|
|
return 0;
|
|
}
|
|
|
|
void nvme_cleanup_cmd(struct request *req)
|
|
{
|
|
if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
|
|
struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
|
|
|
|
if (req->special_vec.bv_page == ctrl->discard_page)
|
|
clear_bit_unlock(0, &ctrl->discard_page_busy);
|
|
else
|
|
kfree(bvec_virt(&req->special_vec));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
|
|
|
|
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
|
|
{
|
|
struct nvme_command *cmd = nvme_req(req)->cmd;
|
|
blk_status_t ret = BLK_STS_OK;
|
|
|
|
if (!(req->rq_flags & RQF_DONTPREP))
|
|
nvme_clear_nvme_request(req);
|
|
|
|
switch (req_op(req)) {
|
|
case REQ_OP_DRV_IN:
|
|
case REQ_OP_DRV_OUT:
|
|
/* these are setup prior to execution in nvme_init_request() */
|
|
break;
|
|
case REQ_OP_FLUSH:
|
|
nvme_setup_flush(ns, cmd);
|
|
break;
|
|
case REQ_OP_ZONE_RESET_ALL:
|
|
case REQ_OP_ZONE_RESET:
|
|
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
|
|
break;
|
|
case REQ_OP_ZONE_OPEN:
|
|
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
|
|
break;
|
|
case REQ_OP_ZONE_CLOSE:
|
|
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
|
|
break;
|
|
case REQ_OP_ZONE_FINISH:
|
|
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
|
|
break;
|
|
case REQ_OP_WRITE_ZEROES:
|
|
ret = nvme_setup_write_zeroes(ns, req, cmd);
|
|
break;
|
|
case REQ_OP_DISCARD:
|
|
ret = nvme_setup_discard(ns, req, cmd);
|
|
break;
|
|
case REQ_OP_READ:
|
|
ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
|
|
break;
|
|
case REQ_OP_WRITE:
|
|
ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
|
|
break;
|
|
case REQ_OP_ZONE_APPEND:
|
|
ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return BLK_STS_IOERR;
|
|
}
|
|
|
|
cmd->common.command_id = nvme_cid(req);
|
|
trace_nvme_setup_cmd(req, cmd);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_setup_cmd);
|
|
|
|
/*
|
|
* Return values:
|
|
* 0: success
|
|
* >0: nvme controller's cqe status response
|
|
* <0: kernel error in lieu of controller response
|
|
*/
|
|
int nvme_execute_rq(struct request *rq, bool at_head)
|
|
{
|
|
blk_status_t status;
|
|
|
|
status = blk_execute_rq(rq, at_head);
|
|
if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
|
|
return -EINTR;
|
|
if (nvme_req(rq)->status)
|
|
return nvme_req(rq)->status;
|
|
return blk_status_to_errno(status);
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
|
|
|
|
/*
|
|
* Returns 0 on success. If the result is negative, it's a Linux error code;
|
|
* if the result is positive, it's an NVM Express status code
|
|
*/
|
|
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
|
|
union nvme_result *result, void *buffer, unsigned bufflen,
|
|
int qid, int at_head, blk_mq_req_flags_t flags)
|
|
{
|
|
struct request *req;
|
|
int ret;
|
|
|
|
if (qid == NVME_QID_ANY)
|
|
req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
|
|
else
|
|
req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
|
|
qid - 1);
|
|
|
|
if (IS_ERR(req))
|
|
return PTR_ERR(req);
|
|
nvme_init_request(req, cmd);
|
|
|
|
if (buffer && bufflen) {
|
|
ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = nvme_execute_rq(req, at_head);
|
|
if (result && ret >= 0)
|
|
*result = nvme_req(req)->result;
|
|
out:
|
|
blk_mq_free_request(req);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
|
|
|
|
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
|
|
void *buffer, unsigned bufflen)
|
|
{
|
|
return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
|
|
NVME_QID_ANY, 0, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
|
|
|
|
u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
|
|
{
|
|
u32 effects = 0;
|
|
|
|
if (ns) {
|
|
effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
|
|
if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
|
|
dev_warn_once(ctrl->device,
|
|
"IO command:%02x has unusual effects:%08x\n",
|
|
opcode, effects);
|
|
|
|
/*
|
|
* NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
|
|
* which would deadlock when done on an I/O command. Note that
|
|
* We already warn about an unusual effect above.
|
|
*/
|
|
effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
|
|
} else {
|
|
effects = le32_to_cpu(ctrl->effects->acs[opcode]);
|
|
}
|
|
|
|
return effects;
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
|
|
|
|
u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
|
|
{
|
|
u32 effects = nvme_command_effects(ctrl, ns, opcode);
|
|
|
|
/*
|
|
* For simplicity, IO to all namespaces is quiesced even if the command
|
|
* effects say only one namespace is affected.
|
|
*/
|
|
if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
|
|
mutex_lock(&ctrl->scan_lock);
|
|
mutex_lock(&ctrl->subsys->lock);
|
|
nvme_mpath_start_freeze(ctrl->subsys);
|
|
nvme_mpath_wait_freeze(ctrl->subsys);
|
|
nvme_start_freeze(ctrl);
|
|
nvme_wait_freeze(ctrl);
|
|
}
|
|
return effects;
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
|
|
|
|
void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
|
|
struct nvme_command *cmd, int status)
|
|
{
|
|
if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
|
|
nvme_unfreeze(ctrl);
|
|
nvme_mpath_unfreeze(ctrl->subsys);
|
|
mutex_unlock(&ctrl->subsys->lock);
|
|
mutex_unlock(&ctrl->scan_lock);
|
|
}
|
|
if (effects & NVME_CMD_EFFECTS_CCC) {
|
|
if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
|
|
&ctrl->flags)) {
|
|
dev_info(ctrl->device,
|
|
"controller capabilities changed, reset may be required to take effect.\n");
|
|
}
|
|
}
|
|
if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
|
|
nvme_queue_scan(ctrl);
|
|
flush_work(&ctrl->scan_work);
|
|
}
|
|
if (ns)
|
|
return;
|
|
|
|
switch (cmd->common.opcode) {
|
|
case nvme_admin_set_features:
|
|
switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
|
|
case NVME_FEAT_KATO:
|
|
/*
|
|
* Keep alive commands interval on the host should be
|
|
* updated when KATO is modified by Set Features
|
|
* commands.
|
|
*/
|
|
if (!status)
|
|
nvme_update_keep_alive(ctrl, cmd);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
|
|
|
|
/*
|
|
* Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
|
|
*
|
|
* The host should send Keep Alive commands at half of the Keep Alive Timeout
|
|
* accounting for transport roundtrip times [..].
|
|
*/
|
|
static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
|
|
{
|
|
unsigned long delay = ctrl->kato * HZ / 2;
|
|
|
|
/*
|
|
* When using Traffic Based Keep Alive, we need to run
|
|
* nvme_keep_alive_work at twice the normal frequency, as one
|
|
* command completion can postpone sending a keep alive command
|
|
* by up to twice the delay between runs.
|
|
*/
|
|
if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
|
|
delay /= 2;
|
|
return delay;
|
|
}
|
|
|
|
static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
|
|
{
|
|
queue_delayed_work(nvme_wq, &ctrl->ka_work,
|
|
nvme_keep_alive_work_period(ctrl));
|
|
}
|
|
|
|
static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
|
|
blk_status_t status)
|
|
{
|
|
struct nvme_ctrl *ctrl = rq->end_io_data;
|
|
unsigned long flags;
|
|
bool startka = false;
|
|
unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
|
|
unsigned long delay = nvme_keep_alive_work_period(ctrl);
|
|
|
|
/*
|
|
* Subtract off the keepalive RTT so nvme_keep_alive_work runs
|
|
* at the desired frequency.
|
|
*/
|
|
if (rtt <= delay) {
|
|
delay -= rtt;
|
|
} else {
|
|
dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
|
|
jiffies_to_msecs(rtt));
|
|
delay = 0;
|
|
}
|
|
|
|
blk_mq_free_request(rq);
|
|
|
|
if (status) {
|
|
dev_err(ctrl->device,
|
|
"failed nvme_keep_alive_end_io error=%d\n",
|
|
status);
|
|
return RQ_END_IO_NONE;
|
|
}
|
|
|
|
ctrl->ka_last_check_time = jiffies;
|
|
ctrl->comp_seen = false;
|
|
spin_lock_irqsave(&ctrl->lock, flags);
|
|
if (ctrl->state == NVME_CTRL_LIVE ||
|
|
ctrl->state == NVME_CTRL_CONNECTING)
|
|
startka = true;
|
|
spin_unlock_irqrestore(&ctrl->lock, flags);
|
|
if (startka)
|
|
queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
|
|
return RQ_END_IO_NONE;
|
|
}
|
|
|
|
static void nvme_keep_alive_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
|
|
struct nvme_ctrl, ka_work);
|
|
bool comp_seen = ctrl->comp_seen;
|
|
struct request *rq;
|
|
|
|
ctrl->ka_last_check_time = jiffies;
|
|
|
|
if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
|
|
dev_dbg(ctrl->device,
|
|
"reschedule traffic based keep-alive timer\n");
|
|
ctrl->comp_seen = false;
|
|
nvme_queue_keep_alive_work(ctrl);
|
|
return;
|
|
}
|
|
|
|
rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
|
|
BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
|
|
if (IS_ERR(rq)) {
|
|
/* allocation failure, reset the controller */
|
|
dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
|
|
nvme_reset_ctrl(ctrl);
|
|
return;
|
|
}
|
|
nvme_init_request(rq, &ctrl->ka_cmd);
|
|
|
|
rq->timeout = ctrl->kato * HZ;
|
|
rq->end_io = nvme_keep_alive_end_io;
|
|
rq->end_io_data = ctrl;
|
|
blk_execute_rq_nowait(rq, false);
|
|
}
|
|
|
|
static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (unlikely(ctrl->kato == 0))
|
|
return;
|
|
|
|
nvme_queue_keep_alive_work(ctrl);
|
|
}
|
|
|
|
void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (unlikely(ctrl->kato == 0))
|
|
return;
|
|
|
|
cancel_delayed_work_sync(&ctrl->ka_work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
|
|
|
|
static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
|
|
struct nvme_command *cmd)
|
|
{
|
|
unsigned int new_kato =
|
|
DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
|
|
|
|
dev_info(ctrl->device,
|
|
"keep alive interval updated from %u ms to %u ms\n",
|
|
ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
|
|
|
|
nvme_stop_keep_alive(ctrl);
|
|
ctrl->kato = new_kato;
|
|
nvme_start_keep_alive(ctrl);
|
|
}
|
|
|
|
/*
|
|
* In NVMe 1.0 the CNS field was just a binary controller or namespace
|
|
* flag, thus sending any new CNS opcodes has a big chance of not working.
|
|
* Qemu unfortunately had that bug after reporting a 1.1 version compliance
|
|
* (but not for any later version).
