3868 lines
105 KiB
C
3868 lines
105 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR MIT
|
|
/*
|
|
* Copyright 2020-2021 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/sched/task.h>
|
|
#include "amdgpu_sync.h"
|
|
#include "amdgpu_object.h"
|
|
#include "amdgpu_vm.h"
|
|
#include "amdgpu_mn.h"
|
|
#include "amdgpu.h"
|
|
#include "amdgpu_xgmi.h"
|
|
#include "kfd_priv.h"
|
|
#include "kfd_svm.h"
|
|
#include "kfd_migrate.h"
|
|
|
|
#ifdef dev_fmt
|
|
#undef dev_fmt
|
|
#endif
|
|
#define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
|
|
|
|
#define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
|
|
|
|
/* Long enough to ensure no retry fault comes after svm range is restored and
|
|
* page table is updated.
|
|
*/
|
|
#define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING 2000
|
|
|
|
struct criu_svm_metadata {
|
|
struct list_head list;
|
|
struct kfd_criu_svm_range_priv_data data;
|
|
};
|
|
|
|
static void svm_range_evict_svm_bo_worker(struct work_struct *work);
|
|
static bool
|
|
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
|
|
const struct mmu_notifier_range *range,
|
|
unsigned long cur_seq);
|
|
static int
|
|
svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
|
|
uint64_t *bo_s, uint64_t *bo_l);
|
|
static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
|
|
.invalidate = svm_range_cpu_invalidate_pagetables,
|
|
};
|
|
|
|
/**
|
|
* svm_range_unlink - unlink svm_range from lists and interval tree
|
|
* @prange: svm range structure to be removed
|
|
*
|
|
* Remove the svm_range from the svms and svm_bo lists and the svms
|
|
* interval tree.
|
|
*
|
|
* Context: The caller must hold svms->lock
|
|
*/
|
|
static void svm_range_unlink(struct svm_range *prange)
|
|
{
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
|
|
prange, prange->start, prange->last);
|
|
|
|
if (prange->svm_bo) {
|
|
spin_lock(&prange->svm_bo->list_lock);
|
|
list_del(&prange->svm_bo_list);
|
|
spin_unlock(&prange->svm_bo->list_lock);
|
|
}
|
|
|
|
list_del(&prange->list);
|
|
if (prange->it_node.start != 0 && prange->it_node.last != 0)
|
|
interval_tree_remove(&prange->it_node, &prange->svms->objects);
|
|
}
|
|
|
|
static void
|
|
svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
|
|
{
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
|
|
prange, prange->start, prange->last);
|
|
|
|
mmu_interval_notifier_insert_locked(&prange->notifier, mm,
|
|
prange->start << PAGE_SHIFT,
|
|
prange->npages << PAGE_SHIFT,
|
|
&svm_range_mn_ops);
|
|
}
|
|
|
|
/**
|
|
* svm_range_add_to_svms - add svm range to svms
|
|
* @prange: svm range structure to be added
|
|
*
|
|
* Add the svm range to svms interval tree and link list
|
|
*
|
|
* Context: The caller must hold svms->lock
|
|
*/
|
|
static void svm_range_add_to_svms(struct svm_range *prange)
|
|
{
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
|
|
prange, prange->start, prange->last);
|
|
|
|
list_move_tail(&prange->list, &prange->svms->list);
|
|
prange->it_node.start = prange->start;
|
|
prange->it_node.last = prange->last;
|
|
interval_tree_insert(&prange->it_node, &prange->svms->objects);
|
|
}
|
|
|
|
static void svm_range_remove_notifier(struct svm_range *prange)
|
|
{
|
|
pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
prange->svms, prange,
|
|
prange->notifier.interval_tree.start >> PAGE_SHIFT,
|
|
prange->notifier.interval_tree.last >> PAGE_SHIFT);
|
|
|
|
if (prange->notifier.interval_tree.start != 0 &&
|
|
prange->notifier.interval_tree.last != 0)
|
|
mmu_interval_notifier_remove(&prange->notifier);
|
|
}
|
|
|
|
static bool
|
|
svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
return dma_addr && !dma_mapping_error(dev, dma_addr) &&
|
|
!(dma_addr & SVM_RANGE_VRAM_DOMAIN);
|
|
}
|
|
|
|
static int
|
|
svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
|
|
unsigned long offset, unsigned long npages,
|
|
unsigned long *hmm_pfns, uint32_t gpuidx)
|
|
{
|
|
enum dma_data_direction dir = DMA_BIDIRECTIONAL;
|
|
dma_addr_t *addr = prange->dma_addr[gpuidx];
|
|
struct device *dev = adev->dev;
|
|
struct page *page;
|
|
int i, r;
|
|
|
|
if (!addr) {
|
|
addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
|
|
if (!addr)
|
|
return -ENOMEM;
|
|
prange->dma_addr[gpuidx] = addr;
|
|
}
|
|
|
|
addr += offset;
|
|
for (i = 0; i < npages; i++) {
|
|
if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
|
|
dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
|
|
|
|
page = hmm_pfn_to_page(hmm_pfns[i]);
|
|
if (is_zone_device_page(page)) {
|
|
struct amdgpu_device *bo_adev =
|
|
amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
|
|
|
|
addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
|
|
bo_adev->vm_manager.vram_base_offset -
|
|
bo_adev->kfd.dev->pgmap.range.start;
|
|
addr[i] |= SVM_RANGE_VRAM_DOMAIN;
|
|
pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
|
|
continue;
|
|
}
|
|
addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
|
|
r = dma_mapping_error(dev, addr[i]);
|
|
if (r) {
|
|
dev_err(dev, "failed %d dma_map_page\n", r);
|
|
return r;
|
|
}
|
|
pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
|
|
addr[i] >> PAGE_SHIFT, page_to_pfn(page));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
|
|
unsigned long offset, unsigned long npages,
|
|
unsigned long *hmm_pfns)
|
|
{
|
|
struct kfd_process *p;
|
|
uint32_t gpuidx;
|
|
int r;
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
|
|
struct kfd_process_device *pdd;
|
|
|
|
pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
if (!pdd) {
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
|
|
hmm_pfns, gpuidx);
|
|
if (r)
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
|
|
unsigned long offset, unsigned long npages)
|
|
{
|
|
enum dma_data_direction dir = DMA_BIDIRECTIONAL;
|
|
int i;
|
|
|
|
if (!dma_addr)
|
|
return;
|
|
|
|
for (i = offset; i < offset + npages; i++) {
|
|
if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
|
|
continue;
|
|
pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
|
|
dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
|
|
dma_addr[i] = 0;
|
|
}
|
|
}
|
|
|
|
void svm_range_free_dma_mappings(struct svm_range *prange)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
dma_addr_t *dma_addr;
|
|
struct device *dev;
|
|
struct kfd_process *p;
|
|
uint32_t gpuidx;
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
|
|
dma_addr = prange->dma_addr[gpuidx];
|
|
if (!dma_addr)
|
|
continue;
|
|
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
if (!pdd) {
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
continue;
|
|
}
|
|
dev = &pdd->dev->pdev->dev;
|
|
svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
|
|
kvfree(dma_addr);
|
|
prange->dma_addr[gpuidx] = NULL;
|
|
}
|
|
}
|
|
|
|
static void svm_range_free(struct svm_range *prange)
|
|
{
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
|
|
prange->start, prange->last);
|
|
|
|
svm_range_vram_node_free(prange);
|
|
svm_range_free_dma_mappings(prange);
|
|
mutex_destroy(&prange->lock);
|
|
mutex_destroy(&prange->migrate_mutex);
|
|
kfree(prange);
|
|
}
|
|
|
|
static void
|
|
svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
|
|
uint8_t *granularity, uint32_t *flags)
|
|
{
|
|
*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
*granularity = 9;
|
|
*flags =
|
|
KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
|
|
}
|
|
|
|
static struct
|
|
svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
|
|
uint64_t last)
|
|
{
|
|
uint64_t size = last - start + 1;
|
|
struct svm_range *prange;
|
|
struct kfd_process *p;
|
|
|
|
prange = kzalloc(sizeof(*prange), GFP_KERNEL);
|
|
if (!prange)
|
|
return NULL;
|
|
prange->npages = size;
|
|
prange->svms = svms;
|
|
prange->start = start;
|
|
prange->last = last;
|
|
INIT_LIST_HEAD(&prange->list);
|
|
INIT_LIST_HEAD(&prange->update_list);
|
|
INIT_LIST_HEAD(&prange->svm_bo_list);
|
|
INIT_LIST_HEAD(&prange->deferred_list);
|
|
INIT_LIST_HEAD(&prange->child_list);
|
|
atomic_set(&prange->invalid, 0);
|
|
prange->validate_timestamp = 0;
|
|
mutex_init(&prange->migrate_mutex);
|
|
mutex_init(&prange->lock);
|
|
|
|
p = container_of(svms, struct kfd_process, svms);
|
|
if (p->xnack_enabled)
|
|
bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
|
|
MAX_GPU_INSTANCE);
|
|
|
|
svm_range_set_default_attributes(&prange->preferred_loc,
|
|
&prange->prefetch_loc,
|
|
&prange->granularity, &prange->flags);
|
|
|
|
pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
|
|
|
|
return prange;
|
|
}
|
|
|
|
static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
|
|
{
|
|
if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void svm_range_bo_release(struct kref *kref)
|
|
{
|
|
struct svm_range_bo *svm_bo;
|
|
|
|
svm_bo = container_of(kref, struct svm_range_bo, kref);
|
|
pr_debug("svm_bo 0x%p\n", svm_bo);
|
|
|
|
spin_lock(&svm_bo->list_lock);
|
|
while (!list_empty(&svm_bo->range_list)) {
|
|
struct svm_range *prange =
|
|
list_first_entry(&svm_bo->range_list,
|
|
struct svm_range, svm_bo_list);
|
|
/* list_del_init tells a concurrent svm_range_vram_node_new when
|
|
* it's safe to reuse the svm_bo pointer and svm_bo_list head.
|
|
*/
|
|
list_del_init(&prange->svm_bo_list);
|
|
spin_unlock(&svm_bo->list_lock);
|
|
|
|
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
|
|
prange->start, prange->last);
|
|
mutex_lock(&prange->lock);
|
|
prange->svm_bo = NULL;
|
|
mutex_unlock(&prange->lock);
|
|
|
|
spin_lock(&svm_bo->list_lock);
|
|
}
|
|
spin_unlock(&svm_bo->list_lock);
|
|
if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) {
|
|
/* We're not in the eviction worker.
|
|
* Signal the fence and synchronize with any
|
|
* pending eviction work.
|
|
*/
|
|
dma_fence_signal(&svm_bo->eviction_fence->base);
|
|
cancel_work_sync(&svm_bo->eviction_work);
|
|
}
|
|
dma_fence_put(&svm_bo->eviction_fence->base);
|
|
amdgpu_bo_unref(&svm_bo->bo);
|
|
kfree(svm_bo);
|
|
}
|
|
|
|
static void svm_range_bo_wq_release(struct work_struct *work)
|
|
{
|
|
struct svm_range_bo *svm_bo;
|
|
|
|
svm_bo = container_of(work, struct svm_range_bo, release_work);
|
|
svm_range_bo_release(&svm_bo->kref);
|
|
}
|
|
|
|
static void svm_range_bo_release_async(struct kref *kref)
|
|
{
|
|
struct svm_range_bo *svm_bo;
|
|
|
|
svm_bo = container_of(kref, struct svm_range_bo, kref);
|
|
pr_debug("svm_bo 0x%p\n", svm_bo);
|
|
INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
|
|
schedule_work(&svm_bo->release_work);
|
|
}
|
|
|
|
void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
|
|
{
|
|
kref_put(&svm_bo->kref, svm_range_bo_release_async);
|
|
}
|
|
|
|
static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
|
|
{
|
|
if (svm_bo)
|
|
kref_put(&svm_bo->kref, svm_range_bo_release);
|
|
}
|
|
|
|
static bool
|
|
svm_range_validate_svm_bo(struct amdgpu_device *adev, struct svm_range *prange)
|
|
{
|
|
struct amdgpu_device *bo_adev;
|
|
|
|
mutex_lock(&prange->lock);
|
|
if (!prange->svm_bo) {
|
|
mutex_unlock(&prange->lock);
|
|
return false;
|
|
}
|
|
if (prange->ttm_res) {
|
|
/* We still have a reference, all is well */
|
|
mutex_unlock(&prange->lock);
|
|
return true;
|
|
}
|
|
if (svm_bo_ref_unless_zero(prange->svm_bo)) {
|
|
/*
|
|
* Migrate from GPU to GPU, remove range from source bo_adev
|
|
* svm_bo range list, and return false to allocate svm_bo from
|
|
* destination adev.
|
|
*/
|
|
bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
|
|
if (bo_adev != adev) {
|
|
mutex_unlock(&prange->lock);
|
|
|
|
spin_lock(&prange->svm_bo->list_lock);
|
|
list_del_init(&prange->svm_bo_list);
|
|
spin_unlock(&prange->svm_bo->list_lock);
|
|
|
|
svm_range_bo_unref(prange->svm_bo);
|
|
return false;
|
|
}
|
|
if (READ_ONCE(prange->svm_bo->evicting)) {
|
|
struct dma_fence *f;
|
|
struct svm_range_bo *svm_bo;
|
|
/* The BO is getting evicted,
|
|
* we need to get a new one
|
|
*/
|
|
mutex_unlock(&prange->lock);
|
|
svm_bo = prange->svm_bo;
|
|
f = dma_fence_get(&svm_bo->eviction_fence->base);
|
|
svm_range_bo_unref(prange->svm_bo);
|
|
/* wait for the fence to avoid long spin-loop
|
|
* at list_empty_careful
|
|
*/
|
|
dma_fence_wait(f, false);
|
|
dma_fence_put(f);
|
|
} else {
|
|
/* The BO was still around and we got
|
|
* a new reference to it
|
|
*/
|
|
mutex_unlock(&prange->lock);
|
|
pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
|
|
prange->svms, prange->start, prange->last);
|
|
|
|
prange->ttm_res = prange->svm_bo->bo->tbo.resource;
|
|
return true;
|
|
}
|
|
|
|
} else {
|
|
mutex_unlock(&prange->lock);
|
|
}
|
|
|
|
/* We need a new svm_bo. Spin-loop to wait for concurrent
|
|
* svm_range_bo_release to finish removing this range from
|
|
* its range list. After this, it is safe to reuse the
|
|
* svm_bo pointer and svm_bo_list head.
