OpenCloudOS-Kernel/drivers/net/ipa/ipa_endpoint.c

1664 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2019-2020 Linaro Ltd.
*/
#include <linux/types.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/bitfield.h>
#include <linux/if_rmnet.h>
#include <linux/dma-direction.h>
#include "gsi.h"
#include "gsi_trans.h"
#include "ipa.h"
#include "ipa_data.h"
#include "ipa_endpoint.h"
#include "ipa_cmd.h"
#include "ipa_mem.h"
#include "ipa_modem.h"
#include "ipa_table.h"
#include "ipa_gsi.h"
#include "ipa_clock.h"
#define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0)
#define IPA_REPLENISH_BATCH 16
/* RX buffer is 1 page (or a power-of-2 contiguous pages) */
#define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */
/* The amount of RX buffer space consumed by standard skb overhead */
#define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
/* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
#define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */
#define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3
#define IPA_AGGR_TIME_LIMIT_DEFAULT 500 /* microseconds */
/** enum ipa_status_opcode - status element opcode hardware values */
enum ipa_status_opcode {
IPA_STATUS_OPCODE_PACKET = 0x01,
IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04,
IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08,
IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40,
};
/** enum ipa_status_exception - status element exception type */
enum ipa_status_exception {
/* 0 means no exception */
IPA_STATUS_EXCEPTION_DEAGGR = 0x01,
};
/* Status element provided by hardware */
struct ipa_status {
u8 opcode; /* enum ipa_status_opcode */
u8 exception; /* enum ipa_status_exception */
__le16 mask;
__le16 pkt_len;
u8 endp_src_idx;
u8 endp_dst_idx;
__le32 metadata;
__le32 flags1;
__le64 flags2;
__le32 flags3;
__le32 flags4;
};
/* Field masks for struct ipa_status structure fields */
#define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0)
#define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22)
#ifdef IPA_VALIDATE
static void ipa_endpoint_validate_build(void)
{
/* The aggregation byte limit defines the point at which an
* aggregation window will close. It is programmed into the
* IPA hardware as a number of KB. We don't use "hard byte
* limit" aggregation, which means that we need to supply
* enough space in a receive buffer to hold a complete MTU
* plus normal skb overhead *after* that aggregation byte
* limit has been crossed.
*
* This check just ensures we don't define a receive buffer
* size that would exceed what we can represent in the field
* that is used to program its size.
*/
BUILD_BUG_ON(IPA_RX_BUFFER_SIZE >
field_max(AGGR_BYTE_LIMIT_FMASK) * SZ_1K +
IPA_MTU + IPA_RX_BUFFER_OVERHEAD);
/* I honestly don't know where this requirement comes from. But
* it holds, and if we someday need to loosen the constraint we
* can try to track it down.
*/
BUILD_BUG_ON(sizeof(struct ipa_status) % 4);
}
static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
const struct ipa_gsi_endpoint_data *all_data,
const struct ipa_gsi_endpoint_data *data)
{
const struct ipa_gsi_endpoint_data *other_data;
struct device *dev = &ipa->pdev->dev;
enum ipa_endpoint_name other_name;
if (ipa_gsi_endpoint_data_empty(data))
return true;
if (!data->toward_ipa) {
if (data->endpoint.filter_support) {
dev_err(dev, "filtering not supported for "
"RX endpoint %u\n",
data->endpoint_id);
return false;
}
return true; /* Nothing more to check for RX */
}
if (data->endpoint.config.status_enable) {
other_name = data->endpoint.config.tx.status_endpoint;
if (other_name >= count) {
dev_err(dev, "status endpoint name %u out of range "
"for endpoint %u\n",
other_name, data->endpoint_id);
return false;
}
/* Status endpoint must be defined... */
other_data = &all_data[other_name];
if (ipa_gsi_endpoint_data_empty(other_data)) {
dev_err(dev, "DMA endpoint name %u undefined "
"for endpoint %u\n",
other_name, data->endpoint_id);
return false;
}
/* ...and has to be an RX endpoint... */
if (other_data->toward_ipa) {
dev_err(dev,
"status endpoint for endpoint %u not RX\n",
data->endpoint_id);
return false;
}
/* ...and if it's to be an AP endpoint... */
if (other_data->ee_id == GSI_EE_AP) {
/* ...make sure it has status enabled. */
if (!other_data->endpoint.config.status_enable) {
dev_err(dev,
"status not enabled for endpoint %u\n",
other_data->endpoint_id);
return false;
}
}
}
if (data->endpoint.config.dma_mode) {
other_name = data->endpoint.config.dma_endpoint;
if (other_name >= count) {
dev_err(dev, "DMA endpoint name %u out of range "
"for endpoint %u\n",
other_name, data->endpoint_id);
return false;
}
other_data = &all_data[other_name];
if (ipa_gsi_endpoint_data_empty(other_data)) {
dev_err(dev, "DMA endpoint name %u undefined "
"for endpoint %u\n",
other_name, data->endpoint_id);
return false;
}
}
return true;
}
static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
const struct ipa_gsi_endpoint_data *data)
{
const struct ipa_gsi_endpoint_data *dp = data;
struct device *dev = &ipa->pdev->dev;
enum ipa_endpoint_name name;
ipa_endpoint_validate_build();
if (count > IPA_ENDPOINT_COUNT) {
dev_err(dev, "too many endpoints specified (%u > %u)\n",
count, IPA_ENDPOINT_COUNT);
return false;
}
/* Make sure needed endpoints have defined data */
if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
dev_err(dev, "command TX endpoint not defined\n");
return false;
}
if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
dev_err(dev, "LAN RX endpoint not defined\n");
return false;
}
if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
dev_err(dev, "AP->modem TX endpoint not defined\n");
return false;
}
if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
dev_err(dev, "AP<-modem RX endpoint not defined\n");
return false;
}
for (name = 0; name < count; name++, dp++)
if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
return false;
return true;
}
#else /* !IPA_VALIDATE */
static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
const struct ipa_gsi_endpoint_data *data)
{
return true;
}
#endif /* !IPA_VALIDATE */
/* Allocate a transaction to use on a non-command endpoint */
static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
u32 tre_count)
{
struct gsi *gsi = &endpoint->ipa->gsi;
u32 channel_id = endpoint->channel_id;
enum dma_data_direction direction;
direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
}
/* suspend_delay represents suspend for RX, delay for TX endpoints.