|
|
*/
|
|
static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
|
|
return ctrl->vs < NVME_VS(1, 2, 0);
|
|
return ctrl->vs < NVME_VS(1, 1, 0);
|
|
}
|
|
|
|
static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
|
|
{
|
|
struct nvme_command c = { };
|
|
int error;
|
|
|
|
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.cns = NVME_ID_CNS_CTRL;
|
|
|
|
*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
|
|
if (!*id)
|
|
return -ENOMEM;
|
|
|
|
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
|
|
sizeof(struct nvme_id_ctrl));
|
|
if (error)
|
|
kfree(*id);
|
|
return error;
|
|
}
|
|
|
|
static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
|
|
struct nvme_ns_id_desc *cur, bool *csi_seen)
|
|
{
|
|
const char *warn_str = "ctrl returned bogus length:";
|
|
void *data = cur;
|
|
|
|
switch (cur->nidt) {
|
|
case NVME_NIDT_EUI64:
|
|
if (cur->nidl != NVME_NIDT_EUI64_LEN) {
|
|
dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
|
|
warn_str, cur->nidl);
|
|
return -1;
|
|
}
|
|
if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
|
|
return NVME_NIDT_EUI64_LEN;
|
|
memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
|
|
return NVME_NIDT_EUI64_LEN;
|
|
case NVME_NIDT_NGUID:
|
|
if (cur->nidl != NVME_NIDT_NGUID_LEN) {
|
|
dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
|
|
warn_str, cur->nidl);
|
|
return -1;
|
|
}
|
|
if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
|
|
return NVME_NIDT_NGUID_LEN;
|
|
memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
|
|
return NVME_NIDT_NGUID_LEN;
|
|
case NVME_NIDT_UUID:
|
|
if (cur->nidl != NVME_NIDT_UUID_LEN) {
|
|
dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
|
|
warn_str, cur->nidl);
|
|
return -1;
|
|
}
|
|
if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
|
|
return NVME_NIDT_UUID_LEN;
|
|
uuid_copy(&ids->uuid, data + sizeof(*cur));
|
|
return NVME_NIDT_UUID_LEN;
|
|
case NVME_NIDT_CSI:
|
|
if (cur->nidl != NVME_NIDT_CSI_LEN) {
|
|
dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
|
|
warn_str, cur->nidl);
|
|
return -1;
|
|
}
|
|
memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
|
|
*csi_seen = true;
|
|
return NVME_NIDT_CSI_LEN;
|
|
default:
|
|
/* Skip unknown types */
|
|
return cur->nidl;
|
|
}
|
|
}
|
|
|
|
static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
|
|
struct nvme_ns_info *info)
|
|
{
|
|
struct nvme_command c = { };
|
|
bool csi_seen = false;
|
|
int status, pos, len;
|
|
void *data;
|
|
|
|
if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
|
|
return 0;
|
|
if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
|
|
return 0;
|
|
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.nsid = cpu_to_le32(info->nsid);
|
|
c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
|
|
|
|
data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
|
|
NVME_IDENTIFY_DATA_SIZE);
|
|
if (status) {
|
|
dev_warn(ctrl->device,
|
|
"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
|
|
info->nsid, status);
|
|
goto free_data;
|
|
}
|
|
|
|
for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
|
|
struct nvme_ns_id_desc *cur = data + pos;
|
|
|
|
if (cur->nidl == 0)
|
|
break;
|
|
|
|
len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
|
|
if (len < 0)
|
|
break;
|
|
|
|
len += sizeof(*cur);
|
|
}
|
|
|
|
if (nvme_multi_css(ctrl) && !csi_seen) {
|
|
dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
|
|
info->nsid);
|
|
status = -EINVAL;
|
|
}
|
|
|
|
free_data:
|
|
kfree(data);
|
|
return status;
|
|
}
|
|
|
|
static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
|
|
struct nvme_id_ns **id)
|
|
{
|
|
struct nvme_command c = { };
|
|
int error;
|
|
|
|
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.nsid = cpu_to_le32(nsid);
|
|
c.identify.cns = NVME_ID_CNS_NS;
|
|
|
|
*id = kmalloc(sizeof(**id), GFP_KERNEL);
|
|
if (!*id)
|
|
return -ENOMEM;
|
|
|
|
error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
|
|
if (error) {
|
|
dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
|
|
kfree(*id);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
|
|
struct nvme_ns_info *info)
|
|
{
|
|
struct nvme_ns_ids *ids = &info->ids;
|
|
struct nvme_id_ns *id;
|
|
int ret;
|
|
|
|
ret = nvme_identify_ns(ctrl, info->nsid, &id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (id->ncap == 0) {
|
|
/* namespace not allocated or attached */
|
|
info->is_removed = true;
|
|
return -ENODEV;
|
|
}
|
|
|
|
info->anagrpid = id->anagrpid;
|
|
info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
|
|
info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
|
|
info->is_ready = true;
|
|
if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
|
|
dev_info(ctrl->device,
|
|
"Ignoring bogus Namespace Identifiers\n");
|
|
} else {
|
|
if (ctrl->vs >= NVME_VS(1, 1, 0) &&
|
|
!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
|
|
memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
|
|
if (ctrl->vs >= NVME_VS(1, 2, 0) &&
|
|
!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
|
|
memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
|
|
}
|
|
kfree(id);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
|
|
struct nvme_ns_info *info)
|
|
{
|
|
struct nvme_id_ns_cs_indep *id;
|
|
struct nvme_command c = {
|
|
.identify.opcode = nvme_admin_identify,
|
|
.identify.nsid = cpu_to_le32(info->nsid),
|
|
.identify.cns = NVME_ID_CNS_NS_CS_INDEP,
|
|
};
|
|
int ret;
|
|
|
|
id = kmalloc(sizeof(*id), GFP_KERNEL);
|
|
if (!id)
|
|
return -ENOMEM;
|
|
|
|
ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
|
|
if (!ret) {
|
|
info->anagrpid = id->anagrpid;
|
|
info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
|
|
info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
|
|
info->is_ready = id->nstat & NVME_NSTAT_NRDY;
|
|
}
|
|
kfree(id);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
|
|
unsigned int dword11, void *buffer, size_t buflen, u32 *result)
|
|
{
|
|
union nvme_result res = { 0 };
|
|
struct nvme_command c = { };
|
|
int ret;
|
|
|
|
c.features.opcode = op;
|
|
c.features.fid = cpu_to_le32(fid);
|
|
c.features.dword11 = cpu_to_le32(dword11);
|
|
|
|
ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
|
|
buffer, buflen, NVME_QID_ANY, 0, 0);
|
|
if (ret >= 0 && result)
|
|
*result = le32_to_cpu(res.u32);
|
|
return ret;
|
|
}
|
|
|
|
int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
|
|
unsigned int dword11, void *buffer, size_t buflen,
|
|
u32 *result)
|
|
{
|
|
return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
|
|
buflen, result);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_set_features);
|
|
|
|
int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
|
|
unsigned int dword11, void *buffer, size_t buflen,
|
|
u32 *result)
|
|
{
|
|
return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
|
|
buflen, result);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_get_features);
|
|
|
|
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
|
|
{
|
|
u32 q_count = (*count - 1) | ((*count - 1) << 16);
|
|
u32 result;
|
|
int status, nr_io_queues;
|
|
|
|
status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
|
|
&result);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
/*
|
|
* Degraded controllers might return an error when setting the queue
|
|
* count. We still want to be able to bring them online and offer
|
|
* access to the admin queue, as that might be only way to fix them up.
|
|
*/
|
|
if (status > 0) {
|
|
dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
|
|
*count = 0;
|
|
} else {
|
|
nr_io_queues = min(result & 0xffff, result >> 16) + 1;
|
|
*count = min(*count, nr_io_queues);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
|
|
|
|
#define NVME_AEN_SUPPORTED \
|
|
(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
|
|
NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
|
|
|
|
static void nvme_enable_aen(struct nvme_ctrl *ctrl)
|
|
{
|
|
u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
|
|
int status;
|
|
|
|
if (!supported_aens)
|
|
return;
|
|
|
|
status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
|
|
NULL, 0, &result);
|
|
if (status)
|
|
dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
|
|
supported_aens);
|
|
|
|
queue_work(nvme_wq, &ctrl->async_event_work);
|
|
}
|
|
|
|
static int nvme_ns_open(struct nvme_ns *ns)
|
|
{
|
|
|
|
/* should never be called due to GENHD_FL_HIDDEN */
|
|
if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
|
|
goto fail;
|
|
if (!nvme_get_ns(ns))
|
|
goto fail;
|
|
if (!try_module_get(ns->ctrl->ops->module))
|
|
goto fail_put_ns;
|
|
|
|
return 0;
|
|
|
|
fail_put_ns:
|
|
nvme_put_ns(ns);
|
|
fail:
|
|
return -ENXIO;
|
|
}
|
|
|
|
static void nvme_ns_release(struct nvme_ns *ns)
|
|
{
|
|
|
|
module_put(ns->ctrl->ops->module);
|
|
nvme_put_ns(ns);
|
|
}
|
|
|
|
static int nvme_open(struct gendisk *disk, blk_mode_t mode)
|
|
{
|
|
return nvme_ns_open(disk->private_data);
|
|
}
|
|
|
|
static void nvme_release(struct gendisk *disk)
|
|
{
|
|
nvme_ns_release(disk->private_data);
|
|
}
|
|
|
|
int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
/* some standard values */
|
|
geo->heads = 1 << 6;
|
|
geo->sectors = 1 << 5;
|
|
geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
|
static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
|
|
u32 max_integrity_segments)
|
|
{
|
|
struct blk_integrity integrity = { };
|
|
|
|
switch (ns->pi_type) {
|
|
case NVME_NS_DPS_PI_TYPE3:
|
|
switch (ns->guard_type) {
|
|
case NVME_NVM_NS_16B_GUARD:
|
|
integrity.profile = &t10_pi_type3_crc;
|
|
integrity.tag_size = sizeof(u16) + sizeof(u32);
|
|
integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
|
|
break;
|
|
case NVME_NVM_NS_64B_GUARD:
|
|
integrity.profile = &ext_pi_type3_crc64;
|
|
integrity.tag_size = sizeof(u16) + 6;
|
|
integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
|
|
break;
|
|
default:
|
|
integrity.profile = NULL;
|
|
break;
|
|
}
|
|
break;
|
|
case NVME_NS_DPS_PI_TYPE1:
|
|
case NVME_NS_DPS_PI_TYPE2:
|
|
switch (ns->guard_type) {
|
|
case NVME_NVM_NS_16B_GUARD:
|
|
integrity.profile = &t10_pi_type1_crc;
|
|
integrity.tag_size = sizeof(u16);
|
|
integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
|
|
break;
|
|
case NVME_NVM_NS_64B_GUARD:
|
|
integrity.profile = &ext_pi_type1_crc64;
|
|
integrity.tag_size = sizeof(u16);
|
|
integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
|
|
break;
|
|
default:
|
|
integrity.profile = NULL;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
integrity.profile = NULL;
|
|
break;
|
|
}
|
|
|
|
integrity.tuple_size = ns->ms;
|
|
blk_integrity_register(disk, &integrity);
|
|
blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
|
|
}
|
|
#else
|
|
static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
|
|
u32 max_integrity_segments)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INTEGRITY */
|
|
|
|
static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
|
|
{
|
|
struct nvme_ctrl *ctrl = ns->ctrl;
|
|
struct request_queue *queue = disk->queue;
|
|
u32 size = queue_logical_block_size(queue);
|
|
|
|
if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
|
|
ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
|
|
|
|
if (ctrl->max_discard_sectors == 0) {
|
|
blk_queue_max_discard_sectors(queue, 0);
|
|
return;
|
|
}
|
|
|
|
BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
|
|
NVME_DSM_MAX_RANGES);
|
|
|
|
queue->limits.discard_granularity = size;
|
|
|
|
/* If discard is already enabled, don't reset queue limits */
|
|
if (queue->limits.max_discard_sectors)
|
|
return;
|
|
|
|
blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
|
|
blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
|
|
|
|
if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
|
|
blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
|
|
}
|
|
|
|
static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
|
|
{
|
|
return uuid_equal(&a->uuid, &b->uuid) &&
|
|
memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
|
|
memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
|
|
a->csi == b->csi;
|
|
}
|
|
|
|
static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
|
|
{
|
|
bool first = id->dps & NVME_NS_DPS_PI_FIRST;
|
|
unsigned lbaf = nvme_lbaf_index(id->flbas);
|
|
struct nvme_ctrl *ctrl = ns->ctrl;
|
|
struct nvme_command c = { };
|
|
struct nvme_id_ns_nvm *nvm;
|
|
int ret = 0;
|
|
u32 elbaf;
|
|
|
|
ns->pi_size = 0;
|
|
ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
|
|
if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
|
|
ns->pi_size = sizeof(struct t10_pi_tuple);
|
|
ns->guard_type = NVME_NVM_NS_16B_GUARD;
|
|
goto set_pi;
|
|
}
|
|
|
|
nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
|
|
if (!nvm)
|
|
return -ENOMEM;
|
|
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.nsid = cpu_to_le32(ns->head->ns_id);
|
|
c.identify.cns = NVME_ID_CNS_CS_NS;
|
|
c.identify.csi = NVME_CSI_NVM;
|
|
|
|
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
|
|
if (ret)
|
|
goto free_data;
|
|
|
|
elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
|
|
|
|
/* no support for storage tag formats right now */
|
|
if (nvme_elbaf_sts(elbaf))
|
|
goto free_data;
|
|
|
|
ns->guard_type = nvme_elbaf_guard_type(elbaf);
|
|
switch (ns->guard_type) {
|
|
case NVME_NVM_NS_64B_GUARD:
|
|
ns->pi_size = sizeof(struct crc64_pi_tuple);
|
|
break;
|
|
case NVME_NVM_NS_16B_GUARD:
|
|
ns->pi_size = sizeof(struct t10_pi_tuple);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
free_data:
|
|
kfree(nvm);
|
|
set_pi:
|
|
if (ns->pi_size && (first || ns->ms == ns->pi_size))
|
|
ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
|
|
else
|
|
ns->pi_type = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
|
|
{
|
|
struct nvme_ctrl *ctrl = ns->ctrl;
|
|
|
|
if (nvme_init_ms(ns, id))
|
|
return;
|
|
|
|
ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
|
|
if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
|
|
return;
|
|
|
|
if (ctrl->ops->flags & NVME_F_FABRICS) {
|
|
/*
|
|
* The NVMe over Fabrics specification only supports metadata as
|
|
* part of the extended data LBA. We rely on HCA/HBA support to
|
|
* remap the separate metadata buffer from the block layer.
|
|
*/
|
|
if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
|
|
return;
|
|
|
|
ns->features |= NVME_NS_EXT_LBAS;
|
|
|
|
/*
|
|
* The current fabrics transport drivers support namespace
|
|
* metadata formats only if nvme_ns_has_pi() returns true.
|
|
* Suppress support for all other formats so the namespace will
|
|
* have a 0 capacity and not be usable through the block stack.
|
|
*
|
|
* Note, this check will need to be modified if any drivers
|
|
* gain the ability to use other metadata formats.
|
|
*/
|
|
if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
|
|
ns->features |= NVME_NS_METADATA_SUPPORTED;
|
|
} else {
|
|
/*
|
|
* For PCIe controllers, we can't easily remap the separate
|
|
* metadata buffer from the block layer and thus require a
|
|
* separate metadata buffer for block layer metadata/PI support.
|
|
* We allow extended LBAs for the passthrough interface, though.
|
|
*/
|
|
if (id->flbas & NVME_NS_FLBAS_META_EXT)
|
|
ns->features |= NVME_NS_EXT_LBAS;
|
|
else
|
|
ns->features |= NVME_NS_METADATA_SUPPORTED;
|
|
}
|
|
}
|
|
|
|
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
|
|
struct request_queue *q)
|
|
{
|
|
bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
|
|
|
|
if (ctrl->max_hw_sectors) {
|
|
u32 max_segments =
|
|
(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
|
|
|
|
max_segments = min_not_zero(max_segments, ctrl->max_segments);
|
|
blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
|
|
blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
|
|
}
|
|
blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
|
|
blk_queue_dma_alignment(q, 3);
|
|
blk_queue_write_cache(q, vwc, vwc);
|
|
}
|
|
|
|
static void nvme_update_disk_info(struct gendisk *disk,
|
|
struct nvme_ns *ns, struct nvme_id_ns *id)
|
|
{
|
|
sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
|
|
u32 bs = 1U << ns->lba_shift;
|
|
u32 atomic_bs, phys_bs, io_opt = 0;
|
|
|
|
/*
|
|
* The block layer can't support LBA sizes larger than the page size
|
|
* yet, so catch this early and don't allow block I/O.
|
|
*/
|
|
if (ns->lba_shift > PAGE_SHIFT) {
|
|
capacity = 0;
|
|
bs = (1 << 9);
|
|
}
|
|
|
|
blk_integrity_unregister(disk);
|
|
|
|
atomic_bs = phys_bs = bs;
|
|
if (id->nabo == 0) {
|
|
/*
|
|
* Bit 1 indicates whether NAWUPF is defined for this namespace
|
|
* and whether it should be used instead of AWUPF. If NAWUPF ==
|
|
* 0 then AWUPF must be used instead.
|
|
*/
|
|
if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
|
|
atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
|
|
else
|
|
atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
|
|
}
|
|
|
|
if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
|
|
/* NPWG = Namespace Preferred Write Granularity */
|
|
phys_bs = bs * (1 + le16_to_cpu(id->npwg));
|
|
/* NOWS = Namespace Optimal Write Size */
|
|
io_opt = bs * (1 + le16_to_cpu(id->nows));
|
|
}
|
|
|
|
blk_queue_logical_block_size(disk->queue, bs);
|
|
/*
|
|
* Linux filesystems assume writing a single physical block is
|
|
* an atomic operation. Hence limit the physical block size to the
|
|
* value of the Atomic Write Unit Power Fail parameter.
