OpenCloudOS-Kernel/include/linux/blkdev.h

1533 lines
44 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Portions Copyright (C) 1992 Drew Eckhardt
*/
#ifndef _LINUX_BLKDEV_H
#define _LINUX_BLKDEV_H
#include <linux/types.h>
#include <linux/blk_types.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/llist.h>
#include <linux/minmax.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/wait.h>
#include <linux/bio.h>
#include <linux/gfp.h>
#include <linux/kdev_t.h>
#include <linux/rcupdate.h>
#include <linux/percpu-refcount.h>
#include <linux/blkzoned.h>
#include <linux/sched.h>
#include <linux/sbitmap.h>
#include <linux/uuid.h>
#include <linux/xarray.h>
struct module;
struct request_queue;
struct elevator_queue;
struct blk_trace;
struct request;
struct sg_io_hdr;
struct blkcg_gq;
struct blk_flush_queue;
struct kiocb;
struct pr_ops;
struct rq_qos;
struct blk_queue_stats;
struct blk_stat_callback;
struct blk_crypto_profile;
extern const struct device_type disk_type;
extern struct device_type part_type;
extern struct class block_class;
/* Must be consistent with blk_mq_poll_stats_bkt() */
#define BLK_MQ_POLL_STATS_BKTS 16
/* Doing classic polling */
#define BLK_MQ_POLL_CLASSIC -1
/*
* Maximum number of blkcg policies allowed to be registered concurrently.
* Defined here to simplify include dependency.
*/
#define BLKCG_MAX_POLS 6
#define DISK_MAX_PARTS 256
#define DISK_NAME_LEN 32
#define PARTITION_META_INFO_VOLNAMELTH 64
/*
* Enough for the string representation of any kind of UUID plus NULL.
* EFI UUID is 36 characters. MSDOS UUID is 11 characters.
*/
#define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
struct partition_meta_info {
char uuid[PARTITION_META_INFO_UUIDLTH];
u8 volname[PARTITION_META_INFO_VOLNAMELTH];
};
/**
* DOC: genhd capability flags
*
* ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
* removable media. When set, the device remains present even when media is not
* inserted. Shall not be set for devices which are removed entirely when the
* media is removed.
*
* ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
* doesn't appear in sysfs, and can't be opened from userspace or using
* blkdev_get*. Used for the underlying components of multipath devices.
*
* ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
* scan for partitions from add_disk, and users can't add partitions manually.
*
*/
enum {
GENHD_FL_REMOVABLE = 1 << 0,
GENHD_FL_HIDDEN = 1 << 1,
GENHD_FL_NO_PART = 1 << 2,
};
enum {
DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
};
enum {
/* Poll even if events_poll_msecs is unset */
DISK_EVENT_FLAG_POLL = 1 << 0,
/* Forward events to udev */
DISK_EVENT_FLAG_UEVENT = 1 << 1,
/* Block event polling when open for exclusive write */
DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
};
struct disk_events;
struct badblocks;
struct blk_integrity {
const struct blk_integrity_profile *profile;
unsigned char flags;
unsigned char tuple_size;
unsigned char interval_exp;
unsigned char tag_size;
};
struct gendisk {
/*
* major/first_minor/minors should not be set by any new driver, the
* block core will take care of allocating them automatically.
*/
int major;
int first_minor;
int minors;
char disk_name[DISK_NAME_LEN]; /* name of major driver */
unsigned short events; /* supported events */
unsigned short event_flags; /* flags related to event processing */
struct xarray part_tbl;
struct block_device *part0;
const struct block_device_operations *fops;
struct request_queue *queue;
void *private_data;
struct bio_set bio_split;
int flags;
unsigned long state;
#define GD_NEED_PART_SCAN 0
#define GD_READ_ONLY 1
#define GD_DEAD 2
#define GD_NATIVE_CAPACITY 3
#define GD_ADDED 4
#define GD_SUPPRESS_PART_SCAN 5
#define GD_OWNS_QUEUE 6
struct mutex open_mutex; /* open/close mutex */
unsigned open_partitions; /* number of open partitions */
struct backing_dev_info *bdi;
struct kobject queue_kobj; /* the queue/ directory */
struct kobject *slave_dir;
#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
struct list_head slave_bdevs;
#endif
struct timer_rand_state *random;
atomic_t sync_io; /* RAID */
struct disk_events *ev;
#ifdef CONFIG_BLK_DEV_INTEGRITY
struct kobject integrity_kobj;
#endif /* CONFIG_BLK_DEV_INTEGRITY */
#ifdef CONFIG_BLK_DEV_ZONED
/*
* Zoned block device information for request dispatch control.
