OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdgpu/si_dma.c

862 lines
23 KiB
C

/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include "amdgpu.h"
#include "amdgpu_trace.h"
#include "si.h"
#include "sid.h"
const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
{
DMA0_REGISTER_OFFSET,
DMA1_REGISTER_OFFSET
};
static void si_dma_set_ring_funcs(struct amdgpu_device *adev);
static void si_dma_set_buffer_funcs(struct amdgpu_device *adev);
static void si_dma_set_vm_pte_funcs(struct amdgpu_device *adev);
static void si_dma_set_irq_funcs(struct amdgpu_device *adev);
static uint64_t si_dma_ring_get_rptr(struct amdgpu_ring *ring)
{
return ring->adev->wb.wb[ring->rptr_offs>>2];
}
static uint64_t si_dma_ring_get_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
return (RREG32(DMA_RB_WPTR + sdma_offsets[me]) & 0x3fffc) >> 2;
}
static void si_dma_ring_set_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
WREG32(DMA_RB_WPTR + sdma_offsets[me],
(lower_32_bits(ring->wptr) << 2) & 0x3fffc);
}
static void si_dma_ring_emit_ib(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
unsigned vmid = AMDGPU_JOB_GET_VMID(job);
/* The indirect buffer packet must end on an 8 DW boundary in the DMA ring.
* Pad as necessary with NOPs.
*/
while ((lower_32_bits(ring->wptr) & 7) != 5)
amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0));
amdgpu_ring_write(ring, DMA_IB_PACKET(DMA_PACKET_INDIRECT_BUFFER, vmid, 0));
amdgpu_ring_write(ring, (ib->gpu_addr & 0xFFFFFFE0));
amdgpu_ring_write(ring, (ib->length_dw << 12) | (upper_32_bits(ib->gpu_addr) & 0xFF));
}
/**
* si_dma_ring_emit_fence - emit a fence on the DMA ring
*
* @ring: amdgpu ring pointer
* @addr: address
* @seq: sequence number
* @flags: fence related flags
*
* Add a DMA fence packet to the ring to write
* the fence seq number and DMA trap packet to generate
* an interrupt if needed (VI).
*/
static void si_dma_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
unsigned flags)
{
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
/* write the fence */
amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_FENCE, 0, 0, 0, 0));
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xff));
amdgpu_ring_write(ring, seq);
/* optionally write high bits as well */
if (write64bit) {
addr += 4;
amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_FENCE, 0, 0, 0, 0));
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xff));
amdgpu_ring_write(ring, upper_32_bits(seq));
}
/* generate an interrupt */
amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_TRAP, 0, 0, 0, 0));
}
static void si_dma_stop(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
u32 rb_cntl;
unsigned i;
for (i = 0; i < adev->sdma.num_instances; i++) {
ring = &adev->sdma.instance[i].ring;
/* dma0 */
rb_cntl = RREG32(DMA_RB_CNTL + sdma_offsets[i]);
rb_cntl &= ~DMA_RB_ENABLE;
WREG32(DMA_RB_CNTL + sdma_offsets[i], rb_cntl);
if (adev->mman.buffer_funcs_ring == ring)
amdgpu_ttm_set_buffer_funcs_status(adev, false);