|
|
*/
|
|
blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
|
|
blk_queue_io_min(disk->queue, phys_bs);
|
|
blk_queue_io_opt(disk->queue, io_opt);
|
|
|
|
/*
|
|
* Register a metadata profile for PI, or the plain non-integrity NVMe
|
|
* metadata masquerading as Type 0 if supported, otherwise reject block
|
|
* I/O to namespaces with metadata except when the namespace supports
|
|
* PI, as it can strip/insert in that case.
|
|
*/
|
|
if (ns->ms) {
|
|
if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
|
|
(ns->features & NVME_NS_METADATA_SUPPORTED))
|
|
nvme_init_integrity(disk, ns,
|
|
ns->ctrl->max_integrity_segments);
|
|
else if (!nvme_ns_has_pi(ns))
|
|
capacity = 0;
|
|
}
|
|
|
|
set_capacity_and_notify(disk, capacity);
|
|
|
|
nvme_config_discard(disk, ns);
|
|
blk_queue_max_write_zeroes_sectors(disk->queue,
|
|
ns->ctrl->max_zeroes_sectors);
|
|
}
|
|
|
|
static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
|
|
{
|
|
return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
|
|
}
|
|
|
|
static inline bool nvme_first_scan(struct gendisk *disk)
|
|
{
|
|
/* nvme_alloc_ns() scans the disk prior to adding it */
|
|
return !disk_live(disk);
|
|
}
|
|
|
|
static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
|
|
{
|
|
struct nvme_ctrl *ctrl = ns->ctrl;
|
|
u32 iob;
|
|
|
|
if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
|
|
is_power_of_2(ctrl->max_hw_sectors))
|
|
iob = ctrl->max_hw_sectors;
|
|
else
|
|
iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
|
|
|
|
if (!iob)
|
|
return;
|
|
|
|
if (!is_power_of_2(iob)) {
|
|
if (nvme_first_scan(ns->disk))
|
|
pr_warn("%s: ignoring unaligned IO boundary:%u\n",
|
|
ns->disk->disk_name, iob);
|
|
return;
|
|
}
|
|
|
|
if (blk_queue_is_zoned(ns->disk->queue)) {
|
|
if (nvme_first_scan(ns->disk))
|
|
pr_warn("%s: ignoring zoned namespace IO boundary\n",
|
|
ns->disk->disk_name);
|
|
return;
|
|
}
|
|
|
|
blk_queue_chunk_sectors(ns->queue, iob);
|
|
}
|
|
|
|
static int nvme_update_ns_info_generic(struct nvme_ns *ns,
|
|
struct nvme_ns_info *info)
|
|
{
|
|
blk_mq_freeze_queue(ns->disk->queue);
|
|
nvme_set_queue_limits(ns->ctrl, ns->queue);
|
|
set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
|
|
blk_mq_unfreeze_queue(ns->disk->queue);
|
|
|
|
if (nvme_ns_head_multipath(ns->head)) {
|
|
blk_mq_freeze_queue(ns->head->disk->queue);
|
|
set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
|
|
nvme_mpath_revalidate_paths(ns);
|
|
blk_stack_limits(&ns->head->disk->queue->limits,
|
|
&ns->queue->limits, 0);
|
|
ns->head->disk->flags |= GENHD_FL_HIDDEN;
|
|
blk_mq_unfreeze_queue(ns->head->disk->queue);
|
|
}
|
|
|
|
/* Hide the block-interface for these devices */
|
|
ns->disk->flags |= GENHD_FL_HIDDEN;
|
|
set_bit(NVME_NS_READY, &ns->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_update_ns_info_block(struct nvme_ns *ns,
|
|
struct nvme_ns_info *info)
|
|
{
|
|
struct nvme_id_ns *id;
|
|
unsigned lbaf;
|
|
int ret;
|
|
|
|
ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
blk_mq_freeze_queue(ns->disk->queue);
|
|
lbaf = nvme_lbaf_index(id->flbas);
|
|
ns->lba_shift = id->lbaf[lbaf].ds;
|
|
nvme_set_queue_limits(ns->ctrl, ns->queue);
|
|
|
|
nvme_configure_metadata(ns, id);
|
|
nvme_set_chunk_sectors(ns, id);
|
|
nvme_update_disk_info(ns->disk, ns, id);
|
|
|
|
if (ns->head->ids.csi == NVME_CSI_ZNS) {
|
|
ret = nvme_update_zone_info(ns, lbaf);
|
|
if (ret) {
|
|
blk_mq_unfreeze_queue(ns->disk->queue);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only set the DEAC bit if the device guarantees that reads from
|
|
* deallocated data return zeroes. While the DEAC bit does not
|
|
* require that, it must be a no-op if reads from deallocated data
|
|
* do not return zeroes.
|
|
*/
|
|
if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
|
|
ns->features |= NVME_NS_DEAC;
|
|
set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
|
|
set_bit(NVME_NS_READY, &ns->flags);
|
|
blk_mq_unfreeze_queue(ns->disk->queue);
|
|
|
|
if (blk_queue_is_zoned(ns->queue)) {
|
|
ret = nvme_revalidate_zones(ns);
|
|
if (ret && !nvme_first_scan(ns->disk))
|
|
goto out;
|
|
}
|
|
|
|
if (nvme_ns_head_multipath(ns->head)) {
|
|
blk_mq_freeze_queue(ns->head->disk->queue);
|
|
nvme_update_disk_info(ns->head->disk, ns, id);
|
|
set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
|
|
nvme_mpath_revalidate_paths(ns);
|
|
blk_stack_limits(&ns->head->disk->queue->limits,
|
|
&ns->queue->limits, 0);
|
|
disk_update_readahead(ns->head->disk);
|
|
blk_mq_unfreeze_queue(ns->head->disk->queue);
|
|
}
|
|
|
|
ret = 0;
|
|
out:
|
|
/*
|
|
* If probing fails due an unsupported feature, hide the block device,
|
|
* but still allow other access.
|
|
*/
|
|
if (ret == -ENODEV) {
|
|
ns->disk->flags |= GENHD_FL_HIDDEN;
|
|
set_bit(NVME_NS_READY, &ns->flags);
|
|
ret = 0;
|
|
}
|
|
kfree(id);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
|
|
{
|
|
switch (info->ids.csi) {
|
|
case NVME_CSI_ZNS:
|
|
if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
|
|
dev_info(ns->ctrl->device,
|
|
"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
|
|
info->nsid);
|
|
return nvme_update_ns_info_generic(ns, info);
|
|
}
|
|
return nvme_update_ns_info_block(ns, info);
|
|
case NVME_CSI_NVM:
|
|
return nvme_update_ns_info_block(ns, info);
|
|
default:
|
|
dev_info(ns->ctrl->device,
|
|
"block device for nsid %u not supported (csi %u)\n",
|
|
info->nsid, info->ids.csi);
|
|
return nvme_update_ns_info_generic(ns, info);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_SED_OPAL
|
|
static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
|
|
bool send)
|
|
{
|
|
struct nvme_ctrl *ctrl = data;
|
|
struct nvme_command cmd = { };
|
|
|
|
if (send)
|
|
cmd.common.opcode = nvme_admin_security_send;
|
|
else
|
|
cmd.common.opcode = nvme_admin_security_recv;
|
|
cmd.common.nsid = 0;
|
|
cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
|
|
cmd.common.cdw11 = cpu_to_le32(len);
|
|
|
|
return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
|
|
NVME_QID_ANY, 1, 0);
|
|
}
|
|
|
|
static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
|
|
{
|
|
if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
|
|
if (!ctrl->opal_dev)
|
|
ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
|
|
else if (was_suspended)
|
|
opal_unlock_from_suspend(ctrl->opal_dev);
|
|
} else {
|
|
free_opal_dev(ctrl->opal_dev);
|
|
ctrl->opal_dev = NULL;
|
|
}
|
|
}
|
|
#else
|
|
static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_SED_OPAL */
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
static int nvme_report_zones(struct gendisk *disk, sector_t sector,
|
|
unsigned int nr_zones, report_zones_cb cb, void *data)
|
|
{
|
|
return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
|
|
data);
|
|
}
|
|
#else
|
|
#define nvme_report_zones NULL
|
|
#endif /* CONFIG_BLK_DEV_ZONED */
|
|
|
|
const struct block_device_operations nvme_bdev_ops = {
|
|
.owner = THIS_MODULE,
|
|
.ioctl = nvme_ioctl,
|
|
.compat_ioctl = blkdev_compat_ptr_ioctl,
|
|
.open = nvme_open,
|
|
.release = nvme_release,
|
|
.getgeo = nvme_getgeo,
|
|
.report_zones = nvme_report_zones,
|
|
.pr_ops = &nvme_pr_ops,
|
|
};
|
|
|
|
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
|
|
u32 timeout, const char *op)
|
|
{
|
|
unsigned long timeout_jiffies = jiffies + timeout * HZ;
|
|
u32 csts;
|
|
int ret;
|
|
|
|
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
|
|
if (csts == ~0)
|
|
return -ENODEV;
|
|
if ((csts & mask) == val)
|
|
break;
|
|
|
|
usleep_range(1000, 2000);
|
|
if (fatal_signal_pending(current))
|
|
return -EINTR;
|
|
if (time_after(jiffies, timeout_jiffies)) {
|
|
dev_err(ctrl->device,
|
|
"Device not ready; aborting %s, CSTS=0x%x\n",
|
|
op, csts);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
|
|
{
|
|
int ret;
|
|
|
|
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
|
|
if (shutdown)
|
|
ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
|
|
else
|
|
ctrl->ctrl_config &= ~NVME_CC_ENABLE;
|
|
|
|
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (shutdown) {
|
|
return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
|
|
NVME_CSTS_SHST_CMPLT,
|
|
ctrl->shutdown_timeout, "shutdown");
|
|
}
|
|
if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
|
|
msleep(NVME_QUIRK_DELAY_AMOUNT);
|
|
return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
|
|
(NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
|
|
|
|
int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
unsigned dev_page_min;
|
|
u32 timeout;
|
|
int ret;
|
|
|
|
ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
|
|
if (ret) {
|
|
dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
|
|
|
|
if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
|
|
dev_err(ctrl->device,
|
|
"Minimum device page size %u too large for host (%u)\n",
|
|
1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
|
|
ctrl->ctrl_config = NVME_CC_CSS_CSI;
|
|
else
|
|
ctrl->ctrl_config = NVME_CC_CSS_NVM;
|
|
|
|
if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
|
|
u32 crto;
|
|
|
|
ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
|
|
if (ret) {
|
|
dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
|
|
ctrl->ctrl_config |= NVME_CC_CRIME;
|
|
timeout = NVME_CRTO_CRIMT(crto);
|
|
} else {
|
|
timeout = NVME_CRTO_CRWMT(crto);
|
|
}
|
|
} else {
|
|
timeout = NVME_CAP_TIMEOUT(ctrl->cap);
|
|
}
|
|
|
|
ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
|
|
ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
|
|
ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
|
|
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Flush write to device (required if transport is PCI) */
|
|
ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctrl->ctrl_config |= NVME_CC_ENABLE;
|
|
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
|
if (ret)
|
|
return ret;
|
|
return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
|
|
(timeout + 1) / 2, "initialisation");
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
|
|
|
|
static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
|
|
{
|
|
__le64 ts;
|
|
int ret;
|
|
|
|
if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
|
|
return 0;
|
|
|
|
ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
|
|
ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
|
|
NULL);
|
|
if (ret)
|
|
dev_warn_once(ctrl->device,
|
|
"could not set timestamp (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_feat_host_behavior *host;
|
|
u8 acre = 0, lbafee = 0;
|
|
int ret;
|
|
|
|
/* Don't bother enabling the feature if retry delay is not reported */
|
|
if (ctrl->crdt[0])
|
|
acre = NVME_ENABLE_ACRE;
|
|
if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
|
|
lbafee = NVME_ENABLE_LBAFEE;
|
|
|
|
if (!acre && !lbafee)
|
|
return 0;
|
|
|
|
host = kzalloc(sizeof(*host), GFP_KERNEL);
|
|
if (!host)
|
|
return 0;
|
|
|
|
host->acre = acre;
|
|
host->lbafee = lbafee;
|
|
ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
|
|
host, sizeof(*host), NULL);
|
|
kfree(host);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The function checks whether the given total (exlat + enlat) latency of
|
|
* a power state allows the latter to be used as an APST transition target.
|
|
* It does so by comparing the latency to the primary and secondary latency
|
|
* tolerances defined by module params. If there's a match, the corresponding
|
|
* timeout value is returned and the matching tolerance index (1 or 2) is
|
|
* reported.
|
|
*/
|
|
static bool nvme_apst_get_transition_time(u64 total_latency,
|
|
u64 *transition_time, unsigned *last_index)
|
|
{
|
|
if (total_latency <= apst_primary_latency_tol_us) {
|
|
if (*last_index == 1)
|
|
return false;
|
|
*last_index = 1;
|
|
*transition_time = apst_primary_timeout_ms;
|
|
return true;
|
|
}
|
|
if (apst_secondary_timeout_ms &&
|
|
total_latency <= apst_secondary_latency_tol_us) {
|
|
if (*last_index <= 2)
|
|
return false;
|
|
*last_index = 2;
|
|
*transition_time = apst_secondary_timeout_ms;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* APST (Autonomous Power State Transition) lets us program a table of power
|
|
* state transitions that the controller will perform automatically.
|
|
*
|
|
* Depending on module params, one of the two supported techniques will be used:
|
|
*
|
|
* - If the parameters provide explicit timeouts and tolerances, they will be
|
|
* used to build a table with up to 2 non-operational states to transition to.
|
|
* The default parameter values were selected based on the values used by
|
|
* Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
|
|
* regeneration of the APST table in the event of switching between external
|
|
* and battery power, the timeouts and tolerances reflect a compromise
|
|
* between values used by Microsoft for AC and battery scenarios.
|
|
* - If not, we'll configure the table with a simple heuristic: we are willing
|
|
* to spend at most 2% of the time transitioning between power states.
|
|
* Therefore, when running in any given state, we will enter the next
|
|
* lower-power non-operational state after waiting 50 * (enlat + exlat)
|
|
* microseconds, as long as that state's exit latency is under the requested
|
|
* maximum latency.
|
|
*
|
|
* We will not autonomously enter any non-operational state for which the total
|
|
* latency exceeds ps_max_latency_us.
|
|
*
|
|
* Users can set ps_max_latency_us to zero to turn off APST.