* nr_zones is the total number of zones of the device. This is always
* 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
* bits which indicates if a zone is conventional (bit set) or
* sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
* bits which indicates if a zone is write locked, that is, if a write
* request targeting the zone was dispatched.
*
* Reads of this information must be protected with blk_queue_enter() /
* blk_queue_exit(). Modifying this information is only allowed while
* no requests are being processed. See also blk_mq_freeze_queue() and
* blk_mq_unfreeze_queue().
*/
unsigned int nr_zones;
unsigned int max_open_zones;
unsigned int max_active_zones;
unsigned long *conv_zones_bitmap;
unsigned long *seq_zones_wlock;
#endif /* CONFIG_BLK_DEV_ZONED */
#if IS_ENABLED(CONFIG_CDROM)
struct cdrom_device_info *cdi;
#endif
int node_id;
struct badblocks *bb;
struct lockdep_map lockdep_map;
u64 diskseq;
/*
* Independent sector access ranges. This is always NULL for
* devices that do not have multiple independent access ranges.
*/
struct blk_independent_access_ranges *ia_ranges;
};
static inline bool disk_live(struct gendisk *disk)
{
return !inode_unhashed(disk->part0->bd_inode);
}
/**
* disk_openers - returns how many openers are there for a disk
* @disk: disk to check
*
* This returns the number of openers for a disk. Note that this value is only
* stable if disk->open_mutex is held.
*
* Note: Due to a quirk in the block layer open code, each open partition is
* only counted once even if there are multiple openers.
*/
static inline unsigned int disk_openers(struct gendisk *disk)
{
return atomic_read(&disk->part0->bd_openers);
}
/*
* The gendisk is refcounted by the part0 block_device, and the bd_device
* therein is also used for device model presentation in sysfs.
*/
#define dev_to_disk(device) \
(dev_to_bdev(device)->bd_disk)
#define disk_to_dev(disk) \
(&((disk)->part0->bd_device))
#if IS_REACHABLE(CONFIG_CDROM)
#define disk_to_cdi(disk) ((disk)->cdi)
#else
#define disk_to_cdi(disk) NULL
#endif
static inline dev_t disk_devt(struct gendisk *disk)
{
return MKDEV(disk->major, disk->first_minor);
}
static inline int blk_validate_block_size(unsigned long bsize)
{
if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
return -EINVAL;
return 0;
}
static inline bool blk_op_is_passthrough(blk_opf_t op)
{
op &= REQ_OP_MASK;
return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
}
/*
* Zoned block device models (zoned limit).
*
* Note: This needs to be ordered from the least to the most severe
* restrictions for the inheritance in blk_stack_limits() to work.
*/
enum blk_zoned_model {
BLK_ZONED_NONE = 0, /* Regular block device */
BLK_ZONED_HA, /* Host-aware zoned block device */
BLK_ZONED_HM, /* Host-managed zoned block device */
};
/*
* BLK_BOUNCE_NONE: never bounce (default)
* BLK_BOUNCE_HIGH: bounce all highmem pages
*/
enum blk_bounce {
BLK_BOUNCE_NONE,
BLK_BOUNCE_HIGH,
};
struct queue_limits {
enum blk_bounce bounce;
unsigned long seg_boundary_mask;
unsigned long virt_boundary_mask;
unsigned int max_hw_sectors;
unsigned int max_dev_sectors;
unsigned int chunk_sectors;
unsigned int max_sectors;
unsigned int max_segment_size;
unsigned int physical_block_size;
unsigned int logical_block_size;
unsigned int alignment_offset;
unsigned int io_min;
unsigned int io_opt;
unsigned int max_discard_sectors;
unsigned int max_hw_discard_sectors;
unsigned int max_secure_erase_sectors;
unsigned int max_write_zeroes_sectors;
unsigned int max_zone_append_sectors;
unsigned int discard_granularity;
unsigned int discard_alignment;
unsigned int zone_write_granularity;
unsigned short max_segments;
unsigned short max_integrity_segments;
unsigned short max_discard_segments;
unsigned char misaligned;
unsigned char discard_misaligned;
unsigned char raid_partial_stripes_expensive;
enum blk_zoned_model zoned;
/*
* Drivers that set dma_alignment to less than 511 must be prepared to
* handle individual bvec's that are not a multiple of a SECTOR_SIZE
* due to possible offsets.
