OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdgpu/amdgpu_ctx.c

596 lines
14 KiB
C

/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: monk liu <monk.liu@amd.com>
*/
#include <drm/drmP.h>
#include <drm/drm_auth.h>
#include "amdgpu.h"
#include "amdgpu_sched.h"
static int amdgpu_ctx_priority_permit(struct drm_file *filp,
enum drm_sched_priority priority)
{
/* NORMAL and below are accessible by everyone */
if (priority <= DRM_SCHED_PRIORITY_NORMAL)
return 0;
if (capable(CAP_SYS_NICE))
return 0;
if (drm_is_current_master(filp))
return 0;
return -EACCES;
}
static int amdgpu_ctx_init(struct amdgpu_device *adev,
enum drm_sched_priority priority,
struct drm_file *filp,
struct amdgpu_ctx *ctx)
{
struct drm_sched_rq *sdma_rqs[AMDGPU_MAX_RINGS];
struct drm_sched_rq *comp_rqs[AMDGPU_MAX_RINGS];
unsigned i, j, num_sdma_rqs, num_comp_rqs;
int r;
if (priority < 0 || priority >= DRM_SCHED_PRIORITY_MAX)
return -EINVAL;
r = amdgpu_ctx_priority_permit(filp, priority);
if (r)
return r;
memset(ctx, 0, sizeof(*ctx));
ctx->adev = adev;
kref_init(&ctx->refcount);
spin_lock_init(&ctx->ring_lock);
ctx->fences = kcalloc(amdgpu_sched_jobs * AMDGPU_MAX_RINGS,
sizeof(struct dma_fence*), GFP_KERNEL);
if (!ctx->fences)
return -ENOMEM;
mutex_init(&ctx->lock);
for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
ctx->rings[i].sequence = 1;
ctx->rings[i].fences = &ctx->fences[amdgpu_sched_jobs * i];
}
ctx->reset_counter = atomic_read(&adev->gpu_reset_counter);
ctx->reset_counter_query = ctx->reset_counter;
ctx->vram_lost_counter = atomic_read(&adev->vram_lost_counter);
ctx->init_priority = priority;
ctx->override_priority = DRM_SCHED_PRIORITY_UNSET;
num_sdma_rqs = 0;
num_comp_rqs = 0;
for (i = 0; i < adev->num_rings; i++) {
struct amdgpu_ring *ring = adev->rings[i];
struct drm_sched_rq *rq;
rq = &ring->sched.sched_rq[priority];
if (ring->funcs->type == AMDGPU_RING_TYPE_SDMA)
sdma_rqs[num_sdma_rqs++] = rq;
else if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
comp_rqs[num_comp_rqs++] = rq;
}
/* create context entity for each ring */
for (i = 0; i < adev->num_rings; i++) {
struct amdgpu_ring *ring = adev->rings[i];
if (ring == &adev->gfx.kiq.ring)
continue;
if (ring->funcs->type == AMDGPU_RING_TYPE_SDMA) {
r = drm_sched_entity_init(&ctx->rings[i].entity,
sdma_rqs, num_sdma_rqs,
&ctx->guilty);
} else if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) {
r = drm_sched_entity_init(&ctx->rings[i].entity,
comp_rqs, num_comp_rqs,
&ctx->guilty);
} else {
struct drm_sched_rq *rq;
rq = &ring->sched.sched_rq[priority];
r = drm_sched_entity_init(&ctx->rings[i].entity,
&rq, 1, &ctx->guilty);
}
if (r)
goto failed;
}
return 0;
failed:
for (j = 0; j < i; j++)
drm_sched_entity_destroy(&ctx->rings[j].entity);
kfree(ctx->fences);
ctx->fences = NULL;
return r;
}
static void amdgpu_ctx_fini(struct kref *ref)
{
struct amdgpu_ctx *ctx = container_of(ref, struct amdgpu_ctx, refcount);
struct amdgpu_device *adev = ctx->adev;
unsigned i, j;
if (!adev)
return;
for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
for (j = 0; j < amdgpu_sched_jobs; ++j)
dma_fence_put(ctx->rings[i].fences[j]);
kfree(ctx->fences);
ctx->fences = NULL;
mutex_destroy(&ctx->lock);
kfree(ctx);
}
int amdgpu_ctx_get_ring(struct amdgpu_ctx *ctx,
u32 hw_ip, u32 instance, u32 ring,
struct amdgpu_ring **out_ring)
{
struct amdgpu_device *adev = ctx->adev;
unsigned num_rings = 0;
/* Right now all IPs have only one instance - multiple rings. */
if (instance != 0) {
