OpenCloudOS-Kernel/drivers/pci/hotplug/shpchp_hpc.c

1621 lines
42 KiB
C

/*
* Standard PCI Hot Plug Driver
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001 IBM Corp.
* Copyright (C) 2003-2004 Intel Corporation
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to <greg@kroah.com>,<kristen.c.accardi@intel.com>
*
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <asm/system.h>
#include "shpchp.h"
#ifdef DEBUG
#define DBG_K_TRACE_ENTRY ((unsigned int)0x00000001) /* On function entry */
#define DBG_K_TRACE_EXIT ((unsigned int)0x00000002) /* On function exit */
#define DBG_K_INFO ((unsigned int)0x00000004) /* Info messages */
#define DBG_K_ERROR ((unsigned int)0x00000008) /* Error messages */
#define DBG_K_TRACE (DBG_K_TRACE_ENTRY|DBG_K_TRACE_EXIT)
#define DBG_K_STANDARD (DBG_K_INFO|DBG_K_ERROR|DBG_K_TRACE)
/* Redefine this flagword to set debug level */
#define DEBUG_LEVEL DBG_K_STANDARD
#define DEFINE_DBG_BUFFER char __dbg_str_buf[256];
#define DBG_PRINT( dbg_flags, args... ) \
do { \
if ( DEBUG_LEVEL & ( dbg_flags ) ) \
{ \
int len; \
len = sprintf( __dbg_str_buf, "%s:%d: %s: ", \
__FILE__, __LINE__, __FUNCTION__ ); \
sprintf( __dbg_str_buf + len, args ); \
printk( KERN_NOTICE "%s\n", __dbg_str_buf ); \
} \
} while (0)
#define DBG_ENTER_ROUTINE DBG_PRINT (DBG_K_TRACE_ENTRY, "%s", "[Entry]");
#define DBG_LEAVE_ROUTINE DBG_PRINT (DBG_K_TRACE_EXIT, "%s", "[Exit]");
#else
#define DEFINE_DBG_BUFFER
#define DBG_ENTER_ROUTINE
#define DBG_LEAVE_ROUTINE
#endif /* DEBUG */
/* Slot Available Register I field definition */
#define SLOT_33MHZ 0x0000001f
#define SLOT_66MHZ_PCIX 0x00001f00
#define SLOT_100MHZ_PCIX 0x001f0000
#define SLOT_133MHZ_PCIX 0x1f000000
/* Slot Available Register II field definition */
#define SLOT_66MHZ 0x0000001f
#define SLOT_66MHZ_PCIX_266 0x00000f00
#define SLOT_100MHZ_PCIX_266 0x0000f000
#define SLOT_133MHZ_PCIX_266 0x000f0000
#define SLOT_66MHZ_PCIX_533 0x00f00000
#define SLOT_100MHZ_PCIX_533 0x0f000000
#define SLOT_133MHZ_PCIX_533 0xf0000000
/* Secondary Bus Configuration Register */
/* For PI = 1, Bits 0 to 2 have been encoded as follows to show current bus speed/mode */
#define PCI_33MHZ 0x0
#define PCI_66MHZ 0x1
#define PCIX_66MHZ 0x2
#define PCIX_100MHZ 0x3
#define PCIX_133MHZ 0x4
/* For PI = 2, Bits 0 to 3 have been encoded as follows to show current bus speed/mode */
#define PCI_33MHZ 0x0
#define PCI_66MHZ 0x1
#define PCIX_66MHZ 0x2
#define PCIX_100MHZ 0x3
#define PCIX_133MHZ 0x4
#define PCIX_66MHZ_ECC 0x5
#define PCIX_100MHZ_ECC 0x6
#define PCIX_133MHZ_ECC 0x7
#define PCIX_66MHZ_266 0x9
#define PCIX_100MHZ_266 0xa
#define PCIX_133MHZ_266 0xb
