OpenCloudOS-Kernel/drivers/crypto/ixp4xx_crypto.c

1508 lines
37 KiB
C

/*
* Intel IXP4xx NPE-C crypto driver
*
* Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*
*/
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/rtnetlink.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/gfp.h>
#include <crypto/ctr.h>
#include <crypto/des.h>
#include <crypto/aes.h>
#include <crypto/sha.h>
#include <crypto/algapi.h>
#include <crypto/aead.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#include <mach/npe.h>
#include <mach/qmgr.h>
#define MAX_KEYLEN 32
/* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
#define NPE_CTX_LEN 80
#define AES_BLOCK128 16
#define NPE_OP_HASH_VERIFY 0x01
#define NPE_OP_CCM_ENABLE 0x04
#define NPE_OP_CRYPT_ENABLE 0x08
#define NPE_OP_HASH_ENABLE 0x10
#define NPE_OP_NOT_IN_PLACE 0x20
#define NPE_OP_HMAC_DISABLE 0x40
#define NPE_OP_CRYPT_ENCRYPT 0x80
#define NPE_OP_CCM_GEN_MIC 0xcc
#define NPE_OP_HASH_GEN_ICV 0x50
#define NPE_OP_ENC_GEN_KEY 0xc9
#define MOD_ECB 0x0000
#define MOD_CTR 0x1000
#define MOD_CBC_ENC 0x2000
#define MOD_CBC_DEC 0x3000
#define MOD_CCM_ENC 0x4000
#define MOD_CCM_DEC 0x5000
#define KEYLEN_128 4
#define KEYLEN_192 6
#define KEYLEN_256 8
#define CIPH_DECR 0x0000
#define CIPH_ENCR 0x0400
#define MOD_DES 0x0000
#define MOD_TDEA2 0x0100
#define MOD_3DES 0x0200
#define MOD_AES 0x0800
#define MOD_AES128 (0x0800 | KEYLEN_128)
#define MOD_AES192 (0x0900 | KEYLEN_192)
#define MOD_AES256 (0x0a00 | KEYLEN_256)
#define MAX_IVLEN 16
#define NPE_ID 2 /* NPE C */
#define NPE_QLEN 16
/* Space for registering when the first
* NPE_QLEN crypt_ctl are busy */
#define NPE_QLEN_TOTAL 64
#define SEND_QID 29
#define RECV_QID 30
#define CTL_FLAG_UNUSED 0x0000
#define CTL_FLAG_USED 0x1000
#define CTL_FLAG_PERFORM_ABLK 0x0001
#define CTL_FLAG_GEN_ICV 0x0002
#define CTL_FLAG_GEN_REVAES 0x0004
#define CTL_FLAG_PERFORM_AEAD 0x0008
#define CTL_FLAG_MASK 0x000f
#define HMAC_IPAD_VALUE 0x36
#define HMAC_OPAD_VALUE 0x5C
#define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
#define MD5_DIGEST_SIZE 16
struct buffer_desc {
u32 phys_next;
#ifdef __ARMEB__
u16 buf_len;
u16 pkt_len;
#else
u16 pkt_len;
u16 buf_len;
#endif
u32 phys_addr;
u32 __reserved[4];
struct buffer_desc *next;
enum dma_data_direction dir;
};
struct crypt_ctl {
#ifdef __ARMEB__
u8 mode; /* NPE_OP_* operation mode */
u8 init_len;
u16 reserved;
#else
u16 reserved;
u8 init_len;
u8 mode; /* NPE_OP_* operation mode */
#endif
u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
u32 icv_rev_aes; /* icv or rev aes */
u32 src_buf;
u32 dst_buf;
#ifdef __ARMEB__
u16 auth_offs; /* Authentication start offset */
u16 auth_len; /* Authentication data length */
u16 crypt_offs; /* Cryption start offset */
u16 crypt_len; /* Cryption data length */
#else
u16 auth_len; /* Authentication data length */
u16 auth_offs; /* Authentication start offset */
u16 crypt_len; /* Cryption data length */
u16 crypt_offs; /* Cryption start offset */
#endif
u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
u32 crypto_ctx; /* NPE Crypto Param structure address */
/* Used by Host: 4*4 bytes*/
unsigned ctl_flags;
union {
struct ablkcipher_request *ablk_req;
struct aead_request *aead_req;
struct crypto_tfm *tfm;
} data;
struct buffer_desc *regist_buf;
u8 *regist_ptr;
};
struct ablk_ctx {
struct buffer_desc *src;
struct buffer_desc *dst;
};
struct aead_ctx {
struct buffer_desc *buffer;
struct scatterlist ivlist;
/* used when the hmac is not on one sg entry */
u8 *hmac_virt;
int encrypt;
};
struct ix_hash_algo {
u32 cfgword;
unsigned char *icv;
};
struct ix_sa_dir {
unsigned char *npe_ctx;
dma_addr_t npe_ctx_phys;
int npe_ctx_idx;
u8 npe_mode;
};
struct ixp_ctx {
struct ix_sa_dir encrypt;
struct ix_sa_dir decrypt;
int authkey_len;
u8 authkey[MAX_KEYLEN];
int enckey_len;
u8 enckey[MAX_KEYLEN];
u8 salt[MAX_IVLEN];
u8 nonce[CTR_RFC3686_NONCE_SIZE];
unsigned salted;
atomic_t configuring;
struct completion completion;
};
struct ixp_alg {
struct crypto_alg crypto;
const struct ix_hash_algo *hash;
u32 cfg_enc;