|
|
*/
|
|
while (!list_empty_careful(&prange->svm_bo_list))
|
|
;
|
|
|
|
return false;
|
|
}
|
|
|
|
static struct svm_range_bo *svm_range_bo_new(void)
|
|
{
|
|
struct svm_range_bo *svm_bo;
|
|
|
|
svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
|
|
if (!svm_bo)
|
|
return NULL;
|
|
|
|
kref_init(&svm_bo->kref);
|
|
INIT_LIST_HEAD(&svm_bo->range_list);
|
|
spin_lock_init(&svm_bo->list_lock);
|
|
|
|
return svm_bo;
|
|
}
|
|
|
|
int
|
|
svm_range_vram_node_new(struct amdgpu_device *adev, struct svm_range *prange,
|
|
bool clear)
|
|
{
|
|
struct amdgpu_bo_param bp;
|
|
struct svm_range_bo *svm_bo;
|
|
struct amdgpu_bo_user *ubo;
|
|
struct amdgpu_bo *bo;
|
|
struct kfd_process *p;
|
|
struct mm_struct *mm;
|
|
int r;
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
|
|
prange->start, prange->last);
|
|
|
|
if (svm_range_validate_svm_bo(adev, prange))
|
|
return 0;
|
|
|
|
svm_bo = svm_range_bo_new();
|
|
if (!svm_bo) {
|
|
pr_debug("failed to alloc svm bo\n");
|
|
return -ENOMEM;
|
|
}
|
|
mm = get_task_mm(p->lead_thread);
|
|
if (!mm) {
|
|
pr_debug("failed to get mm\n");
|
|
kfree(svm_bo);
|
|
return -ESRCH;
|
|
}
|
|
svm_bo->svms = prange->svms;
|
|
svm_bo->eviction_fence =
|
|
amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
|
|
mm,
|
|
svm_bo);
|
|
mmput(mm);
|
|
INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
|
|
svm_bo->evicting = 0;
|
|
memset(&bp, 0, sizeof(bp));
|
|
bp.size = prange->npages * PAGE_SIZE;
|
|
bp.byte_align = PAGE_SIZE;
|
|
bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
|
|
bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
|
|
bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
|
|
bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
|
|
bp.type = ttm_bo_type_device;
|
|
bp.resv = NULL;
|
|
|
|
r = amdgpu_bo_create_user(adev, &bp, &ubo);
|
|
if (r) {
|
|
pr_debug("failed %d to create bo\n", r);
|
|
goto create_bo_failed;
|
|
}
|
|
bo = &ubo->bo;
|
|
r = amdgpu_bo_reserve(bo, true);
|
|
if (r) {
|
|
pr_debug("failed %d to reserve bo\n", r);
|
|
goto reserve_bo_failed;
|
|
}
|
|
|
|
r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
|
|
if (r) {
|
|
pr_debug("failed %d to reserve bo\n", r);
|
|
amdgpu_bo_unreserve(bo);
|
|
goto reserve_bo_failed;
|
|
}
|
|
amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
|
|
|
|
amdgpu_bo_unreserve(bo);
|
|
|
|
svm_bo->bo = bo;
|
|
prange->svm_bo = svm_bo;
|
|
prange->ttm_res = bo->tbo.resource;
|
|
prange->offset = 0;
|
|
|
|
spin_lock(&svm_bo->list_lock);
|
|
list_add(&prange->svm_bo_list, &svm_bo->range_list);
|
|
spin_unlock(&svm_bo->list_lock);
|
|
|
|
return 0;
|
|
|
|
reserve_bo_failed:
|
|
amdgpu_bo_unref(&bo);
|
|
create_bo_failed:
|
|
dma_fence_put(&svm_bo->eviction_fence->base);
|
|
kfree(svm_bo);
|
|
prange->ttm_res = NULL;
|
|
|
|
return r;
|
|
}
|
|
|
|
void svm_range_vram_node_free(struct svm_range *prange)
|
|
{
|
|
svm_range_bo_unref(prange->svm_bo);
|
|
prange->ttm_res = NULL;
|
|
}
|
|
|
|
struct amdgpu_device *
|
|
svm_range_get_adev_by_id(struct svm_range *prange, uint32_t gpu_id)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
struct kfd_process *p;
|
|
int32_t gpu_idx;
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
gpu_idx = kfd_process_gpuidx_from_gpuid(p, gpu_id);
|
|
if (gpu_idx < 0) {
|
|
pr_debug("failed to get device by id 0x%x\n", gpu_id);
|
|
return NULL;
|
|
}
|
|
pdd = kfd_process_device_from_gpuidx(p, gpu_idx);
|
|
if (!pdd) {
|
|
pr_debug("failed to get device by idx 0x%x\n", gpu_idx);
|
|
return NULL;
|
|
}
|
|
|
|
return pdd->dev->adev;
|
|
}
|
|
|
|
struct kfd_process_device *
|
|
svm_range_get_pdd_by_adev(struct svm_range *prange, struct amdgpu_device *adev)
|
|
{
|
|
struct kfd_process *p;
|
|
int32_t gpu_idx, gpuid;
|
|
int r;
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpu_idx);
|
|
if (r) {
|
|
pr_debug("failed to get device id by adev %p\n", adev);
|
|
return NULL;
|
|
}
|
|
|
|
return kfd_process_device_from_gpuidx(p, gpu_idx);
|
|
}
|
|
|
|
static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
|
|
{
|
|
struct ttm_operation_ctx ctx = { false, false };
|
|
|
|
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
|
|
|
|
return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
|
|
}
|
|
|
|
static int
|
|
svm_range_check_attr(struct kfd_process *p,
|
|
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < nattr; i++) {
|
|
uint32_t val = attrs[i].value;
|
|
int gpuidx = MAX_GPU_INSTANCE;
|
|
|
|
switch (attrs[i].type) {
|
|
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
|
|
if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
|
|
val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
|
|
if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS:
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
|
|
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
|
|
break;
|
|
default:
|
|
pr_debug("unknown attr type 0x%x\n", attrs[i].type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (gpuidx < 0) {
|
|
pr_debug("no GPU 0x%x found\n", val);
|
|
return -EINVAL;
|
|
} else if (gpuidx < MAX_GPU_INSTANCE &&
|
|
!test_bit(gpuidx, p->svms.bitmap_supported)) {
|
|
pr_debug("GPU 0x%x not supported\n", val);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
|
|
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
|
|
bool *update_mapping)
|
|
{
|
|
uint32_t i;
|
|
int gpuidx;
|
|
|
|
for (i = 0; i < nattr; i++) {
|
|
switch (attrs[i].type) {
|
|
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
|
|
prange->preferred_loc = attrs[i].value;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
|
|
prange->prefetch_loc = attrs[i].value;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS:
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
|
|
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
|
|
*update_mapping = true;
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(p,
|
|
attrs[i].value);
|
|
if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
|
|
bitmap_clear(prange->bitmap_access, gpuidx, 1);
|
|
bitmap_clear(prange->bitmap_aip, gpuidx, 1);
|
|
} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
|
|
bitmap_set(prange->bitmap_access, gpuidx, 1);
|
|
bitmap_clear(prange->bitmap_aip, gpuidx, 1);
|
|
} else {
|
|
bitmap_clear(prange->bitmap_access, gpuidx, 1);
|
|
bitmap_set(prange->bitmap_aip, gpuidx, 1);
|
|
}
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
|
|
*update_mapping = true;
|
|
prange->flags |= attrs[i].value;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
|
|
*update_mapping = true;
|
|
prange->flags &= ~attrs[i].value;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
|
|
prange->granularity = attrs[i].value;
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool
|
|
svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
|
|
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
|
|
{
|
|
uint32_t i;
|
|
int gpuidx;
|
|
|
|
for (i = 0; i < nattr; i++) {
|
|
switch (attrs[i].type) {
|
|
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
|
|
if (prange->preferred_loc != attrs[i].value)
|
|
return false;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
|
|
/* Prefetch should always trigger a migration even
|
|
* if the value of the attribute didn't change.
|
|
*/
|
|
return false;
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS:
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
|
|
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(p,
|
|
attrs[i].value);
|
|
if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
|
|
if (test_bit(gpuidx, prange->bitmap_access) ||
|
|
test_bit(gpuidx, prange->bitmap_aip))
|
|
return false;
|
|
} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
|
|
if (!test_bit(gpuidx, prange->bitmap_access))
|
|
return false;
|
|
} else {
|
|
if (!test_bit(gpuidx, prange->bitmap_aip))
|
|
return false;
|
|
}
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
|
|
if ((prange->flags & attrs[i].value) != attrs[i].value)
|
|
return false;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
|
|
if ((prange->flags & attrs[i].value) != 0)
|
|
return false;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
|
|
if (prange->granularity != attrs[i].value)
|
|
return false;
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* svm_range_debug_dump - print all range information from svms
|
|
* @svms: svm range list header
|
|
*
|
|
* debug output svm range start, end, prefetch location from svms
|
|
* interval tree and link list
|
|
*
|
|
* Context: The caller must hold svms->lock
|
|
*/
|
|
static void svm_range_debug_dump(struct svm_range_list *svms)
|
|
{
|
|
struct interval_tree_node *node;
|
|
struct svm_range *prange;
|
|
|
|
pr_debug("dump svms 0x%p list\n", svms);
|
|
pr_debug("range\tstart\tpage\tend\t\tlocation\n");
|
|
|
|
list_for_each_entry(prange, &svms->list, list) {
|
|
pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
|
|
prange, prange->start, prange->npages,
|
|
prange->start + prange->npages - 1,
|
|
prange->actual_loc);
|
|
}
|
|
|
|
pr_debug("dump svms 0x%p interval tree\n", svms);
|
|
pr_debug("range\tstart\tpage\tend\t\tlocation\n");
|
|
node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
|
|
while (node) {
|
|
prange = container_of(node, struct svm_range, it_node);
|
|
pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
|
|
prange, prange->start, prange->npages,
|
|
prange->start + prange->npages - 1,
|
|
prange->actual_loc);
|
|
node = interval_tree_iter_next(node, 0, ~0ULL);
|
|
}
|
|
}
|
|
|
|
static int
|
|
svm_range_split_array(void *ppnew, void *ppold, size_t size,
|
|
uint64_t old_start, uint64_t old_n,
|
|
uint64_t new_start, uint64_t new_n)
|
|
{
|
|
unsigned char *new, *old, *pold;
|
|
uint64_t d;
|
|
|
|
if (!ppold)
|
|
return 0;
|
|
pold = *(unsigned char **)ppold;
|
|
if (!pold)
|
|
return 0;
|
|
|
|
new = kvmalloc_array(new_n, size, GFP_KERNEL);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
d = (new_start - old_start) * size;
|
|
memcpy(new, pold + d, new_n * size);
|
|
|
|
old = kvmalloc_array(old_n, size, GFP_KERNEL);
|
|
if (!old) {
|
|
kvfree(new);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
d = (new_start == old_start) ? new_n * size : 0;
|
|
memcpy(old, pold + d, old_n * size);
|
|
|
|
kvfree(pold);
|
|
*(void **)ppold = old;
|
|
*(void **)ppnew = new;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
svm_range_split_pages(struct svm_range *new, struct svm_range *old,
|
|
uint64_t start, uint64_t last)
|
|
{
|
|
uint64_t npages = last - start + 1;
|
|
int i, r;
|
|
|
|
for (i = 0; i < MAX_GPU_INSTANCE; i++) {
|
|
r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
|
|
sizeof(*old->dma_addr[i]), old->start,
|
|
npages, new->start, new->npages);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
|
|
uint64_t start, uint64_t last)
|
|
{
|
|
uint64_t npages = last - start + 1;
|
|
|
|
pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
|
|
new->svms, new, new->start, start, last);
|
|
|
|
if (new->start == old->start) {
|
|
new->offset = old->offset;
|
|
old->offset += new->npages;
|
|
} else {
|
|
new->offset = old->offset + npages;
|
|
}
|
|
|
|
new->svm_bo = svm_range_bo_ref(old->svm_bo);
|
|
new->ttm_res = old->ttm_res;
|
|
|
|
spin_lock(&new->svm_bo->list_lock);
|
|
list_add(&new->svm_bo_list, &new->svm_bo->range_list);
|
|
spin_unlock(&new->svm_bo->list_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* svm_range_split_adjust - split range and adjust
|
|
*
|
|
* @new: new range
|
|
* @old: the old range
|
|
* @start: the old range adjust to start address in pages
|
|
* @last: the old range adjust to last address in pages
|
|
*
|
|
* Copy system memory dma_addr or vram ttm_res in old range to new
|
|
* range from new_start up to size new->npages, the remaining old range is from
|
|
* start to last
|
|
*
|
|
* Return:
|
|
* 0 - OK, -ENOMEM - out of memory
|
|
*/
|
|
static int
|
|
svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
|
|
uint64_t start, uint64_t last)
|
|
{
|
|
int r;
|
|
|
|
pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
|
|
new->svms, new->start, old->start, old->last, start, last);
|
|
|
|
if (new->start < old->start ||
|
|
new->last > old->last) {
|
|
WARN_ONCE(1, "invalid new range start or last\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
r = svm_range_split_pages(new, old, start, last);
|
|
if (r)
|
|
return r;
|
|
|
|
if (old->actual_loc && old->ttm_res) {
|
|
r = svm_range_split_nodes(new, old, start, last);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
old->npages = last - start + 1;
|
|
old->start = start;
|
|
old->last = last;
|
|
new->flags = old->flags;
|
|
new->preferred_loc = old->preferred_loc;
|
|
new->prefetch_loc = old->prefetch_loc;
|
|
new->actual_loc = old->actual_loc;
|
|
new->granularity = old->granularity;
|
|
new->mapped_to_gpu = old->mapped_to_gpu;
|
|
bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
|
|
bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* svm_range_split - split a range in 2 ranges
|
|
*
|
|
* @prange: the svm range to split
|
|
* @start: the remaining range start address in pages
|
|
* @last: the remaining range last address in pages
|
|
* @new: the result new range generated
|
|
*
|
|
* Two cases only:
|
|
* case 1: if start == prange->start
|
|
* prange ==> prange[start, last]
|
|
* new range [last + 1, prange->last]
|
|
*
|
|
* case 2: if last == prange->last
|
|
* prange ==> prange[start, last]
|
|
* new range [prange->start, start - 1]
|
|
*
|
|
* Return:
|
|
* 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
|
|
*/
|
|
static int
|
|
svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
|
|
struct svm_range **new)
|
|
{
|
|
uint64_t old_start = prange->start;
|
|
uint64_t old_last = prange->last;
|
|
struct svm_range_list *svms;
|
|
int r = 0;
|
|
|
|
pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
|
|
old_start, old_last, start, last);
|
|
|
|
if (old_start != start && old_last != last)
|
|
return -EINVAL;
|
|
if (start < old_start || last > old_last)
|
|
return -EINVAL;
|
|
|
|
svms = prange->svms;
|
|
if (old_start == start)
|
|
*new = svm_range_new(svms, last + 1, old_last);
|
|
else
|
|
*new = svm_range_new(svms, old_start, start - 1);
|
|
if (!*new)
|
|
return -ENOMEM;
|
|
|
|
r = svm_range_split_adjust(*new, prange, start, last);
|
|
if (r) {
|
|
pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
|
|
r, old_start, old_last, start, last);
|
|
svm_range_free(*new);
|
|
*new = NULL;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int
|
|
svm_range_split_tail(struct svm_range *prange,
|
|
uint64_t new_last, struct list_head *insert_list)
|
|
{
|
|
struct svm_range *tail;
|
|
int r = svm_range_split(prange, prange->start, new_last, &tail);
|
|
|
|
if (!r)
|
|
list_add(&tail->list, insert_list);
|
|
return r;
|
|
}
|
|
|
|
static int
|
|
svm_range_split_head(struct svm_range *prange,
|
|
uint64_t new_start, struct list_head *insert_list)
|
|
{
|
|
struct svm_range *head;
|
|
int r = svm_range_split(prange, new_start, prange->last, &head);
|
|
|
|
if (!r)
|
|
list_add(&head->list, insert_list);
|
|
return r;
|
|
}
|
|
|
|
static void
|
|
svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
|
|
struct svm_range *pchild, enum svm_work_list_ops op)
|
|
{
|
|
pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
|
|
pchild, pchild->start, pchild->last, prange, op);
|
|
|
|
pchild->work_item.mm = mm;
|
|
pchild->work_item.op = op;
|
|
list_add_tail(&pchild->child_list, &prange->child_list);
|
|
}
|
|
|
|
/**
|
|
* svm_range_split_by_granularity - collect ranges within granularity boundary
|
|
*
|
|
* @p: the process with svms list
|
|
* @mm: mm structure
|
|
* @addr: the vm fault address in pages, to split the prange
|
|
* @parent: parent range if prange is from child list
|
|
* @prange: prange to split
|
|
*
|
|
* Trims @prange to be a single aligned block of prange->granularity if
|
|
* possible. The head and tail are added to the child_list in @parent.