#define PCIX_66MHZ_533 0x11
#define PCIX_100MHZ_533 0x12
#define PCIX_133MHZ_533 0x13
/* Slot Configuration */
#define SLOT_NUM 0x0000001F
#define FIRST_DEV_NUM 0x00001F00
#define PSN 0x07FF0000
#define UPDOWN 0x20000000
#define MRLSENSOR 0x40000000
#define ATTN_BUTTON 0x80000000
/* Slot Status Field Definitions */
/* Slot State */
#define PWR_ONLY 0x0001
#define ENABLED 0x0002
#define DISABLED 0x0003
/* Power Indicator State */
#define PWR_LED_ON 0x0004
#define PWR_LED_BLINK 0x0008
#define PWR_LED_OFF 0x000c
/* Attention Indicator State */
#define ATTEN_LED_ON 0x0010
#define ATTEN_LED_BLINK 0x0020
#define ATTEN_LED_OFF 0x0030
/* Power Fault */
#define pwr_fault 0x0040
/* Attention Button */
#define ATTEN_BUTTON 0x0080
/* MRL Sensor */
#define MRL_SENSOR 0x0100
/* 66 MHz Capable */
#define IS_66MHZ_CAP 0x0200
/* PRSNT1#/PRSNT2# */
#define SLOT_EMP 0x0c00
/* PCI-X Capability */
#define NON_PCIX 0x0000
#define PCIX_66 0x1000
#define PCIX_133 0x3000
#define PCIX_266 0x4000 /* For PI = 2 only */
#define PCIX_533 0x5000 /* For PI = 2 only */
/* SHPC 'write' operations/commands */
/* Slot operation - 0x00h to 0x3Fh */
#define NO_CHANGE 0x00
/* Slot state - Bits 0 & 1 of controller command register */
#define SET_SLOT_PWR 0x01
#define SET_SLOT_ENABLE 0x02
#define SET_SLOT_DISABLE 0x03
/* Power indicator state - Bits 2 & 3 of controller command register*/
#define SET_PWR_ON 0x04
#define SET_PWR_BLINK 0x08
#define SET_PWR_OFF 0x0C
/* Attention indicator state - Bits 4 & 5 of controller command register*/
#define SET_ATTN_ON 0x010
#define SET_ATTN_BLINK 0x020
#define SET_ATTN_OFF 0x030
/* Set bus speed/mode A - 0x40h to 0x47h */
#define SETA_PCI_33MHZ 0x40
#define SETA_PCI_66MHZ 0x41
#define SETA_PCIX_66MHZ 0x42
#define SETA_PCIX_100MHZ 0x43
#define SETA_PCIX_133MHZ 0x44
#define RESERV_1 0x45
#define RESERV_2 0x46
#define RESERV_3 0x47
/* Set bus speed/mode B - 0x50h to 0x5fh */
#define SETB_PCI_33MHZ 0x50
#define SETB_PCI_66MHZ 0x51
#define SETB_PCIX_66MHZ_PM 0x52
#define SETB_PCIX_100MHZ_PM 0x53
#define SETB_PCIX_133MHZ_PM 0x54
#define SETB_PCIX_66MHZ_EM 0x55
#define SETB_PCIX_100MHZ_EM 0x56
#define SETB_PCIX_133MHZ_EM 0x57
#define SETB_PCIX_66MHZ_266 0x58
#define SETB_PCIX_100MHZ_266 0x59
#define SETB_PCIX_133MHZ_266 0x5a
#define SETB_PCIX_66MHZ_533 0x5b
#define SETB_PCIX_100MHZ_533 0x5c
#define SETB_PCIX_133MHZ_533 0x5d
/* Power-on all slots - 0x48h */
#define SET_PWR_ON_ALL 0x48
/* Enable all slots - 0x49h */
#define SET_ENABLE_ALL 0x49
/* SHPC controller command error code */
#define SWITCH_OPEN 0x1
#define INVALID_CMD 0x2
#define INVALID_SPEED_MODE 0x4