u32 cfg_dec;
int registered;
};
static const struct ix_hash_algo hash_alg_md5 = {
.cfgword = 0xAA010004,
.icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
"\xFE\xDC\xBA\x98\x76\x54\x32\x10",
};
static const struct ix_hash_algo hash_alg_sha1 = {
.cfgword = 0x00000005,
.icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
"\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
};
static struct npe *npe_c;
static struct dma_pool *buffer_pool = NULL;
static struct dma_pool *ctx_pool = NULL;
static struct crypt_ctl *crypt_virt = NULL;
static dma_addr_t crypt_phys;
static int support_aes = 1;
static void dev_release(struct device *dev)
{
return;
}
#define DRIVER_NAME "ixp4xx_crypto"
static struct platform_device pseudo_dev = {
.name = DRIVER_NAME,
.id = 0,
.num_resources = 0,
.dev = {
.coherent_dma_mask = DMA_BIT_MASK(32),
.release = dev_release,
}
};
static struct device *dev = &pseudo_dev.dev;
static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
{
return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
}
static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
{
return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
}
static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
{
return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
}
static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
{
return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
}
static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
{
return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
}
static int setup_crypt_desc(void)
{
BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
crypt_virt = dma_alloc_coherent(dev,
NPE_QLEN * sizeof(struct crypt_ctl),
&crypt_phys, GFP_ATOMIC);
if (!crypt_virt)
return -ENOMEM;
memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
return 0;
}
static spinlock_t desc_lock;
static struct crypt_ctl *get_crypt_desc(void)
{
int i;
static int idx = 0;
unsigned long flags;
spin_lock_irqsave(&desc_lock, flags);
if (unlikely(!crypt_virt))
setup_crypt_desc();
if (unlikely(!crypt_virt)) {
spin_unlock_irqrestore(&desc_lock, flags);
return NULL;
}
i = idx;
if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
if (++idx >= NPE_QLEN)
idx = 0;
crypt_virt[i].ctl_flags = CTL_FLAG_USED;
spin_unlock_irqrestore(&desc_lock, flags);
return crypt_virt +i;
} else {
spin_unlock_irqrestore(&desc_lock, flags);
return NULL;
}
}
static spinlock_t emerg_lock;
static struct crypt_ctl *get_crypt_desc_emerg(void)
{
int i;
static int idx = NPE_QLEN;
struct crypt_ctl *desc;
unsigned long flags;
desc = get_crypt_desc();
if (desc)
return desc;
if (unlikely(!crypt_virt))
return NULL;
spin_lock_irqsave(&emerg_lock, flags);
i = idx;
if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
if (++idx >= NPE_QLEN_TOTAL)
idx = NPE_QLEN;
crypt_virt[i].ctl_flags = CTL_FLAG_USED;
spin_unlock_irqrestore(&emerg_lock, flags);
return crypt_virt +i;
} else {
spin_unlock_irqrestore(&emerg_lock, flags);
return NULL;
}
}
static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
{
while (buf) {
struct buffer_desc *buf1;
u32 phys1;
buf1 = buf->next;
phys1 = buf->phys_next;
dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
dma_pool_free(buffer_pool, buf, phys);
buf = buf1;
phys = phys1;
}
}
static struct tasklet_struct crypto_done_tasklet;
static void finish_scattered_hmac(struct crypt_ctl *crypt)
{
struct aead_request *req = crypt->data.aead_req;
struct aead_ctx *req_ctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
int authsize = crypto_aead_authsize(tfm);
int decryptlen = req->cryptlen - authsize;
if (req_ctx->encrypt) {
scatterwalk_map_and_copy(req_ctx->hmac_virt,
req->src, decryptlen, authsize, 1);
}
dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
}
static void one_packet(dma_addr_t phys)
{
struct crypt_ctl *crypt;
struct ixp_ctx *ctx;
int failed;
failed = phys & 0x1 ? -EBADMSG : 0;
phys &= ~0x3;
crypt = crypt_phys2virt(phys);
switch (crypt->ctl_flags & CTL_FLAG_MASK) {
case CTL_FLAG_PERFORM_AEAD: {
struct aead_request *req = crypt->data.aead_req;