|
|
*
|
|
* Context: caller must hold mmap_read_lock and prange->lock
|
|
*
|
|
* Return:
|
|
* 0 - OK, otherwise error code
|
|
*/
|
|
int
|
|
svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
|
|
unsigned long addr, struct svm_range *parent,
|
|
struct svm_range *prange)
|
|
{
|
|
struct svm_range *head, *tail;
|
|
unsigned long start, last, size;
|
|
int r;
|
|
|
|
/* Align splited range start and size to granularity size, then a single
|
|
* PTE will be used for whole range, this reduces the number of PTE
|
|
* updated and the L1 TLB space used for translation.
|
|
*/
|
|
size = 1UL << prange->granularity;
|
|
start = ALIGN_DOWN(addr, size);
|
|
last = ALIGN(addr + 1, size) - 1;
|
|
|
|
pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
|
|
prange->svms, prange->start, prange->last, start, last, size);
|
|
|
|
if (start > prange->start) {
|
|
r = svm_range_split(prange, start, prange->last, &head);
|
|
if (r)
|
|
return r;
|
|
svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
|
|
}
|
|
|
|
if (last < prange->last) {
|
|
r = svm_range_split(prange, prange->start, last, &tail);
|
|
if (r)
|
|
return r;
|
|
svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
|
|
}
|
|
|
|
/* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
|
|
if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
|
|
prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
|
|
pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
|
|
prange, prange->start, prange->last,
|
|
SVM_OP_ADD_RANGE_AND_MAP);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t
|
|
svm_range_get_pte_flags(struct amdgpu_device *adev, struct svm_range *prange,
|
|
int domain)
|
|
{
|
|
struct amdgpu_device *bo_adev;
|
|
uint32_t flags = prange->flags;
|
|
uint32_t mapping_flags = 0;
|
|
uint64_t pte_flags;
|
|
bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
|
|
bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT;
|
|
|
|
if (domain == SVM_RANGE_VRAM_DOMAIN)
|
|
bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
|
|
|
|
switch (KFD_GC_VERSION(adev->kfd.dev)) {
|
|
case IP_VERSION(9, 4, 1):
|
|
if (domain == SVM_RANGE_VRAM_DOMAIN) {
|
|
if (bo_adev == adev) {
|
|
mapping_flags |= coherent ?
|
|
AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
|
|
} else {
|
|
mapping_flags |= coherent ?
|
|
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
|
|
if (amdgpu_xgmi_same_hive(adev, bo_adev))
|
|
snoop = true;
|
|
}
|
|
} else {
|
|
mapping_flags |= coherent ?
|
|
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
|
|
}
|
|
break;
|
|
case IP_VERSION(9, 4, 2):
|
|
if (domain == SVM_RANGE_VRAM_DOMAIN) {
|
|
if (bo_adev == adev) {
|
|
mapping_flags |= coherent ?
|
|
AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
|
|
if (adev->gmc.xgmi.connected_to_cpu)
|
|
snoop = true;
|
|
} else {
|
|
mapping_flags |= coherent ?
|
|
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
|
|
if (amdgpu_xgmi_same_hive(adev, bo_adev))
|
|
snoop = true;
|
|
}
|
|
} else {
|
|
mapping_flags |= coherent ?
|
|
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
|
|
}
|
|
break;
|
|
default:
|
|
mapping_flags |= coherent ?
|
|
AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
|
|
}
|
|
|
|
mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
|
|
|
|
if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
|
|
mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
|
|
if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
|
|
mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
|
|
|
|
pte_flags = AMDGPU_PTE_VALID;
|
|
pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
|
|
pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
|
|
|
|
pte_flags |= amdgpu_gem_va_map_flags(adev, mapping_flags);
|
|
return pte_flags;
|
|
}
|
|
|
|
static int
|
|
svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
|
|
uint64_t start, uint64_t last,
|
|
struct dma_fence **fence)
|
|
{
|
|
uint64_t init_pte_value = 0;
|
|
|
|
pr_debug("[0x%llx 0x%llx]\n", start, last);
|
|
|
|
return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start,
|
|
last, init_pte_value, 0, 0, NULL, NULL,
|
|
fence);
|
|
}
|
|
|
|
static int
|
|
svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
|
|
unsigned long last)
|
|
{
|
|
DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
|
|
struct kfd_process_device *pdd;
|
|
struct dma_fence *fence = NULL;
|
|
struct kfd_process *p;
|
|
uint32_t gpuidx;
|
|
int r = 0;
|
|
|
|
if (!prange->mapped_to_gpu) {
|
|
pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
|
|
prange, prange->start, prange->last);
|
|
return 0;
|
|
}
|
|
|
|
if (prange->start == start && prange->last == last) {
|
|
pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
|
|
prange->mapped_to_gpu = false;
|
|
}
|
|
|
|
bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
|
|
MAX_GPU_INSTANCE);
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
|
|
pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
if (!pdd) {
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
r = svm_range_unmap_from_gpu(pdd->dev->adev,
|
|
drm_priv_to_vm(pdd->drm_priv),
|
|
start, last, &fence);
|
|
if (r)
|
|
break;
|
|
|
|
if (fence) {
|
|
r = dma_fence_wait(fence, false);
|
|
dma_fence_put(fence);
|
|
fence = NULL;
|
|
if (r)
|
|
break;
|
|
}
|
|
kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int
|
|
svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
|
|
unsigned long offset, unsigned long npages, bool readonly,
|
|
dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
|
|
struct dma_fence **fence, bool flush_tlb)
|
|
{
|
|
struct amdgpu_device *adev = pdd->dev->adev;
|
|
struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
|
|
uint64_t pte_flags;
|
|
unsigned long last_start;
|
|
int last_domain;
|
|
int r = 0;
|
|
int64_t i, j;
|
|
|
|
last_start = prange->start + offset;
|
|
|
|
pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
|
|
last_start, last_start + npages - 1, readonly);
|
|
|
|
for (i = offset; i < offset + npages; i++) {
|
|
last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
|
|
dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
|
|
|
|
/* Collect all pages in the same address range and memory domain
|
|
* that can be mapped with a single call to update mapping.
|
|
*/
|
|
if (i < offset + npages - 1 &&
|
|
last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
|
|
continue;
|
|
|
|
pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
|
|
last_start, prange->start + i, last_domain ? "GPU" : "CPU");
|
|
|
|
pte_flags = svm_range_get_pte_flags(adev, prange, last_domain);
|
|
if (readonly)
|
|
pte_flags &= ~AMDGPU_PTE_WRITEABLE;
|
|
|
|
pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
|
|
prange->svms, last_start, prange->start + i,
|
|
(last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
|
|
pte_flags);
|
|
|
|
r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL,
|
|
last_start, prange->start + i,
|
|
pte_flags,
|
|
(last_start - prange->start) << PAGE_SHIFT,
|
|
bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
|
|
NULL, dma_addr, &vm->last_update);
|
|
|
|
for (j = last_start - prange->start; j <= i; j++)
|
|
dma_addr[j] |= last_domain;
|
|
|
|
if (r) {
|
|
pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
|
|
goto out;
|
|
}
|
|
last_start = prange->start + i + 1;
|
|
}
|
|
|
|
r = amdgpu_vm_update_pdes(adev, vm, false);
|
|
if (r) {
|
|
pr_debug("failed %d to update directories 0x%lx\n", r,
|
|
prange->start);
|
|
goto out;
|
|
}
|
|
|
|
if (fence)
|
|
*fence = dma_fence_get(vm->last_update);
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int
|
|
svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
|
|
unsigned long npages, bool readonly,
|
|
unsigned long *bitmap, bool wait, bool flush_tlb)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
struct amdgpu_device *bo_adev;
|
|
struct kfd_process *p;
|
|
struct dma_fence *fence = NULL;
|
|
uint32_t gpuidx;
|
|
int r = 0;
|
|
|
|
if (prange->svm_bo && prange->ttm_res)
|
|
bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
|
|
else
|
|
bo_adev = NULL;
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
|
|
pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
if (!pdd) {
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pdd = kfd_bind_process_to_device(pdd->dev, p);
|
|
if (IS_ERR(pdd))
|
|
return -EINVAL;
|
|
|
|
if (bo_adev && pdd->dev->adev != bo_adev &&
|
|
!amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
|
|
pr_debug("cannot map to device idx %d\n", gpuidx);
|
|
continue;
|
|
}
|
|
|
|
r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
|
|
prange->dma_addr[gpuidx],
|
|
bo_adev, wait ? &fence : NULL,
|
|
flush_tlb);
|
|
if (r)
|
|
break;
|
|
|
|
if (fence) {
|
|
r = dma_fence_wait(fence, false);
|
|
dma_fence_put(fence);
|
|
fence = NULL;
|
|
if (r) {
|
|
pr_debug("failed %d to dma fence wait\n", r);
|
|
break;
|
|
}
|
|
}
|
|
|
|
kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
struct svm_validate_context {
|
|
struct kfd_process *process;
|
|
struct svm_range *prange;
|
|
bool intr;
|
|
DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
|
|
struct ttm_validate_buffer tv[MAX_GPU_INSTANCE];
|
|
struct list_head validate_list;
|
|
struct ww_acquire_ctx ticket;
|
|
};
|
|
|
|
static int svm_range_reserve_bos(struct svm_validate_context *ctx)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
struct amdgpu_vm *vm;
|
|
uint32_t gpuidx;
|
|
int r;
|
|
|
|
INIT_LIST_HEAD(&ctx->validate_list);
|
|
for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
|
|
pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
|
|
if (!pdd) {
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
return -EINVAL;
|
|
}
|
|
vm = drm_priv_to_vm(pdd->drm_priv);
|
|
|
|
ctx->tv[gpuidx].bo = &vm->root.bo->tbo;
|
|
ctx->tv[gpuidx].num_shared = 4;
|
|
list_add(&ctx->tv[gpuidx].head, &ctx->validate_list);
|
|
}
|
|
|
|
r = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->validate_list,
|
|
ctx->intr, NULL);
|
|
if (r) {
|
|
pr_debug("failed %d to reserve bo\n", r);
|
|
return r;
|
|
}
|
|
|
|
for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
|
|
pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
|
|
if (!pdd) {
|
|
pr_debug("failed to find device idx %d\n", gpuidx);
|
|
r = -EINVAL;
|
|
goto unreserve_out;
|
|
}
|
|
|
|
r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
|
|
drm_priv_to_vm(pdd->drm_priv),
|
|
svm_range_bo_validate, NULL);
|
|
if (r) {
|
|
pr_debug("failed %d validate pt bos\n", r);
|
|
goto unreserve_out;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
unreserve_out:
|
|
ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list);
|
|
return r;
|
|
}
|
|
|
|
static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
|
|
{
|
|
ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list);
|
|
}
|
|
|
|
static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
|
|
return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
|
|
}
|
|
|
|
/*
|
|
* Validation+GPU mapping with concurrent invalidation (MMU notifiers)
|
|
*
|
|
* To prevent concurrent destruction or change of range attributes, the
|
|
* svm_read_lock must be held. The caller must not hold the svm_write_lock
|
|
* because that would block concurrent evictions and lead to deadlocks. To
|
|
* serialize concurrent migrations or validations of the same range, the
|
|
* prange->migrate_mutex must be held.
|
|
*
|
|
* For VRAM ranges, the SVM BO must be allocated and valid (protected by its
|
|
* eviction fence.
|
|
*
|
|
* The following sequence ensures race-free validation and GPU mapping:
|
|
*
|
|
* 1. Reserve page table (and SVM BO if range is in VRAM)
|
|
* 2. hmm_range_fault to get page addresses (if system memory)
|
|
* 3. DMA-map pages (if system memory)
|
|
* 4-a. Take notifier lock
|
|
* 4-b. Check that pages still valid (mmu_interval_read_retry)
|
|
* 4-c. Check that the range was not split or otherwise invalidated
|
|
* 4-d. Update GPU page table
|
|
* 4.e. Release notifier lock
|
|
* 5. Release page table (and SVM BO) reservation
|
|
*/
|
|
static int svm_range_validate_and_map(struct mm_struct *mm,
|
|
struct svm_range *prange, int32_t gpuidx,
|
|
bool intr, bool wait, bool flush_tlb)
|
|
{
|
|
struct svm_validate_context ctx;
|
|
unsigned long start, end, addr;
|
|
struct kfd_process *p;
|
|
void *owner;
|
|
int32_t idx;
|
|
int r = 0;
|
|
|
|
ctx.process = container_of(prange->svms, struct kfd_process, svms);
|
|
ctx.prange = prange;
|
|
ctx.intr = intr;
|
|
|
|
if (gpuidx < MAX_GPU_INSTANCE) {
|
|
bitmap_zero(ctx.bitmap, MAX_GPU_INSTANCE);
|
|
bitmap_set(ctx.bitmap, gpuidx, 1);
|
|
} else if (ctx.process->xnack_enabled) {
|
|
bitmap_copy(ctx.bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
|
|
|
|
/* If prefetch range to GPU, or GPU retry fault migrate range to
|
|
* GPU, which has ACCESS attribute to the range, create mapping
|
|
* on that GPU.
|
|
*/
|
|
if (prange->actual_loc) {
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(ctx.process,
|
|
prange->actual_loc);
|
|
if (gpuidx < 0) {
|
|
WARN_ONCE(1, "failed get device by id 0x%x\n",
|
|
prange->actual_loc);
|
|
return -EINVAL;
|
|
}
|
|
if (test_bit(gpuidx, prange->bitmap_access))
|
|
bitmap_set(ctx.bitmap, gpuidx, 1);
|
|
}
|
|
} else {
|
|
bitmap_or(ctx.bitmap, prange->bitmap_access,
|
|
prange->bitmap_aip, MAX_GPU_INSTANCE);
|
|
}
|
|
|
|
if (bitmap_empty(ctx.bitmap, MAX_GPU_INSTANCE)) {
|
|
if (!prange->mapped_to_gpu)
|
|
return 0;
|
|
|
|
bitmap_copy(ctx.bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
|
|
}
|
|
|
|
if (prange->actual_loc && !prange->ttm_res) {
|
|
/* This should never happen. actual_loc gets set by
|
|
* svm_migrate_ram_to_vram after allocating a BO.