* Note that suspend is not supported starting with IPA v4.0.
*/
static bool
ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
{
u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
struct ipa *ipa = endpoint->ipa;
bool state;
u32 mask;
u32 val;
/* Suspend is not supported for IPA v4.0+. Delay doesn't work
* correctly on IPA v4.2.
*
* if (endpoint->toward_ipa)
* assert(ipa->version != IPA_VERSION_4.2);
* else
* assert(ipa->version == IPA_VERSION_3_5_1);
*/
mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
val = ioread32(ipa->reg_virt + offset);
/* Don't bother if it's already in the requested state */
state = !!(val & mask);
if (suspend_delay != state) {
val ^= mask;
iowrite32(val, ipa->reg_virt + offset);
}
return state;
}
/* We currently don't care what the previous state was for delay mode */
static void
ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
{
/* assert(endpoint->toward_ipa); */
/* Delay mode doesn't work properly for IPA v4.2 */
if (endpoint->ipa->version != IPA_VERSION_4_2)
(void)ipa_endpoint_init_ctrl(endpoint, enable);
}
static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
{
u32 mask = BIT(endpoint->endpoint_id);
struct ipa *ipa = endpoint->ipa;
u32 offset;
u32 val;
/* assert(mask & ipa->available); */
offset = ipa_reg_state_aggr_active_offset(ipa->version);
val = ioread32(ipa->reg_virt + offset);
return !!(val & mask);
}
static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
{
u32 mask = BIT(endpoint->endpoint_id);
struct ipa *ipa = endpoint->ipa;
/* assert(mask & ipa->available); */
iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
}
/**
* ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
* @endpoint: Endpoint on which to emulate a suspend
*
* Emulate suspend IPA interrupt to unsuspend an endpoint suspended
* with an open aggregation frame. This is to work around a hardware
* issue in IPA version 3.5.1 where the suspend interrupt will not be
* generated when it should be.
*/
static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
{
struct ipa *ipa = endpoint->ipa;
if (!endpoint->data->aggregation)
return;
/* Nothing to do if the endpoint doesn't have aggregation open */
if (!ipa_endpoint_aggr_active(endpoint))
return;
/* Force close aggregation */
ipa_endpoint_force_close(endpoint);
ipa_interrupt_simulate_suspend(ipa->interrupt);
}
/* Returns previous suspend state (true means suspend was enabled) */
static bool
ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
{
bool suspended;
if (endpoint->ipa->version != IPA_VERSION_3_5_1)
return enable; /* For IPA v4.0+, no change made */
/* assert(!endpoint->toward_ipa); */
suspended = ipa_endpoint_init_ctrl(endpoint, enable);
/* A client suspended with an open aggregation frame will not
* generate a SUSPEND IPA interrupt. If enabling suspend, have
* ipa_endpoint_suspend_aggr() handle this.
*/
if (enable && !suspended)
ipa_endpoint_suspend_aggr(endpoint);
return suspended;
}
/* Enable or disable delay or suspend mode on all modem endpoints */
void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
{
u32 endpoint_id;
/* DELAY mode doesn't work correctly on IPA v4.2 */
if (ipa->version == IPA_VERSION_4_2)
return;
for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
if (endpoint->ee_id != GSI_EE_MODEM)
continue;
/* Set TX delay mode or RX suspend mode */
if (endpoint->toward_ipa)
ipa_endpoint_program_delay(endpoint, enable);
else
(void)ipa_endpoint_program_suspend(endpoint, enable);
}
}
/* Reset all modem endpoints to use the default exception endpoint */
int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
{
u32 initialized = ipa->initialized;
struct gsi_trans *trans;
u32 count;
/* We need one command per modem TX endpoint. We can get an upper
* bound on that by assuming all initialized endpoints are modem->IPA.
* That won't happen, and we could be more precise, but this is fine
* for now. We need to end the transaction with a "tag process."