struct aead_ctx *req_ctx = aead_request_ctx(req);
free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
if (req_ctx->hmac_virt) {
finish_scattered_hmac(crypt);
}
req->base.complete(&req->base, failed);
break;
}
case CTL_FLAG_PERFORM_ABLK: {
struct ablkcipher_request *req = crypt->data.ablk_req;
struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
if (req_ctx->dst) {
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
}
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
req->base.complete(&req->base, failed);
break;
}
case CTL_FLAG_GEN_ICV:
ctx = crypto_tfm_ctx(crypt->data.tfm);
dma_pool_free(ctx_pool, crypt->regist_ptr,
crypt->regist_buf->phys_addr);
dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
if (atomic_dec_and_test(&ctx->configuring))
complete(&ctx->completion);
break;
case CTL_FLAG_GEN_REVAES:
ctx = crypto_tfm_ctx(crypt->data.tfm);
*(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
if (atomic_dec_and_test(&ctx->configuring))
complete(&ctx->completion);
break;
default:
BUG();
}
crypt->ctl_flags = CTL_FLAG_UNUSED;
}
static void irqhandler(void *_unused)
{
tasklet_schedule(&crypto_done_tasklet);
}
static void crypto_done_action(unsigned long arg)
{
int i;
for(i=0; i<4; i++) {
dma_addr_t phys = qmgr_get_entry(RECV_QID);
if (!phys)
return;
one_packet(phys);
}
tasklet_schedule(&crypto_done_tasklet);
}
static int init_ixp_crypto(void)
{
int ret = -ENODEV;
u32 msg[2] = { 0, 0 };
if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
return ret;
}
npe_c = npe_request(NPE_ID);
if (!npe_c)
return ret;
if (!npe_running(npe_c)) {
ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
if (ret) {
return ret;
}
if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
goto npe_error;
} else {
if (npe_send_message(npe_c, msg, "STATUS_MSG"))
goto npe_error;
if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
goto npe_error;
}
switch ((msg[1]>>16) & 0xff) {
case 3:
printk(KERN_WARNING "Firmware of %s lacks AES support\n",
npe_name(npe_c));
support_aes = 0;
break;
case 4:
case 5:
support_aes = 1;
break;
default:
printk(KERN_ERR "Firmware of %s lacks crypto support\n",
npe_name(npe_c));
return -ENODEV;
}
/* buffer_pool will also be used to sometimes store the hmac,
* so assure it is large enough
*/
BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
buffer_pool = dma_pool_create("buffer", dev,
sizeof(struct buffer_desc), 32, 0);
ret = -ENOMEM;
if (!buffer_pool) {
goto err;
}
ctx_pool = dma_pool_create("context", dev,
NPE_CTX_LEN, 16, 0);
if (!ctx_pool) {
goto err;
}
ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
"ixp_crypto:out", NULL);
if (ret)
goto err;
ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
"ixp_crypto:in", NULL);
if (ret) {
qmgr_release_queue(SEND_QID);
goto err;
}
qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
qmgr_enable_irq(RECV_QID);
return 0;
npe_error:
printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
ret = -EIO;
err:
if (ctx_pool)
dma_pool_destroy(ctx_pool);
if (buffer_pool)
dma_pool_destroy(buffer_pool);
npe_release(npe_c);
return ret;
}
static void release_ixp_crypto(void)
{
qmgr_disable_irq(RECV_QID);
tasklet_kill(&crypto_done_tasklet);
qmgr_release_queue(SEND_QID);
qmgr_release_queue(RECV_QID);
dma_pool_destroy(ctx_pool);
dma_pool_destroy(buffer_pool);
npe_release(npe_c);
if (crypt_virt) {
dma_free_coherent(dev,
NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
crypt_virt, crypt_phys);
}
return;
}
static void reset_sa_dir(struct ix_sa_dir *dir)
{
memset(dir->npe_ctx, 0, NPE_CTX_LEN);
dir->npe_ctx_idx = 0;
dir->npe_mode = 0;
}
static int init_sa_dir(struct ix_sa_dir *dir)
{
dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
if (!dir->npe_ctx) {
return -ENOMEM;
}
reset_sa_dir(dir);
return 0;
}
static void free_sa_dir(struct ix_sa_dir *dir)
{
memset(dir->npe_ctx, 0, NPE_CTX_LEN);
dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
}
static int init_tfm(struct crypto_tfm *tfm)
{
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
int ret;
atomic_set(&ctx->configuring, 0);