|
|
*/
|
|
WARN_ONCE(1, "VRAM BO missing during validation\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
svm_range_reserve_bos(&ctx);
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
owner = kfd_svm_page_owner(p, find_first_bit(ctx.bitmap,
|
|
MAX_GPU_INSTANCE));
|
|
for_each_set_bit(idx, ctx.bitmap, MAX_GPU_INSTANCE) {
|
|
if (kfd_svm_page_owner(p, idx) != owner) {
|
|
owner = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
start = prange->start << PAGE_SHIFT;
|
|
end = (prange->last + 1) << PAGE_SHIFT;
|
|
for (addr = start; addr < end && !r; ) {
|
|
struct hmm_range *hmm_range;
|
|
struct vm_area_struct *vma;
|
|
unsigned long next;
|
|
unsigned long offset;
|
|
unsigned long npages;
|
|
bool readonly;
|
|
|
|
vma = find_vma(mm, addr);
|
|
if (!vma || addr < vma->vm_start) {
|
|
r = -EFAULT;
|
|
goto unreserve_out;
|
|
}
|
|
readonly = !(vma->vm_flags & VM_WRITE);
|
|
|
|
next = min(vma->vm_end, end);
|
|
npages = (next - addr) >> PAGE_SHIFT;
|
|
WRITE_ONCE(p->svms.faulting_task, current);
|
|
r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL,
|
|
addr, npages, &hmm_range,
|
|
readonly, true, owner);
|
|
WRITE_ONCE(p->svms.faulting_task, NULL);
|
|
if (r) {
|
|
pr_debug("failed %d to get svm range pages\n", r);
|
|
goto unreserve_out;
|
|
}
|
|
|
|
offset = (addr - start) >> PAGE_SHIFT;
|
|
r = svm_range_dma_map(prange, ctx.bitmap, offset, npages,
|
|
hmm_range->hmm_pfns);
|
|
if (r) {
|
|
pr_debug("failed %d to dma map range\n", r);
|
|
goto unreserve_out;
|
|
}
|
|
|
|
svm_range_lock(prange);
|
|
if (amdgpu_hmm_range_get_pages_done(hmm_range)) {
|
|
pr_debug("hmm update the range, need validate again\n");
|
|
r = -EAGAIN;
|
|
goto unlock_out;
|
|
}
|
|
if (!list_empty(&prange->child_list)) {
|
|
pr_debug("range split by unmap in parallel, validate again\n");
|
|
r = -EAGAIN;
|
|
goto unlock_out;
|
|
}
|
|
|
|
r = svm_range_map_to_gpus(prange, offset, npages, readonly,
|
|
ctx.bitmap, wait, flush_tlb);
|
|
|
|
unlock_out:
|
|
svm_range_unlock(prange);
|
|
|
|
addr = next;
|
|
}
|
|
|
|
if (addr == end) {
|
|
prange->validated_once = true;
|
|
prange->mapped_to_gpu = true;
|
|
}
|
|
|
|
unreserve_out:
|
|
svm_range_unreserve_bos(&ctx);
|
|
|
|
if (!r)
|
|
prange->validate_timestamp = ktime_to_us(ktime_get());
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* svm_range_list_lock_and_flush_work - flush pending deferred work
|
|
*
|
|
* @svms: the svm range list
|
|
* @mm: the mm structure
|
|
*
|
|
* Context: Returns with mmap write lock held, pending deferred work flushed
|
|
*
|
|
*/
|
|
void
|
|
svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
|
|
struct mm_struct *mm)
|
|
{
|
|
retry_flush_work:
|
|
flush_work(&svms->deferred_list_work);
|
|
mmap_write_lock(mm);
|
|
|
|
if (list_empty(&svms->deferred_range_list))
|
|
return;
|
|
mmap_write_unlock(mm);
|
|
pr_debug("retry flush\n");
|
|
goto retry_flush_work;
|
|
}
|
|
|
|
static void svm_range_restore_work(struct work_struct *work)
|
|
{
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
struct amdkfd_process_info *process_info;
|
|
struct svm_range_list *svms;
|
|
struct svm_range *prange;
|
|
struct kfd_process *p;
|
|
struct mm_struct *mm;
|
|
int evicted_ranges;
|
|
int invalid;
|
|
int r;
|
|
|
|
svms = container_of(dwork, struct svm_range_list, restore_work);
|
|
evicted_ranges = atomic_read(&svms->evicted_ranges);
|
|
if (!evicted_ranges)
|
|
return;
|
|
|
|
pr_debug("restore svm ranges\n");
|
|
|
|
p = container_of(svms, struct kfd_process, svms);
|
|
process_info = p->kgd_process_info;
|
|
|
|
/* Keep mm reference when svm_range_validate_and_map ranges */
|
|
mm = get_task_mm(p->lead_thread);
|
|
if (!mm) {
|
|
pr_debug("svms 0x%p process mm gone\n", svms);
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&process_info->lock);
|
|
svm_range_list_lock_and_flush_work(svms, mm);
|
|
mutex_lock(&svms->lock);
|
|
|
|
evicted_ranges = atomic_read(&svms->evicted_ranges);
|
|
|
|
list_for_each_entry(prange, &svms->list, list) {
|
|
invalid = atomic_read(&prange->invalid);
|
|
if (!invalid)
|
|
continue;
|
|
|
|
pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
|
|
prange->svms, prange, prange->start, prange->last,
|
|
invalid);
|
|
|
|
/*
|
|
* If range is migrating, wait for migration is done.
|
|
*/
|
|
mutex_lock(&prange->migrate_mutex);
|
|
|
|
r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
|
|
false, true, false);
|
|
if (r)
|
|
pr_debug("failed %d to map 0x%lx to gpus\n", r,
|
|
prange->start);
|
|
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
if (r)
|
|
goto out_reschedule;
|
|
|
|
if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
|
|
goto out_reschedule;
|
|
}
|
|
|
|
if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
|
|
evicted_ranges)
|
|
goto out_reschedule;
|
|
|
|
evicted_ranges = 0;
|
|
|
|
r = kgd2kfd_resume_mm(mm);
|
|
if (r) {
|
|
/* No recovery from this failure. Probably the CP is
|
|
* hanging. No point trying again.
|
|
*/
|
|
pr_debug("failed %d to resume KFD\n", r);
|
|
}
|
|
|
|
pr_debug("restore svm ranges successfully\n");
|
|
|
|
out_reschedule:
|
|
mutex_unlock(&svms->lock);
|
|
mmap_write_unlock(mm);
|
|
mutex_unlock(&process_info->lock);
|
|
mmput(mm);
|
|
|
|
/* If validation failed, reschedule another attempt */
|
|
if (evicted_ranges) {
|
|
pr_debug("reschedule to restore svm range\n");
|
|
schedule_delayed_work(&svms->restore_work,
|
|
msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* svm_range_evict - evict svm range
|
|
* @prange: svm range structure
|
|
* @mm: current process mm_struct
|
|
* @start: starting process queue number
|
|
* @last: last process queue number
|
|
*
|
|
* Stop all queues of the process to ensure GPU doesn't access the memory, then
|
|
* return to let CPU evict the buffer and proceed CPU pagetable update.
|
|
*
|
|
* Don't need use lock to sync cpu pagetable invalidation with GPU execution.
|
|
* If invalidation happens while restore work is running, restore work will
|
|
* restart to ensure to get the latest CPU pages mapping to GPU, then start
|
|
* the queues.
|
|
*/
|
|
static int
|
|
svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
|
|
unsigned long start, unsigned long last)
|
|
{
|
|
struct svm_range_list *svms = prange->svms;
|
|
struct svm_range *pchild;
|
|
struct kfd_process *p;
|
|
int r = 0;
|
|
|
|
p = container_of(svms, struct kfd_process, svms);
|
|
|
|
pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
|
|
svms, prange->start, prange->last, start, last);
|
|
|
|
if (!p->xnack_enabled) {
|
|
int evicted_ranges;
|
|
|
|
list_for_each_entry(pchild, &prange->child_list, child_list) {
|
|
mutex_lock_nested(&pchild->lock, 1);
|
|
if (pchild->start <= last && pchild->last >= start) {
|
|
pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
|
|
pchild->start, pchild->last);
|
|
atomic_inc(&pchild->invalid);
|
|
}
|
|
mutex_unlock(&pchild->lock);
|
|
}
|
|
|
|
if (prange->start <= last && prange->last >= start)
|
|
atomic_inc(&prange->invalid);
|
|
|
|
evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
|
|
if (evicted_ranges != 1)
|
|
return r;
|
|
|
|
pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
|
|
prange->svms, prange->start, prange->last);
|
|
|
|
/* First eviction, stop the queues */
|
|
r = kgd2kfd_quiesce_mm(mm);
|
|
if (r)
|
|
pr_debug("failed to quiesce KFD\n");
|
|
|
|
pr_debug("schedule to restore svm %p ranges\n", svms);
|
|
schedule_delayed_work(&svms->restore_work,
|
|
msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
|
|
} else {
|
|
unsigned long s, l;
|
|
|
|
pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
|
|
prange->svms, start, last);
|
|
list_for_each_entry(pchild, &prange->child_list, child_list) {
|
|
mutex_lock_nested(&pchild->lock, 1);
|
|
s = max(start, pchild->start);
|
|
l = min(last, pchild->last);
|
|
if (l >= s)
|
|
svm_range_unmap_from_gpus(pchild, s, l);
|
|
mutex_unlock(&pchild->lock);
|
|
}
|
|
s = max(start, prange->start);
|
|
l = min(last, prange->last);
|
|
if (l >= s)
|
|
svm_range_unmap_from_gpus(prange, s, l);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static struct svm_range *svm_range_clone(struct svm_range *old)
|
|
{
|
|
struct svm_range *new;
|
|
|
|
new = svm_range_new(old->svms, old->start, old->last);
|
|
if (!new)
|
|
return NULL;
|
|
|
|
if (old->svm_bo) {
|
|
new->ttm_res = old->ttm_res;
|
|
new->offset = old->offset;
|
|
new->svm_bo = svm_range_bo_ref(old->svm_bo);
|
|
spin_lock(&new->svm_bo->list_lock);
|
|
list_add(&new->svm_bo_list, &new->svm_bo->range_list);
|
|
spin_unlock(&new->svm_bo->list_lock);
|
|
}
|
|
new->flags = old->flags;
|
|
new->preferred_loc = old->preferred_loc;
|
|
new->prefetch_loc = old->prefetch_loc;
|
|
new->actual_loc = old->actual_loc;
|
|
new->granularity = old->granularity;
|
|
new->mapped_to_gpu = old->mapped_to_gpu;
|
|
bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
|
|
bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
|
|
|
|
return new;
|
|
}
|
|
|
|
/**
|
|
* svm_range_add - add svm range and handle overlap
|
|
* @p: the range add to this process svms
|
|
* @start: page size aligned
|
|
* @size: page size aligned
|
|
* @nattr: number of attributes
|
|
* @attrs: array of attributes
|
|
* @update_list: output, the ranges need validate and update GPU mapping
|
|
* @insert_list: output, the ranges need insert to svms
|
|
* @remove_list: output, the ranges are replaced and need remove from svms
|
|
*
|
|
* Check if the virtual address range has overlap with any existing ranges,
|
|
* split partly overlapping ranges and add new ranges in the gaps. All changes
|
|
* should be applied to the range_list and interval tree transactionally. If
|
|
* any range split or allocation fails, the entire update fails. Therefore any
|
|
* existing overlapping svm_ranges are cloned and the original svm_ranges left
|
|
* unchanged.
|
|
*
|
|
* If the transaction succeeds, the caller can update and insert clones and
|
|
* new ranges, then free the originals.
|
|
*
|
|
* Otherwise the caller can free the clones and new ranges, while the old
|
|
* svm_ranges remain unchanged.