}
}
static int si_dma_start(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
u32 rb_cntl, dma_cntl, ib_cntl, rb_bufsz;
int i, r;
uint64_t rptr_addr;
for (i = 0; i < adev->sdma.num_instances; i++) {
ring = &adev->sdma.instance[i].ring;
WREG32(DMA_SEM_INCOMPLETE_TIMER_CNTL + sdma_offsets[i], 0);
WREG32(DMA_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
/* Set ring buffer size in dwords */
rb_bufsz = order_base_2(ring->ring_size / 4);
rb_cntl = rb_bufsz << 1;
#ifdef __BIG_ENDIAN
rb_cntl |= DMA_RB_SWAP_ENABLE | DMA_RPTR_WRITEBACK_SWAP_ENABLE;
#endif
WREG32(DMA_RB_CNTL + sdma_offsets[i], rb_cntl);
/* Initialize the ring buffer's read and write pointers */
WREG32(DMA_RB_RPTR + sdma_offsets[i], 0);
WREG32(DMA_RB_WPTR + sdma_offsets[i], 0);
rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
WREG32(DMA_RB_RPTR_ADDR_LO + sdma_offsets[i], lower_32_bits(rptr_addr));
WREG32(DMA_RB_RPTR_ADDR_HI + sdma_offsets[i], upper_32_bits(rptr_addr) & 0xFF);
rb_cntl |= DMA_RPTR_WRITEBACK_ENABLE;
WREG32(DMA_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
/* enable DMA IBs */
ib_cntl = DMA_IB_ENABLE | CMD_VMID_FORCE;
#ifdef __BIG_ENDIAN
ib_cntl |= DMA_IB_SWAP_ENABLE;
#endif
WREG32(DMA_IB_CNTL + sdma_offsets[i], ib_cntl);
dma_cntl = RREG32(DMA_CNTL + sdma_offsets[i]);
dma_cntl &= ~CTXEMPTY_INT_ENABLE;
WREG32(DMA_CNTL + sdma_offsets[i], dma_cntl);
ring->wptr = 0;
WREG32(DMA_RB_WPTR + sdma_offsets[i], lower_32_bits(ring->wptr) << 2);
WREG32(DMA_RB_CNTL + sdma_offsets[i], rb_cntl | DMA_RB_ENABLE);
ring->sched.ready = true;
r = amdgpu_ring_test_helper(ring);
if (r)
return r;
if (adev->mman.buffer_funcs_ring == ring)
amdgpu_ttm_set_buffer_funcs_status(adev, true);
}
return 0;
}
/**
* si_dma_ring_test_ring - simple async dma engine test
*
* @ring: amdgpu_ring structure holding ring information
*
* Test the DMA engine by writing using it to write an
* value to memory. (VI).
* Returns 0 for success, error for failure.
*/
static int si_dma_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
unsigned i;
unsigned index;
int r;
u32 tmp;
u64 gpu_addr;
r = amdgpu_device_wb_get(adev, &index);
if (r)
return r;
gpu_addr = adev->wb.gpu_addr + (index * 4);
tmp = 0xCAFEDEAD;
adev->wb.wb[index] = cpu_to_le32(tmp);
r = amdgpu_ring_alloc(ring, 4);
if (r)
goto error_free_wb;
amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 0, 1));
amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(gpu_addr) & 0xff);
amdgpu_ring_write(ring, 0xDEADBEEF);
amdgpu_ring_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
tmp = le32_to_cpu(adev->wb.wb[index]);
if (tmp == 0xDEADBEEF)
break;
udelay(1);
}
if (i >= adev->usec_timeout)
r = -ETIMEDOUT;
error_free_wb:
amdgpu_device_wb_free(adev, index);
return r;
}
/**
* si_dma_ring_test_ib - test an IB on the DMA engine
*
* @ring: amdgpu_ring structure holding ring information
* @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
*
* Test a simple IB in the DMA ring (VI).
* Returns 0 on success, error on failure.