ret = init_sa_dir(&ctx->encrypt);
if (ret)
return ret;
ret = init_sa_dir(&ctx->decrypt);
if (ret) {
free_sa_dir(&ctx->encrypt);
}
return ret;
}
static int init_tfm_ablk(struct crypto_tfm *tfm)
{
tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
return init_tfm(tfm);
}
static int init_tfm_aead(struct crypto_tfm *tfm)
{
tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
return init_tfm(tfm);
}
static void exit_tfm(struct crypto_tfm *tfm)
{
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
free_sa_dir(&ctx->encrypt);
free_sa_dir(&ctx->decrypt);
}
static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
int init_len, u32 ctx_addr, const u8 *key, int key_len)
{
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypt_ctl *crypt;
struct buffer_desc *buf;
int i;
u8 *pad;
u32 pad_phys, buf_phys;
BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
if (!pad)
return -ENOMEM;
buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
if (!buf) {
dma_pool_free(ctx_pool, pad, pad_phys);
return -ENOMEM;
}
crypt = get_crypt_desc_emerg();
if (!crypt) {
dma_pool_free(ctx_pool, pad, pad_phys);
dma_pool_free(buffer_pool, buf, buf_phys);
return -EAGAIN;
}
memcpy(pad, key, key_len);
memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
pad[i] ^= xpad;
}
crypt->data.tfm = tfm;
crypt->regist_ptr = pad;
crypt->regist_buf = buf;
crypt->auth_offs = 0;
crypt->auth_len = HMAC_PAD_BLOCKLEN;
crypt->crypto_ctx = ctx_addr;
crypt->src_buf = buf_phys;
crypt->icv_rev_aes = target;
crypt->mode = NPE_OP_HASH_GEN_ICV;
crypt->init_len = init_len;
crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
buf->next = 0;
buf->buf_len = HMAC_PAD_BLOCKLEN;
buf->pkt_len = 0;
buf->phys_addr = pad_phys;
atomic_inc(&ctx->configuring);
qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
BUG_ON(qmgr_stat_overflow(SEND_QID));
return 0;
}
static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
const u8 *key, int key_len, unsigned digest_len)
{
u32 itarget, otarget, npe_ctx_addr;
unsigned char *cinfo;
int init_len, ret = 0;
u32 cfgword;
struct ix_sa_dir *dir;
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
const struct ix_hash_algo *algo;
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
cinfo = dir->npe_ctx + dir->npe_ctx_idx;
algo = ix_hash(tfm);
/* write cfg word to cryptinfo */
cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
#ifndef __ARMEB__
cfgword ^= 0xAA000000; /* change the "byte swap" flags */
#endif
*(u32*)cinfo = cpu_to_be32(cfgword);
cinfo += sizeof(cfgword);
/* write ICV to cryptinfo */
memcpy(cinfo, algo->icv, digest_len);
cinfo += digest_len;
itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
+ sizeof(algo->cfgword);
otarget = itarget + digest_len;
init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
dir->npe_ctx_idx += init_len;
dir->npe_mode |= NPE_OP_HASH_ENABLE;
if (!encrypt)
dir->npe_mode |= NPE_OP_HASH_VERIFY;
ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
init_len, npe_ctx_addr, key, key_len);
if (ret)
return ret;
return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
init_len, npe_ctx_addr, key, key_len);
}
static int gen_rev_aes_key(struct crypto_tfm *tfm)
{
struct crypt_ctl *crypt;
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
struct ix_sa_dir *dir = &ctx->decrypt;
crypt = get_crypt_desc_emerg();
if (!crypt) {
return -EAGAIN;
}
*(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
crypt->data.tfm = tfm;
crypt->crypt_offs = 0;
crypt->crypt_len = AES_BLOCK128;
crypt->src_buf = 0;
crypt->crypto_ctx = dir->npe_ctx_phys;
crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
crypt->mode = NPE_OP_ENC_GEN_KEY;
crypt->init_len = dir->npe_ctx_idx;
crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
atomic_inc(&ctx->configuring);
qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
BUG_ON(qmgr_stat_overflow(SEND_QID));
return 0;
}
static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
const u8 *key, int key_len)
{
u8 *cinfo;
u32 cipher_cfg;
u32 keylen_cfg = 0;
struct ix_sa_dir *dir;