|
|
*
|
|
* Context: Process context, caller must hold svms->lock
|
|
*
|
|
* Return:
|
|
* 0 - OK, otherwise error code
|
|
*/
|
|
static int
|
|
svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
|
|
uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
|
|
struct list_head *update_list, struct list_head *insert_list,
|
|
struct list_head *remove_list)
|
|
{
|
|
unsigned long last = start + size - 1UL;
|
|
struct svm_range_list *svms = &p->svms;
|
|
struct interval_tree_node *node;
|
|
struct svm_range *prange;
|
|
struct svm_range *tmp;
|
|
int r = 0;
|
|
|
|
pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
|
|
|
|
INIT_LIST_HEAD(update_list);
|
|
INIT_LIST_HEAD(insert_list);
|
|
INIT_LIST_HEAD(remove_list);
|
|
|
|
node = interval_tree_iter_first(&svms->objects, start, last);
|
|
while (node) {
|
|
struct interval_tree_node *next;
|
|
unsigned long next_start;
|
|
|
|
pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
|
|
node->last);
|
|
|
|
prange = container_of(node, struct svm_range, it_node);
|
|
next = interval_tree_iter_next(node, start, last);
|
|
next_start = min(node->last, last) + 1;
|
|
|
|
if (svm_range_is_same_attrs(p, prange, nattr, attrs)) {
|
|
/* nothing to do */
|
|
} else if (node->start < start || node->last > last) {
|
|
/* node intersects the update range and its attributes
|
|
* will change. Clone and split it, apply updates only
|
|
* to the overlapping part
|
|
*/
|
|
struct svm_range *old = prange;
|
|
|
|
prange = svm_range_clone(old);
|
|
if (!prange) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
list_add(&old->update_list, remove_list);
|
|
list_add(&prange->list, insert_list);
|
|
list_add(&prange->update_list, update_list);
|
|
|
|
if (node->start < start) {
|
|
pr_debug("change old range start\n");
|
|
r = svm_range_split_head(prange, start,
|
|
insert_list);
|
|
if (r)
|
|
goto out;
|
|
}
|
|
if (node->last > last) {
|
|
pr_debug("change old range last\n");
|
|
r = svm_range_split_tail(prange, last,
|
|
insert_list);
|
|
if (r)
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* The node is contained within start..last,
|
|
* just update it
|
|
*/
|
|
list_add(&prange->update_list, update_list);
|
|
}
|
|
|
|
/* insert a new node if needed */
|
|
if (node->start > start) {
|
|
prange = svm_range_new(svms, start, node->start - 1);
|
|
if (!prange) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
list_add(&prange->list, insert_list);
|
|
list_add(&prange->update_list, update_list);
|
|
}
|
|
|
|
node = next;
|
|
start = next_start;
|
|
}
|
|
|
|
/* add a final range at the end if needed */
|
|
if (start <= last) {
|
|
prange = svm_range_new(svms, start, last);
|
|
if (!prange) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
list_add(&prange->list, insert_list);
|
|
list_add(&prange->update_list, update_list);
|
|
}
|
|
|
|
out:
|
|
if (r)
|
|
list_for_each_entry_safe(prange, tmp, insert_list, list)
|
|
svm_range_free(prange);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void
|
|
svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
|
|
struct svm_range *prange)
|
|
{
|
|
unsigned long start;
|
|
unsigned long last;
|
|
|
|
start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
|
|
last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
|
|
|
|
if (prange->start == start && prange->last == last)
|
|
return;
|
|
|
|
pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
|
|
prange->svms, prange, start, last, prange->start,
|
|
prange->last);
|
|
|
|
if (start != 0 && last != 0) {
|
|
interval_tree_remove(&prange->it_node, &prange->svms->objects);
|
|
svm_range_remove_notifier(prange);
|
|
}
|
|
prange->it_node.start = prange->start;
|
|
prange->it_node.last = prange->last;
|
|
|
|
interval_tree_insert(&prange->it_node, &prange->svms->objects);
|
|
svm_range_add_notifier_locked(mm, prange);
|
|
}
|
|
|
|
static void
|
|
svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
|
|
struct mm_struct *mm)
|
|
{
|
|
switch (prange->work_item.op) {
|
|
case SVM_OP_NULL:
|
|
pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
svms, prange, prange->start, prange->last);
|
|
break;
|
|
case SVM_OP_UNMAP_RANGE:
|
|
pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
svms, prange, prange->start, prange->last);
|
|
svm_range_unlink(prange);
|
|
svm_range_remove_notifier(prange);
|
|
svm_range_free(prange);
|
|
break;
|
|
case SVM_OP_UPDATE_RANGE_NOTIFIER:
|
|
pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
svms, prange, prange->start, prange->last);
|
|
svm_range_update_notifier_and_interval_tree(mm, prange);
|
|
break;
|
|
case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
|
|
pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
svms, prange, prange->start, prange->last);
|
|
svm_range_update_notifier_and_interval_tree(mm, prange);
|
|
/* TODO: implement deferred validation and mapping */
|
|
break;
|
|
case SVM_OP_ADD_RANGE:
|
|
pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
|
|
prange->start, prange->last);
|
|
svm_range_add_to_svms(prange);
|
|
svm_range_add_notifier_locked(mm, prange);
|
|
break;
|
|
case SVM_OP_ADD_RANGE_AND_MAP:
|
|
pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
|
|
prange, prange->start, prange->last);
|
|
svm_range_add_to_svms(prange);
|
|
svm_range_add_notifier_locked(mm, prange);
|
|
/* TODO: implement deferred validation and mapping */
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
|
|
prange->work_item.op);
|
|
}
|
|
}
|
|
|
|
static void svm_range_drain_retry_fault(struct svm_range_list *svms)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
struct kfd_process *p;
|
|
int drain;
|
|
uint32_t i;
|
|
|
|
p = container_of(svms, struct kfd_process, svms);
|
|
|
|
restart:
|
|
drain = atomic_read(&svms->drain_pagefaults);
|
|
if (!drain)
|
|
return;
|
|
|
|
for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
|
|
pdd = p->pdds[i];
|
|
if (!pdd)
|
|
continue;
|
|
|
|
pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
|
|
|
|
amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
|
|
&pdd->dev->adev->irq.ih1);
|
|
pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
|
|
}
|
|
if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
|
|
goto restart;
|
|
}
|
|
|
|
static void svm_range_deferred_list_work(struct work_struct *work)
|
|
{
|
|
struct svm_range_list *svms;
|
|
struct svm_range *prange;
|
|
struct mm_struct *mm;
|
|
|
|
svms = container_of(work, struct svm_range_list, deferred_list_work);
|
|
pr_debug("enter svms 0x%p\n", svms);
|
|
|
|
spin_lock(&svms->deferred_list_lock);
|
|
while (!list_empty(&svms->deferred_range_list)) {
|
|
prange = list_first_entry(&svms->deferred_range_list,
|
|
struct svm_range, deferred_list);
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
|
|
pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
|
|
prange->start, prange->last, prange->work_item.op);
|
|
|
|
mm = prange->work_item.mm;
|
|
retry:
|
|
mmap_write_lock(mm);
|
|
|
|
/* Checking for the need to drain retry faults must be inside
|
|
* mmap write lock to serialize with munmap notifiers.
|
|
*/
|
|
if (unlikely(atomic_read(&svms->drain_pagefaults))) {
|
|
mmap_write_unlock(mm);
|
|
svm_range_drain_retry_fault(svms);
|
|
goto retry;
|
|
}
|
|
|
|
/* Remove from deferred_list must be inside mmap write lock, for
|
|
* two race cases:
|
|
* 1. unmap_from_cpu may change work_item.op and add the range
|
|
* to deferred_list again, cause use after free bug.
|
|
* 2. svm_range_list_lock_and_flush_work may hold mmap write
|
|
* lock and continue because deferred_list is empty, but
|
|
* deferred_list work is actually waiting for mmap lock.
|
|
*/
|
|
spin_lock(&svms->deferred_list_lock);
|
|
list_del_init(&prange->deferred_list);
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
|
|
mutex_lock(&svms->lock);
|
|
mutex_lock(&prange->migrate_mutex);
|
|
while (!list_empty(&prange->child_list)) {
|
|
struct svm_range *pchild;
|
|
|
|
pchild = list_first_entry(&prange->child_list,
|
|
struct svm_range, child_list);
|
|
pr_debug("child prange 0x%p op %d\n", pchild,
|
|
pchild->work_item.op);
|
|
list_del_init(&pchild->child_list);
|
|
svm_range_handle_list_op(svms, pchild, mm);
|
|
}
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
|
|
svm_range_handle_list_op(svms, prange, mm);
|
|
mutex_unlock(&svms->lock);
|
|
mmap_write_unlock(mm);
|
|
|
|
/* Pairs with mmget in svm_range_add_list_work */
|
|
mmput(mm);
|
|
|
|
spin_lock(&svms->deferred_list_lock);
|
|
}
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
pr_debug("exit svms 0x%p\n", svms);
|
|
}
|
|
|
|
void
|
|
svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
|
|
struct mm_struct *mm, enum svm_work_list_ops op)
|
|
{
|
|
spin_lock(&svms->deferred_list_lock);
|
|
/* if prange is on the deferred list */
|
|
if (!list_empty(&prange->deferred_list)) {
|
|
pr_debug("update exist prange 0x%p work op %d\n", prange, op);
|
|
WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
|
|
if (op != SVM_OP_NULL &&
|
|
prange->work_item.op != SVM_OP_UNMAP_RANGE)
|
|
prange->work_item.op = op;
|
|
} else {
|
|
prange->work_item.op = op;
|
|
|
|
/* Pairs with mmput in deferred_list_work */
|
|
mmget(mm);
|
|
prange->work_item.mm = mm;
|
|
list_add_tail(&prange->deferred_list,
|
|
&prange->svms->deferred_range_list);
|
|
pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
|
|
prange, prange->start, prange->last, op);
|
|
}
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
}
|
|
|
|
void schedule_deferred_list_work(struct svm_range_list *svms)
|
|
{
|
|
spin_lock(&svms->deferred_list_lock);
|
|
if (!list_empty(&svms->deferred_range_list))
|
|
schedule_work(&svms->deferred_list_work);
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
}
|
|
|
|
static void
|
|
svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
|
|
struct svm_range *prange, unsigned long start,
|
|
unsigned long last)
|
|
{
|
|
struct svm_range *head;
|
|
struct svm_range *tail;
|
|
|
|
if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
|
|
pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
|
|
prange->start, prange->last);
|
|
return;
|
|
}
|
|
if (start > prange->last || last < prange->start)
|
|
return;
|
|
|
|
head = tail = prange;
|
|
if (start > prange->start)
|
|
svm_range_split(prange, prange->start, start - 1, &tail);
|
|
if (last < tail->last)
|
|
svm_range_split(tail, last + 1, tail->last, &head);
|
|
|
|
if (head != prange && tail != prange) {
|
|
svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
|
|
svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
|
|
} else if (tail != prange) {
|
|
svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
|
|
} else if (head != prange) {
|
|
svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
|
|
} else if (parent != prange) {
|
|
prange->work_item.op = SVM_OP_UNMAP_RANGE;
|
|
}
|
|
}
|
|
|
|
static void
|
|
svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
|
|
unsigned long start, unsigned long last)
|
|
{
|
|
struct svm_range_list *svms;
|
|
struct svm_range *pchild;
|
|
struct kfd_process *p;
|
|
unsigned long s, l;
|
|
bool unmap_parent;
|
|
|
|
p = kfd_lookup_process_by_mm(mm);
|
|
if (!p)
|
|
return;
|
|
svms = &p->svms;
|
|
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
|
|
prange, prange->start, prange->last, start, last);
|
|
|
|
/* Make sure pending page faults are drained in the deferred worker
|
|
* before the range is freed to avoid straggler interrupts on
|
|
* unmapped memory causing "phantom faults".
|
|
*/
|
|
atomic_inc(&svms->drain_pagefaults);
|
|
|
|
unmap_parent = start <= prange->start && last >= prange->last;
|
|
|
|
list_for_each_entry(pchild, &prange->child_list, child_list) {
|
|
mutex_lock_nested(&pchild->lock, 1);
|
|
s = max(start, pchild->start);
|
|
l = min(last, pchild->last);
|
|
if (l >= s)
|
|
svm_range_unmap_from_gpus(pchild, s, l);
|
|
svm_range_unmap_split(mm, prange, pchild, start, last);
|
|
mutex_unlock(&pchild->lock);
|
|
}
|
|
s = max(start, prange->start);
|
|
l = min(last, prange->last);
|
|
if (l >= s)
|
|
svm_range_unmap_from_gpus(prange, s, l);
|
|
svm_range_unmap_split(mm, prange, prange, start, last);
|
|
|
|
if (unmap_parent)
|
|
svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
|
|
else
|
|
svm_range_add_list_work(svms, prange, mm,
|
|
SVM_OP_UPDATE_RANGE_NOTIFIER);
|
|
schedule_deferred_list_work(svms);
|
|
|
|
kfd_unref_process(p);
|
|
}
|
|
|
|
/**
|
|
* svm_range_cpu_invalidate_pagetables - interval notifier callback
|
|
* @mni: mmu_interval_notifier struct
|
|
* @range: mmu_notifier_range struct
|
|
* @cur_seq: value to pass to mmu_interval_set_seq()
|
|
*
|
|
* If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
|
|
* is from migration, or CPU page invalidation callback.
|
|
*
|
|
* For unmap event, unmap range from GPUs, remove prange from svms in a delayed
|
|
* work thread, and split prange if only part of prange is unmapped.
|
|
*
|
|
* For invalidation event, if GPU retry fault is not enabled, evict the queues,
|
|
* then schedule svm_range_restore_work to update GPU mapping and resume queues.
|
|
* If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
|
|
* update GPU mapping to recover.
|
|
*
|
|
* Context: mmap lock, notifier_invalidate_start lock are held
|
|
* for invalidate event, prange lock is held if this is from migration
|
|
*/
|
|
static bool
|
|
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
|
|
const struct mmu_notifier_range *range,
|
|
unsigned long cur_seq)
|
|
{
|
|
struct svm_range *prange;
|
|
unsigned long start;
|
|
unsigned long last;
|
|
|
|
if (range->event == MMU_NOTIFY_RELEASE)
|
|
return true;
|
|
if (!mmget_not_zero(mni->mm))
|
|
return true;
|
|
|
|
start = mni->interval_tree.start;
|
|
last = mni->interval_tree.last;
|
|
start = max(start, range->start) >> PAGE_SHIFT;
|
|
last = min(last, range->end - 1) >> PAGE_SHIFT;
|
|
pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
|
|
start, last, range->start >> PAGE_SHIFT,
|
|
(range->end - 1) >> PAGE_SHIFT,
|
|
mni->interval_tree.start >> PAGE_SHIFT,
|
|
mni->interval_tree.last >> PAGE_SHIFT, range->event);
|
|
|
|
prange = container_of(mni, struct svm_range, notifier);
|
|
|
|
svm_range_lock(prange);
|
|
mmu_interval_set_seq(mni, cur_seq);
|
|
|
|
switch (range->event) {
|
|
case MMU_NOTIFY_UNMAP:
|
|
svm_range_unmap_from_cpu(mni->mm, prange, start, last);
|
|
break;
|
|
default:
|
|
svm_range_evict(prange, mni->mm, start, last);
|
|
break;
|
|
}
|
|
|
|
svm_range_unlock(prange);
|
|
mmput(mni->mm);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* svm_range_from_addr - find svm range from fault address
|
|
* @svms: svm range list header
|
|
* @addr: address to search range interval tree, in pages
|
|
* @parent: parent range if range is on child list
|
|
*
|
|
* Context: The caller must hold svms->lock
|
|
*
|
|
* Return: the svm_range found or NULL
|
|
*/
|
|
struct svm_range *
|
|
svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
|
|
struct svm_range **parent)
|
|
{
|
|
struct interval_tree_node *node;
|
|
struct svm_range *prange;
|
|
struct svm_range *pchild;
|
|
|
|
node = interval_tree_iter_first(&svms->objects, addr, addr);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
prange = container_of(node, struct svm_range, it_node);
|
|
pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
|
|
addr, prange->start, prange->last, node->start, node->last);
|
|
|
|
if (addr >= prange->start && addr <= prange->last) {
|
|
if (parent)
|
|
*parent = prange;
|
|
return prange;
|
|
}
|
|
list_for_each_entry(pchild, &prange->child_list, child_list)
|
|
if (addr >= pchild->start && addr <= pchild->last) {
|
|
pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
|
|
addr, pchild->start, pchild->last);
|
|
if (parent)
|
|
*parent = prange;
|
|
return pchild;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* svm_range_best_restore_location - decide the best fault restore location
|
|
* @prange: svm range structure
|
|
* @adev: the GPU on which vm fault happened
|
|
*
|
|
* This is only called when xnack is on, to decide the best location to restore
|
|
* the range mapping after GPU vm fault. Caller uses the best location to do
|
|
* migration if actual loc is not best location, then update GPU page table
|
|
* mapping to the best location.
|
|
*
|
|
* If the preferred loc is accessible by faulting GPU, use preferred loc.
|
|
* If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
|
|
* If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
|
|
* if range actual loc is cpu, best_loc is cpu
|
|
* if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
|
|
* range actual loc.
|
|
* Otherwise, GPU no access, best_loc is -1.