*/
count = hweight32(initialized) + ipa_cmd_tag_process_count();
trans = ipa_cmd_trans_alloc(ipa, count);
if (!trans) {
dev_err(&ipa->pdev->dev,
"no transaction to reset modem exception endpoints\n");
return -EBUSY;
}
while (initialized) {
u32 endpoint_id = __ffs(initialized);
struct ipa_endpoint *endpoint;
u32 offset;
initialized ^= BIT(endpoint_id);
/* We only reset modem TX endpoints */
endpoint = &ipa->endpoint[endpoint_id];
if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
continue;
offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
/* Value written is 0, and all bits are updated. That
* means status is disabled on the endpoint, and as a
* result all other fields in the register are ignored.
*/
ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
}
ipa_cmd_tag_process_add(trans);
/* XXX This should have a 1 second timeout */
gsi_trans_commit_wait(trans);
return 0;
}
static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
{
u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
u32 val = 0;
/* FRAG_OFFLOAD_EN is 0 */
if (endpoint->data->checksum) {
if (endpoint->toward_ipa) {
u32 checksum_offset;
val |= u32_encode_bits(IPA_CS_OFFLOAD_UL,
CS_OFFLOAD_EN_FMASK);
/* Checksum header offset is in 4-byte units */
checksum_offset = sizeof(struct rmnet_map_header);
checksum_offset /= sizeof(u32);
val |= u32_encode_bits(checksum_offset,
CS_METADATA_HDR_OFFSET_FMASK);
} else {
val |= u32_encode_bits(IPA_CS_OFFLOAD_DL,
CS_OFFLOAD_EN_FMASK);
}
} else {
val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE,
CS_OFFLOAD_EN_FMASK);
}
/* CS_GEN_QMB_MASTER_SEL is 0 */
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
/**
* ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
* @endpoint: Endpoint pointer
*
* We program QMAP endpoints so each packet received is preceded by a QMAP
* header structure. The QMAP header contains a 1-byte mux_id and 2-byte
* packet size field, and we have the IPA hardware populate both for each
* received packet. The header is configured (in the HDR_EXT register)
* to use big endian format.
*
* The packet size is written into the QMAP header's pkt_len field. That
* location is defined here using the HDR_OFST_PKT_SIZE field.
*
* The mux_id comes from a 4-byte metadata value supplied with each packet
* by the modem. It is *not* a QMAP header, but it does contain the mux_id
* value that we want, in its low-order byte. A bitmask defined in the
* endpoint's METADATA_MASK register defines which byte within the modem
* metadata contains the mux_id. And the OFST_METADATA field programmed
* here indicates where the extracted byte should be placed within the QMAP
* header.
*/
static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
{
u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
u32 val = 0;
if (endpoint->data->qmap) {
size_t header_size = sizeof(struct rmnet_map_header);
/* We might supply a checksum header after the QMAP header */
if (endpoint->toward_ipa && endpoint->data->checksum)
header_size += sizeof(struct rmnet_map_ul_csum_header);
val |= u32_encode_bits(header_size, HDR_LEN_FMASK);
/* Define how to fill fields in a received QMAP header */
if (!endpoint->toward_ipa) {
u32 off; /* Field offset within header */
/* Where IPA will write the metadata value */
off = offsetof(struct rmnet_map_header, mux_id);
val |= u32_encode_bits(off, HDR_OFST_METADATA_FMASK);
/* Where IPA will write the length */
off = offsetof(struct rmnet_map_header, pkt_len);
val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
val |= u32_encode_bits(off, HDR_OFST_PKT_SIZE_FMASK);
}
/* For QMAP TX, metadata offset is 0 (modem assumes this) */
val |= HDR_OFST_METADATA_VALID_FMASK;
/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
/* HDR_A5_MUX is 0 */
/* HDR_LEN_INC_DEAGG_HDR is 0 */
/* HDR_METADATA_REG_VALID is 0 (TX only) */
}
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
{
u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
u32 pad_align = endpoint->data->rx.pad_align;
u32 val = 0;
val |= HDR_ENDIANNESS_FMASK; /* big endian */
/* A QMAP header contains a 6 bit pad field at offset 0. The RMNet
* driver assumes this field is meaningful in packets it receives,
* and assumes the header's payload length includes that padding.
* The RMNet driver does *not* pad packets it sends, however, so
* the pad field (although 0) should be ignored.
*/
if (endpoint->data->qmap && !endpoint->toward_ipa) {
val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
}
/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
if (!endpoint->toward_ipa)
val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
u32 val = 0;
u32 offset;
if (endpoint->toward_ipa)
return; /* Register not valid for TX endpoints */
offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
/* Note that HDR_ENDIANNESS indicates big endian header fields */
if (endpoint->data->qmap)
val = cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
{
u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
u32 val;
if (!endpoint->toward_ipa)
return; /* Register not valid for RX endpoints */
if (endpoint->data->dma_mode) {
enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
u32 dma_endpoint_id;
dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
val = u32_encode_bits(IPA_DMA, MODE_FMASK);
val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
} else {
val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
}
/* All other bits unspecified (and 0) */
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
/* Compute the aggregation size value to use for a given buffer size */
static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
{
/* We don't use "hard byte limit" aggregation, so we define the
* aggregation limit such that our buffer has enough space *after*
* that limit to receive a full MTU of data, plus overhead.