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
cinfo = dir->npe_ctx;
if (encrypt) {
cipher_cfg = cipher_cfg_enc(tfm);
dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
} else {
cipher_cfg = cipher_cfg_dec(tfm);
}
if (cipher_cfg & MOD_AES) {
switch (key_len) {
case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
default:
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
cipher_cfg |= keylen_cfg;
} else if (cipher_cfg & MOD_3DES) {
const u32 *K = (const u32 *)key;
if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
!((K[2] ^ K[4]) | (K[3] ^ K[5]))))
{
*flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
return -EINVAL;
}
} else {
u32 tmp[DES_EXPKEY_WORDS];
if (des_ekey(tmp, key) == 0) {
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
}
}
/* write cfg word to cryptinfo */
*(u32*)cinfo = cpu_to_be32(cipher_cfg);
cinfo += sizeof(cipher_cfg);
/* write cipher key to cryptinfo */
memcpy(cinfo, key, key_len);
/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
key_len = DES3_EDE_KEY_SIZE;
}
dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
if ((cipher_cfg & MOD_AES) && !encrypt) {
return gen_rev_aes_key(tfm);
}
return 0;
}
static struct buffer_desc *chainup_buffers(struct device *dev,
struct scatterlist *sg, unsigned nbytes,
struct buffer_desc *buf, gfp_t flags,
enum dma_data_direction dir)
{
for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
unsigned len = min(nbytes, sg->length);
struct buffer_desc *next_buf;
u32 next_buf_phys;
void *ptr;
nbytes -= len;
ptr = page_address(sg_page(sg)) + sg->offset;
next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
if (!next_buf) {
buf = NULL;
break;
}
sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
buf->next = next_buf;
buf->phys_next = next_buf_phys;
buf = next_buf;
buf->phys_addr = sg_dma_address(sg);
buf->buf_len = len;
buf->dir = dir;
}
buf->next = NULL;
buf->phys_next = 0;
return buf;
}
static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
u32 *flags = &tfm->base.crt_flags;
int ret;
init_completion(&ctx->completion);
atomic_inc(&ctx->configuring);
reset_sa_dir(&ctx->encrypt);
reset_sa_dir(&ctx->decrypt);
ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
ret = setup_cipher(&tfm->base, 0, key, key_len);
if (ret)
goto out;
ret = setup_cipher(&tfm->base, 1, key, key_len);
if (ret)
goto out;
if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
ret = -EINVAL;
} else {
*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
}
}
out:
if (!atomic_dec_and_test(&ctx->configuring))
wait_for_completion(&ctx->completion);
return ret;
}
static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
/* the nonce is stored in bytes at end of key */
if (key_len < CTR_RFC3686_NONCE_SIZE)
return -EINVAL;
memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
CTR_RFC3686_NONCE_SIZE);
key_len -= CTR_RFC3686_NONCE_SIZE;
return ablk_setkey(tfm, key, key_len);
}
static int ablk_perform(struct ablkcipher_request *req, int encrypt)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
struct ix_sa_dir *dir;
struct crypt_ctl *crypt;
unsigned int nbytes = req->nbytes;
enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
struct buffer_desc src_hook;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
if (qmgr_stat_full(SEND_QID))
return -EAGAIN;
if (atomic_read(&ctx->configuring))
return -EAGAIN;
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
crypt = get_crypt_desc();
if (!crypt)
return -ENOMEM;
crypt->data.ablk_req = req;
crypt->crypto_ctx = dir->npe_ctx_phys;
crypt->mode = dir->npe_mode;
crypt->init_len = dir->npe_ctx_idx;
crypt->crypt_offs = 0;
crypt->crypt_len = nbytes;
BUG_ON(ivsize && !req->info);
memcpy(crypt->iv, req->info, ivsize);
if (req->src != req->dst) {
struct buffer_desc dst_hook;
crypt->mode |= NPE_OP_NOT_IN_PLACE;
/* This was never tested by Intel
* for more than one dst buffer, I think. */
BUG_ON(req->dst->length < nbytes);
req_ctx->dst = NULL;
if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
flags, DMA_FROM_DEVICE))
goto free_buf_dest;
src_direction = DMA_TO_DEVICE;