|
|
*/
|
|
static int nvme_configure_apst(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_feat_auto_pst *table;
|
|
unsigned apste = 0;
|
|
u64 max_lat_us = 0;
|
|
__le64 target = 0;
|
|
int max_ps = -1;
|
|
int state;
|
|
int ret;
|
|
unsigned last_lt_index = UINT_MAX;
|
|
|
|
/*
|
|
* If APST isn't supported or if we haven't been initialized yet,
|
|
* then don't do anything.
|
|
*/
|
|
if (!ctrl->apsta)
|
|
return 0;
|
|
|
|
if (ctrl->npss > 31) {
|
|
dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
|
|
return 0;
|
|
}
|
|
|
|
table = kzalloc(sizeof(*table), GFP_KERNEL);
|
|
if (!table)
|
|
return 0;
|
|
|
|
if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
|
|
/* Turn off APST. */
|
|
dev_dbg(ctrl->device, "APST disabled\n");
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Walk through all states from lowest- to highest-power.
|
|
* According to the spec, lower-numbered states use more power. NPSS,
|
|
* despite the name, is the index of the lowest-power state, not the
|
|
* number of states.
|
|
*/
|
|
for (state = (int)ctrl->npss; state >= 0; state--) {
|
|
u64 total_latency_us, exit_latency_us, transition_ms;
|
|
|
|
if (target)
|
|
table->entries[state] = target;
|
|
|
|
/*
|
|
* Don't allow transitions to the deepest state if it's quirked
|
|
* off.
|
|
*/
|
|
if (state == ctrl->npss &&
|
|
(ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
|
|
continue;
|
|
|
|
/*
|
|
* Is this state a useful non-operational state for higher-power
|
|
* states to autonomously transition to?
|
|
*/
|
|
if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
|
|
continue;
|
|
|
|
exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
|
|
if (exit_latency_us > ctrl->ps_max_latency_us)
|
|
continue;
|
|
|
|
total_latency_us = exit_latency_us +
|
|
le32_to_cpu(ctrl->psd[state].entry_lat);
|
|
|
|
/*
|
|
* This state is good. It can be used as the APST idle target
|
|
* for higher power states.
|
|
*/
|
|
if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
|
|
if (!nvme_apst_get_transition_time(total_latency_us,
|
|
&transition_ms, &last_lt_index))
|
|
continue;
|
|
} else {
|
|
transition_ms = total_latency_us + 19;
|
|
do_div(transition_ms, 20);
|
|
if (transition_ms > (1 << 24) - 1)
|
|
transition_ms = (1 << 24) - 1;
|
|
}
|
|
|
|
target = cpu_to_le64((state << 3) | (transition_ms << 8));
|
|
if (max_ps == -1)
|
|
max_ps = state;
|
|
if (total_latency_us > max_lat_us)
|
|
max_lat_us = total_latency_us;
|
|
}
|
|
|
|
if (max_ps == -1)
|
|
dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
|
|
else
|
|
dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
|
|
max_ps, max_lat_us, (int)sizeof(*table), table);
|
|
apste = 1;
|
|
|
|
done:
|
|
ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
|
|
table, sizeof(*table), NULL);
|
|
if (ret)
|
|
dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
|
|
kfree(table);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_set_latency_tolerance(struct device *dev, s32 val)
|
|
{
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
|
u64 latency;
|
|
|
|
switch (val) {
|
|
case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
|
|
case PM_QOS_LATENCY_ANY:
|
|
latency = U64_MAX;
|
|
break;
|
|
|
|
default:
|
|
latency = val;
|
|
}
|
|
|
|
if (ctrl->ps_max_latency_us != latency) {
|
|
ctrl->ps_max_latency_us = latency;
|
|
if (ctrl->state == NVME_CTRL_LIVE)
|
|
nvme_configure_apst(ctrl);
|
|
}
|
|
}
|
|
|
|
struct nvme_core_quirk_entry {
|
|
/*
|
|
* NVMe model and firmware strings are padded with spaces. For
|
|
* simplicity, strings in the quirk table are padded with NULLs
|
|
* instead.
|
|
*/
|
|
u16 vid;
|
|
const char *mn;
|
|
const char *fr;
|
|
unsigned long quirks;
|
|
};
|
|
|
|
static const struct nvme_core_quirk_entry core_quirks[] = {
|
|
{
|
|
/*
|
|
* This Toshiba device seems to die using any APST states. See:
|
|
* https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
|
|
*/
|
|
.vid = 0x1179,
|
|
.mn = "THNSF5256GPUK TOSHIBA",
|
|
.quirks = NVME_QUIRK_NO_APST,
|
|
},
|
|
{
|
|
/*
|
|
* This LiteON CL1-3D*-Q11 firmware version has a race
|
|
* condition associated with actions related to suspend to idle
|
|
* LiteON has resolved the problem in future firmware
|
|
*/
|
|
.vid = 0x14a4,
|
|
.fr = "22301111",
|
|
.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
|
|
},
|
|
{
|
|
/*
|
|
* This Kioxia CD6-V Series / HPE PE8030 device times out and
|
|
* aborts I/O during any load, but more easily reproducible
|
|
* with discards (fstrim).
|
|
*
|
|
* The device is left in a state where it is also not possible
|
|
* to use "nvme set-feature" to disable APST, but booting with
|
|
* nvme_core.default_ps_max_latency=0 works.
|
|
*/
|
|
.vid = 0x1e0f,
|
|
.mn = "KCD6XVUL6T40",
|
|
.quirks = NVME_QUIRK_NO_APST,
|
|
},
|
|
{
|
|
/*
|
|
* The external Samsung X5 SSD fails initialization without a
|
|
* delay before checking if it is ready and has a whole set of
|
|
* other problems. To make this even more interesting, it
|
|
* shares the PCI ID with internal Samsung 970 Evo Plus that
|
|
* does not need or want these quirks.
|
|
*/
|
|
.vid = 0x144d,
|
|
.mn = "Samsung Portable SSD X5",
|
|
.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
|
|
NVME_QUIRK_NO_DEEPEST_PS |
|
|
NVME_QUIRK_IGNORE_DEV_SUBNQN,
|
|
}
|
|
};
|
|
|
|
/* match is null-terminated but idstr is space-padded. */
|
|
static bool string_matches(const char *idstr, const char *match, size_t len)
|
|
{
|
|
size_t matchlen;
|
|
|
|
if (!match)
|
|
return true;
|
|
|
|
matchlen = strlen(match);
|
|
WARN_ON_ONCE(matchlen > len);
|
|
|
|
if (memcmp(idstr, match, matchlen))
|
|
return false;
|
|
|
|
for (; matchlen < len; matchlen++)
|
|
if (idstr[matchlen] != ' ')
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool quirk_matches(const struct nvme_id_ctrl *id,
|
|
const struct nvme_core_quirk_entry *q)
|
|
{
|
|
return q->vid == le16_to_cpu(id->vid) &&
|
|
string_matches(id->mn, q->mn, sizeof(id->mn)) &&
|
|
string_matches(id->fr, q->fr, sizeof(id->fr));
|
|
}
|
|
|
|
static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
|
|
struct nvme_id_ctrl *id)
|
|
{
|
|
size_t nqnlen;
|
|
int off;
|
|
|
|
if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
|
|
nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
|
|
if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
|
|
strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
|
|
return;
|
|
}
|
|
|
|
if (ctrl->vs >= NVME_VS(1, 2, 1))
|
|
dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
|
|
}
|
|
|
|
/*
|
|
* Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
|
|
* Base Specification 2.0. It is slightly different from the format
|
|
* specified there due to historic reasons, and we can't change it now.
|
|
*/
|
|
off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
|
|
"nqn.2014.08.org.nvmexpress:%04x%04x",
|
|
le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
|
|
memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
|
|
off += sizeof(id->sn);
|
|
memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
|
|
off += sizeof(id->mn);
|
|
memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
|
|
}
|
|
|
|
static void nvme_release_subsystem(struct device *dev)
|
|
{
|
|
struct nvme_subsystem *subsys =
|
|
container_of(dev, struct nvme_subsystem, dev);
|
|
|
|
if (subsys->instance >= 0)
|
|
ida_free(&nvme_instance_ida, subsys->instance);
|
|
kfree(subsys);
|
|
}
|
|
|
|
static void nvme_destroy_subsystem(struct kref *ref)
|
|
{
|
|
struct nvme_subsystem *subsys =
|
|
container_of(ref, struct nvme_subsystem, ref);
|
|
|
|
mutex_lock(&nvme_subsystems_lock);
|
|
list_del(&subsys->entry);
|
|
mutex_unlock(&nvme_subsystems_lock);
|
|
|
|
ida_destroy(&subsys->ns_ida);
|
|
device_del(&subsys->dev);
|
|
put_device(&subsys->dev);
|
|
}
|
|
|
|
static void nvme_put_subsystem(struct nvme_subsystem *subsys)
|
|
{
|
|
kref_put(&subsys->ref, nvme_destroy_subsystem);
|
|
}
|
|
|
|
static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
|
|
{
|
|
struct nvme_subsystem *subsys;
|
|
|
|
lockdep_assert_held(&nvme_subsystems_lock);
|
|
|
|
/*
|
|
* Fail matches for discovery subsystems. This results
|
|
* in each discovery controller bound to a unique subsystem.
|
|
* This avoids issues with validating controller values
|
|
* that can only be true when there is a single unique subsystem.
|
|
* There may be multiple and completely independent entities
|
|
* that provide discovery controllers.
|
|
*/
|
|
if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
|
|
return NULL;
|
|
|
|
list_for_each_entry(subsys, &nvme_subsystems, entry) {
|
|
if (strcmp(subsys->subnqn, subsysnqn))
|
|
continue;
|
|
if (!kref_get_unless_zero(&subsys->ref))
|
|
continue;
|
|
return subsys;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
return ctrl->opts && ctrl->opts->discovery_nqn;
|
|
}
|
|
|
|
static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
|
|
struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
|
|
{
|
|
struct nvme_ctrl *tmp;
|
|
|
|
lockdep_assert_held(&nvme_subsystems_lock);
|
|
|
|
list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
|
|
if (nvme_state_terminal(tmp))
|
|
continue;
|
|
|
|
if (tmp->cntlid == ctrl->cntlid) {
|
|
dev_err(ctrl->device,
|
|
"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
|
|
ctrl->cntlid, dev_name(tmp->device),
|
|
subsys->subnqn);
|
|
return false;
|
|
}
|
|
|
|
if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
|
|
nvme_discovery_ctrl(ctrl))
|
|
continue;
|
|
|
|
dev_err(ctrl->device,
|
|
"Subsystem does not support multiple controllers\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
|
|
{
|
|
struct nvme_subsystem *subsys, *found;
|
|
int ret;
|
|
|
|
subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
|
|
if (!subsys)
|
|
return -ENOMEM;
|
|
|
|
subsys->instance = -1;
|
|
mutex_init(&subsys->lock);
|
|
kref_init(&subsys->ref);
|
|
INIT_LIST_HEAD(&subsys->ctrls);
|
|
INIT_LIST_HEAD(&subsys->nsheads);
|
|
nvme_init_subnqn(subsys, ctrl, id);
|
|
memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
|
|
memcpy(subsys->model, id->mn, sizeof(subsys->model));
|
|
subsys->vendor_id = le16_to_cpu(id->vid);
|
|
subsys->cmic = id->cmic;
|
|
|
|
/* Versions prior to 1.4 don't necessarily report a valid type */
|
|
if (id->cntrltype == NVME_CTRL_DISC ||
|
|
!strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
|
|
subsys->subtype = NVME_NQN_DISC;
|
|
else
|
|
subsys->subtype = NVME_NQN_NVME;
|
|
|
|
if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
|
|
dev_err(ctrl->device,
|
|
"Subsystem %s is not a discovery controller",
|
|
subsys->subnqn);
|
|
kfree(subsys);
|
|
return -EINVAL;
|
|
}
|
|
subsys->awupf = le16_to_cpu(id->awupf);
|
|
nvme_mpath_default_iopolicy(subsys);
|
|
|
|
subsys->dev.class = nvme_subsys_class;
|
|
subsys->dev.release = nvme_release_subsystem;
|
|
subsys->dev.groups = nvme_subsys_attrs_groups;
|
|
dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
|
|
device_initialize(&subsys->dev);
|
|
|
|
mutex_lock(&nvme_subsystems_lock);
|
|
found = __nvme_find_get_subsystem(subsys->subnqn);
|
|
if (found) {
|
|
put_device(&subsys->dev);
|
|
subsys = found;
|
|
|
|
if (!nvme_validate_cntlid(subsys, ctrl, id)) {
|
|
ret = -EINVAL;
|
|
goto out_put_subsystem;
|
|
}
|
|
} else {
|
|
ret = device_add(&subsys->dev);
|
|
if (ret) {
|
|
dev_err(ctrl->device,
|
|
"failed to register subsystem device.\n");
|
|
put_device(&subsys->dev);
|
|
goto out_unlock;
|
|
}
|
|
ida_init(&subsys->ns_ida);
|
|
list_add_tail(&subsys->entry, &nvme_subsystems);
|
|
}
|
|
|
|
ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
|
|
dev_name(ctrl->device));
|
|
if (ret) {
|
|
dev_err(ctrl->device,
|
|
"failed to create sysfs link from subsystem.\n");
|
|
goto out_put_subsystem;
|
|
}
|
|
|
|
if (!found)
|
|
subsys->instance = ctrl->instance;
|
|
ctrl->subsys = subsys;
|
|
list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
|
|
mutex_unlock(&nvme_subsystems_lock);
|
|
return 0;
|
|
|
|
out_put_subsystem:
|
|
nvme_put_subsystem(subsys);
|
|
out_unlock:
|
|
mutex_unlock(&nvme_subsystems_lock);
|
|
return ret;
|
|
}
|
|
|
|
int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
|
|
void *log, size_t size, u64 offset)
|
|
{
|
|
struct nvme_command c = { };
|
|
u32 dwlen = nvme_bytes_to_numd(size);
|
|
|
|
c.get_log_page.opcode = nvme_admin_get_log_page;
|
|
c.get_log_page.nsid = cpu_to_le32(nsid);
|
|
c.get_log_page.lid = log_page;
|
|
c.get_log_page.lsp = lsp;
|
|
c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
|
|
c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
|
|
c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
|
|
c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
|
|
c.get_log_page.csi = csi;
|
|
|
|
return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
|
|
}
|
|
|
|
static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
|
|
struct nvme_effects_log **log)
|
|
{
|
|
struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
|
|
int ret;
|
|
|
|
if (cel)
|
|
goto out;
|
|
|
|
cel = kzalloc(sizeof(*cel), GFP_KERNEL);
|
|
if (!cel)
|
|
return -ENOMEM;
|
|
|
|
ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
|
|
cel, sizeof(*cel), 0);
|
|
if (ret) {
|
|
kfree(cel);
|
|
return ret;
|
|
}
|
|
|
|
xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
|
|
out:
|
|
*log = cel;
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
|
|
{
|
|
u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
|
|
|
|
if (check_shl_overflow(1U, units + page_shift - 9, &val))
|
|
return UINT_MAX;
|
|
return val;
|
|
}
|
|
|
|
static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_command c = { };
|
|
struct nvme_id_ctrl_nvm *id;
|
|
int ret;
|
|
|
|
if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
|
|
ctrl->max_discard_sectors = UINT_MAX;
|
|
ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
|
|
} else {
|
|
ctrl->max_discard_sectors = 0;
|
|
ctrl->max_discard_segments = 0;
|
|
}
|
|
|
|
/*
|
|
* Even though NVMe spec explicitly states that MDTS is not applicable
|
|
* to the write-zeroes, we are cautious and limit the size to the
|
|
* controllers max_hw_sectors value, which is based on the MDTS field
|
|
* and possibly other limiting factors.