/* For accessing SHPC Working Register Set */
#define DWORD_SELECT 0x2
#define DWORD_DATA 0x4
#define BASE_OFFSET 0x0
/* Field Offset in Logical Slot Register - byte boundary */
#define SLOT_EVENT_LATCH 0x2
#define SLOT_SERR_INT_MASK 0x3
static spinlock_t hpc_event_lock;
DEFINE_DBG_BUFFER /* Debug string buffer for entire HPC defined here */
static struct php_ctlr_state_s *php_ctlr_list_head; /* HPC state linked list */
static int ctlr_seq_num = 0; /* Controller sequenc # */
static spinlock_t list_lock;
static irqreturn_t shpc_isr(int IRQ, void *dev_id, struct pt_regs *regs);
static void start_int_poll_timer(struct php_ctlr_state_s *php_ctlr, int seconds);
/* This is the interrupt polling timeout function. */
static void int_poll_timeout(unsigned long lphp_ctlr)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *)lphp_ctlr;
DBG_ENTER_ROUTINE
if ( !php_ctlr ) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return;
}
/* Poll for interrupt events. regs == NULL => polling */
shpc_isr( 0, (void *)php_ctlr, NULL );
init_timer(&php_ctlr->int_poll_timer);
if (!shpchp_poll_time)
shpchp_poll_time = 2; /* reset timer to poll in 2 secs if user doesn't specify at module installation*/
start_int_poll_timer(php_ctlr, shpchp_poll_time);
return;
}
/* This function starts the interrupt polling timer. */
static void start_int_poll_timer(struct php_ctlr_state_s *php_ctlr, int seconds)
{
if (!php_ctlr) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return;
}
if ( ( seconds <= 0 ) || ( seconds > 60 ) )
seconds = 2; /* Clamp to sane value */
php_ctlr->int_poll_timer.function = &int_poll_timeout;
php_ctlr->int_poll_timer.data = (unsigned long)php_ctlr; /* Instance data */
php_ctlr->int_poll_timer.expires = jiffies + seconds * HZ;
add_timer(&php_ctlr->int_poll_timer);
return;
}
static int shpc_write_cmd(struct slot *slot, u8 t_slot, u8 cmd)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u16 cmd_status;
int retval = 0;
u16 temp_word;
int i;
DBG_ENTER_ROUTINE
if (!php_ctlr) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
for (i = 0; i < 10; i++) {
cmd_status = readw(php_ctlr->creg + CMD_STATUS);
if (!(cmd_status & 0x1))
break;
/* Check every 0.1 sec for a total of 1 sec*/
msleep(100);
}
cmd_status = readw(php_ctlr->creg + CMD_STATUS);
if (cmd_status & 0x1) {
/* After 1 sec and and the controller is still busy */
err("%s : Controller is still busy after 1 sec.\n", __FUNCTION__);
return -1;
}
++t_slot;
temp_word = (t_slot << 8) | (cmd & 0xFF);
dbg("%s: t_slot %x cmd %x\n", __FUNCTION__, t_slot, cmd);
/* To make sure the Controller Busy bit is 0 before we send out the
* command.