|
|
*
|
|
* Return:
|
|
* -1 means vm fault GPU no access
|
|
* 0 for CPU or GPU id
|
|
*/
|
|
static int32_t
|
|
svm_range_best_restore_location(struct svm_range *prange,
|
|
struct amdgpu_device *adev,
|
|
int32_t *gpuidx)
|
|
{
|
|
struct amdgpu_device *bo_adev, *preferred_adev;
|
|
struct kfd_process *p;
|
|
uint32_t gpuid;
|
|
int r;
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
r = kfd_process_gpuid_from_adev(p, adev, &gpuid, gpuidx);
|
|
if (r < 0) {
|
|
pr_debug("failed to get gpuid from kgd\n");
|
|
return -1;
|
|
}
|
|
|
|
if (prange->preferred_loc == gpuid ||
|
|
prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
|
|
return prange->preferred_loc;
|
|
} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
|
|
preferred_adev = svm_range_get_adev_by_id(prange,
|
|
prange->preferred_loc);
|
|
if (amdgpu_xgmi_same_hive(adev, preferred_adev))
|
|
return prange->preferred_loc;
|
|
/* fall through */
|
|
}
|
|
|
|
if (test_bit(*gpuidx, prange->bitmap_access))
|
|
return gpuid;
|
|
|
|
if (test_bit(*gpuidx, prange->bitmap_aip)) {
|
|
if (!prange->actual_loc)
|
|
return 0;
|
|
|
|
bo_adev = svm_range_get_adev_by_id(prange, prange->actual_loc);
|
|
if (amdgpu_xgmi_same_hive(adev, bo_adev))
|
|
return prange->actual_loc;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
|
|
unsigned long *start, unsigned long *last,
|
|
bool *is_heap_stack)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct interval_tree_node *node;
|
|
unsigned long start_limit, end_limit;
|
|
|
|
vma = find_vma(p->mm, addr << PAGE_SHIFT);
|
|
if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) {
|
|
pr_debug("VMA does not exist in address [0x%llx]\n", addr);
|
|
return -EFAULT;
|
|
}
|
|
|
|
*is_heap_stack = (vma->vm_start <= vma->vm_mm->brk &&
|
|
vma->vm_end >= vma->vm_mm->start_brk) ||
|
|
(vma->vm_start <= vma->vm_mm->start_stack &&
|
|
vma->vm_end >= vma->vm_mm->start_stack);
|
|
|
|
start_limit = max(vma->vm_start >> PAGE_SHIFT,
|
|
(unsigned long)ALIGN_DOWN(addr, 2UL << 8));
|
|
end_limit = min(vma->vm_end >> PAGE_SHIFT,
|
|
(unsigned long)ALIGN(addr + 1, 2UL << 8));
|
|
/* First range that starts after the fault address */
|
|
node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
|
|
if (node) {
|
|
end_limit = min(end_limit, node->start);
|
|
/* Last range that ends before the fault address */
|
|
node = container_of(rb_prev(&node->rb),
|
|
struct interval_tree_node, rb);
|
|
} else {
|
|
/* Last range must end before addr because
|
|
* there was no range after addr
|
|
*/
|
|
node = container_of(rb_last(&p->svms.objects.rb_root),
|
|
struct interval_tree_node, rb);
|
|
}
|
|
if (node) {
|
|
if (node->last >= addr) {
|
|
WARN(1, "Overlap with prev node and page fault addr\n");
|
|
return -EFAULT;
|
|
}
|
|
start_limit = max(start_limit, node->last + 1);
|
|
}
|
|
|
|
*start = start_limit;
|
|
*last = end_limit - 1;
|
|
|
|
pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
|
|
vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
|
|
*start, *last, *is_heap_stack);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
|
|
uint64_t *bo_s, uint64_t *bo_l)
|
|
{
|
|
struct amdgpu_bo_va_mapping *mapping;
|
|
struct interval_tree_node *node;
|
|
struct amdgpu_bo *bo = NULL;
|
|
unsigned long userptr;
|
|
uint32_t i;
|
|
int r;
|
|
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct amdgpu_vm *vm;
|
|
|
|
if (!p->pdds[i]->drm_priv)
|
|
continue;
|
|
|
|
vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
|
|
r = amdgpu_bo_reserve(vm->root.bo, false);
|
|
if (r)
|
|
return r;
|
|
|
|
/* Check userptr by searching entire vm->va interval tree */
|
|
node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
|
|
while (node) {
|
|
mapping = container_of((struct rb_node *)node,
|
|
struct amdgpu_bo_va_mapping, rb);
|
|
bo = mapping->bo_va->base.bo;
|
|
|
|
if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
|
|
start << PAGE_SHIFT,
|
|
last << PAGE_SHIFT,
|
|
&userptr)) {
|
|
node = interval_tree_iter_next(node, 0, ~0ULL);
|
|
continue;
|
|
}
|
|
|
|
pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
|
|
start, last);
|
|
if (bo_s && bo_l) {
|
|
*bo_s = userptr >> PAGE_SHIFT;
|
|
*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
|
|
}
|
|
amdgpu_bo_unreserve(vm->root.bo);
|
|
return -EADDRINUSE;
|
|
}
|
|
amdgpu_bo_unreserve(vm->root.bo);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct
|
|
svm_range *svm_range_create_unregistered_range(struct amdgpu_device *adev,
|
|
struct kfd_process *p,
|
|
struct mm_struct *mm,
|
|
int64_t addr)
|
|
{
|
|
struct svm_range *prange = NULL;
|
|
unsigned long start, last;
|
|
uint32_t gpuid, gpuidx;
|
|
bool is_heap_stack;
|
|
uint64_t bo_s = 0;
|
|
uint64_t bo_l = 0;
|
|
int r;
|
|
|
|
if (svm_range_get_range_boundaries(p, addr, &start, &last,
|
|
&is_heap_stack))
|
|
return NULL;
|
|
|
|
r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
|
|
if (r != -EADDRINUSE)
|
|
r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
|
|
|
|
if (r == -EADDRINUSE) {
|
|
if (addr >= bo_s && addr <= bo_l)
|
|
return NULL;
|
|
|
|
/* Create one page svm range if 2MB range overlapping */
|
|
start = addr;
|
|
last = addr;
|
|
}
|
|
|
|
prange = svm_range_new(&p->svms, start, last);
|
|
if (!prange) {
|
|
pr_debug("Failed to create prange in address [0x%llx]\n", addr);
|
|
return NULL;
|
|
}
|
|
if (kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx)) {
|
|
pr_debug("failed to get gpuid from kgd\n");
|
|
svm_range_free(prange);
|
|
return NULL;
|
|
}
|
|
|
|
if (is_heap_stack)
|
|
prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
|
|
|
|
svm_range_add_to_svms(prange);
|
|
svm_range_add_notifier_locked(mm, prange);
|
|
|
|
return prange;
|
|
}
|
|
|
|
/* svm_range_skip_recover - decide if prange can be recovered
|
|
* @prange: svm range structure
|
|
*
|
|
* GPU vm retry fault handle skip recover the range for cases:
|
|
* 1. prange is on deferred list to be removed after unmap, it is stale fault,
|
|
* deferred list work will drain the stale fault before free the prange.
|
|
* 2. prange is on deferred list to add interval notifier after split, or
|
|
* 3. prange is child range, it is split from parent prange, recover later
|
|
* after interval notifier is added.
|
|
*
|
|
* Return: true to skip recover, false to recover
|
|
*/
|
|
static bool svm_range_skip_recover(struct svm_range *prange)
|
|
{
|
|
struct svm_range_list *svms = prange->svms;
|
|
|
|
spin_lock(&svms->deferred_list_lock);
|
|
if (list_empty(&prange->deferred_list) &&
|
|
list_empty(&prange->child_list)) {
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
return false;
|
|
}
|
|
spin_unlock(&svms->deferred_list_lock);
|
|
|
|
if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
|
|
svms, prange, prange->start, prange->last);
|
|
return true;
|
|
}
|
|
if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
|
|
prange->work_item.op == SVM_OP_ADD_RANGE) {
|
|
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
|
|
svms, prange, prange->start, prange->last);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
svm_range_count_fault(struct amdgpu_device *adev, struct kfd_process *p,
|
|
int32_t gpuidx)
|
|
{
|
|
struct kfd_process_device *pdd;
|
|
|
|
/* fault is on different page of same range
|
|
* or fault is skipped to recover later
|
|
* or fault is on invalid virtual address
|
|
*/
|
|
if (gpuidx == MAX_GPU_INSTANCE) {
|
|
uint32_t gpuid;
|
|
int r;
|
|
|
|
r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx);
|
|
if (r < 0)
|
|
return;
|
|
}
|
|
|
|
/* fault is recovered
|
|
* or fault cannot recover because GPU no access on the range
|
|
*/
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
if (pdd)
|
|
WRITE_ONCE(pdd->faults, pdd->faults + 1);
|
|
}
|
|
|
|
static bool
|
|
svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
|
|
{
|
|
unsigned long requested = VM_READ;
|
|
|
|
if (write_fault)
|
|
requested |= VM_WRITE;
|
|
|
|
pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
|
|
vma->vm_flags);
|
|
return (vma->vm_flags & requested) == requested;
|
|
}
|
|
|
|
int
|
|
svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
|
|
uint64_t addr, bool write_fault)
|
|
{
|
|
struct mm_struct *mm = NULL;
|
|
struct svm_range_list *svms;
|
|
struct svm_range *prange;
|
|
struct kfd_process *p;
|
|
uint64_t timestamp;
|
|
int32_t best_loc;
|
|
int32_t gpuidx = MAX_GPU_INSTANCE;
|
|
bool write_locked = false;
|
|
struct vm_area_struct *vma;
|
|
int r = 0;
|
|
|
|
if (!KFD_IS_SVM_API_SUPPORTED(adev->kfd.dev)) {
|
|
pr_debug("device does not support SVM\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
p = kfd_lookup_process_by_pasid(pasid);
|
|
if (!p) {
|
|
pr_debug("kfd process not founded pasid 0x%x\n", pasid);
|
|
return 0;
|
|
}
|
|
svms = &p->svms;
|
|
|
|
pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
|
|
|
|
if (atomic_read(&svms->drain_pagefaults)) {
|
|
pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!p->xnack_enabled) {
|
|
pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
|
|
r = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
/* p->lead_thread is available as kfd_process_wq_release flush the work
|
|
* before releasing task ref.
|
|
*/
|
|
mm = get_task_mm(p->lead_thread);
|
|
if (!mm) {
|
|
pr_debug("svms 0x%p failed to get mm\n", svms);
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
|
|
mmap_read_lock(mm);
|
|
retry_write_locked:
|
|
mutex_lock(&svms->lock);
|
|
prange = svm_range_from_addr(svms, addr, NULL);
|
|
if (!prange) {
|
|
pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
|
|
svms, addr);
|
|
if (!write_locked) {
|
|
/* Need the write lock to create new range with MMU notifier.
|
|
* Also flush pending deferred work to make sure the interval
|
|
* tree is up to date before we add a new range
|
|
*/
|
|
mutex_unlock(&svms->lock);
|
|
mmap_read_unlock(mm);
|
|
mmap_write_lock(mm);
|
|
write_locked = true;
|
|
goto retry_write_locked;
|
|
}
|
|
prange = svm_range_create_unregistered_range(adev, p, mm, addr);
|
|
if (!prange) {
|
|
pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
|
|
svms, addr);
|
|
mmap_write_downgrade(mm);
|
|
r = -EFAULT;
|
|
goto out_unlock_svms;
|
|
}
|
|
}
|
|
if (write_locked)
|
|
mmap_write_downgrade(mm);
|
|
|
|
mutex_lock(&prange->migrate_mutex);
|
|
|
|
if (svm_range_skip_recover(prange)) {
|
|
amdgpu_gmc_filter_faults_remove(adev, addr, pasid);
|
|
r = 0;
|
|
goto out_unlock_range;
|
|
}
|
|
|
|
timestamp = ktime_to_us(ktime_get()) - prange->validate_timestamp;
|
|
/* skip duplicate vm fault on different pages of same range */
|
|
if (timestamp < AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING) {
|
|
pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
|
|
svms, prange->start, prange->last);
|
|
r = 0;
|
|
goto out_unlock_range;
|
|
}
|
|
|
|
/* __do_munmap removed VMA, return success as we are handling stale
|
|
* retry fault.
|
|
*/
|
|
vma = find_vma(mm, addr << PAGE_SHIFT);
|
|
if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) {
|
|
pr_debug("address 0x%llx VMA is removed\n", addr);
|
|
r = 0;
|
|
goto out_unlock_range;
|
|
}
|
|
|
|
if (!svm_fault_allowed(vma, write_fault)) {
|
|
pr_debug("fault addr 0x%llx no %s permission\n", addr,
|
|
write_fault ? "write" : "read");
|
|
r = -EPERM;
|
|
goto out_unlock_range;
|
|
}
|
|
|
|
best_loc = svm_range_best_restore_location(prange, adev, &gpuidx);
|
|
if (best_loc == -1) {
|
|
pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
|
|
svms, prange->start, prange->last);
|
|
r = -EACCES;
|
|
goto out_unlock_range;
|
|
}
|
|
|
|
pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
|
|
svms, prange->start, prange->last, best_loc,
|
|
prange->actual_loc);
|
|
|
|
if (prange->actual_loc != best_loc) {
|
|
if (best_loc) {
|
|
r = svm_migrate_to_vram(prange, best_loc, mm);
|
|
if (r) {
|
|
pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
|
|
r, addr);
|
|
/* Fallback to system memory if migration to
|
|
* VRAM failed
|
|
*/
|
|
if (prange->actual_loc)
|
|
r = svm_migrate_vram_to_ram(prange, mm);
|
|
else
|
|
r = 0;
|
|
}
|
|
} else {
|
|
r = svm_migrate_vram_to_ram(prange, mm);
|
|
}
|
|
if (r) {
|
|
pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
|
|
r, svms, prange->start, prange->last);
|
|
goto out_unlock_range;
|
|
}
|
|
}
|
|
|
|
r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
|
|
if (r)
|
|
pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
|
|
r, svms, prange->start, prange->last);
|
|
|
|
out_unlock_range:
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
out_unlock_svms:
|
|
mutex_unlock(&svms->lock);
|
|
mmap_read_unlock(mm);
|
|
|
|
svm_range_count_fault(adev, p, gpuidx);
|
|
|
|
mmput(mm);
|
|
out:
|
|
kfd_unref_process(p);
|
|
|
|
if (r == -EAGAIN) {
|
|
pr_debug("recover vm fault later\n");
|
|
amdgpu_gmc_filter_faults_remove(adev, addr, pasid);
|
|
r = 0;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
void svm_range_list_fini(struct kfd_process *p)
|
|
{
|
|
struct svm_range *prange;
|
|
struct svm_range *next;
|
|
|
|
pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
|
|
|
|
cancel_delayed_work_sync(&p->svms.restore_work);
|
|
|
|
/* Ensure list work is finished before process is destroyed */
|
|
flush_work(&p->svms.deferred_list_work);
|
|
|
|
/*
|
|
* Ensure no retry fault comes in afterwards, as page fault handler will
|
|
* not find kfd process and take mm lock to recover fault.