*/
rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
return rx_buffer_size / SZ_1K;
}
static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
{
u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
u32 val = 0;
if (endpoint->data->aggregation) {
if (!endpoint->toward_ipa) {
u32 limit;
val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
val |= u32_encode_bits(limit, AGGR_BYTE_LIMIT_FMASK);
limit = IPA_AGGR_TIME_LIMIT_DEFAULT;
limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
val |= u32_encode_bits(limit, AGGR_TIME_LIMIT_FMASK);
/* AGGR_PKT_LIMIT is 0 (unlimited) */
if (endpoint->data->rx.aggr_close_eof)
val |= AGGR_SW_EOF_ACTIVE_FMASK;
/* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
} else {
val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
AGGR_EN_FMASK);
val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
/* other fields ignored */
}
/* AGGR_FORCE_CLOSE is 0 */
} else {
val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
/* other fields ignored */
}
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
/* The head-of-line blocking timer is defined as a tick count, where each
* tick represents 128 cycles of the IPA core clock. Return the value
* that should be written to that register that represents the timeout
* period provided.
*/
static u32 ipa_reg_init_hol_block_timer_val(struct ipa *ipa, u32 microseconds)
{
u32 width;
u32 scale;
u64 ticks;
u64 rate;
u32 high;
u32 val;
if (!microseconds)
return 0; /* Nothing to compute if timer period is 0 */
/* Use 64 bit arithmetic to avoid overflow... */
rate = ipa_clock_rate(ipa);
ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
/* ...but we still need to fit into a 32-bit register */
WARN_ON(ticks > U32_MAX);
/* IPA v3.5.1 just records the tick count */
if (ipa->version == IPA_VERSION_3_5_1)
return (u32)ticks;
/* For IPA v4.2, the tick count is represented by base and
* scale fields within the 32-bit timer register, where:
* ticks = base << scale;
* The best precision is achieved when the base value is as
* large as possible. Find the highest set bit in the tick
* count, and extract the number of bits in the base field
* such that that high bit is included.
*/
high = fls(ticks); /* 1..32 */
width = HWEIGHT32(BASE_VALUE_FMASK);
scale = high > width ? high - width : 0;
if (scale) {
/* If we're scaling, round up to get a closer result */
ticks += 1 << (scale - 1);
/* High bit was set, so rounding might have affected it */
if (fls(ticks) != high)
scale++;
}
val = u32_encode_bits(scale, SCALE_FMASK);
val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
return val;
}
/* If microseconds is 0, timeout is immediate */
static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
u32 microseconds)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
u32 offset;
u32 val;
offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
val = ipa_reg_init_hol_block_timer_val(ipa, microseconds);
iowrite32(val, ipa->reg_virt + offset);
}
static void
ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
{
u32 endpoint_id = endpoint->endpoint_id;
u32 offset;
u32 val;
val = enable ? HOL_BLOCK_EN_FMASK : 0;
offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
{
u32 i;
for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
struct ipa_endpoint *endpoint = &ipa->endpoint[i];
if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
continue;
ipa_endpoint_init_hol_block_timer(endpoint, 0);
ipa_endpoint_init_hol_block_enable(endpoint, true);
}
}
static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
{
u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
u32 val = 0;
if (!endpoint->toward_ipa)
return; /* Register not valid for RX endpoints */
/* DEAGGR_HDR_LEN is 0 */
/* PACKET_OFFSET_VALID is 0 */
/* PACKET_OFFSET_LOCATION is ignored (not valid) */
/* MAX_PACKET_LEN is 0 (not enforced) */
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
{
u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
u32 seq_type = endpoint->seq_type;
u32 val = 0;
if (!endpoint->toward_ipa)
return; /* Register not valid for RX endpoints */
/* Sequencer type is made up of four nibbles */
val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK);
val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK);
/* The second two apply to replicated packets */
val |= u32_encode_bits((seq_type >> 8) & 0xf, HPS_REP_SEQ_TYPE_FMASK);
val |= u32_encode_bits((seq_type >> 12) & 0xf, DPS_REP_SEQ_TYPE_FMASK);
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
/**
* ipa_endpoint_skb_tx() - Transmit a socket buffer
* @endpoint: Endpoint pointer
* @skb: Socket buffer to send
*
* Returns: 0 if successful, or a negative error code
*/
int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
{
struct gsi_trans *trans;
u32 nr_frags;
int ret;
/* Make sure source endpoint's TLV FIFO has enough entries to
* hold the linear portion of the skb and all its fragments.
* If not, see if we can linearize it before giving up.
