OpenCloudOS-Kernel/drivers/media/usb/tm6000/tm6000-input.c

512 lines
12 KiB
C

/*
* tm6000-input.c - driver for TM5600/TM6000/TM6010 USB video capture devices
*
* Copyright (C) 2010 Stefan Ringel <stefan.ringel@arcor.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation version 2
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/usb.h>
#include <media/rc-core.h>
#include "tm6000.h"
#include "tm6000-regs.h"
static unsigned int ir_debug;
module_param(ir_debug, int, 0644);
MODULE_PARM_DESC(ir_debug, "debug message level");
static unsigned int enable_ir = 1;
module_param(enable_ir, int, 0644);
MODULE_PARM_DESC(enable_ir, "enable ir (default is enable)");
static unsigned int ir_clock_mhz = 12;
module_param(ir_clock_mhz, int, 0644);
MODULE_PARM_DESC(ir_clock_mhz, "ir clock, in MHz");
#define URB_SUBMIT_DELAY 100 /* ms - Delay to submit an URB request on retrial and init */
#define URB_INT_LED_DELAY 100 /* ms - Delay to turn led on again on int mode */
#undef dprintk
#define dprintk(level, fmt, arg...) do {\
if (ir_debug >= level) \
printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
} while (0)
struct tm6000_ir_poll_result {
u16 rc_data;
};
struct tm6000_IR {
struct tm6000_core *dev;
struct rc_dev *rc;
char name[32];
char phys[32];
/* poll expernal decoder */
int polling;
struct delayed_work work;
u8 wait:1;
u8 pwled:2;
u8 submit_urb:1;
struct urb *int_urb;
/* IR device properties */
u64 rc_proto;
};
void tm6000_ir_wait(struct tm6000_core *dev, u8 state)
{
struct tm6000_IR *ir = dev->ir;
if (!dev->ir)
return;
dprintk(2, "%s: %i\n",__func__, ir->wait);
if (state)
ir->wait = 1;
else
ir->wait = 0;
}
static int tm6000_ir_config(struct tm6000_IR *ir)
{
struct tm6000_core *dev = ir->dev;
u32 pulse = 0, leader = 0;
dprintk(2, "%s\n",__func__);
/*
* The IR decoder supports RC-5 or NEC, with a configurable timing.
* The timing configuration there is not that accurate, as it uses
* approximate values. The NEC spec mentions a 562.5 unit period,
* and RC-5 uses a 888.8 period.
* Currently, driver assumes a clock provided by a 12 MHz XTAL, but
* a modprobe parameter can adjust it.
* Adjustments are required for other timings.
* It seems that the 900ms timing for NEC is used to detect a RC-5
* IR, in order to discard such decoding
*/
switch (ir->rc_proto) {
case RC_PROTO_BIT_NEC:
leader = 900; /* ms */
pulse = 700; /* ms - the actual value would be 562 */
break;
default:
case RC_PROTO_BIT_RC5:
leader = 900; /* ms - from the NEC decoding */
pulse = 1780; /* ms - The actual value would be 1776 */
break;
}
pulse = ir_clock_mhz * pulse;
leader = ir_clock_mhz * leader;
if (ir->rc_proto == RC_PROTO_BIT_NEC)
leader = leader | 0x8000;
dprintk(2, "%s: %s, %d MHz, leader = 0x%04x, pulse = 0x%06x \n",
__func__,
(ir->rc_proto == RC_PROTO_BIT_NEC) ? "NEC" : "RC-5",
ir_clock_mhz, leader, pulse);
/* Remote WAKEUP = enable, normal mode, from IR decoder output */
tm6000_set_reg(dev, TM6010_REQ07_RE5_REMOTE_WAKEUP, 0xfe);
/* Enable IR reception on non-busrt mode */
tm6000_set_reg(dev, TM6010_REQ07_RD8_IR, 0x2f);
/* IR_WKUP_SEL = Low byte in decoded IR data */
tm6000_set_reg(dev, TM6010_REQ07_RDA_IR_WAKEUP_SEL, 0xff);
/* IR_WKU_ADD code */
tm6000_set_reg(dev, TM6010_REQ07_RDB_IR_WAKEUP_ADD, 0xff);
tm6000_set_reg(dev, TM6010_REQ07_RDC_IR_LEADER1, leader >> 8);
tm6000_set_reg(dev, TM6010_REQ07_RDD_IR_LEADER0, leader);
tm6000_set_reg(dev, TM6010_REQ07_RDE_IR_PULSE_CNT1, pulse >> 8);
tm6000_set_reg(dev, TM6010_REQ07_RDF_IR_PULSE_CNT0, pulse);
if (!ir->polling)
tm6000_set_reg(dev, REQ_04_EN_DISABLE_MCU_INT, 2, 0);
else
tm6000_set_reg(dev, REQ_04_EN_DISABLE_MCU_INT, 2, 1);
msleep(10);
/* Shows that IR is working via the LED */