|
|
*/
|
|
if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
|
|
!(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
|
|
ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
|
|
else
|
|
ctrl->max_zeroes_sectors = 0;
|
|
|
|
if (ctrl->subsys->subtype != NVME_NQN_NVME ||
|
|
nvme_ctrl_limited_cns(ctrl) ||
|
|
test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
|
|
return 0;
|
|
|
|
id = kzalloc(sizeof(*id), GFP_KERNEL);
|
|
if (!id)
|
|
return -ENOMEM;
|
|
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.cns = NVME_ID_CNS_CS_CTRL;
|
|
c.identify.csi = NVME_CSI_NVM;
|
|
|
|
ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
|
|
if (ret)
|
|
goto free_data;
|
|
|
|
if (id->dmrl)
|
|
ctrl->max_discard_segments = id->dmrl;
|
|
ctrl->dmrsl = le32_to_cpu(id->dmrsl);
|
|
if (id->wzsl)
|
|
ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
|
|
|
|
free_data:
|
|
if (ret > 0)
|
|
set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
|
|
kfree(id);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_effects_log *log = ctrl->effects;
|
|
|
|
log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
|
|
NVME_CMD_EFFECTS_NCC |
|
|
NVME_CMD_EFFECTS_CSE_MASK);
|
|
log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
|
|
NVME_CMD_EFFECTS_CSE_MASK);
|
|
|
|
/*
|
|
* The spec says the result of a security receive command depends on
|
|
* the previous security send command. As such, many vendors log this
|
|
* command as one to submitted only when no other commands to the same
|
|
* namespace are outstanding. The intention is to tell the host to
|
|
* prevent mixing security send and receive.
|
|
*
|
|
* This driver can only enforce such exclusive access against IO
|
|
* queues, though. We are not readily able to enforce such a rule for
|
|
* two commands to the admin queue, which is the only queue that
|
|
* matters for this command.
|
|
*
|
|
* Rather than blindly freezing the IO queues for this effect that
|
|
* doesn't even apply to IO, mask it off.
|
|
*/
|
|
log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
|
|
|
|
log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
|
|
log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
|
|
log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
|
|
}
|
|
|
|
static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (ctrl->effects)
|
|
return 0;
|
|
|
|
if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
|
|
ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
if (!ctrl->effects) {
|
|
ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
|
|
if (!ctrl->effects)
|
|
return -ENOMEM;
|
|
xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
|
|
}
|
|
|
|
nvme_init_known_nvm_effects(ctrl);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_init_identify(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_id_ctrl *id;
|
|
u32 max_hw_sectors;
|
|
bool prev_apst_enabled;
|
|
int ret;
|
|
|
|
ret = nvme_identify_ctrl(ctrl, &id);
|
|
if (ret) {
|
|
dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
|
|
return -EIO;
|
|
}
|
|
|
|
if (!(ctrl->ops->flags & NVME_F_FABRICS))
|
|
ctrl->cntlid = le16_to_cpu(id->cntlid);
|
|
|
|
if (!ctrl->identified) {
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Check for quirks. Quirk can depend on firmware version,
|
|
* so, in principle, the set of quirks present can change
|
|
* across a reset. As a possible future enhancement, we
|
|
* could re-scan for quirks every time we reinitialize
|
|
* the device, but we'd have to make sure that the driver
|
|
* behaves intelligently if the quirks change.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
|
|
if (quirk_matches(id, &core_quirks[i]))
|
|
ctrl->quirks |= core_quirks[i].quirks;
|
|
}
|
|
|
|
ret = nvme_init_subsystem(ctrl, id);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
ret = nvme_init_effects(ctrl, id);
|
|
if (ret)
|
|
goto out_free;
|
|
}
|
|
memcpy(ctrl->subsys->firmware_rev, id->fr,
|
|
sizeof(ctrl->subsys->firmware_rev));
|
|
|
|
if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
|
|
dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
|
|
ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
|
|
}
|
|
|
|
ctrl->crdt[0] = le16_to_cpu(id->crdt1);
|
|
ctrl->crdt[1] = le16_to_cpu(id->crdt2);
|
|
ctrl->crdt[2] = le16_to_cpu(id->crdt3);
|
|
|
|
ctrl->oacs = le16_to_cpu(id->oacs);
|
|
ctrl->oncs = le16_to_cpu(id->oncs);
|
|
ctrl->mtfa = le16_to_cpu(id->mtfa);
|
|
ctrl->oaes = le32_to_cpu(id->oaes);
|
|
ctrl->wctemp = le16_to_cpu(id->wctemp);
|
|
ctrl->cctemp = le16_to_cpu(id->cctemp);
|
|
|
|
atomic_set(&ctrl->abort_limit, id->acl + 1);
|
|
ctrl->vwc = id->vwc;
|
|
if (id->mdts)
|
|
max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
|
|
else
|
|
max_hw_sectors = UINT_MAX;
|
|
ctrl->max_hw_sectors =
|
|
min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
|
|
|
|
nvme_set_queue_limits(ctrl, ctrl->admin_q);
|
|
ctrl->sgls = le32_to_cpu(id->sgls);
|
|
ctrl->kas = le16_to_cpu(id->kas);
|
|
ctrl->max_namespaces = le32_to_cpu(id->mnan);
|
|
ctrl->ctratt = le32_to_cpu(id->ctratt);
|
|
|
|
ctrl->cntrltype = id->cntrltype;
|
|
ctrl->dctype = id->dctype;
|
|
|
|
if (id->rtd3e) {
|
|
/* us -> s */
|
|
u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
|
|
|
|
ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
|
|
shutdown_timeout, 60);
|
|
|
|
if (ctrl->shutdown_timeout != shutdown_timeout)
|
|
dev_info(ctrl->device,
|
|
"Shutdown timeout set to %u seconds\n",
|
|
ctrl->shutdown_timeout);
|
|
} else
|
|
ctrl->shutdown_timeout = shutdown_timeout;
|
|
|
|
ctrl->npss = id->npss;
|
|
ctrl->apsta = id->apsta;
|
|
prev_apst_enabled = ctrl->apst_enabled;
|
|
if (ctrl->quirks & NVME_QUIRK_NO_APST) {
|
|
if (force_apst && id->apsta) {
|
|
dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
|
|
ctrl->apst_enabled = true;
|
|
} else {
|
|
ctrl->apst_enabled = false;
|
|
}
|
|
} else {
|
|
ctrl->apst_enabled = id->apsta;
|
|
}
|
|
memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
|
|
|
|
if (ctrl->ops->flags & NVME_F_FABRICS) {
|
|
ctrl->icdoff = le16_to_cpu(id->icdoff);
|
|
ctrl->ioccsz = le32_to_cpu(id->ioccsz);
|
|
ctrl->iorcsz = le32_to_cpu(id->iorcsz);
|
|
ctrl->maxcmd = le16_to_cpu(id->maxcmd);
|
|
|
|
/*
|
|
* In fabrics we need to verify the cntlid matches the
|
|
* admin connect
|
|
*/
|
|
if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
|
|
dev_err(ctrl->device,
|
|
"Mismatching cntlid: Connect %u vs Identify "
|
|
"%u, rejecting\n",
|
|
ctrl->cntlid, le16_to_cpu(id->cntlid));
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
|
|
dev_err(ctrl->device,
|
|
"keep-alive support is mandatory for fabrics\n");
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
} else {
|
|
ctrl->hmpre = le32_to_cpu(id->hmpre);
|
|
ctrl->hmmin = le32_to_cpu(id->hmmin);
|
|
ctrl->hmminds = le32_to_cpu(id->hmminds);
|
|
ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
|
|
}
|
|
|
|
ret = nvme_mpath_init_identify(ctrl, id);
|
|
if (ret < 0)
|
|
goto out_free;
|
|
|
|
if (ctrl->apst_enabled && !prev_apst_enabled)
|
|
dev_pm_qos_expose_latency_tolerance(ctrl->device);
|
|
else if (!ctrl->apst_enabled && prev_apst_enabled)
|
|
dev_pm_qos_hide_latency_tolerance(ctrl->device);
|
|
|
|
out_free:
|
|
kfree(id);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Initialize the cached copies of the Identify data and various controller
|
|
* register in our nvme_ctrl structure. This should be called as soon as
|
|
* the admin queue is fully up and running.
|
|
*/
|
|
int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
|
|
{
|
|
int ret;
|
|
|
|
ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
|
|
if (ret) {
|
|
dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
|
|
|
|
if (ctrl->vs >= NVME_VS(1, 1, 0))
|
|
ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
|
|
|
|
ret = nvme_init_identify(ctrl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nvme_configure_apst(ctrl);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = nvme_configure_timestamp(ctrl);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = nvme_configure_host_options(ctrl);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
nvme_configure_opal(ctrl, was_suspended);
|
|
|
|
if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
|
|
/*
|
|
* Do not return errors unless we are in a controller reset,
|
|
* the controller works perfectly fine without hwmon.
|
|
*/
|
|
ret = nvme_hwmon_init(ctrl);
|
|
if (ret == -EINTR)
|
|
return ret;
|
|
}
|
|
|
|
clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
|
|
ctrl->identified = true;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
|
|
|
|
static int nvme_dev_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct nvme_ctrl *ctrl =
|
|
container_of(inode->i_cdev, struct nvme_ctrl, cdev);
|
|
|
|
switch (ctrl->state) {
|
|
case NVME_CTRL_LIVE:
|
|
break;
|
|
default:
|
|
return -EWOULDBLOCK;
|
|
}
|
|
|
|
nvme_get_ctrl(ctrl);
|
|
if (!try_module_get(ctrl->ops->module)) {
|
|
nvme_put_ctrl(ctrl);
|
|
return -EINVAL;
|
|
}
|
|
|
|
file->private_data = ctrl;
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_dev_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct nvme_ctrl *ctrl =
|
|
container_of(inode->i_cdev, struct nvme_ctrl, cdev);
|
|
|
|
module_put(ctrl->ops->module);
|
|
nvme_put_ctrl(ctrl);
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations nvme_dev_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = nvme_dev_open,
|
|
.release = nvme_dev_release,
|
|
.unlocked_ioctl = nvme_dev_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.uring_cmd = nvme_dev_uring_cmd,
|
|
};
|
|
|
|
static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
|
|
unsigned nsid)
|
|
{
|
|
struct nvme_ns_head *h;
|
|
|
|
lockdep_assert_held(&ctrl->subsys->lock);
|
|
|
|
list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
|
|
/*
|
|
* Private namespaces can share NSIDs under some conditions.
|
|
* In that case we can't use the same ns_head for namespaces
|
|
* with the same NSID.
|
|
*/
|
|
if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
|
|
continue;
|
|
if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
|
|
return h;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
|
|
struct nvme_ns_ids *ids)
|
|
{
|
|
bool has_uuid = !uuid_is_null(&ids->uuid);
|
|
bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
|
|
bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
|
|
struct nvme_ns_head *h;
|
|
|
|
lockdep_assert_held(&subsys->lock);
|
|
|
|
list_for_each_entry(h, &subsys->nsheads, entry) {
|
|
if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
|
|
return -EINVAL;
|
|
if (has_nguid &&
|
|
memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
|
|
return -EINVAL;
|
|
if (has_eui64 &&
|
|
memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_cdev_rel(struct device *dev)
|
|
{
|
|
ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
|
|
}
|
|
|
|
void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
|
|
{
|
|
cdev_device_del(cdev, cdev_device);
|
|
put_device(cdev_device);
|
|
}
|
|
|
|
int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
|
|
const struct file_operations *fops, struct module *owner)
|
|
{
|
|
int minor, ret;
|
|
|
|
minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
|
|
if (minor < 0)
|
|
return minor;
|
|
cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
|
|
cdev_device->class = nvme_ns_chr_class;
|
|
cdev_device->release = nvme_cdev_rel;
|
|
device_initialize(cdev_device);
|
|
cdev_init(cdev, fops);
|
|
cdev->owner = owner;
|
|
ret = cdev_device_add(cdev, cdev_device);
|
|
if (ret)
|
|
put_device(cdev_device);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_ns_chr_open(struct inode *inode, struct file *file)
|
|
{
|
|
return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
|
|
}
|
|
|
|
static int nvme_ns_chr_release(struct inode *inode, struct file *file)
|
|
{
|
|
nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations nvme_ns_chr_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = nvme_ns_chr_open,
|
|
.release = nvme_ns_chr_release,
|
|
.unlocked_ioctl = nvme_ns_chr_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.uring_cmd = nvme_ns_chr_uring_cmd,
|
|
.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
|
|
};
|
|
|
|
static int nvme_add_ns_cdev(struct nvme_ns *ns)
|
|
{
|
|
int ret;
|
|
|
|
ns->cdev_device.parent = ns->ctrl->device;
|
|
ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
|
|
ns->ctrl->instance, ns->head->instance);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
|
|
ns->ctrl->ops->module);
|
|
}
|
|
|
|
static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
|
|
struct nvme_ns_info *info)
|
|
{
|
|
struct nvme_ns_head *head;
|
|
size_t size = sizeof(*head);
|
|
int ret = -ENOMEM;
|
|
|
|
#ifdef CONFIG_NVME_MULTIPATH
|
|
size += num_possible_nodes() * sizeof(struct nvme_ns *);
|
|
#endif
|
|
|
|
head = kzalloc(size, GFP_KERNEL);
|
|
if (!head)
|
|
goto out;
|
|
ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
|
|
if (ret < 0)
|
|
goto out_free_head;
|
|
head->instance = ret;
|
|
INIT_LIST_HEAD(&head->list);
|
|
ret = init_srcu_struct(&head->srcu);
|
|
if (ret)
|
|
goto out_ida_remove;
|
|
head->subsys = ctrl->subsys;
|
|
head->ns_id = info->nsid;
|
|
head->ids = info->ids;
|
|
head->shared = info->is_shared;
|
|
kref_init(&head->ref);
|
|
|
|
if (head->ids.csi) {
|
|
ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
|
|
if (ret)
|
|
goto out_cleanup_srcu;
|
|
} else
|
|
head->effects = ctrl->effects;
|
|
|
|
ret = nvme_mpath_alloc_disk(ctrl, head);
|
|
if (ret)
|
|
goto out_cleanup_srcu;
|
|
|
|
list_add_tail(&head->entry, &ctrl->subsys->nsheads);
|
|
|
|
kref_get(&ctrl->subsys->ref);
|
|
|
|
return head;
|
|
out_cleanup_srcu:
|
|
cleanup_srcu_struct(&head->srcu);
|
|
out_ida_remove:
|
|
ida_free(&ctrl->subsys->ns_ida, head->instance);
|
|
out_free_head:
|
|
kfree(head);
|
|
out:
|
|
if (ret > 0)
|
|
ret = blk_status_to_errno(nvme_error_status(ret));
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
|
|
struct nvme_ns_ids *ids)
|
|
{
|
|
struct nvme_subsystem *s;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Note that this check is racy as we try to avoid holding the global
|
|
* lock over the whole ns_head creation. But it is only intended as
|
|
* a sanity check anyway.