*/
nr_frags = skb_shinfo(skb)->nr_frags;
if (1 + nr_frags > endpoint->trans_tre_max) {
if (skb_linearize(skb))
return -E2BIG;
nr_frags = 0;
}
trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
if (!trans)
return -EBUSY;
ret = gsi_trans_skb_add(trans, skb);
if (ret)
goto err_trans_free;
trans->data = skb; /* transaction owns skb now */
gsi_trans_commit(trans, !netdev_xmit_more());
return 0;
err_trans_free:
gsi_trans_free(trans);
return -ENOMEM;
}
static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
u32 val = 0;
u32 offset;
offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
if (endpoint->data->status_enable) {
val |= STATUS_EN_FMASK;
if (endpoint->toward_ipa) {
enum ipa_endpoint_name name;
u32 status_endpoint_id;
name = endpoint->data->tx.status_endpoint;
status_endpoint_id = ipa->name_map[name]->endpoint_id;
val |= u32_encode_bits(status_endpoint_id,
STATUS_ENDP_FMASK);
}
/* STATUS_LOCATION is 0 (status element precedes packet) */
/* The next field is present for IPA v4.0 and above */
/* STATUS_PKT_SUPPRESS_FMASK is 0 */
}
iowrite32(val, ipa->reg_virt + offset);
}
static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
{
struct gsi_trans *trans;
bool doorbell = false;
struct page *page;
u32 offset;
u32 len;
int ret;
page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
if (!page)
return -ENOMEM;
trans = ipa_endpoint_trans_alloc(endpoint, 1);
if (!trans)
goto err_free_pages;
/* Offset the buffer to make space for skb headroom */
offset = NET_SKB_PAD;
len = IPA_RX_BUFFER_SIZE - offset;
ret = gsi_trans_page_add(trans, page, len, offset);
if (ret)
goto err_trans_free;
trans->data = page; /* transaction owns page now */
if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
doorbell = true;
endpoint->replenish_ready = 0;
}
gsi_trans_commit(trans, doorbell);
return 0;
err_trans_free:
gsi_trans_free(trans);
err_free_pages:
__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
return -ENOMEM;
}
/**
* ipa_endpoint_replenish() - Replenish the Rx packets cache.
* @endpoint: Endpoint to be replenished
* @count: Number of buffers to send to hardware
*
* Allocate RX packet wrapper structures with maximal socket buffers
* for an endpoint. These are supplied to the hardware, which fills
* them with incoming data.
*/
static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, u32 count)
{
struct gsi *gsi;
u32 backlog;
if (!endpoint->replenish_enabled) {
if (count)
atomic_add(count, &endpoint->replenish_saved);
return;
}
while (atomic_dec_not_zero(&endpoint->replenish_backlog))
if (ipa_endpoint_replenish_one(endpoint))
goto try_again_later;
if (count)
atomic_add(count, &endpoint->replenish_backlog);
return;
try_again_later:
/* The last one didn't succeed, so fix the backlog */
backlog = atomic_inc_return(&endpoint->replenish_backlog);
if (count)
atomic_add(count, &endpoint->replenish_backlog);
/* Whenever a receive buffer transaction completes we'll try to
* replenish again. It's unlikely, but if we fail to supply even
* one buffer, nothing will trigger another replenish attempt.
* Receive buffer transactions use one TRE, so schedule work to
* try replenishing again if our backlog is *all* available TREs.
*/
gsi = &endpoint->ipa->gsi;
if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
schedule_delayed_work(&endpoint->replenish_work,
msecs_to_jiffies(1));
}
static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
{
struct gsi *gsi = &endpoint->ipa->gsi;
u32 max_backlog;
u32 saved;
endpoint->replenish_enabled = true;
while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
atomic_add(saved, &endpoint->replenish_backlog);
/* Start replenishing if hardware currently has no buffers */
max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
ipa_endpoint_replenish(endpoint, 0);
}
static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
{
u32 backlog;
endpoint->replenish_enabled = false;
while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
atomic_add(backlog, &endpoint->replenish_saved);
}
static void ipa_endpoint_replenish_work(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct ipa_endpoint *endpoint;
endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
ipa_endpoint_replenish(endpoint, 0);
}
static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
void *data, u32 len, u32 extra)
{
struct sk_buff *skb;
skb = __dev_alloc_skb(len, GFP_ATOMIC);
if (skb) {
skb_put(skb, len);
memcpy(skb->data, data, len);
skb->truesize += extra;
}
/* Now receive it, or drop it if there's no netdev */
if (endpoint->netdev)
ipa_modem_skb_rx(endpoint->netdev, skb);
else if (skb)
dev_kfree_skb_any(skb);
}
static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
struct page *page, u32 len)
{
struct sk_buff *skb;
/* Nothing to do if there's no netdev */
if (!endpoint->netdev)
return false;
/* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */
skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
if (skb) {
/* Reserve the headroom and account for the data */
skb_reserve(skb, NET_SKB_PAD);
skb_put(skb, len);
}
/* Receive the buffer (or record drop if unable to build it) */
ipa_modem_skb_rx(endpoint->netdev, skb);
return skb != NULL;
}
/* The format of a packet status element is the same for several status
* types (opcodes). Other types aren't currently supported.
*/
static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
{
switch (opcode) {
case IPA_STATUS_OPCODE_PACKET:
case IPA_STATUS_OPCODE_DROPPED_PACKET:
case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
return true;
default:
return false;
}
}
static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
const struct ipa_status *status)
{
u32 endpoint_id;
if (!ipa_status_format_packet(status->opcode))
return true;
if (!status->pkt_len)
return true;
endpoint_id = u32_get_bits(status->endp_dst_idx,
IPA_STATUS_DST_IDX_FMASK);
if (endpoint_id != endpoint->endpoint_id)
return true;
return false; /* Don't skip this packet, process it */
}
/* Return whether the status indicates the packet should be dropped */
static bool ipa_status_drop_packet(const struct ipa_status *status)
{
u32 val;
/* Deaggregation exceptions we drop; all other types we consume */
if (status->exception)
return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
/* Drop the packet if it fails to match a routing rule; otherwise no */
val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
}
static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
struct page *page, u32 total_len)
{
void *data = page_address(page) + NET_SKB_PAD;
u32 unused = IPA_RX_BUFFER_SIZE - total_len;
u32 resid = total_len;
while (resid) {
const struct ipa_status *status = data;
u32 align;
u32 len;
if (resid < sizeof(*status)) {
dev_err(&endpoint->ipa->pdev->dev,
"short message (%u bytes < %zu byte status)\n",
resid, sizeof(*status));
break;
}
/* Skip over status packets that lack packet data */
if (ipa_endpoint_status_skip(endpoint, status)) {
data += sizeof(*status);
resid -= sizeof(*status);
continue;
}
/* Compute the amount of buffer space consumed by the
* packet, including the status element. If the hardware
* is configured to pad packet data to an aligned boundary,
* account for that. And if checksum offload is is enabled
* a trailer containing computed checksum information will
* be appended.