|
|
*/
|
|
atomic_inc(&p->svms.drain_pagefaults);
|
|
svm_range_drain_retry_fault(&p->svms);
|
|
|
|
list_for_each_entry_safe(prange, next, &p->svms.list, list) {
|
|
svm_range_unlink(prange);
|
|
svm_range_remove_notifier(prange);
|
|
svm_range_free(prange);
|
|
}
|
|
|
|
mutex_destroy(&p->svms.lock);
|
|
|
|
pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
|
|
}
|
|
|
|
int svm_range_list_init(struct kfd_process *p)
|
|
{
|
|
struct svm_range_list *svms = &p->svms;
|
|
int i;
|
|
|
|
svms->objects = RB_ROOT_CACHED;
|
|
mutex_init(&svms->lock);
|
|
INIT_LIST_HEAD(&svms->list);
|
|
atomic_set(&svms->evicted_ranges, 0);
|
|
atomic_set(&svms->drain_pagefaults, 0);
|
|
INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
|
|
INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
|
|
INIT_LIST_HEAD(&svms->deferred_range_list);
|
|
INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
|
|
spin_lock_init(&svms->deferred_list_lock);
|
|
|
|
for (i = 0; i < p->n_pdds; i++)
|
|
if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev))
|
|
bitmap_set(svms->bitmap_supported, i, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* svm_range_check_vm - check if virtual address range mapped already
|
|
* @p: current kfd_process
|
|
* @start: range start address, in pages
|
|
* @last: range last address, in pages
|
|
* @bo_s: mapping start address in pages if address range already mapped
|
|
* @bo_l: mapping last address in pages if address range already mapped
|
|
*
|
|
* The purpose is to avoid virtual address ranges already allocated by
|
|
* kfd_ioctl_alloc_memory_of_gpu ioctl.
|
|
* It looks for each pdd in the kfd_process.
|
|
*
|
|
* Context: Process context
|
|
*
|
|
* Return 0 - OK, if the range is not mapped.
|
|
* Otherwise error code:
|
|
* -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
|
|
* -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
|
|
* a signal. Release all buffer reservations and return to user-space.
|
|
*/
|
|
static int
|
|
svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
|
|
uint64_t *bo_s, uint64_t *bo_l)
|
|
{
|
|
struct amdgpu_bo_va_mapping *mapping;
|
|
struct interval_tree_node *node;
|
|
uint32_t i;
|
|
int r;
|
|
|
|
for (i = 0; i < p->n_pdds; i++) {
|
|
struct amdgpu_vm *vm;
|
|
|
|
if (!p->pdds[i]->drm_priv)
|
|
continue;
|
|
|
|
vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
|
|
r = amdgpu_bo_reserve(vm->root.bo, false);
|
|
if (r)
|
|
return r;
|
|
|
|
node = interval_tree_iter_first(&vm->va, start, last);
|
|
if (node) {
|
|
pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
|
|
start, last);
|
|
mapping = container_of((struct rb_node *)node,
|
|
struct amdgpu_bo_va_mapping, rb);
|
|
if (bo_s && bo_l) {
|
|
*bo_s = mapping->start;
|
|
*bo_l = mapping->last;
|
|
}
|
|
amdgpu_bo_unreserve(vm->root.bo);
|
|
return -EADDRINUSE;
|
|
}
|
|
amdgpu_bo_unreserve(vm->root.bo);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* svm_range_is_valid - check if virtual address range is valid
|
|
* @p: current kfd_process
|
|
* @start: range start address, in pages
|
|
* @size: range size, in pages
|
|
*
|
|
* Valid virtual address range means it belongs to one or more VMAs
|
|
*
|
|
* Context: Process context
|
|
*
|
|
* Return:
|
|
* 0 - OK, otherwise error code
|
|
*/
|
|
static int
|
|
svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
|
|
{
|
|
const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
|
|
struct vm_area_struct *vma;
|
|
unsigned long end;
|
|
unsigned long start_unchg = start;
|
|
|
|
start <<= PAGE_SHIFT;
|
|
end = start + (size << PAGE_SHIFT);
|
|
do {
|
|
vma = find_vma(p->mm, start);
|
|
if (!vma || start < vma->vm_start ||
|
|
(vma->vm_flags & device_vma))
|
|
return -EFAULT;
|
|
start = min(end, vma->vm_end);
|
|
} while (start < end);
|
|
|
|
return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
|
|
NULL);
|
|
}
|
|
|
|
/**
|
|
* svm_range_best_prefetch_location - decide the best prefetch location
|
|
* @prange: svm range structure
|
|
*
|
|
* For xnack off:
|
|
* If range map to single GPU, the best prefetch location is prefetch_loc, which
|
|
* can be CPU or GPU.
|
|
*
|
|
* If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
|
|
* XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
|
|
* the best prefetch location is always CPU, because GPU can not have coherent
|
|
* mapping VRAM of other GPUs even with large-BAR PCIe connection.
|
|
*
|
|
* For xnack on:
|
|
* If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
|
|
* prefetch_loc, other GPU access will generate vm fault and trigger migration.
|
|
*
|
|
* If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
|
|
* hive, the best prefetch location is prefetch_loc GPU, otherwise the best
|
|
* prefetch location is always CPU.
|
|
*
|
|
* Context: Process context
|
|
*
|
|
* Return:
|
|
* 0 for CPU or GPU id
|
|
*/
|
|
static uint32_t
|
|
svm_range_best_prefetch_location(struct svm_range *prange)
|
|
{
|
|
DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
|
|
uint32_t best_loc = prange->prefetch_loc;
|
|
struct kfd_process_device *pdd;
|
|
struct amdgpu_device *bo_adev;
|
|
struct kfd_process *p;
|
|
uint32_t gpuidx;
|
|
|
|
p = container_of(prange->svms, struct kfd_process, svms);
|
|
|
|
if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
|
|
goto out;
|
|
|
|
bo_adev = svm_range_get_adev_by_id(prange, best_loc);
|
|
if (!bo_adev) {
|
|
WARN_ONCE(1, "failed to get device by id 0x%x\n", best_loc);
|
|
best_loc = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (p->xnack_enabled)
|
|
bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
|
|
else
|
|
bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
|
|
MAX_GPU_INSTANCE);
|
|
|
|
for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
|
|
pdd = kfd_process_device_from_gpuidx(p, gpuidx);
|
|
if (!pdd) {
|
|
pr_debug("failed to get device by idx 0x%x\n", gpuidx);
|
|
continue;
|
|
}
|
|
|
|
if (pdd->dev->adev == bo_adev)
|
|
continue;
|
|
|
|
if (!amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
|
|
best_loc = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
|
|
p->xnack_enabled, &p->svms, prange->start, prange->last,
|
|
best_loc);
|
|
|
|
return best_loc;
|
|
}
|
|
|
|
/* FIXME: This is a workaround for page locking bug when some pages are
|
|
* invalid during migration to VRAM
|
|
*/
|
|
void svm_range_prefault(struct svm_range *prange, struct mm_struct *mm,
|
|
void *owner)
|
|
{
|
|
struct hmm_range *hmm_range;
|
|
int r;
|
|
|
|
if (prange->validated_once)
|
|
return;
|
|
|
|
r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL,
|
|
prange->start << PAGE_SHIFT,
|
|
prange->npages, &hmm_range,
|
|
false, true, owner);
|
|
if (!r) {
|
|
amdgpu_hmm_range_get_pages_done(hmm_range);
|
|
prange->validated_once = true;
|
|
}
|
|
}
|
|
|
|
/* svm_range_trigger_migration - start page migration if prefetch loc changed
|
|
* @mm: current process mm_struct
|
|
* @prange: svm range structure
|
|
* @migrated: output, true if migration is triggered
|
|
*
|
|
* If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
|
|
* from ram to vram.
|
|
* If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
|
|
* from vram to ram.
|
|
*
|
|
* If GPU vm fault retry is not enabled, migration interact with MMU notifier
|
|
* and restore work:
|
|
* 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
|
|
* stops all queues, schedule restore work
|
|
* 2. svm_range_restore_work wait for migration is done by
|
|
* a. svm_range_validate_vram takes prange->migrate_mutex
|
|
* b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
|
|
* 3. restore work update mappings of GPU, resume all queues.
|
|
*
|
|
* Context: Process context
|
|
*
|
|
* Return:
|
|
* 0 - OK, otherwise - error code of migration
|
|
*/
|
|
static int
|
|
svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
|
|
bool *migrated)
|
|
{
|
|
uint32_t best_loc;
|
|
int r = 0;
|
|
|
|
*migrated = false;
|
|
best_loc = svm_range_best_prefetch_location(prange);
|
|
|
|
if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
|
|
best_loc == prange->actual_loc)
|
|
return 0;
|
|
|
|
if (!best_loc) {
|
|
r = svm_migrate_vram_to_ram(prange, mm);
|
|
*migrated = !r;
|
|
return r;
|
|
}
|
|
|
|
r = svm_migrate_to_vram(prange, best_loc, mm);
|
|
*migrated = !r;
|
|
|
|
return r;
|
|
}
|
|
|
|
int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
|
|
{
|
|
if (!fence)
|
|
return -EINVAL;
|
|
|
|
if (dma_fence_is_signaled(&fence->base))
|
|
return 0;
|
|
|
|
if (fence->svm_bo) {
|
|
WRITE_ONCE(fence->svm_bo->evicting, 1);
|
|
schedule_work(&fence->svm_bo->eviction_work);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void svm_range_evict_svm_bo_worker(struct work_struct *work)
|
|
{
|
|
struct svm_range_bo *svm_bo;
|
|
struct kfd_process *p;
|
|
struct mm_struct *mm;
|
|
int r = 0;
|
|
|
|
svm_bo = container_of(work, struct svm_range_bo, eviction_work);
|
|
if (!svm_bo_ref_unless_zero(svm_bo))
|
|
return; /* svm_bo was freed while eviction was pending */
|
|
|
|
/* svm_range_bo_release destroys this worker thread. So during
|
|
* the lifetime of this thread, kfd_process and mm will be valid.
|
|
*/
|
|
p = container_of(svm_bo->svms, struct kfd_process, svms);
|
|
mm = p->mm;
|
|
if (!mm)
|
|
return;
|
|
|
|
mmap_read_lock(mm);
|
|
spin_lock(&svm_bo->list_lock);
|
|
while (!list_empty(&svm_bo->range_list) && !r) {
|
|
struct svm_range *prange =
|
|
list_first_entry(&svm_bo->range_list,
|
|
struct svm_range, svm_bo_list);
|
|
int retries = 3;
|
|
|
|
list_del_init(&prange->svm_bo_list);
|
|
spin_unlock(&svm_bo->list_lock);
|
|
|
|
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
|
|
prange->start, prange->last);
|
|
|
|
mutex_lock(&prange->migrate_mutex);
|
|
do {
|
|
r = svm_migrate_vram_to_ram(prange,
|
|
svm_bo->eviction_fence->mm);
|
|
} while (!r && prange->actual_loc && --retries);
|
|
|
|
if (!r && prange->actual_loc)
|
|
pr_info_once("Migration failed during eviction");
|
|
|
|
if (!prange->actual_loc) {
|
|
mutex_lock(&prange->lock);
|
|
prange->svm_bo = NULL;
|
|
mutex_unlock(&prange->lock);
|
|
}
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
|
|
spin_lock(&svm_bo->list_lock);
|
|
}
|
|
spin_unlock(&svm_bo->list_lock);
|
|
mmap_read_unlock(mm);
|
|
|
|
dma_fence_signal(&svm_bo->eviction_fence->base);
|
|
|
|
/* This is the last reference to svm_bo, after svm_range_vram_node_free
|
|
* has been called in svm_migrate_vram_to_ram
|
|
*/
|
|
WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
|
|
svm_range_bo_unref(svm_bo);
|
|
}
|
|
|
|
static int
|
|
svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
|
|
uint64_t start, uint64_t size, uint32_t nattr,
|
|
struct kfd_ioctl_svm_attribute *attrs)
|
|
{
|
|
struct amdkfd_process_info *process_info = p->kgd_process_info;
|
|
struct list_head update_list;
|
|
struct list_head insert_list;
|
|
struct list_head remove_list;
|
|
struct svm_range_list *svms;
|
|
struct svm_range *prange;
|
|
struct svm_range *next;
|
|
bool update_mapping = false;
|
|
bool flush_tlb;
|
|
int r = 0;
|
|
|
|
pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
|
|
p->pasid, &p->svms, start, start + size - 1, size);
|
|
|
|
r = svm_range_check_attr(p, nattr, attrs);
|
|
if (r)
|
|
return r;
|
|
|
|
svms = &p->svms;
|
|
|
|
mutex_lock(&process_info->lock);
|
|
|
|
svm_range_list_lock_and_flush_work(svms, mm);
|
|
|
|
r = svm_range_is_valid(p, start, size);
|
|
if (r) {
|
|
pr_debug("invalid range r=%d\n", r);
|
|
mmap_write_unlock(mm);
|
|
goto out;
|
|
}
|
|
|
|
mutex_lock(&svms->lock);
|
|
|
|
/* Add new range and split existing ranges as needed */
|
|
r = svm_range_add(p, start, size, nattr, attrs, &update_list,
|
|
&insert_list, &remove_list);
|
|
if (r) {
|
|
mutex_unlock(&svms->lock);
|
|
mmap_write_unlock(mm);
|
|
goto out;
|
|
}
|
|
/* Apply changes as a transaction */
|
|
list_for_each_entry_safe(prange, next, &insert_list, list) {
|
|
svm_range_add_to_svms(prange);
|
|
svm_range_add_notifier_locked(mm, prange);
|
|
}
|
|
list_for_each_entry(prange, &update_list, update_list) {
|
|
svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
|
|
/* TODO: unmap ranges from GPU that lost access */
|
|
}
|
|
list_for_each_entry_safe(prange, next, &remove_list, update_list) {
|
|
pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
|
|
prange->svms, prange, prange->start,
|
|
prange->last);
|
|
svm_range_unlink(prange);
|
|
svm_range_remove_notifier(prange);
|
|
svm_range_free(prange);
|
|
}
|
|
|
|
mmap_write_downgrade(mm);
|
|
/* Trigger migrations and revalidate and map to GPUs as needed. If
|
|
* this fails we may be left with partially completed actions. There
|
|
* is no clean way of rolling back to the previous state in such a
|
|
* case because the rollback wouldn't be guaranteed to work either.
|
|
*/
|
|
list_for_each_entry(prange, &update_list, update_list) {
|
|
bool migrated;
|
|
|
|
mutex_lock(&prange->migrate_mutex);
|
|
|
|
r = svm_range_trigger_migration(mm, prange, &migrated);
|
|
if (r)
|
|
goto out_unlock_range;
|
|
|
|
if (migrated && !p->xnack_enabled) {
|
|
pr_debug("restore_work will update mappings of GPUs\n");
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
continue;
|
|
}
|
|
|
|
if (!migrated && !update_mapping) {
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
continue;
|
|
}
|
|
|
|
flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
|
|
|
|
r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
|
|
true, true, flush_tlb);
|
|
if (r)
|
|
pr_debug("failed %d to map svm range\n", r);
|
|
|
|
out_unlock_range:
|
|
mutex_unlock(&prange->migrate_mutex);
|
|
if (r)
|
|
break;
|
|
}
|
|
|
|
svm_range_debug_dump(svms);
|
|
|
|
mutex_unlock(&svms->lock);
|
|
mmap_read_unlock(mm);
|
|
out:
|
|
mutex_unlock(&process_info->lock);
|
|
|
|
pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
|
|
&p->svms, start, start + size - 1, r);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int
|
|
svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
|
|
uint64_t start, uint64_t size, uint32_t nattr,
|
|
struct kfd_ioctl_svm_attribute *attrs)
|
|
{
|
|
DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
|
|
DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
|
|
bool get_preferred_loc = false;
|
|
bool get_prefetch_loc = false;
|
|
bool get_granularity = false;
|
|
bool get_accessible = false;
|
|
bool get_flags = false;
|
|
uint64_t last = start + size - 1UL;
|
|
uint8_t granularity = 0xff;
|
|
struct interval_tree_node *node;
|
|
struct svm_range_list *svms;
|
|
struct svm_range *prange;
|
|
uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
uint32_t flags_and = 0xffffffff;
|
|
uint32_t flags_or = 0;
|
|
int gpuidx;
|
|
uint32_t i;
|
|
int r = 0;
|
|
|
|
pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
|
|
start + size - 1, nattr);
|
|
|
|
/* Flush pending deferred work to avoid racing with deferred actions from
|
|
* previous memory map changes (e.g. munmap). Concurrent memory map changes
|
|
* can still race with get_attr because we don't hold the mmap lock. But that
|
|
* would be a race condition in the application anyway, and undefined
|
|
* behaviour is acceptable in that case.