|
|
*/
|
|
mutex_lock(&nvme_subsystems_lock);
|
|
list_for_each_entry(s, &nvme_subsystems, entry) {
|
|
if (s == this)
|
|
continue;
|
|
mutex_lock(&s->lock);
|
|
ret = nvme_subsys_check_duplicate_ids(s, ids);
|
|
mutex_unlock(&s->lock);
|
|
if (ret)
|
|
break;
|
|
}
|
|
mutex_unlock(&nvme_subsystems_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
|
|
{
|
|
struct nvme_ctrl *ctrl = ns->ctrl;
|
|
struct nvme_ns_head *head = NULL;
|
|
int ret;
|
|
|
|
ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
|
|
if (ret) {
|
|
/*
|
|
* We've found two different namespaces on two different
|
|
* subsystems that report the same ID. This is pretty nasty
|
|
* for anything that actually requires unique device
|
|
* identification. In the kernel we need this for multipathing,
|
|
* and in user space the /dev/disk/by-id/ links rely on it.
|
|
*
|
|
* If the device also claims to be multi-path capable back off
|
|
* here now and refuse the probe the second device as this is a
|
|
* recipe for data corruption. If not this is probably a
|
|
* cheap consumer device if on the PCIe bus, so let the user
|
|
* proceed and use the shiny toy, but warn that with changing
|
|
* probing order (which due to our async probing could just be
|
|
* device taking longer to startup) the other device could show
|
|
* up at any time.
|
|
*/
|
|
nvme_print_device_info(ctrl);
|
|
if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
|
|
((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
|
|
info->is_shared)) {
|
|
dev_err(ctrl->device,
|
|
"ignoring nsid %d because of duplicate IDs\n",
|
|
info->nsid);
|
|
return ret;
|
|
}
|
|
|
|
dev_err(ctrl->device,
|
|
"clearing duplicate IDs for nsid %d\n", info->nsid);
|
|
dev_err(ctrl->device,
|
|
"use of /dev/disk/by-id/ may cause data corruption\n");
|
|
memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
|
|
memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
|
|
memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
|
|
ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
|
|
}
|
|
|
|
mutex_lock(&ctrl->subsys->lock);
|
|
head = nvme_find_ns_head(ctrl, info->nsid);
|
|
if (!head) {
|
|
ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
|
|
if (ret) {
|
|
dev_err(ctrl->device,
|
|
"duplicate IDs in subsystem for nsid %d\n",
|
|
info->nsid);
|
|
goto out_unlock;
|
|
}
|
|
head = nvme_alloc_ns_head(ctrl, info);
|
|
if (IS_ERR(head)) {
|
|
ret = PTR_ERR(head);
|
|
goto out_unlock;
|
|
}
|
|
} else {
|
|
ret = -EINVAL;
|
|
if (!info->is_shared || !head->shared) {
|
|
dev_err(ctrl->device,
|
|
"Duplicate unshared namespace %d\n",
|
|
info->nsid);
|
|
goto out_put_ns_head;
|
|
}
|
|
if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
|
|
dev_err(ctrl->device,
|
|
"IDs don't match for shared namespace %d\n",
|
|
info->nsid);
|
|
goto out_put_ns_head;
|
|
}
|
|
|
|
if (!multipath) {
|
|
dev_warn(ctrl->device,
|
|
"Found shared namespace %d, but multipathing not supported.\n",
|
|
info->nsid);
|
|
dev_warn_once(ctrl->device,
|
|
"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
|
|
}
|
|
}
|
|
|
|
list_add_tail_rcu(&ns->siblings, &head->list);
|
|
ns->head = head;
|
|
mutex_unlock(&ctrl->subsys->lock);
|
|
return 0;
|
|
|
|
out_put_ns_head:
|
|
nvme_put_ns_head(head);
|
|
out_unlock:
|
|
mutex_unlock(&ctrl->subsys->lock);
|
|
return ret;
|
|
}
|
|
|
|
struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
|
|
{
|
|
struct nvme_ns *ns, *ret = NULL;
|
|
|
|
down_read(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
if (ns->head->ns_id == nsid) {
|
|
if (!nvme_get_ns(ns))
|
|
continue;
|
|
ret = ns;
|
|
break;
|
|
}
|
|
if (ns->head->ns_id > nsid)
|
|
break;
|
|
}
|
|
up_read(&ctrl->namespaces_rwsem);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
|
|
|
|
/*
|
|
* Add the namespace to the controller list while keeping the list ordered.
|
|
*/
|
|
static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
|
|
{
|
|
struct nvme_ns *tmp;
|
|
|
|
list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
|
|
if (tmp->head->ns_id < ns->head->ns_id) {
|
|
list_add(&ns->list, &tmp->list);
|
|
return;
|
|
}
|
|
}
|
|
list_add(&ns->list, &ns->ctrl->namespaces);
|
|
}
|
|
|
|
static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
|
|
{
|
|
struct nvme_ns *ns;
|
|
struct gendisk *disk;
|
|
int node = ctrl->numa_node;
|
|
|
|
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
|
|
if (!ns)
|
|
return;
|
|
|
|
disk = blk_mq_alloc_disk(ctrl->tagset, ns);
|
|
if (IS_ERR(disk))
|
|
goto out_free_ns;
|
|
disk->fops = &nvme_bdev_ops;
|
|
disk->private_data = ns;
|
|
|
|
ns->disk = disk;
|
|
ns->queue = disk->queue;
|
|
|
|
if (ctrl->opts && ctrl->opts->data_digest)
|
|
blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
|
|
|
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
|
|
if (ctrl->ops->supports_pci_p2pdma &&
|
|
ctrl->ops->supports_pci_p2pdma(ctrl))
|
|
blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
|
|
|
|
ns->ctrl = ctrl;
|
|
kref_init(&ns->kref);
|
|
|
|
if (nvme_init_ns_head(ns, info))
|
|
goto out_cleanup_disk;
|
|
|
|
/*
|
|
* If multipathing is enabled, the device name for all disks and not
|
|
* just those that represent shared namespaces needs to be based on the
|
|
* subsystem instance. Using the controller instance for private
|
|
* namespaces could lead to naming collisions between shared and private
|
|
* namespaces if they don't use a common numbering scheme.
|
|
*
|
|
* If multipathing is not enabled, disk names must use the controller
|
|
* instance as shared namespaces will show up as multiple block
|
|
* devices.
|
|
*/
|
|
if (nvme_ns_head_multipath(ns->head)) {
|
|
sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
|
|
ctrl->instance, ns->head->instance);
|
|
disk->flags |= GENHD_FL_HIDDEN;
|
|
} else if (multipath) {
|
|
sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
|
|
ns->head->instance);
|
|
} else {
|
|
sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
|
|
ns->head->instance);
|
|
}
|
|
|
|
if (nvme_update_ns_info(ns, info))
|
|
goto out_unlink_ns;
|
|
|
|
down_write(&ctrl->namespaces_rwsem);
|
|
nvme_ns_add_to_ctrl_list(ns);
|
|
up_write(&ctrl->namespaces_rwsem);
|
|
nvme_get_ctrl(ctrl);
|
|
|
|
if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
|
|
goto out_cleanup_ns_from_list;
|
|
|
|
if (!nvme_ns_head_multipath(ns->head))
|
|
nvme_add_ns_cdev(ns);
|
|
|
|
nvme_mpath_add_disk(ns, info->anagrpid);
|
|
nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
|
|
|
|
return;
|
|
|
|
out_cleanup_ns_from_list:
|
|
nvme_put_ctrl(ctrl);
|
|
down_write(&ctrl->namespaces_rwsem);
|
|
list_del_init(&ns->list);
|
|
up_write(&ctrl->namespaces_rwsem);
|
|
out_unlink_ns:
|
|
mutex_lock(&ctrl->subsys->lock);
|
|
list_del_rcu(&ns->siblings);
|
|
if (list_empty(&ns->head->list))
|
|
list_del_init(&ns->head->entry);
|
|
mutex_unlock(&ctrl->subsys->lock);
|
|
nvme_put_ns_head(ns->head);
|
|
out_cleanup_disk:
|
|
put_disk(disk);
|
|
out_free_ns:
|
|
kfree(ns);
|
|
}
|
|
|
|
static void nvme_ns_remove(struct nvme_ns *ns)
|
|
{
|
|
bool last_path = false;
|
|
|
|
if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
|
|
return;
|
|
|
|
clear_bit(NVME_NS_READY, &ns->flags);
|
|
set_capacity(ns->disk, 0);
|
|
nvme_fault_inject_fini(&ns->fault_inject);
|
|
|
|
/*
|
|
* Ensure that !NVME_NS_READY is seen by other threads to prevent
|
|
* this ns going back into current_path.
|
|
*/
|
|
synchronize_srcu(&ns->head->srcu);
|
|
|
|
/* wait for concurrent submissions */
|
|
if (nvme_mpath_clear_current_path(ns))
|
|
synchronize_srcu(&ns->head->srcu);
|
|
|
|
mutex_lock(&ns->ctrl->subsys->lock);
|
|
list_del_rcu(&ns->siblings);
|
|
if (list_empty(&ns->head->list)) {
|
|
list_del_init(&ns->head->entry);
|
|
last_path = true;
|
|
}
|
|
mutex_unlock(&ns->ctrl->subsys->lock);
|
|
|
|
/* guarantee not available in head->list */
|
|
synchronize_srcu(&ns->head->srcu);
|
|
|
|
if (!nvme_ns_head_multipath(ns->head))
|
|
nvme_cdev_del(&ns->cdev, &ns->cdev_device);
|
|
del_gendisk(ns->disk);
|
|
|
|
down_write(&ns->ctrl->namespaces_rwsem);
|
|
list_del_init(&ns->list);
|
|
up_write(&ns->ctrl->namespaces_rwsem);
|
|
|
|
if (last_path)
|
|
nvme_mpath_shutdown_disk(ns->head);
|
|
nvme_put_ns(ns);
|
|
}
|
|
|
|
static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
|
|
{
|
|
struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
|
|
|
|
if (ns) {
|
|
nvme_ns_remove(ns);
|
|
nvme_put_ns(ns);
|
|
}
|
|
}
|
|
|
|
static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
|
|
{
|
|
int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
|
|
|
|
if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
|
|
dev_err(ns->ctrl->device,
|
|
"identifiers changed for nsid %d\n", ns->head->ns_id);
|
|
goto out;
|
|
}
|
|
|
|
ret = nvme_update_ns_info(ns, info);
|
|
out:
|
|
/*
|
|
* Only remove the namespace if we got a fatal error back from the
|
|
* device, otherwise ignore the error and just move on.
|
|
*
|
|
* TODO: we should probably schedule a delayed retry here.
|
|
*/
|
|
if (ret > 0 && (ret & NVME_SC_DNR))
|
|
nvme_ns_remove(ns);
|
|
}
|
|
|
|
static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
|
|
{
|
|
struct nvme_ns_info info = { .nsid = nsid };
|
|
struct nvme_ns *ns;
|
|
int ret;
|
|
|
|
if (nvme_identify_ns_descs(ctrl, &info))
|
|
return;
|
|
|
|
if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
|
|
dev_warn(ctrl->device,
|
|
"command set not reported for nsid: %d\n", nsid);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If available try to use the Command Set Idependent Identify Namespace
|
|
* data structure to find all the generic information that is needed to
|
|
* set up a namespace. If not fall back to the legacy version.
|
|
*/
|
|
if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
|
|
(info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
|
|
ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
|
|
else
|
|
ret = nvme_ns_info_from_identify(ctrl, &info);
|
|
|
|
if (info.is_removed)
|
|
nvme_ns_remove_by_nsid(ctrl, nsid);
|
|
|
|
/*
|
|
* Ignore the namespace if it is not ready. We will get an AEN once it
|
|
* becomes ready and restart the scan.