*/
unsigned int dma_alignment;
};
typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
void *data);
void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
#ifdef CONFIG_BLK_DEV_ZONED
#define BLK_ALL_ZONES ((unsigned int)-1)
int blkdev_report_zones(struct block_device *bdev, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data);
unsigned int bdev_nr_zones(struct block_device *bdev);
extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
sector_t sectors, sector_t nr_sectors,
gfp_t gfp_mask);
int blk_revalidate_disk_zones(struct gendisk *disk,
void (*update_driver_data)(struct gendisk *disk));
extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg);
extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg);
#else /* CONFIG_BLK_DEV_ZONED */
static inline unsigned int bdev_nr_zones(struct block_device *bdev)
{
return 0;
}
static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
fmode_t mode, unsigned int cmd,
unsigned long arg)
{
return -ENOTTY;
}
static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
fmode_t mode, unsigned int cmd,
unsigned long arg)
{
return -ENOTTY;
}
#endif /* CONFIG_BLK_DEV_ZONED */
/*
* Independent access ranges: struct blk_independent_access_range describes
* a range of contiguous sectors that can be accessed using device command
* execution resources that are independent from the resources used for
* other access ranges. This is typically found with single-LUN multi-actuator
* HDDs where each access range is served by a different set of heads.
* The set of independent ranges supported by the device is defined using
* struct blk_independent_access_ranges. The independent ranges must not overlap
* and must include all sectors within the disk capacity (no sector holes
* allowed).
* For a device with multiple ranges, requests targeting sectors in different
* ranges can be executed in parallel. A request can straddle an access range
* boundary.
*/
struct blk_independent_access_range {
struct kobject kobj;
sector_t sector;
sector_t nr_sectors;
};
struct blk_independent_access_ranges {
struct kobject kobj;
bool sysfs_registered;
unsigned int nr_ia_ranges;
struct blk_independent_access_range ia_range[];
};
struct request_queue {
struct request *last_merge;
struct elevator_queue *elevator;
struct percpu_ref q_usage_counter;
struct blk_queue_stats *stats;
struct rq_qos *rq_qos;
const struct blk_mq_ops *mq_ops;
/* sw queues */
struct blk_mq_ctx __percpu *queue_ctx;
unsigned int queue_depth;
/* hw dispatch queues */
struct xarray hctx_table;
unsigned int nr_hw_queues;
/*
* The queue owner gets to use this for whatever they like.
* ll_rw_blk doesn't touch it.
*/
void *queuedata;
/*
* various queue flags, see QUEUE_* below
*/
unsigned long queue_flags;
/*
* Number of contexts that have called blk_set_pm_only(). If this
* counter is above zero then only RQF_PM requests are processed.
*/
atomic_t pm_only;
/*
* ida allocated id for this queue. Used to index queues from
* ioctx.
*/
int id;
spinlock_t queue_lock;
struct gendisk *disk;
refcount_t refs;
/*
* mq queue kobject
*/
struct kobject *mq_kobj;
#ifdef CONFIG_BLK_DEV_INTEGRITY
struct blk_integrity integrity;
#endif /* CONFIG_BLK_DEV_INTEGRITY */
#ifdef CONFIG_PM
struct device *dev;
enum rpm_status rpm_status;
#endif
/*
* queue settings
*/
unsigned long nr_requests; /* Max # of requests */
unsigned int dma_pad_mask;
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
struct blk_crypto_profile *crypto_profile;
struct kobject *crypto_kobject;
#endif
unsigned int rq_timeout;
int poll_nsec;
struct blk_stat_callback *poll_cb;
struct blk_rq_stat *poll_stat;
struct timer_list timeout;
struct work_struct timeout_work;
atomic_t nr_active_requests_shared_tags;
struct blk_mq_tags *sched_shared_tags;
struct list_head icq_list;
#ifdef CONFIG_BLK_CGROUP
DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
struct blkcg_gq *root_blkg;
struct list_head blkg_list;
#endif
struct queue_limits limits;
unsigned int required_elevator_features;
int node;
#ifdef CONFIG_BLK_DEV_IO_TRACE
struct blk_trace __rcu *blk_trace;
#endif
/*
* for flush operations
*/
struct blk_flush_queue *fq;
struct list_head requeue_list;
spinlock_t requeue_lock;
struct delayed_work requeue_work;
struct mutex sysfs_lock;
struct mutex sysfs_dir_lock;
/*
* for reusing dead hctx instance in case of updating
* nr_hw_queues
*/
struct list_head unused_hctx_list;
spinlock_t unused_hctx_lock;
int mq_freeze_depth;
#ifdef CONFIG_BLK_DEV_THROTTLING
/* Throttle data */
struct throtl_data *td;
#endif
struct rcu_head rcu_head;
wait_queue_head_t mq_freeze_wq;
/*
* Protect concurrent access to q_usage_counter by
* percpu_ref_kill() and percpu_ref_reinit().