tm6000_flash_led(dev, 0);
msleep(100);
tm6000_flash_led(dev, 1);
ir->pwled = 1;
return 0;
}
static void tm6000_ir_keydown(struct tm6000_IR *ir,
const char *buf, unsigned int len)
{
u8 device, command;
u32 scancode;
enum rc_proto protocol;
if (len < 1)
return;
command = buf[0];
device = (len > 1 ? buf[1] : 0x0);
switch (ir->rc_proto) {
case RC_PROTO_BIT_RC5:
protocol = RC_PROTO_RC5;
scancode = RC_SCANCODE_RC5(device, command);
break;
case RC_PROTO_BIT_NEC:
protocol = RC_PROTO_NEC;
scancode = RC_SCANCODE_NEC(device, command);
break;
default:
protocol = RC_PROTO_OTHER;
scancode = RC_SCANCODE_OTHER(device << 8 | command);
break;
}
dprintk(1, "%s, protocol: 0x%04x, scancode: 0x%08x\n",
__func__, protocol, scancode);
rc_keydown(ir->rc, protocol, scancode, 0);
}
static void tm6000_ir_urb_received(struct urb *urb)
{
struct tm6000_core *dev = urb->context;
struct tm6000_IR *ir = dev->ir;
char *buf;
dprintk(2, "%s\n",__func__);
if (urb->status < 0 || urb->actual_length <= 0) {
printk(KERN_INFO "tm6000: IR URB failure: status: %i, length %i\n",
urb->status, urb->actual_length);
ir->submit_urb = 1;
schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_SUBMIT_DELAY));
return;
}
buf = urb->transfer_buffer;
if (ir_debug)
print_hex_dump(KERN_DEBUG, "tm6000: IR data: ",
DUMP_PREFIX_OFFSET,16, 1,
buf, urb->actual_length, false);
tm6000_ir_keydown(ir, urb->transfer_buffer, urb->actual_length);
usb_submit_urb(urb, GFP_ATOMIC);
/*
* Flash the led. We can't do it here, as it is running on IRQ context.
* So, use the scheduler to do it, in a few ms.
*/
ir->pwled = 2;
schedule_delayed_work(&ir->work, msecs_to_jiffies(10));
}
static void tm6000_ir_handle_key(struct work_struct *work)
{
struct tm6000_IR *ir = container_of(work, struct tm6000_IR, work.work);
struct tm6000_core *dev = ir->dev;
int rc;
u8 buf[2];
if (ir->wait)
return;
dprintk(3, "%s\n",__func__);
rc = tm6000_read_write_usb(dev, USB_DIR_IN |
USB_TYPE_VENDOR | USB_RECIP_DEVICE,
REQ_02_GET_IR_CODE, 0, 0, buf, 2);
if (rc < 0)
return;
/* Check if something was read */
if ((buf[0] & 0xff) == 0xff) {
if (!ir->pwled) {
tm6000_flash_led(dev, 1);
ir->pwled = 1;
}
return;
}
tm6000_ir_keydown(ir, buf, rc);
tm6000_flash_led(dev, 0);
ir->pwled = 0;
/* Re-schedule polling */
schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling));
}
static void tm6000_ir_int_work(struct work_struct *work)
{
struct tm6000_IR *ir = container_of(work, struct tm6000_IR, work.work);
struct tm6000_core *dev = ir->dev;
int rc;
dprintk(3, "%s, submit_urb = %d, pwled = %d\n",__func__, ir->submit_urb,
ir->pwled);
if (ir->submit_urb) {
dprintk(3, "Resubmit urb\n");
tm6000_set_reg(dev, REQ_04_EN_DISABLE_MCU_INT, 2, 0);
rc = usb_submit_urb(ir->int_urb, GFP_ATOMIC);
if (rc < 0) {
printk(KERN_ERR "tm6000: Can't submit an IR interrupt. Error %i\n",
rc);
/* Retry in 100 ms */
schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_SUBMIT_DELAY));
return;
}
ir->submit_urb = 0;
}
/* Led is enabled only if USB submit doesn't fail */
if (ir->pwled == 2) {
tm6000_flash_led(dev, 0);
ir->pwled = 0;
schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_INT_LED_DELAY));
} else if (!ir->pwled) {
tm6000_flash_led(dev, 1);
ir->pwled = 1;
}
}
static int tm6000_ir_start(struct rc_dev *rc)
{
struct tm6000_IR *ir = rc->priv;
dprintk(2, "%s\n",__func__);
schedule_delayed_work(&ir->work, 0);
return 0;
}
static void tm6000_ir_stop(struct rc_dev *rc)
{
struct tm6000_IR *ir = rc->priv;
dprintk(2, "%s\n",__func__);
cancel_delayed_work_sync(&ir->work);
}
static int tm6000_ir_change_protocol(struct rc_dev *rc, u64 *rc_proto)
{
struct tm6000_IR *ir = rc->priv;
if (!ir)
return 0;
dprintk(2, "%s\n",__func__);