|
|
*/
|
|
if (ret || !info.is_ready)
|
|
return;
|
|
|
|
ns = nvme_find_get_ns(ctrl, nsid);
|
|
if (ns) {
|
|
nvme_validate_ns(ns, &info);
|
|
nvme_put_ns(ns);
|
|
} else {
|
|
nvme_alloc_ns(ctrl, &info);
|
|
}
|
|
}
|
|
|
|
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
|
|
unsigned nsid)
|
|
{
|
|
struct nvme_ns *ns, *next;
|
|
LIST_HEAD(rm_list);
|
|
|
|
down_write(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
|
|
if (ns->head->ns_id > nsid)
|
|
list_move_tail(&ns->list, &rm_list);
|
|
}
|
|
up_write(&ctrl->namespaces_rwsem);
|
|
|
|
list_for_each_entry_safe(ns, next, &rm_list, list)
|
|
nvme_ns_remove(ns);
|
|
|
|
}
|
|
|
|
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
|
|
{
|
|
const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
|
|
__le32 *ns_list;
|
|
u32 prev = 0;
|
|
int ret = 0, i;
|
|
|
|
ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
|
|
if (!ns_list)
|
|
return -ENOMEM;
|
|
|
|
for (;;) {
|
|
struct nvme_command cmd = {
|
|
.identify.opcode = nvme_admin_identify,
|
|
.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
|
|
.identify.nsid = cpu_to_le32(prev),
|
|
};
|
|
|
|
ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
|
|
NVME_IDENTIFY_DATA_SIZE);
|
|
if (ret) {
|
|
dev_warn(ctrl->device,
|
|
"Identify NS List failed (status=0x%x)\n", ret);
|
|
goto free;
|
|
}
|
|
|
|
for (i = 0; i < nr_entries; i++) {
|
|
u32 nsid = le32_to_cpu(ns_list[i]);
|
|
|
|
if (!nsid) /* end of the list? */
|
|
goto out;
|
|
nvme_scan_ns(ctrl, nsid);
|
|
while (++prev < nsid)
|
|
nvme_ns_remove_by_nsid(ctrl, prev);
|
|
}
|
|
}
|
|
out:
|
|
nvme_remove_invalid_namespaces(ctrl, prev);
|
|
free:
|
|
kfree(ns_list);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_id_ctrl *id;
|
|
u32 nn, i;
|
|
|
|
if (nvme_identify_ctrl(ctrl, &id))
|
|
return;
|
|
nn = le32_to_cpu(id->nn);
|
|
kfree(id);
|
|
|
|
for (i = 1; i <= nn; i++)
|
|
nvme_scan_ns(ctrl, i);
|
|
|
|
nvme_remove_invalid_namespaces(ctrl, nn);
|
|
}
|
|
|
|
static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
|
|
{
|
|
size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
|
|
__le32 *log;
|
|
int error;
|
|
|
|
log = kzalloc(log_size, GFP_KERNEL);
|
|
if (!log)
|
|
return;
|
|
|
|
/*
|
|
* We need to read the log to clear the AEN, but we don't want to rely
|
|
* on it for the changed namespace information as userspace could have
|
|
* raced with us in reading the log page, which could cause us to miss
|
|
* updates.
|
|
*/
|
|
error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
|
|
NVME_CSI_NVM, log, log_size, 0);
|
|
if (error)
|
|
dev_warn(ctrl->device,
|
|
"reading changed ns log failed: %d\n", error);
|
|
|
|
kfree(log);
|
|
}
|
|
|
|
static void nvme_scan_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl =
|
|
container_of(work, struct nvme_ctrl, scan_work);
|
|
int ret;
|
|
|
|
/* No tagset on a live ctrl means IO queues could not created */
|
|
if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
|
|
return;
|
|
|
|
/*
|
|
* Identify controller limits can change at controller reset due to
|
|
* new firmware download, even though it is not common we cannot ignore
|
|
* such scenario. Controller's non-mdts limits are reported in the unit
|
|
* of logical blocks that is dependent on the format of attached
|
|
* namespace. Hence re-read the limits at the time of ns allocation.
|
|
*/
|
|
ret = nvme_init_non_mdts_limits(ctrl);
|
|
if (ret < 0) {
|
|
dev_warn(ctrl->device,
|
|
"reading non-mdts-limits failed: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
|
|
dev_info(ctrl->device, "rescanning namespaces.\n");
|
|
nvme_clear_changed_ns_log(ctrl);
|
|
}
|
|
|
|
mutex_lock(&ctrl->scan_lock);
|
|
if (nvme_ctrl_limited_cns(ctrl)) {
|
|
nvme_scan_ns_sequential(ctrl);
|
|
} else {
|
|
/*
|
|
* Fall back to sequential scan if DNR is set to handle broken
|
|
* devices which should support Identify NS List (as per the VS
|
|
* they report) but don't actually support it.
|
|
*/
|
|
ret = nvme_scan_ns_list(ctrl);
|
|
if (ret > 0 && ret & NVME_SC_DNR)
|
|
nvme_scan_ns_sequential(ctrl);
|
|
}
|
|
mutex_unlock(&ctrl->scan_lock);
|
|
}
|
|
|
|
/*
|
|
* This function iterates the namespace list unlocked to allow recovery from
|
|
* controller failure. It is up to the caller to ensure the namespace list is
|
|
* not modified by scan work while this function is executing.
|
|
*/
|
|
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns, *next;
|
|
LIST_HEAD(ns_list);
|
|
|
|
/*
|
|
* make sure to requeue I/O to all namespaces as these
|
|
* might result from the scan itself and must complete
|
|
* for the scan_work to make progress
|
|
*/
|
|
nvme_mpath_clear_ctrl_paths(ctrl);
|
|
|
|
/* prevent racing with ns scanning */
|
|
flush_work(&ctrl->scan_work);
|
|
|
|
/*
|
|
* The dead states indicates the controller was not gracefully
|
|
* disconnected. In that case, we won't be able to flush any data while
|
|
* removing the namespaces' disks; fail all the queues now to avoid
|
|
* potentially having to clean up the failed sync later.
|
|
*/
|
|
if (ctrl->state == NVME_CTRL_DEAD) {
|
|
nvme_mark_namespaces_dead(ctrl);
|
|
nvme_unquiesce_io_queues(ctrl);
|
|
}
|
|
|
|
/* this is a no-op when called from the controller reset handler */
|
|
nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
|
|
|
|
down_write(&ctrl->namespaces_rwsem);
|
|
list_splice_init(&ctrl->namespaces, &ns_list);
|
|
up_write(&ctrl->namespaces_rwsem);
|
|
|
|
list_for_each_entry_safe(ns, next, &ns_list, list)
|
|
nvme_ns_remove(ns);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
|
|
|
|
static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
|
|
{
|
|
const struct nvme_ctrl *ctrl =
|
|
container_of(dev, struct nvme_ctrl, ctrl_device);
|
|
struct nvmf_ctrl_options *opts = ctrl->opts;
|
|
int ret;
|
|
|
|
ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (opts) {
|
|
ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = add_uevent_var(env, "NVME_TRSVCID=%s",
|
|
opts->trsvcid ?: "none");
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
|
|
opts->host_traddr ?: "none");
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
|
|
opts->host_iface ?: "none");
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
|
|
{
|
|
char *envp[2] = { envdata, NULL };
|
|
|
|
kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
|
|
}
|
|
|
|
static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
|
|
{
|
|
char *envp[2] = { NULL, NULL };
|
|
u32 aen_result = ctrl->aen_result;
|
|
|
|
ctrl->aen_result = 0;
|
|
if (!aen_result)
|
|
return;
|
|
|
|
envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
|
|
if (!envp[0])
|
|
return;
|
|
kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
|
|
kfree(envp[0]);
|
|
}
|
|
|
|
static void nvme_async_event_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl =
|
|
container_of(work, struct nvme_ctrl, async_event_work);
|
|
|
|
nvme_aen_uevent(ctrl);
|
|
|
|
/*
|
|
* The transport drivers must guarantee AER submission here is safe by
|
|
* flushing ctrl async_event_work after changing the controller state
|
|
* from LIVE and before freeing the admin queue.
|
|
*/
|
|
if (ctrl->state == NVME_CTRL_LIVE)
|
|
ctrl->ops->submit_async_event(ctrl);
|
|
}
|
|
|
|
static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
|
|
{
|
|
|
|
u32 csts;
|
|
|
|
if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
|
|
return false;
|
|
|
|
if (csts == ~0)
|
|
return false;
|
|
|
|
return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
|
|
}
|
|
|
|
static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_fw_slot_info_log *log;
|
|
|
|
log = kmalloc(sizeof(*log), GFP_KERNEL);
|
|
if (!log)
|
|
return;
|
|
|
|
if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
|
|
log, sizeof(*log), 0))
|
|
dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
|
|
kfree(log);
|
|
}
|
|
|
|
static void nvme_fw_act_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl = container_of(work,
|
|
struct nvme_ctrl, fw_act_work);
|
|
unsigned long fw_act_timeout;
|
|
|
|
if (ctrl->mtfa)
|
|
fw_act_timeout = jiffies +
|
|
msecs_to_jiffies(ctrl->mtfa * 100);
|
|
else
|
|
fw_act_timeout = jiffies +
|
|
msecs_to_jiffies(admin_timeout * 1000);
|
|
|
|
nvme_quiesce_io_queues(ctrl);
|
|
while (nvme_ctrl_pp_status(ctrl)) {
|
|
if (time_after(jiffies, fw_act_timeout)) {
|
|
dev_warn(ctrl->device,
|
|
"Fw activation timeout, reset controller\n");
|
|
nvme_try_sched_reset(ctrl);
|
|
return;
|
|
}
|
|
msleep(100);
|
|
}
|
|
|
|
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
|
|
return;
|
|
|
|
nvme_unquiesce_io_queues(ctrl);
|
|
/* read FW slot information to clear the AER */
|
|
nvme_get_fw_slot_info(ctrl);
|
|
|
|
queue_work(nvme_wq, &ctrl->async_event_work);
|
|
}
|
|
|
|
static u32 nvme_aer_type(u32 result)
|
|
{
|
|
return result & 0x7;
|
|
}
|
|
|
|
static u32 nvme_aer_subtype(u32 result)
|
|
{
|
|
return (result & 0xff00) >> 8;
|
|
}
|
|
|
|
static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
|
|
{
|
|
u32 aer_notice_type = nvme_aer_subtype(result);
|
|
bool requeue = true;
|
|
|
|
switch (aer_notice_type) {
|
|
case NVME_AER_NOTICE_NS_CHANGED:
|
|
set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
|
|
nvme_queue_scan(ctrl);
|
|
break;
|
|
case NVME_AER_NOTICE_FW_ACT_STARTING:
|
|
/*
|
|
* We are (ab)using the RESETTING state to prevent subsequent
|
|
* recovery actions from interfering with the controller's
|
|
* firmware activation.
|
|
*/
|
|
if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
|
|
nvme_auth_stop(ctrl);
|
|
requeue = false;
|
|
queue_work(nvme_wq, &ctrl->fw_act_work);
|
|
}
|
|
break;
|
|
#ifdef CONFIG_NVME_MULTIPATH
|
|
case NVME_AER_NOTICE_ANA:
|
|
if (!ctrl->ana_log_buf)
|
|
break;
|
|
queue_work(nvme_wq, &ctrl->ana_work);
|
|
break;
|
|
#endif
|
|
case NVME_AER_NOTICE_DISC_CHANGED:
|
|
ctrl->aen_result = result;
|
|
break;
|
|
default:
|
|
dev_warn(ctrl->device, "async event result %08x\n", result);
|
|
}
|
|
return requeue;
|
|
}
|
|
|
|
static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
|
|
{
|
|
dev_warn(ctrl->device, "resetting controller due to AER\n");
|
|
nvme_reset_ctrl(ctrl);
|
|
}
|
|
|
|
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
|
|
volatile union nvme_result *res)
|
|
{
|
|
u32 result = le32_to_cpu(res->u32);
|
|
u32 aer_type = nvme_aer_type(result);
|
|
u32 aer_subtype = nvme_aer_subtype(result);
|
|
bool requeue = true;
|
|
|
|
if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
|
|
return;
|
|
|
|
trace_nvme_async_event(ctrl, result);
|
|
switch (aer_type) {
|
|
case NVME_AER_NOTICE:
|
|
requeue = nvme_handle_aen_notice(ctrl, result);
|
|
break;
|
|
case NVME_AER_ERROR:
|
|
/*
|
|
* For a persistent internal error, don't run async_event_work
|
|
* to submit a new AER. The controller reset will do it.
|
|
*/
|
|
if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
|
|
nvme_handle_aer_persistent_error(ctrl);
|
|
return;
|
|
}
|
|
fallthrough;
|
|
case NVME_AER_SMART:
|
|
case NVME_AER_CSS:
|
|
case NVME_AER_VS:
|
|
ctrl->aen_result = result;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (requeue)
|
|
queue_work(nvme_wq, &ctrl->async_event_work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_complete_async_event);
|
|
|
|
int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
|
|
const struct blk_mq_ops *ops, unsigned int cmd_size)
|
|
{
|
|
int ret;
|
|
|
|
memset(set, 0, sizeof(*set));
|
|
set->ops = ops;
|
|
set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
|
|
if (ctrl->ops->flags & NVME_F_FABRICS)
|
|
set->reserved_tags = NVMF_RESERVED_TAGS;
|
|
set->numa_node = ctrl->numa_node;
|
|
set->flags = BLK_MQ_F_NO_SCHED;
|
|
if (ctrl->ops->flags & NVME_F_BLOCKING)
|
|
set->flags |= BLK_MQ_F_BLOCKING;
|
|
set->cmd_size = cmd_size;
|
|
set->driver_data = ctrl;
|
|
set->nr_hw_queues = 1;
|
|
set->timeout = NVME_ADMIN_TIMEOUT;
|
|
ret = blk_mq_alloc_tag_set(set);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctrl->admin_q = blk_mq_init_queue(set);
|
|
if (IS_ERR(ctrl->admin_q)) {
|
|
ret = PTR_ERR(ctrl->admin_q);
|
|
goto out_free_tagset;
|
|
}
|
|
|
|
if (ctrl->ops->flags & NVME_F_FABRICS) {
|
|
ctrl->fabrics_q = blk_mq_init_queue(set);
|
|
if (IS_ERR(ctrl->fabrics_q)) {
|
|
ret = PTR_ERR(ctrl->fabrics_q);
|
|
goto out_cleanup_admin_q;
|
|
}
|
|
}
|
|
|
|
ctrl->admin_tagset = set;
|
|
return 0;
|
|
|
|
out_cleanup_admin_q:
|
|
blk_mq_destroy_queue(ctrl->admin_q);
|
|
blk_put_queue(ctrl->admin_q);
|
|
out_free_tagset:
|
|
blk_mq_free_tag_set(set);
|
|
ctrl->admin_q = NULL;
|
|
ctrl->fabrics_q = NULL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
|
|
|
|
void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
|
|
{
|
|
blk_mq_destroy_queue(ctrl->admin_q);
|
|
blk_put_queue(ctrl->admin_q);
|
|
if (ctrl->ops->flags & NVME_F_FABRICS) {
|
|
blk_mq_destroy_queue(ctrl->fabrics_q);
|
|
blk_put_queue(ctrl->fabrics_q);
|
|
}
|
|
blk_mq_free_tag_set(ctrl->admin_tagset);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
|
|
|
|
int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
|
|
const struct blk_mq_ops *ops, unsigned int nr_maps,
|
|
unsigned int cmd_size)
|
|
{
|
|
int ret;
|
|
|
|
memset(set, 0, sizeof(*set));
|
|
set->ops = ops;
|
|
set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
|
|
/*
|
|
* Some Apple controllers requires tags to be unique across admin and
|
|
* the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
|
|
*/
|
|
if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
|
|
set->reserved_tags = NVME_AQ_DEPTH;
|
|
else if (ctrl->ops->flags & NVME_F_FABRICS)
|
|
set->reserved_tags = NVMF_RESERVED_TAGS;
|
|
set->numa_node = ctrl->numa_node;
|
|
set->flags = BLK_MQ_F_SHOULD_MERGE;
|
|
if (ctrl->ops->flags & NVME_F_BLOCKING)
|
|
set->flags |= BLK_MQ_F_BLOCKING;
|
|
set->cmd_size = cmd_size,
|
|
set->driver_data = ctrl;
|
|
set->nr_hw_queues = ctrl->queue_count - 1;
|
|
set->timeout = NVME_IO_TIMEOUT;
|
|
set->nr_maps = nr_maps;
|
|
ret = blk_mq_alloc_tag_set(set);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ctrl->ops->flags & NVME_F_FABRICS) {
|
|
ctrl->connect_q = blk_mq_init_queue(set);
|
|
if (IS_ERR(ctrl->connect_q)) {
|
|
ret = PTR_ERR(ctrl->connect_q);
|
|
goto out_free_tag_set;
|
|
}
|
|
blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
|
|
ctrl->connect_q);
|
|
}
|
|
|
|
ctrl->tagset = set;
|
|
return 0;
|
|
|
|
out_free_tag_set:
|
|
blk_mq_free_tag_set(set);
|
|
ctrl->connect_q = NULL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
|
|
|
|
void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (ctrl->ops->flags & NVME_F_FABRICS) {
|
|
blk_mq_destroy_queue(ctrl->connect_q);
|
|
blk_put_queue(ctrl->connect_q);
|
|
}
|
|
blk_mq_free_tag_set(ctrl->tagset);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
|
|
|
|
void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
nvme_mpath_stop(ctrl);
|
|
nvme_auth_stop(ctrl);
|
|
nvme_stop_keep_alive(ctrl);
|
|
nvme_stop_failfast_work(ctrl);
|
|
flush_work(&ctrl->async_event_work);
|
|
cancel_work_sync(&ctrl->fw_act_work);
|
|
if (ctrl->ops->stop_ctrl)
|
|
ctrl->ops->stop_ctrl(ctrl);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
|
|
|
|
void nvme_start_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
nvme_start_keep_alive(ctrl);
|
|
|
|
nvme_enable_aen(ctrl);
|
|
|
|
/*
|
|
* persistent discovery controllers need to send indication to userspace
|
|
* to re-read the discovery log page to learn about possible changes
|
|
* that were missed. We identify persistent discovery controllers by
|
|
* checking that they started once before, hence are reconnecting back.