*/
static int si_dma_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ib ib;
struct dma_fence *f = NULL;
unsigned index;
u32 tmp = 0;
u64 gpu_addr;
long r;
r = amdgpu_device_wb_get(adev, &index);
if (r)
return r;
gpu_addr = adev->wb.gpu_addr + (index * 4);
tmp = 0xCAFEDEAD;
adev->wb.wb[index] = cpu_to_le32(tmp);
memset(&ib, 0, sizeof(ib));
r = amdgpu_ib_get(adev, NULL, 256,
AMDGPU_IB_POOL_DIRECT, &ib);
if (r)
goto err0;
ib.ptr[0] = DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 0, 1);
ib.ptr[1] = lower_32_bits(gpu_addr);
ib.ptr[2] = upper_32_bits(gpu_addr) & 0xff;
ib.ptr[3] = 0xDEADBEEF;
ib.length_dw = 4;
r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
if (r)
goto err1;
r = dma_fence_wait_timeout(f, false, timeout);
if (r == 0) {
r = -ETIMEDOUT;
goto err1;
} else if (r < 0) {
goto err1;
}
tmp = le32_to_cpu(adev->wb.wb[index]);
if (tmp == 0xDEADBEEF)
r = 0;
else
r = -EINVAL;
err1:
amdgpu_ib_free(adev, &ib, NULL);
dma_fence_put(f);
err0:
amdgpu_device_wb_free(adev, index);
return r;
}
/**
* cik_dma_vm_copy_pte - update PTEs by copying them from the GART
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @src: src addr to copy from
* @count: number of page entries to update
*
* Update PTEs by copying them from the GART using DMA (SI).
*/
static void si_dma_vm_copy_pte(struct amdgpu_ib *ib,
uint64_t pe, uint64_t src,
unsigned count)
{
unsigned bytes = count * 8;
ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_COPY,
1, 0, 0, bytes);
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
ib->ptr[ib->length_dw++] = lower_32_bits(src);
ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff;
ib->ptr[ib->length_dw++] = upper_32_bits(src) & 0xff;
}
/**
* si_dma_vm_write_pte - update PTEs by writing them manually
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @value: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
*
* Update PTEs by writing them manually using DMA (SI).
*/
static void si_dma_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
uint64_t value, unsigned count,
uint32_t incr)
{
unsigned ndw = count * 2;
ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 0, ndw);
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
for (; ndw > 0; ndw -= 2) {
ib->ptr[ib->length_dw++] = lower_32_bits(value);
ib->ptr[ib->length_dw++] = upper_32_bits(value);
value += incr;
}
}
/**
* si_dma_vm_set_pte_pde - update the page tables using sDMA
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: access flags
*
* Update the page tables using sDMA (CIK).
*/
static void si_dma_vm_set_pte_pde(struct amdgpu_ib *ib,
uint64_t pe,
uint64_t addr, unsigned count,
uint32_t incr, uint64_t flags)
{
uint64_t value;
unsigned ndw;
while (count) {
ndw = count * 2;
if (ndw > 0xFFFFE)
ndw = 0xFFFFE;
if (flags & AMDGPU_PTE_VALID)
value = addr;
else
value = 0;
/* for physically contiguous pages (vram) */
ib->ptr[ib->length_dw++] = DMA_PTE_PDE_PACKET(ndw);
ib->ptr[ib->length_dw++] = pe; /* dst addr */
ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff;
ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
ib->ptr[ib->length_dw++] = upper_32_bits(flags);
ib->ptr[ib->length_dw++] = value; /* value */
ib->ptr[ib->length_dw++] = upper_32_bits(value);
ib->ptr[ib->length_dw++] = incr; /* increment size */
ib->ptr[ib->length_dw++] = 0;
pe += ndw * 4;
addr += (ndw / 2) * incr;
count -= ndw / 2;
}
}
/**
* si_dma_pad_ib - pad the IB to the required number of dw
*
* @ring: amdgpu_ring pointer
* @ib: indirect buffer to fill with padding
*
*/
static void si_dma_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
{
while (ib->length_dw & 0x7)
ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0);
}
/**
* cik_sdma_ring_emit_pipeline_sync - sync the pipeline
*
* @ring: amdgpu_ring pointer
*
* Make sure all previous operations are completed (CIK).