ir->rc_proto = *rc_proto;
tm6000_ir_config(ir);
/* TODO */
return 0;
}
static int __tm6000_ir_int_start(struct rc_dev *rc)
{
struct tm6000_IR *ir = rc->priv;
struct tm6000_core *dev;
int pipe, size;
int err = -ENOMEM;
if (!ir)
return -ENODEV;
dev = ir->dev;
dprintk(2, "%s\n",__func__);
ir->int_urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!ir->int_urb)
return -ENOMEM;
pipe = usb_rcvintpipe(dev->udev,
dev->int_in.endp->desc.bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK);
size = usb_maxpacket(dev->udev, pipe, usb_pipeout(pipe));
dprintk(1, "IR max size: %d\n", size);
ir->int_urb->transfer_buffer = kzalloc(size, GFP_ATOMIC);
if (!ir->int_urb->transfer_buffer) {
usb_free_urb(ir->int_urb);
return err;
}
dprintk(1, "int interval: %d\n", dev->int_in.endp->desc.bInterval);
usb_fill_int_urb(ir->int_urb, dev->udev, pipe,
ir->int_urb->transfer_buffer, size,
tm6000_ir_urb_received, dev,
dev->int_in.endp->desc.bInterval);
ir->submit_urb = 1;
schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_SUBMIT_DELAY));
return 0;
}
static void __tm6000_ir_int_stop(struct rc_dev *rc)
{
struct tm6000_IR *ir = rc->priv;
if (!ir || !ir->int_urb)
return;
dprintk(2, "%s\n",__func__);
usb_kill_urb(ir->int_urb);
kfree(ir->int_urb->transfer_buffer);
usb_free_urb(ir->int_urb);
ir->int_urb = NULL;
}
int tm6000_ir_int_start(struct tm6000_core *dev)
{
struct tm6000_IR *ir = dev->ir;
if (!ir)
return 0;
return __tm6000_ir_int_start(ir->rc);
}
void tm6000_ir_int_stop(struct tm6000_core *dev)
{
struct tm6000_IR *ir = dev->ir;
if (!ir || !ir->rc)
return;
__tm6000_ir_int_stop(ir->rc);
}
int tm6000_ir_init(struct tm6000_core *dev)
{
struct tm6000_IR *ir;
struct rc_dev *rc;
int err = -ENOMEM;
u64 rc_proto;
if (!enable_ir)
return -ENODEV;
if (!dev->caps.has_remote)
return 0;
if (!dev->ir_codes)
return 0;
ir = kzalloc(sizeof(*ir), GFP_ATOMIC);
rc = rc_allocate_device(RC_DRIVER_SCANCODE);
if (!ir || !rc)
goto out;
dprintk(2, "%s\n", __func__);
/* record handles to ourself */
ir->dev = dev;
dev->ir = ir;
ir->rc = rc;
/* input setup */
rc->allowed_protocols = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_NEC;
/* Needed, in order to support NEC remotes with 24 or 32 bits */
rc->scancode_mask = 0xffff;
rc->priv = ir;
rc->change_protocol = tm6000_ir_change_protocol;
if (dev->int_in.endp) {
rc->open = __tm6000_ir_int_start;
rc->close = __tm6000_ir_int_stop;
INIT_DELAYED_WORK(&ir->work, tm6000_ir_int_work);
} else {
rc->open = tm6000_ir_start;
rc->close = tm6000_ir_stop;
ir->polling = 50;
INIT_DELAYED_WORK(&ir->work, tm6000_ir_handle_key);
}
snprintf(ir->name, sizeof(ir->name), "tm5600/60x0 IR (%s)",
dev->name);
usb_make_path(dev->udev, ir->phys, sizeof(ir->phys));
strlcat(ir->phys, "/input0", sizeof(ir->phys));
rc_proto = RC_PROTO_BIT_UNKNOWN;
tm6000_ir_change_protocol(rc, &rc_proto);
rc->device_name = ir->name;
rc->input_phys = ir->phys;
rc->input_id.bustype = BUS_USB;
rc->input_id.version = 1;
rc->input_id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
rc->input_id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
rc->map_name = dev->ir_codes;
rc->driver_name = "tm6000";
rc->dev.parent = &dev->udev->dev;
/* ir register */
err = rc_register_device(rc);
if (err)
goto out;
return 0;
out:
dev->ir = NULL;
rc_free_device(rc);
kfree(ir);
return err;
}
int tm6000_ir_fini(struct tm6000_core *dev)
{
struct tm6000_IR *ir = dev->ir;
/* skip detach on non attached board */
if (!ir)
return 0;
dprintk(2, "%s\n",__func__);
if (!ir->polling)
__tm6000_ir_int_stop(ir->rc);
tm6000_ir_stop(ir->rc);
/* Turn off the led */
tm6000_flash_led(dev, 0);
ir->pwled = 0;
rc_unregister_device(ir->rc);
kfree(ir);
dev->ir = NULL;
return 0;
}