*/
struct mutex mq_freeze_lock;
int quiesce_depth;
struct blk_mq_tag_set *tag_set;
struct list_head tag_set_list;
struct dentry *debugfs_dir;
struct dentry *sched_debugfs_dir;
struct dentry *rqos_debugfs_dir;
/*
* Serializes all debugfs metadata operations using the above dentries.
*/
struct mutex debugfs_mutex;
bool mq_sysfs_init_done;
};
/* Keep blk_queue_flag_name[] in sync with the definitions below */
#define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
#define QUEUE_FLAG_DYING 1 /* queue being torn down */
#define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
#define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
#define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
#define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
#define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
#define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
#define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
#define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
#define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
#define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
#define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
#define QUEUE_FLAG_WC 17 /* Write back caching */
#define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
#define QUEUE_FLAG_DAX 19 /* device supports DAX */
#define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
#define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
#define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
#define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
#define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
#define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
#define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
#define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
#define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */
#define QUEUE_FLAG_SKIP_TAGSET_QUIESCE 31 /* quiesce_tagset skip the queue*/
#define QUEUE_FLAG_MQ_DEFAULT ((1UL << QUEUE_FLAG_IO_STAT) | \
(1UL << QUEUE_FLAG_SAME_COMP) | \
(1UL << QUEUE_FLAG_NOWAIT))
void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
#define blk_queue_noxmerges(q) \
test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
#define blk_queue_stable_writes(q) \
test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
#define blk_queue_zone_resetall(q) \
test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
#define blk_queue_pci_p2pdma(q) \
test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
#ifdef CONFIG_BLK_RQ_ALLOC_TIME
#define blk_queue_rq_alloc_time(q) \
test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
#else
#define blk_queue_rq_alloc_time(q) false
#endif
#define blk_noretry_request(rq) \
((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
REQ_FAILFAST_DRIVER))
#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
#define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
#define blk_queue_skip_tagset_quiesce(q) \
test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags)
extern void blk_set_pm_only(struct request_queue *q);
extern void blk_clear_pm_only(struct request_queue *q);
#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
#define dma_map_bvec(dev, bv, dir, attrs) \
dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
(dir), (attrs))
static inline bool queue_is_mq(struct request_queue *q)
{
return q->mq_ops;
}
#ifdef CONFIG_PM
static inline enum rpm_status queue_rpm_status(struct request_queue *q)
{
return q->rpm_status;
}
#else
static inline enum rpm_status queue_rpm_status(struct request_queue *q)
{
return RPM_ACTIVE;
}
#endif
static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue *q)
{
if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
return q->limits.zoned;
return BLK_ZONED_NONE;
}
static inline bool blk_queue_is_zoned(struct request_queue *q)
{
switch (blk_queue_zoned_model(q)) {
case BLK_ZONED_HA:
case BLK_ZONED_HM:
return true;
default:
return false;
}
}
#ifdef CONFIG_BLK_DEV_ZONED
static inline unsigned int disk_nr_zones(struct gendisk *disk)
{
return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
}
static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
{
if (!blk_queue_is_zoned(disk->queue))
return 0;
return sector >> ilog2(disk->queue->limits.chunk_sectors);
}
static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
{
if (!blk_queue_is_zoned(disk->queue))
return false;
if (!disk->conv_zones_bitmap)
return true;
return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap);
}
static inline void disk_set_max_open_zones(struct gendisk *disk,
unsigned int max_open_zones)
{
disk->max_open_zones = max_open_zones;
}
static inline void disk_set_max_active_zones(struct gendisk *disk,
unsigned int max_active_zones)
{
disk->max_active_zones = max_active_zones;
}
static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
{
return bdev->bd_disk->max_open_zones;
}
static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
{
return bdev->bd_disk->max_active_zones;
}
#else /* CONFIG_BLK_DEV_ZONED */