DRM_DEBUG("invalid ip instance: %d\n", instance);
return -EINVAL;
}
switch (hw_ip) {
case AMDGPU_HW_IP_GFX:
*out_ring = &adev->gfx.gfx_ring[ring];
num_rings = adev->gfx.num_gfx_rings;
break;
case AMDGPU_HW_IP_COMPUTE:
*out_ring = &adev->gfx.compute_ring[ring];
num_rings = adev->gfx.num_compute_rings;
break;
case AMDGPU_HW_IP_DMA:
*out_ring = &adev->sdma.instance[ring].ring;
num_rings = adev->sdma.num_instances;
break;
case AMDGPU_HW_IP_UVD:
*out_ring = &adev->uvd.inst[0].ring;
num_rings = adev->uvd.num_uvd_inst;
break;
case AMDGPU_HW_IP_VCE:
*out_ring = &adev->vce.ring[ring];
num_rings = adev->vce.num_rings;
break;
case AMDGPU_HW_IP_UVD_ENC:
*out_ring = &adev->uvd.inst[0].ring_enc[ring];
num_rings = adev->uvd.num_enc_rings;
break;
case AMDGPU_HW_IP_VCN_DEC:
*out_ring = &adev->vcn.ring_dec;
num_rings = 1;
break;
case AMDGPU_HW_IP_VCN_ENC:
*out_ring = &adev->vcn.ring_enc[ring];
num_rings = adev->vcn.num_enc_rings;
break;
case AMDGPU_HW_IP_VCN_JPEG:
*out_ring = &adev->vcn.ring_jpeg;
num_rings = 1;
break;
default:
DRM_ERROR("unknown HW IP type: %d\n", hw_ip);
return -EINVAL;
}
if (ring > num_rings)
return -EINVAL;
return 0;
}
static int amdgpu_ctx_alloc(struct amdgpu_device *adev,
struct amdgpu_fpriv *fpriv,
struct drm_file *filp,
enum drm_sched_priority priority,
uint32_t *id)
{
struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr;
struct amdgpu_ctx *ctx;
int r;
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
mutex_lock(&mgr->lock);
r = idr_alloc(&mgr->ctx_handles, ctx, 1, 0, GFP_KERNEL);
if (r < 0) {
mutex_unlock(&mgr->lock);
kfree(ctx);
return r;
}
*id = (uint32_t)r;
r = amdgpu_ctx_init(adev, priority, filp, ctx);
if (r) {
idr_remove(&mgr->ctx_handles, *id);
*id = 0;
kfree(ctx);
}
mutex_unlock(&mgr->lock);
return r;
}
static void amdgpu_ctx_do_release(struct kref *ref)
{
struct amdgpu_ctx *ctx;
u32 i;
ctx = container_of(ref, struct amdgpu_ctx, refcount);
for (i = 0; i < ctx->adev->num_rings; i++) {
if (ctx->adev->rings[i] == &ctx->adev->gfx.kiq.ring)
continue;
drm_sched_entity_destroy(&ctx->rings[i].entity);
}
amdgpu_ctx_fini(ref);
}
static int amdgpu_ctx_free(struct amdgpu_fpriv *fpriv, uint32_t id)
{
struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr;
struct amdgpu_ctx *ctx;
mutex_lock(&mgr->lock);
ctx = idr_remove(&mgr->ctx_handles, id);
if (ctx)
kref_put(&ctx->refcount, amdgpu_ctx_do_release);
mutex_unlock(&mgr->lock);
return ctx ? 0 : -EINVAL;
}
static int amdgpu_ctx_query(struct amdgpu_device *adev,
struct amdgpu_fpriv *fpriv, uint32_t id,
union drm_amdgpu_ctx_out *out)
{
struct amdgpu_ctx *ctx;
struct amdgpu_ctx_mgr *mgr;
unsigned reset_counter;
if (!fpriv)
return -EINVAL;
mgr = &fpriv->ctx_mgr;
mutex_lock(&mgr->lock);
ctx = idr_find(&mgr->ctx_handles, id);
if (!ctx) {
mutex_unlock(&mgr->lock);
return -EINVAL;
}
/* TODO: these two are always zero */
out->state.flags = 0x0;
out->state.hangs = 0x0;
/* determine if a GPU reset has occured since the last call */
reset_counter = atomic_read(&adev->gpu_reset_counter);
/* TODO: this should ideally return NO, GUILTY, or INNOCENT. */
if (ctx->reset_counter_query == reset_counter)
out->state.reset_status = AMDGPU_CTX_NO_RESET;
else
out->state.reset_status = AMDGPU_CTX_UNKNOWN_RESET;
ctx->reset_counter_query = reset_counter;
mutex_unlock(&mgr->lock);
return 0;
}
static int amdgpu_ctx_query2(struct amdgpu_device *adev,
struct amdgpu_fpriv *fpriv, uint32_t id,
union drm_amdgpu_ctx_out *out)
{
struct amdgpu_ctx *ctx;
struct amdgpu_ctx_mgr *mgr;
if (!fpriv)