|
|
*/
|
|
flush_work(&p->svms.deferred_list_work);
|
|
|
|
mmap_read_lock(mm);
|
|
r = svm_range_is_valid(p, start, size);
|
|
mmap_read_unlock(mm);
|
|
if (r) {
|
|
pr_debug("invalid range r=%d\n", r);
|
|
return r;
|
|
}
|
|
|
|
for (i = 0; i < nattr; i++) {
|
|
switch (attrs[i].type) {
|
|
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
|
|
get_preferred_loc = true;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
|
|
get_prefetch_loc = true;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS:
|
|
get_accessible = true;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
|
|
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
|
|
get_flags = true;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
|
|
get_granularity = true;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
|
|
case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
|
|
fallthrough;
|
|
default:
|
|
pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
svms = &p->svms;
|
|
|
|
mutex_lock(&svms->lock);
|
|
|
|
node = interval_tree_iter_first(&svms->objects, start, last);
|
|
if (!node) {
|
|
pr_debug("range attrs not found return default values\n");
|
|
svm_range_set_default_attributes(&location, &prefetch_loc,
|
|
&granularity, &flags_and);
|
|
flags_or = flags_and;
|
|
if (p->xnack_enabled)
|
|
bitmap_copy(bitmap_access, svms->bitmap_supported,
|
|
MAX_GPU_INSTANCE);
|
|
else
|
|
bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
|
|
bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
|
|
goto fill_values;
|
|
}
|
|
bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
|
|
bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
|
|
|
|
while (node) {
|
|
struct interval_tree_node *next;
|
|
|
|
prange = container_of(node, struct svm_range, it_node);
|
|
next = interval_tree_iter_next(node, start, last);
|
|
|
|
if (get_preferred_loc) {
|
|
if (prange->preferred_loc ==
|
|
KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
|
|
(location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
|
|
location != prange->preferred_loc)) {
|
|
location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
get_preferred_loc = false;
|
|
} else {
|
|
location = prange->preferred_loc;
|
|
}
|
|
}
|
|
if (get_prefetch_loc) {
|
|
if (prange->prefetch_loc ==
|
|
KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
|
|
(prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
|
|
prefetch_loc != prange->prefetch_loc)) {
|
|
prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
|
|
get_prefetch_loc = false;
|
|
} else {
|
|
prefetch_loc = prange->prefetch_loc;
|
|
}
|
|
}
|
|
if (get_accessible) {
|
|
bitmap_and(bitmap_access, bitmap_access,
|
|
prange->bitmap_access, MAX_GPU_INSTANCE);
|
|
bitmap_and(bitmap_aip, bitmap_aip,
|
|
prange->bitmap_aip, MAX_GPU_INSTANCE);
|
|
}
|
|
if (get_flags) {
|
|
flags_and &= prange->flags;
|
|
flags_or |= prange->flags;
|
|
}
|
|
|
|
if (get_granularity && prange->granularity < granularity)
|
|
granularity = prange->granularity;
|
|
|
|
node = next;
|
|
}
|
|
fill_values:
|
|
mutex_unlock(&svms->lock);
|
|
|
|
for (i = 0; i < nattr; i++) {
|
|
switch (attrs[i].type) {
|
|
case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
|
|
attrs[i].value = location;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
|
|
attrs[i].value = prefetch_loc;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_ACCESS:
|
|
gpuidx = kfd_process_gpuidx_from_gpuid(p,
|
|
attrs[i].value);
|
|
if (gpuidx < 0) {
|
|
pr_debug("invalid gpuid %x\n", attrs[i].value);
|
|
return -EINVAL;
|
|
}
|
|
if (test_bit(gpuidx, bitmap_access))
|
|
attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
|
|
else if (test_bit(gpuidx, bitmap_aip))
|
|
attrs[i].type =
|
|
KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
|
|
else
|
|
attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
|
|
attrs[i].value = flags_and;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
|
|
attrs[i].value = ~flags_or;
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_GRANULARITY:
|
|
attrs[i].value = (uint32_t)granularity;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kfd_criu_resume_svm(struct kfd_process *p)
|
|
{
|
|
struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
|
|
int nattr_common = 4, nattr_accessibility = 1;
|
|
struct criu_svm_metadata *criu_svm_md = NULL;
|
|
struct svm_range_list *svms = &p->svms;
|
|
struct criu_svm_metadata *next = NULL;
|
|
uint32_t set_flags = 0xffffffff;
|
|
int i, j, num_attrs, ret = 0;
|
|
uint64_t set_attr_size;
|
|
struct mm_struct *mm;
|
|
|
|
if (list_empty(&svms->criu_svm_metadata_list)) {
|
|
pr_debug("No SVM data from CRIU restore stage 2\n");
|
|
return ret;
|
|
}
|
|
|
|
mm = get_task_mm(p->lead_thread);
|
|
if (!mm) {
|
|
pr_err("failed to get mm for the target process\n");
|
|
return -ESRCH;
|
|
}
|
|
|
|
num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
|
|
|
|
i = j = 0;
|
|
list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
|
|
pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
|
|
i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
|
|
|
|
for (j = 0; j < num_attrs; j++) {
|
|
pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
|
|
i, j, criu_svm_md->data.attrs[j].type,
|
|
i, j, criu_svm_md->data.attrs[j].value);
|
|
switch (criu_svm_md->data.attrs[j].type) {
|
|
/* During Checkpoint operation, the query for
|
|
* KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
|
|
* return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
|
|
* not used by the range which was checkpointed. Care
|
|
* must be taken to not restore with an invalid value
|
|
* otherwise the gpuidx value will be invalid and
|
|
* set_attr would eventually fail so just replace those
|
|
* with another dummy attribute such as
|
|
* KFD_IOCTL_SVM_ATTR_SET_FLAGS.
|
|
*/
|
|
case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
|
|
if (criu_svm_md->data.attrs[j].value ==
|
|
KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
|
|
criu_svm_md->data.attrs[j].type =
|
|
KFD_IOCTL_SVM_ATTR_SET_FLAGS;
|
|
criu_svm_md->data.attrs[j].value = 0;
|
|
}
|
|
break;
|
|
case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
|
|
set_flags = criu_svm_md->data.attrs[j].value;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* CLR_FLAGS is not available via get_attr during checkpoint but
|
|
* it needs to be inserted before restoring the ranges so
|
|
* allocate extra space for it before calling set_attr
|
|
*/
|
|
set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
|
|
(num_attrs + 1);
|
|
set_attr_new = krealloc(set_attr, set_attr_size,
|
|
GFP_KERNEL);
|
|
if (!set_attr_new) {
|
|
ret = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
set_attr = set_attr_new;
|
|
|
|
memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
|
|
sizeof(struct kfd_ioctl_svm_attribute));
|
|
set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
|
|
set_attr[num_attrs].value = ~set_flags;
|
|
|
|
ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
|
|
criu_svm_md->data.size, num_attrs + 1,
|
|
set_attr);
|
|
if (ret) {
|
|
pr_err("CRIU: failed to set range attributes\n");
|
|
goto exit;
|
|
}
|
|
|
|
i++;
|
|
}
|
|
exit:
|
|
kfree(set_attr);
|
|
list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
|
|
pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
|
|
criu_svm_md->data.start_addr);
|
|
kfree(criu_svm_md);
|
|
}
|
|
|
|
mmput(mm);
|
|
return ret;
|
|
|
|
}
|
|
|
|
int kfd_criu_restore_svm(struct kfd_process *p,
|
|
uint8_t __user *user_priv_ptr,
|
|
uint64_t *priv_data_offset,
|
|
uint64_t max_priv_data_size)
|
|
{
|
|
uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
|
|
int nattr_common = 4, nattr_accessibility = 1;
|
|
struct criu_svm_metadata *criu_svm_md = NULL;
|
|
struct svm_range_list *svms = &p->svms;
|
|
uint32_t num_devices;
|
|
int ret = 0;
|
|
|
|
num_devices = p->n_pdds;
|
|
/* Handle one SVM range object at a time, also the number of gpus are
|
|
* assumed to be same on the restore node, checking must be done while
|
|
* evaluating the topology earlier
|
|
*/
|
|
|
|
svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
|
|
(nattr_common + nattr_accessibility * num_devices);
|
|
svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
|
|
|
|
svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
|
|
svm_attrs_size;
|
|
|
|
criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
|
|
if (!criu_svm_md) {
|
|
pr_err("failed to allocate memory to store svm metadata\n");
|
|
return -ENOMEM;
|
|
}
|
|
if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
|
|
ret = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
|
|
svm_priv_data_size);
|
|
if (ret) {
|
|
ret = -EFAULT;
|
|
goto exit;
|
|
}
|
|
*priv_data_offset += svm_priv_data_size;
|
|
|
|
list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
|
|
|
|
return 0;
|
|
|
|
|
|
exit:
|
|
kfree(criu_svm_md);
|
|
return ret;
|
|
}
|
|
|
|
int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
|
|
uint64_t *svm_priv_data_size)
|
|
{
|
|
uint64_t total_size, accessibility_size, common_attr_size;
|
|
int nattr_common = 4, nattr_accessibility = 1;
|
|
int num_devices = p->n_pdds;
|
|
struct svm_range_list *svms;
|
|
struct svm_range *prange;
|
|
uint32_t count = 0;
|
|
|
|
*svm_priv_data_size = 0;
|
|
|
|
svms = &p->svms;
|
|
if (!svms)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&svms->lock);
|
|
list_for_each_entry(prange, &svms->list, list) {
|
|
pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
|
|
prange, prange->start, prange->npages,
|
|
prange->start + prange->npages - 1);
|
|
count++;
|
|
}
|
|
mutex_unlock(&svms->lock);
|
|
|
|
*num_svm_ranges = count;
|
|
/* Only the accessbility attributes need to be queried for all the gpus
|
|
* individually, remaining ones are spanned across the entire process
|
|
* regardless of the various gpu nodes. Of the remaining attributes,
|
|
* KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
|
|
*
|
|
* KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
|
|
* KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
|
|
* KFD_IOCTL_SVM_ATTR_SET_FLAGS
|
|
* KFD_IOCTL_SVM_ATTR_GRANULARITY
|
|
*
|
|
* ** ACCESSBILITY ATTRIBUTES **
|
|
* (Considered as one, type is altered during query, value is gpuid)
|
|
* KFD_IOCTL_SVM_ATTR_ACCESS
|
|
* KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
|
|
* KFD_IOCTL_SVM_ATTR_NO_ACCESS
|
|
*/
|
|
if (*num_svm_ranges > 0) {
|
|
common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
|
|
nattr_common;
|
|
accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
|
|
nattr_accessibility * num_devices;
|
|
|
|
total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
|
|
common_attr_size + accessibility_size;
|
|
|
|
*svm_priv_data_size = *num_svm_ranges * total_size;
|
|
}
|
|
|
|
pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
|
|
*svm_priv_data_size);
|
|
return 0;
|
|
}
|
|
|
|
int kfd_criu_checkpoint_svm(struct kfd_process *p,
|
|
uint8_t __user *user_priv_data,
|
|
uint64_t *priv_data_offset)
|
|
{
|
|
struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
|
|
struct kfd_ioctl_svm_attribute *query_attr = NULL;
|
|
uint64_t svm_priv_data_size, query_attr_size = 0;
|
|
int index, nattr_common = 4, ret = 0;
|
|
struct svm_range_list *svms;
|
|
int num_devices = p->n_pdds;
|
|
struct svm_range *prange;
|
|
struct mm_struct *mm;
|
|
|
|
svms = &p->svms;
|
|
if (!svms)
|
|
return -EINVAL;
|
|
|
|
mm = get_task_mm(p->lead_thread);
|
|
if (!mm) {
|
|
pr_err("failed to get mm for the target process\n");
|
|
return -ESRCH;
|
|
}
|
|
|
|
query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
|
|
(nattr_common + num_devices);
|
|
|
|
query_attr = kzalloc(query_attr_size, GFP_KERNEL);
|
|
if (!query_attr) {
|
|
ret = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
|
|
query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
|
|
query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
|
|
query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
|
|
query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
|
|
|
|
for (index = 0; index < num_devices; index++) {
|
|
struct kfd_process_device *pdd = p->pdds[index];
|
|
|
|
query_attr[index + nattr_common].type =
|
|
KFD_IOCTL_SVM_ATTR_ACCESS;
|
|
query_attr[index + nattr_common].value = pdd->user_gpu_id;
|
|
}
|
|
|
|
svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
|
|
|
|
svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
|
|
if (!svm_priv) {
|
|
ret = -ENOMEM;
|
|
goto exit_query;
|
|
}
|
|
|
|
index = 0;
|
|
list_for_each_entry(prange, &svms->list, list) {
|
|
|
|
svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
|
|
svm_priv->start_addr = prange->start;
|
|
svm_priv->size = prange->npages;
|
|
memcpy(&svm_priv->attrs, query_attr, query_attr_size);
|
|
pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
|
|
prange, prange->start, prange->npages,
|
|
prange->start + prange->npages - 1,
|
|
prange->npages * PAGE_SIZE);
|
|
|
|
ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
|
|
svm_priv->size,
|
|
(nattr_common + num_devices),
|
|
svm_priv->attrs);
|
|
if (ret) {
|
|
pr_err("CRIU: failed to obtain range attributes\n");
|
|
goto exit_priv;
|
|
}
|
|
|
|
if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
|
|
svm_priv_data_size)) {
|
|
pr_err("Failed to copy svm priv to user\n");
|
|
ret = -EFAULT;
|
|
goto exit_priv;
|
|
}
|
|
|
|
*priv_data_offset += svm_priv_data_size;
|
|
|
|
}
|
|
|
|
|
|
exit_priv:
|
|
kfree(svm_priv);
|
|
exit_query:
|
|
kfree(query_attr);
|
|
exit:
|
|
mmput(mm);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
|
|
uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
int r;
|
|
|
|
start >>= PAGE_SHIFT;
|
|
size >>= PAGE_SHIFT;
|
|
|
|
switch (op) {
|
|
case KFD_IOCTL_SVM_OP_SET_ATTR:
|
|
r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
|
|
break;
|
|
case KFD_IOCTL_SVM_OP_GET_ATTR:
|
|
r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
|
|
break;
|
|
default:
|
|
r = EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|