req_ctx->dst = dst_hook.next;
crypt->dst_buf = dst_hook.phys_next;
} else {
req_ctx->dst = NULL;
}
req_ctx->src = NULL;
if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
flags, src_direction))
goto free_buf_src;
req_ctx->src = src_hook.next;
crypt->src_buf = src_hook.phys_next;
crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
BUG_ON(qmgr_stat_overflow(SEND_QID));
return -EINPROGRESS;
free_buf_src:
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
free_buf_dest:
if (req->src != req->dst) {
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
}
crypt->ctl_flags = CTL_FLAG_UNUSED;
return -ENOMEM;
}
static int ablk_encrypt(struct ablkcipher_request *req)
{
return ablk_perform(req, 1);
}
static int ablk_decrypt(struct ablkcipher_request *req)
{
return ablk_perform(req, 0);
}
static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
u8 iv[CTR_RFC3686_BLOCK_SIZE];
u8 *info = req->info;
int ret;
/* set up counter block */
memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
/* initialize counter portion of counter block */
*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
cpu_to_be32(1);
req->info = iv;
ret = ablk_perform(req, 1);
req->info = info;
return ret;
}
static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
unsigned int nbytes)
{
int offset = 0;
if (!nbytes)
return 0;
for (;;) {
if (start < offset + sg->length)
break;
offset += sg->length;
sg = scatterwalk_sg_next(sg);
}
return (start + nbytes > offset + sg->length);
}
static int aead_perform(struct aead_request *req, int encrypt,
int cryptoffset, int eff_cryptlen, u8 *iv)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
unsigned ivsize = crypto_aead_ivsize(tfm);
unsigned authsize = crypto_aead_authsize(tfm);
struct ix_sa_dir *dir;
struct crypt_ctl *crypt;
unsigned int cryptlen;
struct buffer_desc *buf, src_hook;
struct aead_ctx *req_ctx = aead_request_ctx(req);
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
if (qmgr_stat_full(SEND_QID))
return -EAGAIN;
if (atomic_read(&ctx->configuring))
return -EAGAIN;
if (encrypt) {
dir = &ctx->encrypt;
cryptlen = req->cryptlen;
} else {
dir = &ctx->decrypt;
/* req->cryptlen includes the authsize when decrypting */
cryptlen = req->cryptlen -authsize;
eff_cryptlen -= authsize;
}
crypt = get_crypt_desc();
if (!crypt)
return -ENOMEM;
crypt->data.aead_req = req;
crypt->crypto_ctx = dir->npe_ctx_phys;
crypt->mode = dir->npe_mode;
crypt->init_len = dir->npe_ctx_idx;
crypt->crypt_offs = cryptoffset;
crypt->crypt_len = eff_cryptlen;
crypt->auth_offs = 0;
crypt->auth_len = req->assoclen + ivsize + cryptlen;
BUG_ON(ivsize && !req->iv);
memcpy(crypt->iv, req->iv, ivsize);
if (req->src != req->dst) {
BUG(); /* -ENOTSUP because of my laziness */
}
/* ASSOC data */
buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
flags, DMA_TO_DEVICE);
req_ctx->buffer = src_hook.next;
crypt->src_buf = src_hook.phys_next;
if (!buf)
goto out;
/* IV */
sg_init_table(&req_ctx->ivlist, 1);
sg_set_buf(&req_ctx->ivlist, iv, ivsize);
buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
DMA_BIDIRECTIONAL);
if (!buf)
goto free_chain;
if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
/* The 12 hmac bytes are scattered,
* we need to copy them into a safe buffer */
req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
&crypt->icv_rev_aes);
if (unlikely(!req_ctx->hmac_virt))
goto free_chain;
if (!encrypt) {
scatterwalk_map_and_copy(req_ctx->hmac_virt,
req->src, cryptlen, authsize, 0);
}
req_ctx->encrypt = encrypt;
} else {
req_ctx->hmac_virt = NULL;
}
/* Crypt */
buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
DMA_BIDIRECTIONAL);
if (!buf)
goto free_hmac_virt;
if (!req_ctx->hmac_virt) {
crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
}
crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
BUG_ON(qmgr_stat_overflow(SEND_QID));
return -EINPROGRESS;
free_hmac_virt:
if (req_ctx->hmac_virt) {
dma_pool_free(buffer_pool, req_ctx->hmac_virt,
crypt->icv_rev_aes);
}
free_chain:
free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
out:
crypt->ctl_flags = CTL_FLAG_UNUSED;
return -ENOMEM;
}
static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
{
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
u32 *flags = &tfm->base.crt_flags;
unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
int ret;
if (!ctx->enckey_len && !ctx->authkey_len)
return 0;
init_completion(&ctx->completion);
atomic_inc(&ctx->configuring);
reset_sa_dir(&ctx->encrypt);
reset_sa_dir(&ctx->decrypt);
ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
if (ret)
goto out;
ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
if (ret)
goto out;
ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
ctx->authkey_len, digest_len);
if (ret)
goto out;
ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
ctx->authkey_len, digest_len);
if (ret)
goto out;
if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
ret = -EINVAL;
goto out;
} else {
*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
}
}
out:
if (!atomic_dec_and_test(&ctx->configuring))
wait_for_completion(&ctx->completion);
return ret;
}
static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
return -EINVAL;
return aead_setup(tfm, authsize);
}
static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
struct rtattr *rta = (struct rtattr *)key;
struct crypto_authenc_key_param *param;
if (!RTA_OK(rta, keylen))
goto badkey;
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
goto badkey;
if (RTA_PAYLOAD(rta) < sizeof(*param))
goto badkey;
param = RTA_DATA(rta);
ctx->enckey_len = be32_to_cpu(param->enckeylen);
key += RTA_ALIGN(rta->rta_len);
keylen -= RTA_ALIGN(rta->rta_len);
if (keylen < ctx->enckey_len)
goto badkey;
ctx->authkey_len = keylen - ctx->enckey_len;
memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
memcpy(ctx->authkey, key, ctx->authkey_len);
return aead_setup(tfm, crypto_aead_authsize(tfm));
badkey:
ctx->enckey_len = 0;
crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static int aead_encrypt(struct aead_request *req)
{
unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
return aead_perform(req, 1, req->assoclen + ivsize,
req->cryptlen, req->iv);
}
static int aead_decrypt(struct aead_request *req)
{
unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
return aead_perform(req, 0, req->assoclen + ivsize,
req->cryptlen, req->iv);
}
static int aead_givencrypt(struct aead_givcrypt_request *req)
{
struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
unsigned len, ivsize = crypto_aead_ivsize(tfm);
__be64 seq;
/* copied from eseqiv.c */
if (!ctx->salted) {
get_random_bytes(ctx->salt, ivsize);
ctx->salted = 1;
}
memcpy(req->areq.iv, ctx->salt, ivsize);
len = ivsize;
if (ivsize > sizeof(u64)) {
memset(req->giv, 0, ivsize - sizeof(u64));
len = sizeof(u64);
}
seq = cpu_to_be64(req->seq);
memcpy(req->giv + ivsize - len, &seq, len);
return aead_perform(&req->areq, 1, req->areq.assoclen,
req->areq.cryptlen +ivsize, req->giv);
}
static struct ixp_alg ixp4xx_algos[] = {
{
.crypto = {
.cra_name = "cbc(des)",
.cra_blocksize = DES_BLOCK_SIZE,
.cra_u = { .ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.geniv = "eseqiv",
}
}
},
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.cra_name = "ecb(des)",
.cra_blocksize = DES_BLOCK_SIZE,
.cra_u = { .ablkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
}
}
},
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
}, {
.crypto = {
.cra_name = "cbc(des3_ede)",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_u = { .ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.geniv = "eseqiv",
}
}
},
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.cra_name = "ecb(des3_ede)",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_u = { .ablkcipher = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
}
}
},
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
}, {
.crypto = {
.cra_name = "cbc(aes)",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_u = { .ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.geniv = "eseqiv",
}
}
},
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