return -EINVAL;
mgr = &fpriv->ctx_mgr;
mutex_lock(&mgr->lock);
ctx = idr_find(&mgr->ctx_handles, id);
if (!ctx) {
mutex_unlock(&mgr->lock);
return -EINVAL;
}
out->state.flags = 0x0;
out->state.hangs = 0x0;
if (ctx->reset_counter != atomic_read(&adev->gpu_reset_counter))
out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RESET;
if (ctx->vram_lost_counter != atomic_read(&adev->vram_lost_counter))
out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_VRAMLOST;
if (atomic_read(&ctx->guilty))
out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_GUILTY;
mutex_unlock(&mgr->lock);
return 0;
}
int amdgpu_ctx_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
int r;
uint32_t id;
enum drm_sched_priority priority;
union drm_amdgpu_ctx *args = data;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_fpriv *fpriv = filp->driver_priv;
r = 0;
id = args->in.ctx_id;
priority = amdgpu_to_sched_priority(args->in.priority);
/* For backwards compatibility reasons, we need to accept
* ioctls with garbage in the priority field */
if (priority == DRM_SCHED_PRIORITY_INVALID)
priority = DRM_SCHED_PRIORITY_NORMAL;
switch (args->in.op) {
case AMDGPU_CTX_OP_ALLOC_CTX:
r = amdgpu_ctx_alloc(adev, fpriv, filp, priority, &id);
args->out.alloc.ctx_id = id;
break;
case AMDGPU_CTX_OP_FREE_CTX:
r = amdgpu_ctx_free(fpriv, id);
break;
case AMDGPU_CTX_OP_QUERY_STATE:
r = amdgpu_ctx_query(adev, fpriv, id, &args->out);
break;
case AMDGPU_CTX_OP_QUERY_STATE2:
r = amdgpu_ctx_query2(adev, fpriv, id, &args->out);
break;
default:
return -EINVAL;
}
return r;
}
struct amdgpu_ctx *amdgpu_ctx_get(struct amdgpu_fpriv *fpriv, uint32_t id)
{
struct amdgpu_ctx *ctx;
struct amdgpu_ctx_mgr *mgr;
if (!fpriv)
return NULL;
mgr = &fpriv->ctx_mgr;
mutex_lock(&mgr->lock);
ctx = idr_find(&mgr->ctx_handles, id);
if (ctx)
kref_get(&ctx->refcount);
mutex_unlock(&mgr->lock);
return ctx;
}
int amdgpu_ctx_put(struct amdgpu_ctx *ctx)
{
if (ctx == NULL)
return -EINVAL;
kref_put(&ctx->refcount, amdgpu_ctx_do_release);
return 0;
}
int amdgpu_ctx_add_fence(struct amdgpu_ctx *ctx, struct amdgpu_ring *ring,
struct dma_fence *fence, uint64_t* handler)
{
struct amdgpu_ctx_ring *cring = & ctx->rings[ring->idx];
uint64_t seq = cring->sequence;
unsigned idx = 0;
struct dma_fence *other = NULL;
idx = seq & (amdgpu_sched_jobs - 1);
other = cring->fences[idx];
if (other)
BUG_ON(!dma_fence_is_signaled(other));
dma_fence_get(fence);
spin_lock(&ctx->ring_lock);
cring->fences[idx] = fence;
cring->sequence++;
spin_unlock(&ctx->ring_lock);
dma_fence_put(other);
if (handler)
*handler = seq;
return 0;
}
struct dma_fence *amdgpu_ctx_get_fence(struct amdgpu_ctx *ctx,
struct amdgpu_ring *ring, uint64_t seq)
{
struct amdgpu_ctx_ring *cring = & ctx->rings[ring->idx];
struct dma_fence *fence;
spin_lock(&ctx->ring_lock);
if (seq == ~0ull)
seq = ctx->rings[ring->idx].sequence - 1;
if (seq >= cring->sequence) {
spin_unlock(&ctx->ring_lock);
return ERR_PTR(-EINVAL);
}
if (seq + amdgpu_sched_jobs < cring->sequence) {
spin_unlock(&ctx->ring_lock);
return NULL;
}
fence = dma_fence_get(cring->fences[seq & (amdgpu_sched_jobs - 1)]);
spin_unlock(&ctx->ring_lock);
return fence;
}
void amdgpu_ctx_priority_override(struct amdgpu_ctx *ctx,
enum drm_sched_priority priority)
{
int i;
struct amdgpu_device *adev = ctx->adev;
struct drm_sched_entity *entity;
struct amdgpu_ring *ring;
enum drm_sched_priority ctx_prio;
ctx->override_priority = priority;
ctx_prio = (ctx->override_priority == DRM_SCHED_PRIORITY_UNSET) ?