*/
align = endpoint->data->rx.pad_align ? : 1;
len = le16_to_cpu(status->pkt_len);
len = sizeof(*status) + ALIGN(len, align);
if (endpoint->data->checksum)
len += sizeof(struct rmnet_map_dl_csum_trailer);
/* Charge the new packet with a proportional fraction of
* the unused space in the original receive buffer.
* XXX Charge a proportion of the *whole* receive buffer?
*/
if (!ipa_status_drop_packet(status)) {
u32 extra = unused * len / total_len;
void *data2 = data + sizeof(*status);
u32 len2 = le16_to_cpu(status->pkt_len);
/* Client receives only packet data (no status) */
ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
}
/* Consume status and the full packet it describes */
data += len;
resid -= len;
}
}
/* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
struct gsi_trans *trans)
{
}
/* Complete transaction initiated in ipa_endpoint_replenish_one() */
static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
struct gsi_trans *trans)
{
struct page *page;
ipa_endpoint_replenish(endpoint, 1);
if (trans->cancelled)
return;
/* Parse or build a socket buffer using the actual received length */
page = trans->data;
if (endpoint->data->status_enable)
ipa_endpoint_status_parse(endpoint, page, trans->len);
else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
trans->data = NULL; /* Pages have been consumed */
}
void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
struct gsi_trans *trans)
{
if (endpoint->toward_ipa)
ipa_endpoint_tx_complete(endpoint, trans);
else
ipa_endpoint_rx_complete(endpoint, trans);
}
void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
struct gsi_trans *trans)
{
if (endpoint->toward_ipa) {
struct ipa *ipa = endpoint->ipa;
/* Nothing to do for command transactions */
if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
struct sk_buff *skb = trans->data;
if (skb)
dev_kfree_skb_any(skb);
}
} else {
struct page *page = trans->data;
if (page)
__free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
}
}
void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
{
u32 val;
/* ROUTE_DIS is 0 */
val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
val |= ROUTE_DEF_HDR_TABLE_FMASK;
val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
val |= ROUTE_DEF_RETAIN_HDR_FMASK;
iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
}
void ipa_endpoint_default_route_clear(struct ipa *ipa)
{
ipa_endpoint_default_route_set(ipa, 0);
}
/**
* ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
* @endpoint: Endpoint to be reset
*
* If aggregation is active on an RX endpoint when a reset is performed
* on its underlying GSI channel, a special sequence of actions must be
* taken to ensure the IPA pipeline is properly cleared.
*
* Return: 0 if successful, or a negative error code
*/
static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
{
struct device *dev = &endpoint->ipa->pdev->dev;
struct ipa *ipa = endpoint->ipa;
struct gsi *gsi = &ipa->gsi;
bool suspended = false;
dma_addr_t addr;
bool legacy;
u32 retries;
u32 len = 1;
void *virt;
int ret;
virt = kzalloc(len, GFP_KERNEL);
if (!virt)
return -ENOMEM;
addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, addr)) {
ret = -ENOMEM;
goto out_kfree;
}
/* Force close aggregation before issuing the reset */
ipa_endpoint_force_close(endpoint);
/* Reset and reconfigure the channel with the doorbell engine
* disabled. Then poll until we know aggregation is no longer
* active. We'll re-enable the doorbell (if appropriate) when
* we reset again below.
*/
gsi_channel_reset(gsi, endpoint->channel_id, false);
/* Make sure the channel isn't suspended */
suspended = ipa_endpoint_program_suspend(endpoint, false);
/* Start channel and do a 1 byte read */
ret = gsi_channel_start(gsi, endpoint->channel_id);
if (ret)
goto out_suspend_again;
ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
if (ret)
goto err_endpoint_stop;
/* Wait for aggregation to be closed on the channel */
retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
do {
if (!ipa_endpoint_aggr_active(endpoint))
break;
msleep(1);
} while (retries--);
/* Check one last time */
if (ipa_endpoint_aggr_active(endpoint))
dev_err(dev, "endpoint %u still active during reset\n",
endpoint->endpoint_id);
gsi_trans_read_byte_done(gsi, endpoint->channel_id);
ret = gsi_channel_stop(gsi, endpoint->channel_id);
if (ret)
goto out_suspend_again;
/* Finally, reset and reconfigure the channel again (re-enabling the
* the doorbell engine if appropriate). Sleep for 1 millisecond to
* complete the channel reset sequence. Finish by suspending the
* channel again (if necessary).