|
|
*/
|
|
if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
|
|
nvme_discovery_ctrl(ctrl))
|
|
nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
|
|
|
|
if (ctrl->queue_count > 1) {
|
|
nvme_queue_scan(ctrl);
|
|
nvme_unquiesce_io_queues(ctrl);
|
|
nvme_mpath_update(ctrl);
|
|
}
|
|
|
|
nvme_change_uevent(ctrl, "NVME_EVENT=connected");
|
|
set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_start_ctrl);
|
|
|
|
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
nvme_hwmon_exit(ctrl);
|
|
nvme_fault_inject_fini(&ctrl->fault_inject);
|
|
dev_pm_qos_hide_latency_tolerance(ctrl->device);
|
|
cdev_device_del(&ctrl->cdev, ctrl->device);
|
|
nvme_put_ctrl(ctrl);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
|
|
|
|
static void nvme_free_cels(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_effects_log *cel;
|
|
unsigned long i;
|
|
|
|
xa_for_each(&ctrl->cels, i, cel) {
|
|
xa_erase(&ctrl->cels, i);
|
|
kfree(cel);
|
|
}
|
|
|
|
xa_destroy(&ctrl->cels);
|
|
}
|
|
|
|
static void nvme_free_ctrl(struct device *dev)
|
|
{
|
|
struct nvme_ctrl *ctrl =
|
|
container_of(dev, struct nvme_ctrl, ctrl_device);
|
|
struct nvme_subsystem *subsys = ctrl->subsys;
|
|
|
|
if (!subsys || ctrl->instance != subsys->instance)
|
|
ida_free(&nvme_instance_ida, ctrl->instance);
|
|
|
|
nvme_free_cels(ctrl);
|
|
nvme_mpath_uninit(ctrl);
|
|
nvme_auth_stop(ctrl);
|
|
nvme_auth_free(ctrl);
|
|
__free_page(ctrl->discard_page);
|
|
free_opal_dev(ctrl->opal_dev);
|
|
|
|
if (subsys) {
|
|
mutex_lock(&nvme_subsystems_lock);
|
|
list_del(&ctrl->subsys_entry);
|
|
sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
|
|
mutex_unlock(&nvme_subsystems_lock);
|
|
}
|
|
|
|
ctrl->ops->free_ctrl(ctrl);
|
|
|
|
if (subsys)
|
|
nvme_put_subsystem(subsys);
|
|
}
|
|
|
|
/*
|
|
* Initialize a NVMe controller structures. This needs to be called during
|
|
* earliest initialization so that we have the initialized structured around
|
|
* during probing.
|
|
*/
|
|
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
|
|
const struct nvme_ctrl_ops *ops, unsigned long quirks)
|
|
{
|
|
int ret;
|
|
|
|
ctrl->state = NVME_CTRL_NEW;
|
|
clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
|
|
spin_lock_init(&ctrl->lock);
|
|
mutex_init(&ctrl->scan_lock);
|
|
INIT_LIST_HEAD(&ctrl->namespaces);
|
|
xa_init(&ctrl->cels);
|
|
init_rwsem(&ctrl->namespaces_rwsem);
|
|
ctrl->dev = dev;
|
|
ctrl->ops = ops;
|
|
ctrl->quirks = quirks;
|
|
ctrl->numa_node = NUMA_NO_NODE;
|
|
INIT_WORK(&ctrl->scan_work, nvme_scan_work);
|
|
INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
|
|
INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
|
|
INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
|
|
init_waitqueue_head(&ctrl->state_wq);
|
|
|
|
INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
|
|
INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
|
|
memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
|
|
ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
|
|
|
|
BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
|
|
PAGE_SIZE);
|
|
ctrl->discard_page = alloc_page(GFP_KERNEL);
|
|
if (!ctrl->discard_page) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
|
|
if (ret < 0)
|
|
goto out;
|
|
ctrl->instance = ret;
|
|
|
|
device_initialize(&ctrl->ctrl_device);
|
|
ctrl->device = &ctrl->ctrl_device;
|
|
ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
|
|
ctrl->instance);
|
|
ctrl->device->class = nvme_class;
|
|
ctrl->device->parent = ctrl->dev;
|
|
if (ops->dev_attr_groups)
|
|
ctrl->device->groups = ops->dev_attr_groups;
|
|
else
|
|
ctrl->device->groups = nvme_dev_attr_groups;
|
|
ctrl->device->release = nvme_free_ctrl;
|
|
dev_set_drvdata(ctrl->device, ctrl);
|
|
ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
|
|
if (ret)
|
|
goto out_release_instance;
|
|
|
|
nvme_get_ctrl(ctrl);
|
|
cdev_init(&ctrl->cdev, &nvme_dev_fops);
|
|
ctrl->cdev.owner = ops->module;
|
|
ret = cdev_device_add(&ctrl->cdev, ctrl->device);
|
|
if (ret)
|
|
goto out_free_name;
|
|
|
|
/*
|
|
* Initialize latency tolerance controls. The sysfs files won't
|
|
* be visible to userspace unless the device actually supports APST.
|
|
*/
|
|
ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
|
|
dev_pm_qos_update_user_latency_tolerance(ctrl->device,
|
|
min(default_ps_max_latency_us, (unsigned long)S32_MAX));
|
|
|
|
nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
|
|
nvme_mpath_init_ctrl(ctrl);
|
|
ret = nvme_auth_init_ctrl(ctrl);
|
|
if (ret)
|
|
goto out_free_cdev;
|
|
|
|
return 0;
|
|
out_free_cdev:
|
|
nvme_fault_inject_fini(&ctrl->fault_inject);
|
|
dev_pm_qos_hide_latency_tolerance(ctrl->device);
|
|
cdev_device_del(&ctrl->cdev, ctrl->device);
|
|
out_free_name:
|
|
nvme_put_ctrl(ctrl);
|
|
kfree_const(ctrl->device->kobj.name);
|
|
out_release_instance:
|
|
ida_free(&nvme_instance_ida, ctrl->instance);
|
|
out:
|
|
if (ctrl->discard_page)
|
|
__free_page(ctrl->discard_page);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
|
|
|
|
/* let I/O to all namespaces fail in preparation for surprise removal */
|
|
void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
down_read(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list)
|
|
blk_mark_disk_dead(ns->disk);
|
|
up_read(&ctrl->namespaces_rwsem);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
|
|
|
|
void nvme_unfreeze(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
down_read(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list)
|
|
blk_mq_unfreeze_queue(ns->queue);
|
|
up_read(&ctrl->namespaces_rwsem);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_unfreeze);
|
|
|
|
int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
down_read(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
|
|
if (timeout <= 0)
|
|
break;
|
|
}
|
|
up_read(&ctrl->namespaces_rwsem);
|
|
return timeout;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
|
|
|
|
void nvme_wait_freeze(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
down_read(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list)
|
|
blk_mq_freeze_queue_wait(ns->queue);
|
|
up_read(&ctrl->namespaces_rwsem);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_wait_freeze);
|
|
|
|
void nvme_start_freeze(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
down_read(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list)
|
|
blk_freeze_queue_start(ns->queue);
|
|
up_read(&ctrl->namespaces_rwsem);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_start_freeze);
|
|
|
|
void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (!ctrl->tagset)
|
|
return;
|
|
if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
|
|
blk_mq_quiesce_tagset(ctrl->tagset);
|
|
else
|
|
blk_mq_wait_quiesce_done(ctrl->tagset);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
|
|
|
|
void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (!ctrl->tagset)
|
|
return;
|
|
if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
|
|
blk_mq_unquiesce_tagset(ctrl->tagset);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
|
|
|
|
void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
|
|
blk_mq_quiesce_queue(ctrl->admin_q);
|
|
else
|
|
blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
|
|
|
|
void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
|
|
blk_mq_unquiesce_queue(ctrl->admin_q);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
|
|
|
|
void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
down_read(&ctrl->namespaces_rwsem);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list)
|
|
blk_sync_queue(ns->queue);
|
|
up_read(&ctrl->namespaces_rwsem);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
|
|
|
|
void nvme_sync_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
nvme_sync_io_queues(ctrl);
|
|
if (ctrl->admin_q)
|
|
blk_sync_queue(ctrl->admin_q);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_sync_queues);
|
|
|
|
struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
|
|
{
|
|
if (file->f_op != &nvme_dev_fops)
|
|
return NULL;
|
|
return file->private_data;
|
|
}
|
|
EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
|
|
|
|
/*
|
|
* Check we didn't inadvertently grow the command structure sizes:
|
|
*/
|
|
static inline void _nvme_check_size(void)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
|
|
NVME_IDENTIFY_DATA_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
|
|
BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
|
|
BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
|
|
}
|
|
|
|
|
|
static int __init nvme_core_init(void)
|
|
{
|
|
int result = -ENOMEM;
|
|
|
|
_nvme_check_size();
|
|
|
|
nvme_wq = alloc_workqueue("nvme-wq",
|
|
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
|
|
if (!nvme_wq)
|
|
goto out;
|
|
|
|
nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
|
|
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
|
|
if (!nvme_reset_wq)
|
|
goto destroy_wq;
|
|
|
|
nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
|
|
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
|
|
if (!nvme_delete_wq)
|
|
goto destroy_reset_wq;
|
|
|
|
result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
|
|
NVME_MINORS, "nvme");
|
|
if (result < 0)
|
|
goto destroy_delete_wq;
|
|
|
|
nvme_class = class_create("nvme");
|
|
if (IS_ERR(nvme_class)) {
|
|
result = PTR_ERR(nvme_class);
|
|
goto unregister_chrdev;
|
|
}
|
|
nvme_class->dev_uevent = nvme_class_uevent;
|
|
|
|
nvme_subsys_class = class_create("nvme-subsystem");
|
|
if (IS_ERR(nvme_subsys_class)) {
|
|
result = PTR_ERR(nvme_subsys_class);
|
|
goto destroy_class;
|
|
}
|
|
|
|
result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
|
|
"nvme-generic");
|
|
if (result < 0)
|
|
goto destroy_subsys_class;
|
|
|
|
nvme_ns_chr_class = class_create("nvme-generic");
|
|
if (IS_ERR(nvme_ns_chr_class)) {
|
|
result = PTR_ERR(nvme_ns_chr_class);
|
|
goto unregister_generic_ns;
|
|
}
|
|
|
|
result = nvme_init_auth();
|
|
if (result)
|
|
goto destroy_ns_chr;
|
|
return 0;
|
|
|
|
destroy_ns_chr:
|
|
class_destroy(nvme_ns_chr_class);
|
|
unregister_generic_ns:
|
|
unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
|
|
destroy_subsys_class:
|
|
class_destroy(nvme_subsys_class);
|
|
destroy_class:
|
|
class_destroy(nvme_class);
|
|
unregister_chrdev:
|
|
unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
|
|
destroy_delete_wq:
|
|
destroy_workqueue(nvme_delete_wq);
|
|
destroy_reset_wq:
|
|
destroy_workqueue(nvme_reset_wq);
|
|
destroy_wq:
|
|
destroy_workqueue(nvme_wq);
|
|
out:
|
|
return result;
|
|
}
|
|
|
|
static void __exit nvme_core_exit(void)
|
|
{
|
|
nvme_exit_auth();
|
|
class_destroy(nvme_ns_chr_class);
|
|
class_destroy(nvme_subsys_class);
|
|
class_destroy(nvme_class);
|
|
unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
|
|
unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
|
|
destroy_workqueue(nvme_delete_wq);
|
|
destroy_workqueue(nvme_reset_wq);
|
|
destroy_workqueue(nvme_wq);
|
|
ida_destroy(&nvme_ns_chr_minor_ida);
|
|
ida_destroy(&nvme_instance_ida);
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION("1.0");
|
|
module_init(nvme_core_init);
|
|
module_exit(nvme_core_exit);
|