*/
static void si_dma_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
uint32_t seq = ring->fence_drv.sync_seq;
uint64_t addr = ring->fence_drv.gpu_addr;
/* wait for idle */
amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_POLL_REG_MEM, 0, 0, 0, 0) |
(1 << 27)); /* Poll memory */
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, (0xff << 16) | upper_32_bits(addr)); /* retry, addr_hi */
amdgpu_ring_write(ring, 0xffffffff); /* mask */
amdgpu_ring_write(ring, seq); /* value */
amdgpu_ring_write(ring, (3 << 28) | 0x20); /* func(equal) | poll interval */
}
/**
* si_dma_ring_emit_vm_flush - cik vm flush using sDMA
*
* @ring: amdgpu_ring pointer
* @vmid: vmid number to use
* @pd_addr: address
*
* Update the page table base and flush the VM TLB
* using sDMA (VI).
*/
static void si_dma_ring_emit_vm_flush(struct amdgpu_ring *ring,
unsigned vmid, uint64_t pd_addr)
{
amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
/* wait for invalidate to complete */
amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_POLL_REG_MEM, 0, 0, 0, 0));
amdgpu_ring_write(ring, VM_INVALIDATE_REQUEST);
amdgpu_ring_write(ring, 0xff << 16); /* retry */
amdgpu_ring_write(ring, 1 << vmid); /* mask */
amdgpu_ring_write(ring, 0); /* value */
amdgpu_ring_write(ring, (0 << 28) | 0x20); /* func(always) | poll interval */
}
static void si_dma_ring_emit_wreg(struct amdgpu_ring *ring,
uint32_t reg, uint32_t val)
{
amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0, 0));
amdgpu_ring_write(ring, (0xf << 16) | reg);
amdgpu_ring_write(ring, val);
}
static int si_dma_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->sdma.num_instances = 2;
si_dma_set_ring_funcs(adev);
si_dma_set_buffer_funcs(adev);
si_dma_set_vm_pte_funcs(adev);
si_dma_set_irq_funcs(adev);
return 0;
}
static int si_dma_sw_init(void *handle)
{
struct amdgpu_ring *ring;
int r, i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/* DMA0 trap event */
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 224,
&adev->sdma.trap_irq);
if (r)
return r;
/* DMA1 trap event */
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 244,
&adev->sdma.trap_irq);
if (r)
return r;
for (i = 0; i < adev->sdma.num_instances; i++) {
ring = &adev->sdma.instance[i].ring;
ring->ring_obj = NULL;
ring->use_doorbell = false;
sprintf(ring->name, "sdma%d", i);
r = amdgpu_ring_init(adev, ring, 1024,
&adev->sdma.trap_irq,
(i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
AMDGPU_SDMA_IRQ_INSTANCE1,
AMDGPU_RING_PRIO_DEFAULT, NULL);
if (r)
return r;
}
return r;
}
static int si_dma_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int i;
for (i = 0; i < adev->sdma.num_instances; i++)
amdgpu_ring_fini(&adev->sdma.instance[i].ring);
return 0;
}
static int si_dma_hw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return si_dma_start(adev);
}
static int si_dma_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
si_dma_stop(adev);
return 0;
}
static int si_dma_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return si_dma_hw_fini(adev);
}
static int si_dma_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return si_dma_hw_init(adev);
}
static bool si_dma_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 tmp = RREG32(SRBM_STATUS2);
if (tmp & (DMA_BUSY_MASK | DMA1_BUSY_MASK))
return false;
return true;
}
static int si_dma_wait_for_idle(void *handle)
{
unsigned i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