*/
legacy = ipa->version == IPA_VERSION_3_5_1;
gsi_channel_reset(gsi, endpoint->channel_id, legacy);
msleep(1);
goto out_suspend_again;
err_endpoint_stop:
(void)gsi_channel_stop(gsi, endpoint->channel_id);
out_suspend_again:
if (suspended)
(void)ipa_endpoint_program_suspend(endpoint, true);
dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
out_kfree:
kfree(virt);
return ret;
}
static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
{
u32 channel_id = endpoint->channel_id;
struct ipa *ipa = endpoint->ipa;
bool special;
bool legacy;
int ret = 0;
/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
* is active, we need to handle things specially to recover.
* All other cases just need to reset the underlying GSI channel.
*
* IPA v3.5.1 enables the doorbell engine. Newer versions do not.
*/
legacy = ipa->version == IPA_VERSION_3_5_1;
special = !endpoint->toward_ipa && endpoint->data->aggregation;
if (special && ipa_endpoint_aggr_active(endpoint))
ret = ipa_endpoint_reset_rx_aggr(endpoint);
else
gsi_channel_reset(&ipa->gsi, channel_id, legacy);
if (ret)
dev_err(&ipa->pdev->dev,
"error %d resetting channel %u for endpoint %u\n",
ret, endpoint->channel_id, endpoint->endpoint_id);
}
static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
{
if (endpoint->toward_ipa)
ipa_endpoint_program_delay(endpoint, false);
else
(void)ipa_endpoint_program_suspend(endpoint, false);
ipa_endpoint_init_cfg(endpoint);
ipa_endpoint_init_hdr(endpoint);
ipa_endpoint_init_hdr_ext(endpoint);
ipa_endpoint_init_hdr_metadata_mask(endpoint);
ipa_endpoint_init_mode(endpoint);
ipa_endpoint_init_aggr(endpoint);
ipa_endpoint_init_deaggr(endpoint);
ipa_endpoint_init_seq(endpoint);
ipa_endpoint_status(endpoint);
}
int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
{
struct ipa *ipa = endpoint->ipa;
struct gsi *gsi = &ipa->gsi;
int ret;
ret = gsi_channel_start(gsi, endpoint->channel_id);
if (ret) {
dev_err(&ipa->pdev->dev,
"error %d starting %cX channel %u for endpoint %u\n",
ret, endpoint->toward_ipa ? 'T' : 'R',
endpoint->channel_id, endpoint->endpoint_id);
return ret;
}
if (!endpoint->toward_ipa) {
ipa_interrupt_suspend_enable(ipa->interrupt,
endpoint->endpoint_id);
ipa_endpoint_replenish_enable(endpoint);
}
ipa->enabled |= BIT(endpoint->endpoint_id);
return 0;
}
void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
{
u32 mask = BIT(endpoint->endpoint_id);
struct ipa *ipa = endpoint->ipa;
struct gsi *gsi = &ipa->gsi;
int ret;
if (!(ipa->enabled & mask))
return;
ipa->enabled ^= mask;
if (!endpoint->toward_ipa) {
ipa_endpoint_replenish_disable(endpoint);
ipa_interrupt_suspend_disable(ipa->interrupt,
endpoint->endpoint_id);
}
/* Note that if stop fails, the channel's state is not well-defined */
ret = gsi_channel_stop(gsi, endpoint->channel_id);
if (ret)
dev_err(&ipa->pdev->dev,
"error %d attempting to stop endpoint %u\n", ret,
endpoint->endpoint_id);
}
void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
{
struct device *dev = &endpoint->ipa->pdev->dev;
struct gsi *gsi = &endpoint->ipa->gsi;
bool stop_channel;
int ret;
if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
return;
if (!endpoint->toward_ipa) {
ipa_endpoint_replenish_disable(endpoint);
(void)ipa_endpoint_program_suspend(endpoint, true);
}
/* IPA v3.5.1 doesn't use channel stop for suspend */
stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel);
if (ret)
dev_err(dev, "error %d suspending channel %u\n", ret,
endpoint->channel_id);
}
void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
{
struct device *dev = &endpoint->ipa->pdev->dev;
struct gsi *gsi = &endpoint->ipa->gsi;
bool start_channel;
int ret;
if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
return;
if (!endpoint->toward_ipa)
(void)ipa_endpoint_program_suspend(endpoint, false);
/* IPA v3.5.1 doesn't use channel start for resume */
start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1;
ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel);
if (ret)
dev_err(dev, "error %d resuming channel %u\n", ret,
endpoint->channel_id);
else if (!endpoint->toward_ipa)
ipa_endpoint_replenish_enable(endpoint);
}
void ipa_endpoint_suspend(struct ipa *ipa)
{
if (!ipa->setup_complete)
return;
if (ipa->modem_netdev)
ipa_modem_suspend(ipa->modem_netdev);
ipa_cmd_tag_process(ipa);
ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
}
void ipa_endpoint_resume(struct ipa *ipa)
{
if (!ipa->setup_complete)
return;
ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
if (ipa->modem_netdev)
ipa_modem_resume(ipa->modem_netdev);
}
static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
{
struct gsi *gsi = &endpoint->ipa->gsi;
u32 channel_id = endpoint->channel_id;
/* Only AP endpoints get set up */
if (endpoint->ee_id != GSI_EE_AP)
return;
endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
if (!endpoint->toward_ipa) {
/* RX transactions require a single TRE, so the maximum
* backlog is the same as the maximum outstanding TREs.