static inline unsigned int disk_nr_zones(struct gendisk *disk)
{
return 0;
}
static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
{
return false;
}
static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
{
return 0;
}
static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
{
return 0;
}
static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
{
return 0;
}
#endif /* CONFIG_BLK_DEV_ZONED */
static inline unsigned int blk_queue_depth(struct request_queue *q)
{
if (q->queue_depth)
return q->queue_depth;
return q->nr_requests;
}
/*
* default timeout for SG_IO if none specified
*/
#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
#define BLK_MIN_SG_TIMEOUT (7 * HZ)
/* This should not be used directly - use rq_for_each_segment */
#define for_each_bio(_bio) \
for (; _bio; _bio = _bio->bi_next)
int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
const struct attribute_group **groups);
static inline int __must_check add_disk(struct gendisk *disk)
{
return device_add_disk(NULL, disk, NULL);
}
void del_gendisk(struct gendisk *gp);
void invalidate_disk(struct gendisk *disk);
void set_disk_ro(struct gendisk *disk, bool read_only);
void disk_uevent(struct gendisk *disk, enum kobject_action action);
static inline int get_disk_ro(struct gendisk *disk)
{
return disk->part0->bd_read_only ||
test_bit(GD_READ_ONLY, &disk->state);
}
static inline int bdev_read_only(struct block_device *bdev)
{
return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
}
bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
bool disk_force_media_change(struct gendisk *disk, unsigned int events);
void add_disk_randomness(struct gendisk *disk) __latent_entropy;
void rand_initialize_disk(struct gendisk *disk);
static inline sector_t get_start_sect(struct block_device *bdev)
{
return bdev->bd_start_sect;
}
static inline sector_t bdev_nr_sectors(struct block_device *bdev)
{
return bdev->bd_nr_sectors;
}
static inline loff_t bdev_nr_bytes(struct block_device *bdev)
{
return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
}
static inline sector_t get_capacity(struct gendisk *disk)
{
return bdev_nr_sectors(disk->part0);
}
static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
{
return bdev_nr_sectors(sb->s_bdev) >>
(sb->s_blocksize_bits - SECTOR_SHIFT);
}
int bdev_disk_changed(struct gendisk *disk, bool invalidate);
void put_disk(struct gendisk *disk);
struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass);
/**
* blk_alloc_disk - allocate a gendisk structure
* @node_id: numa node to allocate on
*
* Allocate and pre-initialize a gendisk structure for use with BIO based
* drivers.
*
* Context: can sleep
*/
#define blk_alloc_disk(node_id) \
({ \
static struct lock_class_key __key; \
\
__blk_alloc_disk(node_id, &__key); \
})
int __register_blkdev(unsigned int major, const char *name,
void (*probe)(dev_t devt));
#define register_blkdev(major, name) \
__register_blkdev(major, name, NULL)
void unregister_blkdev(unsigned int major, const char *name);
bool bdev_check_media_change(struct block_device *bdev);
int __invalidate_device(struct block_device *bdev, bool kill_dirty);
void set_capacity(struct gendisk *disk, sector_t size);
#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
#else
static inline int bd_link_disk_holder(struct block_device *bdev,
struct gendisk *disk)
{
return 0;
}
static inline void bd_unlink_disk_holder(struct block_device *bdev,
struct gendisk *disk)
{
}
#endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
dev_t part_devt(struct gendisk *disk, u8 partno);
void inc_diskseq(struct gendisk *disk);
dev_t blk_lookup_devt(const char *name, int partno);
void blk_request_module(dev_t devt);
extern int blk_register_queue(struct gendisk *disk);
extern void blk_unregister_queue(struct gendisk *disk);
void submit_bio_noacct(struct bio *bio);
struct bio *bio_split_to_limits(struct bio *bio);
extern int blk_lld_busy(struct request_queue *q);
extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
extern void blk_queue_exit(struct request_queue *q);
extern void blk_sync_queue(struct request_queue *q);
/* Helper to convert REQ_OP_XXX to its string format XXX */
extern const char *blk_op_str(enum req_op op);
int blk_status_to_errno(blk_status_t status);
blk_status_t errno_to_blk_status(int errno);
/* only poll the hardware once, don't continue until a completion was found */
#define BLK_POLL_ONESHOT (1 << 0)
/* do not sleep to wait for the expected completion time */
#define BLK_POLL_NOSLEEP (1 << 1)
int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
unsigned int flags);
static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
{
return bdev->bd_queue; /* this is never NULL */
}
/* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
static inline unsigned int bio_zone_no(struct bio *bio)
{
return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
}
static inline unsigned int bio_zone_is_seq(struct bio *bio)
{
return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
}
/*
* Return how much of the chunk is left to be used for I/O at a given offset.