*/
writew(temp_word, php_ctlr->creg + CMD);
dbg("%s: temp_word written %x\n", __FUNCTION__, temp_word);
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_check_cmd_status(struct controller *ctrl)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) ctrl->hpc_ctlr_handle;
u16 cmd_status;
int retval = 0;
DBG_ENTER_ROUTINE
if (!ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
cmd_status = readw(php_ctlr->creg + CMD_STATUS) & 0x000F;
switch (cmd_status >> 1) {
case 0:
retval = 0;
break;
case 1:
retval = SWITCH_OPEN;
err("%s: Switch opened!\n", __FUNCTION__);
break;
case 2:
retval = INVALID_CMD;
err("%s: Invalid HPC command!\n", __FUNCTION__);
break;
case 4:
retval = INVALID_SPEED_MODE;
err("%s: Invalid bus speed/mode!\n", __FUNCTION__);
break;
default:
retval = cmd_status;
}
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_get_attention_status(struct slot *slot, u8 *status)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u32 slot_reg;
u16 slot_status;
u8 atten_led_state;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot));
slot_status = (u16) slot_reg;
atten_led_state = (slot_status & 0x0030) >> 4;
switch (atten_led_state) {
case 0:
*status = 0xFF; /* Reserved */
break;
case 1:
*status = 1; /* On */
break;
case 2:
*status = 2; /* Blink */
break;
case 3:
*status = 0; /* Off */
break;
default:
*status = 0xFF;
break;
}
DBG_LEAVE_ROUTINE
return 0;
}
static int hpc_get_power_status(struct slot * slot, u8 *status)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u32 slot_reg;
u16 slot_status;
u8 slot_state;
int retval = 0;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot));
slot_status = (u16) slot_reg;
slot_state = (slot_status & 0x0003);
switch (slot_state) {
case 0:
*status = 0xFF;
break;
case 1:
*status = 2; /* Powered only */
break;
case 2:
*status = 1; /* Enabled */
break;
case 3:
*status = 0; /* Disabled */
break;
default:
*status = 0xFF;
break;
}
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_get_latch_status(struct slot *slot, u8 *status)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u32 slot_reg;
u16 slot_status;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot));
slot_status = (u16)slot_reg;
*status = ((slot_status & 0x0100) == 0) ? 0 : 1; /* 0 -> close; 1 -> open */
DBG_LEAVE_ROUTINE
return 0;
}
static int hpc_get_adapter_status(struct slot *slot, u8 *status)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u32 slot_reg;
u16 slot_status;
u8 card_state;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot));
slot_status = (u16)slot_reg;
card_state = (u8)((slot_status & 0x0C00) >> 10);
*status = (card_state != 0x3) ? 1 : 0;
DBG_LEAVE_ROUTINE
return 0;
}
static int hpc_get_prog_int(struct slot *slot, u8 *prog_int)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
*prog_int = readb(php_ctlr->creg + PROG_INTERFACE);
DBG_LEAVE_ROUTINE
return 0;
}
static int hpc_get_adapter_speed(struct slot *slot, enum pci_bus_speed *value)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u32 slot_reg;
u16 slot_status, sec_bus_status;
u8 m66_cap, pcix_cap, pi;
int retval = 0;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
if (slot->hp_slot >= php_ctlr->num_slots) {
err("%s: Invalid HPC slot number!\n", __FUNCTION__);
return -1;
}
pi = readb(php_ctlr->creg + PROG_INTERFACE);
slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot));
dbg("%s: pi = %d, slot_reg = %x\n", __FUNCTION__, pi, slot_reg);
slot_status = (u16) slot_reg;
dbg("%s: slot_status = %x\n", __FUNCTION__, slot_status);
sec_bus_status = readw(php_ctlr->creg + SEC_BUS_CONFIG);
pcix_cap = (u8) ((slot_status & 0x3000) >> 12);
dbg("%s: pcix_cap = %x\n", __FUNCTION__, pcix_cap);
m66_cap = (u8) ((slot_status & 0x0200) >> 9);
dbg("%s: m66_cap = %x\n", __FUNCTION__, m66_cap);
if (pi == 2) {
switch (pcix_cap) {
case 0:
*value = m66_cap ? PCI_SPEED_66MHz : PCI_SPEED_33MHz;
break;
case 1:
*value = PCI_SPEED_66MHz_PCIX;
break;
case 3:
*value = PCI_SPEED_133MHz_PCIX;
break;
case 4:
*value = PCI_SPEED_133MHz_PCIX_266;
break;
case 5:
*value = PCI_SPEED_133MHz_PCIX_533;