*/
endpoint->replenish_enabled = false;
atomic_set(&endpoint->replenish_saved,
gsi_channel_tre_max(gsi, endpoint->channel_id));
atomic_set(&endpoint->replenish_backlog, 0);
INIT_DELAYED_WORK(&endpoint->replenish_work,
ipa_endpoint_replenish_work);
}
ipa_endpoint_program(endpoint);
endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
}
static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
{
endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
if (!endpoint->toward_ipa)
cancel_delayed_work_sync(&endpoint->replenish_work);
ipa_endpoint_reset(endpoint);
}
void ipa_endpoint_setup(struct ipa *ipa)
{
u32 initialized = ipa->initialized;
ipa->set_up = 0;
while (initialized) {
u32 endpoint_id = __ffs(initialized);
initialized ^= BIT(endpoint_id);
ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
}
}
void ipa_endpoint_teardown(struct ipa *ipa)
{
u32 set_up = ipa->set_up;
while (set_up) {
u32 endpoint_id = __fls(set_up);
set_up ^= BIT(endpoint_id);
ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
}
ipa->set_up = 0;
}
int ipa_endpoint_config(struct ipa *ipa)
{
struct device *dev = &ipa->pdev->dev;
u32 initialized;
u32 rx_base;
u32 rx_mask;
u32 tx_mask;
int ret = 0;
u32 max;
u32 val;
/* Find out about the endpoints supplied by the hardware, and ensure
* the highest one doesn't exceed the number we support.
*/
val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
/* Our RX is an IPA producer */
rx_base = u32_get_bits(val, BAM_PROD_LOWEST_FMASK);
max = rx_base + u32_get_bits(val, BAM_MAX_PROD_PIPES_FMASK);
if (max > IPA_ENDPOINT_MAX) {
dev_err(dev, "too many endpoints (%u > %u)\n",
max, IPA_ENDPOINT_MAX);
return -EINVAL;
}
rx_mask = GENMASK(max - 1, rx_base);
/* Our TX is an IPA consumer */
max = u32_get_bits(val, BAM_MAX_CONS_PIPES_FMASK);
tx_mask = GENMASK(max - 1, 0);
ipa->available = rx_mask | tx_mask;
/* Check for initialized endpoints not supported by the hardware */
if (ipa->initialized & ~ipa->available) {
dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
ipa->initialized & ~ipa->available);
ret = -EINVAL; /* Report other errors too */
}
initialized = ipa->initialized;
while (initialized) {
u32 endpoint_id = __ffs(initialized);
struct ipa_endpoint *endpoint;
initialized ^= BIT(endpoint_id);
/* Make sure it's pointing in the right direction */
endpoint = &ipa->endpoint[endpoint_id];
if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) {
dev_err(dev, "endpoint id %u wrong direction\n",
endpoint_id);
ret = -EINVAL;
}
}
return ret;
}
void ipa_endpoint_deconfig(struct ipa *ipa)
{
ipa->available = 0; /* Nothing more to do */
}
static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
const struct ipa_gsi_endpoint_data *data)
{
struct ipa_endpoint *endpoint;
endpoint = &ipa->endpoint[data->endpoint_id];
if (data->ee_id == GSI_EE_AP)
ipa->channel_map[data->channel_id] = endpoint;
ipa->name_map[name] = endpoint;
endpoint->ipa = ipa;
endpoint->ee_id = data->ee_id;
endpoint->seq_type = data->endpoint.seq_type;
endpoint->channel_id = data->channel_id;
endpoint->endpoint_id = data->endpoint_id;
endpoint->toward_ipa = data->toward_ipa;
endpoint->data = &data->endpoint.config;
ipa->initialized |= BIT(endpoint->endpoint_id);
}
void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
{
endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
memset(endpoint, 0, sizeof(*endpoint));
}
void ipa_endpoint_exit(struct ipa *ipa)
{
u32 initialized = ipa->initialized;
while (initialized) {
u32 endpoint_id = __fls(initialized);
initialized ^= BIT(endpoint_id);
ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
}
memset(ipa->name_map, 0, sizeof(ipa->name_map));
memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
}
/* Returns a bitmask of endpoints that support filtering, or 0 on error */
u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
const struct ipa_gsi_endpoint_data *data)
{
enum ipa_endpoint_name name;
u32 filter_map;
if (!ipa_endpoint_data_valid(ipa, count, data))
return 0; /* Error */
ipa->initialized = 0;
filter_map = 0;
for (name = 0; name < count; name++, data++) {
if (ipa_gsi_endpoint_data_empty(data))
continue; /* Skip over empty slots */
ipa_endpoint_init_one(ipa, name, data);
if (data->endpoint.filter_support)
filter_map |= BIT(data->endpoint_id);
}
if (!ipa_filter_map_valid(ipa, filter_map))
goto err_endpoint_exit;
return filter_map; /* Non-zero bitmask */
err_endpoint_exit:
ipa_endpoint_exit(ipa);
return 0; /* Error */
}