*/
static inline unsigned int blk_chunk_sectors_left(sector_t offset,
unsigned int chunk_sectors)
{
if (unlikely(!is_power_of_2(chunk_sectors)))
return chunk_sectors - sector_div(offset, chunk_sectors);
return chunk_sectors - (offset & (chunk_sectors - 1));
}
/*
* Access functions for manipulating queue properties
*/
void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
extern void blk_queue_max_segments(struct request_queue *, unsigned short);
extern void blk_queue_max_discard_segments(struct request_queue *,
unsigned short);
void blk_queue_max_secure_erase_sectors(struct request_queue *q,
unsigned int max_sectors);
extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
extern void blk_queue_max_discard_sectors(struct request_queue *q,
unsigned int max_discard_sectors);
extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
unsigned int max_write_same_sectors);
extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
unsigned int max_zone_append_sectors);
extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
void blk_queue_zone_write_granularity(struct request_queue *q,
unsigned int size);
extern void blk_queue_alignment_offset(struct request_queue *q,
unsigned int alignment);
void disk_update_readahead(struct gendisk *disk);
extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
extern void blk_set_stacking_limits(struct queue_limits *lim);
extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
sector_t offset);
extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
sector_t offset);
extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
extern void blk_queue_dma_alignment(struct request_queue *, int);
extern void blk_queue_update_dma_alignment(struct request_queue *, int);
extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
struct blk_independent_access_ranges *
disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
void disk_set_independent_access_ranges(struct gendisk *disk,
struct blk_independent_access_ranges *iars);
/*
* Elevator features for blk_queue_required_elevator_features:
*/
/* Supports zoned block devices sequential write constraint */
#define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0)
extern void blk_queue_required_elevator_features(struct request_queue *q,
unsigned int features);
extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
struct device *dev);
bool __must_check blk_get_queue(struct request_queue *);
extern void blk_put_queue(struct request_queue *);
void blk_mark_disk_dead(struct gendisk *disk);
#ifdef CONFIG_BLOCK
/*
* blk_plug permits building a queue of related requests by holding the I/O
* fragments for a short period. This allows merging of sequential requests
* into single larger request. As the requests are moved from a per-task list to
* the device's request_queue in a batch, this results in improved scalability
* as the lock contention for request_queue lock is reduced.
*
* It is ok not to disable preemption when adding the request to the plug list
* or when attempting a merge. For details, please see schedule() where
* blk_flush_plug() is called.
*/
struct blk_plug {
struct request *mq_list; /* blk-mq requests */
/* if ios_left is > 1, we can batch tag/rq allocations */
struct request *cached_rq;
unsigned short nr_ios;
unsigned short rq_count;
bool multiple_queues;
bool has_elevator;
bool nowait;
struct list_head cb_list; /* md requires an unplug callback */
};
struct blk_plug_cb;
typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
struct blk_plug_cb {
struct list_head list;
blk_plug_cb_fn callback;
void *data;
};
extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
void *data, int size);
extern void blk_start_plug(struct blk_plug *);
extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
extern void blk_finish_plug(struct blk_plug *);
void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
static inline void blk_flush_plug(struct blk_plug *plug, bool async)
{
if (plug)
__blk_flush_plug(plug, async);
}
int blkdev_issue_flush(struct block_device *bdev);
long nr_blockdev_pages(void);
#else /* CONFIG_BLOCK */
struct blk_plug {
};
static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
unsigned short nr_ios)
{
}
static inline void blk_start_plug(struct blk_plug *plug)
{
}
static inline void blk_finish_plug(struct blk_plug *plug)
{
}
static inline void blk_flush_plug(struct blk_plug *plug, bool async)
{
}
static inline int blkdev_issue_flush(struct block_device *bdev)
{
return 0;
}
static inline long nr_blockdev_pages(void)
{
return 0;
}
#endif /* CONFIG_BLOCK */
extern void blk_io_schedule(void);
int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask);
int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp);
#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
unsigned flags);
extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
static inline int sb_issue_discard(struct super_block *sb, sector_t block,
sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
{
return blkdev_issue_discard(sb->s_bdev,
block << (sb->s_blocksize_bits -
SECTOR_SHIFT),
nr_blocks << (sb->s_blocksize_bits -
SECTOR_SHIFT),
gfp_mask);
}
static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
sector_t nr_blocks, gfp_t gfp_mask)
{
return blkdev_issue_zeroout(sb->s_bdev,
block << (sb->s_blocksize_bits -
SECTOR_SHIFT),
nr_blocks << (sb->s_blocksize_bits -
SECTOR_SHIFT),
gfp_mask, 0);
}
static inline bool bdev_is_partition(struct block_device *bdev)
{
return bdev->bd_partno;
}
enum blk_default_limits {
BLK_MAX_SEGMENTS = 128,
BLK_SAFE_MAX_SECTORS = 255,
BLK_DEF_MAX_SECTORS = 2560,
BLK_MAX_SEGMENT_SIZE = 65536,
BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
};
static inline unsigned long queue_segment_boundary(const struct request_queue *q)
{
return q->limits.seg_boundary_mask;
}
static inline unsigned long queue_virt_boundary(const struct request_queue *q)
{
return q->limits.virt_boundary_mask;
}
static inline unsigned int queue_max_sectors(const struct request_queue *q)
{
return q->limits.max_sectors;
}
static inline unsigned int queue_max_bytes(struct request_queue *q)
{
return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
}
static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
{
return q->limits.max_hw_sectors;
}
static inline unsigned short queue_max_segments(const struct request_queue *q)
{
return q->limits.max_segments;
}
static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
{
return q->limits.max_discard_segments;