ctx->init_priority : ctx->override_priority;
for (i = 0; i < adev->num_rings; i++) {
ring = adev->rings[i];
entity = &ctx->rings[i].entity;
if (ring->funcs->type == AMDGPU_RING_TYPE_KIQ)
continue;
drm_sched_entity_set_priority(entity, ctx_prio);
}
}
int amdgpu_ctx_wait_prev_fence(struct amdgpu_ctx *ctx, unsigned ring_id)
{
struct amdgpu_ctx_ring *cring = &ctx->rings[ring_id];
unsigned idx = cring->sequence & (amdgpu_sched_jobs - 1);
struct dma_fence *other = cring->fences[idx];
if (other) {
signed long r;
r = dma_fence_wait(other, true);
if (r < 0) {
if (r != -ERESTARTSYS)
DRM_ERROR("Error (%ld) waiting for fence!\n", r);
return r;
}
}
return 0;
}
void amdgpu_ctx_mgr_init(struct amdgpu_ctx_mgr *mgr)
{
mutex_init(&mgr->lock);
idr_init(&mgr->ctx_handles);
}
void amdgpu_ctx_mgr_entity_flush(struct amdgpu_ctx_mgr *mgr)
{
struct amdgpu_ctx *ctx;
struct idr *idp;
uint32_t id, i;
long max_wait = MAX_WAIT_SCHED_ENTITY_Q_EMPTY;
idp = &mgr->ctx_handles;
mutex_lock(&mgr->lock);
idr_for_each_entry(idp, ctx, id) {
if (!ctx->adev) {
mutex_unlock(&mgr->lock);
return;
}
for (i = 0; i < ctx->adev->num_rings; i++) {
if (ctx->adev->rings[i] == &ctx->adev->gfx.kiq.ring)
continue;
max_wait = drm_sched_entity_flush(&ctx->rings[i].entity,
max_wait);
}
}
mutex_unlock(&mgr->lock);
}
void amdgpu_ctx_mgr_entity_fini(struct amdgpu_ctx_mgr *mgr)
{
struct amdgpu_ctx *ctx;
struct idr *idp;
uint32_t id, i;
idp = &mgr->ctx_handles;
idr_for_each_entry(idp, ctx, id) {
if (!ctx->adev)
return;
for (i = 0; i < ctx->adev->num_rings; i++) {
if (ctx->adev->rings[i] == &ctx->adev->gfx.kiq.ring)
continue;
if (kref_read(&ctx->refcount) == 1)
drm_sched_entity_fini(&ctx->rings[i].entity);
else
DRM_ERROR("ctx %p is still alive\n", ctx);
}
}
}
void amdgpu_ctx_mgr_fini(struct amdgpu_ctx_mgr *mgr)
{
struct amdgpu_ctx *ctx;
struct idr *idp;
uint32_t id;
amdgpu_ctx_mgr_entity_fini(mgr);
idp = &mgr->ctx_handles;
idr_for_each_entry(idp, ctx, id) {
if (kref_put(&ctx->refcount, amdgpu_ctx_fini) != 1)
DRM_ERROR("ctx %p is still alive\n", ctx);
}
idr_destroy(&mgr->ctx_handles);
mutex_destroy(&mgr->lock);
}