if (si_dma_is_idle(handle))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int si_dma_soft_reset(void *handle)
{
DRM_INFO("si_dma_soft_reset --- not implemented !!!!!!!\n");
return 0;
}
static int si_dma_set_trap_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 sdma_cntl;
switch (type) {
case AMDGPU_SDMA_IRQ_INSTANCE0:
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
sdma_cntl = RREG32(DMA_CNTL + DMA0_REGISTER_OFFSET);
sdma_cntl &= ~TRAP_ENABLE;
WREG32(DMA_CNTL + DMA0_REGISTER_OFFSET, sdma_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
sdma_cntl = RREG32(DMA_CNTL + DMA0_REGISTER_OFFSET);
sdma_cntl |= TRAP_ENABLE;
WREG32(DMA_CNTL + DMA0_REGISTER_OFFSET, sdma_cntl);
break;
default:
break;
}
break;
case AMDGPU_SDMA_IRQ_INSTANCE1:
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
sdma_cntl = RREG32(DMA_CNTL + DMA1_REGISTER_OFFSET);
sdma_cntl &= ~TRAP_ENABLE;
WREG32(DMA_CNTL + DMA1_REGISTER_OFFSET, sdma_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
sdma_cntl = RREG32(DMA_CNTL + DMA1_REGISTER_OFFSET);
sdma_cntl |= TRAP_ENABLE;
WREG32(DMA_CNTL + DMA1_REGISTER_OFFSET, sdma_cntl);
break;
default:
break;
}
break;
default:
break;
}
return 0;
}
static int si_dma_process_trap_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
if (entry->src_id == 224)
amdgpu_fence_process(&adev->sdma.instance[0].ring);
else
amdgpu_fence_process(&adev->sdma.instance[1].ring);
return 0;
}
static int si_dma_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
u32 orig, data, offset;
int i;
bool enable;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
enable = (state == AMD_CG_STATE_GATE);
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
for (i = 0; i < adev->sdma.num_instances; i++) {
if (i == 0)
offset = DMA0_REGISTER_OFFSET;
else
offset = DMA1_REGISTER_OFFSET;
orig = data = RREG32(DMA_POWER_CNTL + offset);
data &= ~MEM_POWER_OVERRIDE;
if (data != orig)
WREG32(DMA_POWER_CNTL + offset, data);
WREG32(DMA_CLK_CTRL + offset, 0x00000100);
}
} else {
for (i = 0; i < adev->sdma.num_instances; i++) {
if (i == 0)
offset = DMA0_REGISTER_OFFSET;
else
offset = DMA1_REGISTER_OFFSET;
orig = data = RREG32(DMA_POWER_CNTL + offset);
data |= MEM_POWER_OVERRIDE;
if (data != orig)
WREG32(DMA_POWER_CNTL + offset, data);
orig = data = RREG32(DMA_CLK_CTRL + offset);
data = 0xff000000;
if (data != orig)
WREG32(DMA_CLK_CTRL + offset, data);
}
}
return 0;
}
static int si_dma_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
WREG32(DMA_PGFSM_WRITE, 0x00002000);
WREG32(DMA_PGFSM_CONFIG, 0x100010ff);
for (tmp = 0; tmp < 5; tmp++)
WREG32(DMA_PGFSM_WRITE, 0);
return 0;
}
static const struct amd_ip_funcs si_dma_ip_funcs = {
.name = "si_dma",
.early_init = si_dma_early_init,
.late_init = NULL,
.sw_init = si_dma_sw_init,
.sw_fini = si_dma_sw_fini,
.hw_init = si_dma_hw_init,
.hw_fini = si_dma_hw_fini,
.suspend = si_dma_suspend,
.resume = si_dma_resume,
.is_idle = si_dma_is_idle,
.wait_for_idle = si_dma_wait_for_idle,
.soft_reset = si_dma_soft_reset,
.set_clockgating_state = si_dma_set_clockgating_state,
.set_powergating_state = si_dma_set_powergating_state,
};
static const struct amdgpu_ring_funcs si_dma_ring_funcs = {
.type = AMDGPU_RING_TYPE_SDMA,
.align_mask = 0xf,
.nop = DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0),
.support_64bit_ptrs = false,
.get_rptr = si_dma_ring_get_rptr,
.get_wptr = si_dma_ring_get_wptr,
.set_wptr = si_dma_ring_set_wptr,
.emit_frame_size =
3 + 3 + /* hdp flush / invalidate */
6 + /* si_dma_ring_emit_pipeline_sync */