}, {
.crypto = {
.cra_name = "ecb(aes)",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_u = { .ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
}
}
},
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
}, {
.crypto = {
.cra_name = "ctr(aes)",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_u = { .ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.geniv = "eseqiv",
}
}
},
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
}, {
.crypto = {
.cra_name = "rfc3686(ctr(aes))",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_u = { .ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.geniv = "eseqiv",
.setkey = ablk_rfc3686_setkey,
.encrypt = ablk_rfc3686_crypt,
.decrypt = ablk_rfc3686_crypt }
}
},
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
}, {
.crypto = {
.cra_name = "authenc(hmac(md5),cbc(des))",
.cra_blocksize = DES_BLOCK_SIZE,
.cra_u = { .aead = {
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
}
}
},
.hash = &hash_alg_md5,
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_u = { .aead = {
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
}
}
},
.hash = &hash_alg_md5,
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.cra_name = "authenc(hmac(sha1),cbc(des))",
.cra_blocksize = DES_BLOCK_SIZE,
.cra_u = { .aead = {
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
}
}
},
.hash = &hash_alg_sha1,
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_u = { .aead = {
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
}
}
},
.hash = &hash_alg_sha1,
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
}, {
.crypto = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_u = { .aead = {
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
}
}
},
.hash = &hash_alg_md5,
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
}, {
.crypto = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_u = { .aead = {
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
}
}
},
.hash = &hash_alg_sha1,
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
} };
#define IXP_POSTFIX "-ixp4xx"
static int __init ixp_module_init(void)
{
int num = ARRAY_SIZE(ixp4xx_algos);
int i,err ;
if (platform_device_register(&pseudo_dev))
return -ENODEV;
spin_lock_init(&desc_lock);
spin_lock_init(&emerg_lock);
err = init_ixp_crypto();
if (err) {
platform_device_unregister(&pseudo_dev);
return err;
}
for (i=0; i< num; i++) {
struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
"%s"IXP_POSTFIX, cra->cra_name) >=
CRYPTO_MAX_ALG_NAME)
{
continue;
}
if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
continue;
}
if (!ixp4xx_algos[i].hash) {
/* block ciphers */
cra->cra_type = &crypto_ablkcipher_type;
cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC;
if (!cra->cra_ablkcipher.setkey)
cra->cra_ablkcipher.setkey = ablk_setkey;
if (!cra->cra_ablkcipher.encrypt)
cra->cra_ablkcipher.encrypt = ablk_encrypt;
if (!cra->cra_ablkcipher.decrypt)
cra->cra_ablkcipher.decrypt = ablk_decrypt;
cra->cra_init = init_tfm_ablk;
} else {
/* authenc */
cra->cra_type = &crypto_aead_type;
cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC;
cra->cra_aead.setkey = aead_setkey;
cra->cra_aead.setauthsize = aead_setauthsize;
cra->cra_aead.encrypt = aead_encrypt;
cra->cra_aead.decrypt = aead_decrypt;
cra->cra_aead.givencrypt = aead_givencrypt;
cra->cra_init = init_tfm_aead;
}
cra->cra_ctxsize = sizeof(struct ixp_ctx);
cra->cra_module = THIS_MODULE;
cra->cra_alignmask = 3;
cra->cra_priority = 300;
cra->cra_exit = exit_tfm;
if (crypto_register_alg(cra))
printk(KERN_ERR "Failed to register '%s'\n",
cra->cra_name);
else
ixp4xx_algos[i].registered = 1;
}
return 0;
}
static void __exit ixp_module_exit(void)
{
int num = ARRAY_SIZE(ixp4xx_algos);
int i;
for (i=0; i< num; i++) {
if (ixp4xx_algos[i].registered)
crypto_unregister_alg(&ixp4xx_algos[i].crypto);
}
release_ixp_crypto();
platform_device_unregister(&pseudo_dev);
}
module_init(ixp_module_init);
module_exit(ixp_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
MODULE_DESCRIPTION("IXP4xx hardware crypto");