}
static inline unsigned int queue_max_segment_size(const struct request_queue *q)
{
return q->limits.max_segment_size;
}
static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
{
const struct queue_limits *l = &q->limits;
return min(l->max_zone_append_sectors, l->max_sectors);
}
static inline unsigned int
bdev_max_zone_append_sectors(struct block_device *bdev)
{
return queue_max_zone_append_sectors(bdev_get_queue(bdev));
}
static inline unsigned int bdev_max_segments(struct block_device *bdev)
{
return queue_max_segments(bdev_get_queue(bdev));
}
static inline unsigned queue_logical_block_size(const struct request_queue *q)
{
int retval = 512;
if (q && q->limits.logical_block_size)
retval = q->limits.logical_block_size;
return retval;
}
static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
{
return queue_logical_block_size(bdev_get_queue(bdev));
}
static inline unsigned int queue_physical_block_size(const struct request_queue *q)
{
return q->limits.physical_block_size;
}
static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
{
return queue_physical_block_size(bdev_get_queue(bdev));
}
static inline unsigned int queue_io_min(const struct request_queue *q)
{
return q->limits.io_min;
}
static inline int bdev_io_min(struct block_device *bdev)
{
return queue_io_min(bdev_get_queue(bdev));
}
static inline unsigned int queue_io_opt(const struct request_queue *q)
{
return q->limits.io_opt;
}
static inline int bdev_io_opt(struct block_device *bdev)
{
return queue_io_opt(bdev_get_queue(bdev));
}
static inline unsigned int
queue_zone_write_granularity(const struct request_queue *q)
{
return q->limits.zone_write_granularity;
}
static inline unsigned int
bdev_zone_write_granularity(struct block_device *bdev)
{
return queue_zone_write_granularity(bdev_get_queue(bdev));
}
int bdev_alignment_offset(struct block_device *bdev);
unsigned int bdev_discard_alignment(struct block_device *bdev);
static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
{
return bdev_get_queue(bdev)->limits.max_discard_sectors;
}
static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
{
return bdev_get_queue(bdev)->limits.discard_granularity;
}
static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device *bdev)
{
return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
}
static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (q)
return q->limits.max_write_zeroes_sectors;
return 0;
}
static inline bool bdev_nonrot(struct block_device *bdev)
{
return blk_queue_nonrot(bdev_get_queue(bdev));
}
static inline bool bdev_stable_writes(struct block_device *bdev)
{
return test_bit(QUEUE_FLAG_STABLE_WRITES,
&bdev_get_queue(bdev)->queue_flags);
}
static inline bool bdev_write_cache(struct block_device *bdev)
{
return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
}
static inline bool bdev_fua(struct block_device *bdev)
{
return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
}
static inline bool bdev_nowait(struct block_device *bdev)
{
return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags);
}
static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (q)
return blk_queue_zoned_model(q);
return BLK_ZONED_NONE;
}
static inline bool bdev_is_zoned(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (q)
return blk_queue_is_zoned(q);
return false;
}
static inline bool bdev_op_is_zoned_write(struct block_device *bdev,
blk_opf_t op)
{
if (!bdev_is_zoned(bdev))
return false;
return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES;
}
static inline sector_t bdev_zone_sectors(struct block_device *bdev)
{
struct request_queue *q = bdev_get_queue(bdev);
if (!blk_queue_is_zoned(q))
return 0;
return q->limits.chunk_sectors;
}
static inline int queue_dma_alignment(const struct request_queue *q)
{
return q ? q->limits.dma_alignment : 511;
}
static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
{
return queue_dma_alignment(bdev_get_queue(bdev));
}
static inline bool bdev_iter_is_aligned(struct block_device *bdev,
struct iov_iter *iter)
{
return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
bdev_logical_block_size(bdev) - 1);
}
static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
unsigned int len)
{
unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
return !(addr & alignment) && !(len & alignment);
}
/* assumes size > 256 */
static inline unsigned int blksize_bits(unsigned int size)
{
return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
}
static inline unsigned int block_size(struct block_device *bdev)
{
return 1 << bdev->bd_inode->i_blkbits;
}
int kblockd_schedule_work(struct work_struct *work);
int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
#define MODULE_ALIAS_BLOCKDEV(major,minor) \
MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
MODULE_ALIAS("block-major-" __stringify(major) "-*")
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
bool blk_crypto_register(struct blk_crypto_profile *profile,
struct request_queue *q);
#else /* CONFIG_BLK_INLINE_ENCRYPTION */
static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
struct request_queue *q)
{
return true;
}
#endif /* CONFIG_BLK_INLINE_ENCRYPTION */
enum blk_unique_id {
/* these match the Designator Types specified in SPC */
BLK_UID_T10 = 1,
BLK_UID_EUI64 = 2,
BLK_UID_NAA = 3,
};
#define NFL4_UFLG_MASK 0x0000003F
struct block_device_operations {
void (*submit_bio)(struct bio *bio);
int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
unsigned int flags);
int (*open) (struct block_device *, fmode_t);
void (*release) (struct gendisk *, fmode_t);
int (*rw_page)(struct block_device *, sector_t, struct page *, enum req_op);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
unsigned int (*check_events) (struct gendisk *disk,
unsigned int clearing);
void (*unlock_native_capacity) (struct gendisk *);
int (*getgeo)(struct block_device *, struct hd_geometry *);
int (*set_read_only)(struct block_device *bdev, bool ro);
void (*free_disk)(struct gendisk *disk);
/* this callback is with swap_lock and sometimes page table lock held */
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
int (*report_zones)(struct gendisk *, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data);
/* returns the length of the identifier or a negative errno: */
int (*get_unique_id)(struct gendisk *disk, u8 id[16],
enum blk_unique_id id_type);
struct module *owner;
const struct pr_ops *pr_ops;
/*
* Special callback for probing GPT entry at a given sector.