SI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* si_dma_ring_emit_vm_flush */
9 + 9 + 9, /* si_dma_ring_emit_fence x3 for user fence, vm fence */
.emit_ib_size = 7 + 3, /* si_dma_ring_emit_ib */
.emit_ib = si_dma_ring_emit_ib,
.emit_fence = si_dma_ring_emit_fence,
.emit_pipeline_sync = si_dma_ring_emit_pipeline_sync,
.emit_vm_flush = si_dma_ring_emit_vm_flush,
.test_ring = si_dma_ring_test_ring,
.test_ib = si_dma_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = si_dma_ring_pad_ib,
.emit_wreg = si_dma_ring_emit_wreg,
};
static void si_dma_set_ring_funcs(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->sdma.num_instances; i++)
adev->sdma.instance[i].ring.funcs = &si_dma_ring_funcs;
}
static const struct amdgpu_irq_src_funcs si_dma_trap_irq_funcs = {
.set = si_dma_set_trap_irq_state,
.process = si_dma_process_trap_irq,
};
static void si_dma_set_irq_funcs(struct amdgpu_device *adev)
{
adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
adev->sdma.trap_irq.funcs = &si_dma_trap_irq_funcs;
}
/**
* si_dma_emit_copy_buffer - copy buffer using the sDMA engine
*
* @ib: indirect buffer to copy to
* @src_offset: src GPU address
* @dst_offset: dst GPU address
* @byte_count: number of bytes to xfer
* @tmz: is this a secure operation
*
* Copy GPU buffers using the DMA engine (VI).
* Used by the amdgpu ttm implementation to move pages if
* registered as the asic copy callback.
*/
static void si_dma_emit_copy_buffer(struct amdgpu_ib *ib,
uint64_t src_offset,
uint64_t dst_offset,
uint32_t byte_count,
bool tmz)
{
ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_COPY,
1, 0, 0, byte_count);
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset) & 0xff;
ib->ptr[ib->length_dw++] = upper_32_bits(src_offset) & 0xff;
}
/**
* si_dma_emit_fill_buffer - fill buffer using the sDMA engine
*
* @ib: indirect buffer to copy to
* @src_data: value to write to buffer
* @dst_offset: dst GPU address
* @byte_count: number of bytes to xfer
*
* Fill GPU buffers using the DMA engine (VI).
*/
static void si_dma_emit_fill_buffer(struct amdgpu_ib *ib,
uint32_t src_data,
uint64_t dst_offset,
uint32_t byte_count)
{
ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_CONSTANT_FILL,
0, 0, 0, byte_count / 4);
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = src_data;
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset) << 16;
}
static const struct amdgpu_buffer_funcs si_dma_buffer_funcs = {
.copy_max_bytes = 0xffff8,
.copy_num_dw = 5,
.emit_copy_buffer = si_dma_emit_copy_buffer,
.fill_max_bytes = 0xffff8,
.fill_num_dw = 4,
.emit_fill_buffer = si_dma_emit_fill_buffer,
};
static void si_dma_set_buffer_funcs(struct amdgpu_device *adev)
{
adev->mman.buffer_funcs = &si_dma_buffer_funcs;
adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
}
static const struct amdgpu_vm_pte_funcs si_dma_vm_pte_funcs = {
.copy_pte_num_dw = 5,
.copy_pte = si_dma_vm_copy_pte,
.write_pte = si_dma_vm_write_pte,
.set_pte_pde = si_dma_vm_set_pte_pde,
};
static void si_dma_set_vm_pte_funcs(struct amdgpu_device *adev)
{
unsigned i;
adev->vm_manager.vm_pte_funcs = &si_dma_vm_pte_funcs;
for (i = 0; i < adev->sdma.num_instances; i++) {
adev->vm_manager.vm_pte_scheds[i] =
&adev->sdma.instance[i].ring.sched;
}
adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
}
const struct amdgpu_ip_block_version si_dma_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_SDMA,
.major = 1,
.minor = 0,
.rev = 0,
.funcs = &si_dma_ip_funcs,
};