* Needed by Android devices, used by GPT scanner and MMC blk
* driver.
*/
int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
};
#ifdef CONFIG_COMPAT
extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
unsigned int, unsigned long);
#else
#define blkdev_compat_ptr_ioctl NULL
#endif
extern int bdev_read_page(struct block_device *, sector_t, struct page *);
extern int bdev_write_page(struct block_device *, sector_t, struct page *,
struct writeback_control *);
static inline void blk_wake_io_task(struct task_struct *waiter)
{
/*
* If we're polling, the task itself is doing the completions. For
* that case, we don't need to signal a wakeup, it's enough to just
* mark us as RUNNING.
*/
if (waiter == current)
__set_current_state(TASK_RUNNING);
else
wake_up_process(waiter);
}
unsigned long bdev_start_io_acct(struct block_device *bdev,
unsigned int sectors, enum req_op op,
unsigned long start_time);
void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
unsigned long start_time);
unsigned long bio_start_io_acct(struct bio *bio);
void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
struct block_device *orig_bdev);
/**
* bio_end_io_acct - end I/O accounting for bio based drivers
* @bio: bio to end account for
* @start_time: start time returned by bio_start_io_acct()
*/
static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
{
return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
}
int bdev_read_only(struct block_device *bdev);
int set_blocksize(struct block_device *bdev, int size);
int lookup_bdev(const char *pathname, dev_t *dev);
void blkdev_show(struct seq_file *seqf, off_t offset);
#define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
#define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
#ifdef CONFIG_BLOCK
#define BLKDEV_MAJOR_MAX 512
#else
#define BLKDEV_MAJOR_MAX 0
#endif
struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
void *holder);
struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
int bd_prepare_to_claim(struct block_device *bdev, void *holder);
void bd_abort_claiming(struct block_device *bdev, void *holder);
void blkdev_put(struct block_device *bdev, fmode_t mode);
/* just for blk-cgroup, don't use elsewhere */
struct block_device *blkdev_get_no_open(dev_t dev);
void blkdev_put_no_open(struct block_device *bdev);
struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
void bdev_add(struct block_device *bdev, dev_t dev);
struct block_device *I_BDEV(struct inode *inode);
int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
loff_t lend);
#ifdef CONFIG_BLOCK
void invalidate_bdev(struct block_device *bdev);
int sync_blockdev(struct block_device *bdev);
int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
int sync_blockdev_nowait(struct block_device *bdev);
void sync_bdevs(bool wait);
void bdev_statx_dioalign(struct inode *inode, struct kstat *stat);
void printk_all_partitions(void);
#else
static inline void invalidate_bdev(struct block_device *bdev)
{
}
static inline int sync_blockdev(struct block_device *bdev)
{
return 0;
}
static inline int sync_blockdev_nowait(struct block_device *bdev)
{
return 0;
}
static inline void sync_bdevs(bool wait)
{
}
static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat)
{
}
static inline void printk_all_partitions(void)
{
}
#endif /* CONFIG_BLOCK */
int fsync_bdev(struct block_device *bdev);
int freeze_bdev(struct block_device *bdev);
int thaw_bdev(struct block_device *bdev);
struct io_comp_batch {
struct request *req_list;
bool need_ts;
void (*complete)(struct io_comp_batch *);
};
#define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
#endif /* _LINUX_BLKDEV_H */