break;
case 2: /* Reserved */
default:
*value = PCI_SPEED_UNKNOWN;
retval = -ENODEV;
break;
}
} else {
switch (pcix_cap) {
case 0:
*value = m66_cap ? PCI_SPEED_66MHz : PCI_SPEED_33MHz;
break;
case 1:
*value = PCI_SPEED_66MHz_PCIX;
break;
case 3:
*value = PCI_SPEED_133MHz_PCIX;
break;
case 2: /* Reserved */
default:
*value = PCI_SPEED_UNKNOWN;
retval = -ENODEV;
break;
}
}
dbg("Adapter speed = %d\n", *value);
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_get_mode1_ECC_cap(struct slot *slot, u8 *mode)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u16 sec_bus_status;
u8 pi;
int retval = 0;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
pi = readb(php_ctlr->creg + PROG_INTERFACE);
sec_bus_status = readw(php_ctlr->creg + SEC_BUS_CONFIG);
if (pi == 2) {
*mode = (sec_bus_status & 0x0100) >> 7;
} else {
retval = -1;
}
dbg("Mode 1 ECC cap = %d\n", *mode);
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_query_power_fault(struct slot * slot)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u32 slot_reg;
u16 slot_status;
u8 pwr_fault_state, status;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
slot_reg = readl(php_ctlr->creg + SLOT1 + 4*(slot->hp_slot));
slot_status = (u16) slot_reg;
pwr_fault_state = (slot_status & 0x0040) >> 7;
status = (pwr_fault_state == 1) ? 0 : 1;
DBG_LEAVE_ROUTINE
/* Note: Logic 0 => fault */
return status;
}
static int hpc_set_attention_status(struct slot *slot, u8 value)
{
struct php_ctlr_state_s *php_ctlr =(struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u8 slot_cmd = 0;
int rc = 0;
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
if (slot->hp_slot >= php_ctlr->num_slots) {
err("%s: Invalid HPC slot number!\n", __FUNCTION__);
return -1;
}
switch (value) {
case 0 :
slot_cmd = 0x30; /* OFF */
break;
case 1:
slot_cmd = 0x10; /* ON */
break;
case 2:
slot_cmd = 0x20; /* BLINK */
break;
default:
return -1;
}
shpc_write_cmd(slot, slot->hp_slot, slot_cmd);
return rc;
}
static void hpc_set_green_led_on(struct slot *slot)
{
struct php_ctlr_state_s *php_ctlr =(struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u8 slot_cmd;
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return ;
}
if (slot->hp_slot >= php_ctlr->num_slots) {
err("%s: Invalid HPC slot number!\n", __FUNCTION__);
return ;
}
slot_cmd = 0x04;
shpc_write_cmd(slot, slot->hp_slot, slot_cmd);
return;
}
static void hpc_set_green_led_off(struct slot *slot)
{
struct php_ctlr_state_s *php_ctlr =(struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u8 slot_cmd;
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return ;
}
if (slot->hp_slot >= php_ctlr->num_slots) {
err("%s: Invalid HPC slot number!\n", __FUNCTION__);
return ;
}
slot_cmd = 0x0C;
shpc_write_cmd(slot, slot->hp_slot, slot_cmd);
return;
}
static void hpc_set_green_led_blink(struct slot *slot)
{
struct php_ctlr_state_s *php_ctlr =(struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u8 slot_cmd;
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return ;
}
if (slot->hp_slot >= php_ctlr->num_slots) {
err("%s: Invalid HPC slot number!\n", __FUNCTION__);
return ;
}
slot_cmd = 0x08;
shpc_write_cmd(slot, slot->hp_slot, slot_cmd);
return;
}
int shpc_get_ctlr_slot_config(struct controller *ctrl,
int *num_ctlr_slots, /* number of slots in this HPC */
int *first_device_num, /* PCI dev num of the first slot in this SHPC */
int *physical_slot_num, /* phy slot num of the first slot in this SHPC */
int *updown, /* physical_slot_num increament: 1 or -1 */
int *flags)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) ctrl->hpc_ctlr_handle;
DBG_ENTER_ROUTINE
if (!ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
*first_device_num = php_ctlr->slot_device_offset; /* Obtained in shpc_init() */
*num_ctlr_slots = php_ctlr->num_slots; /* Obtained in shpc_init() */
*physical_slot_num = (readl(php_ctlr->creg + SLOT_CONFIG) & PSN) >> 16;
dbg("%s: physical_slot_num = %x\n", __FUNCTION__, *physical_slot_num);
*updown = ((readl(php_ctlr->creg + SLOT_CONFIG) & UPDOWN ) >> 29) ? 1 : -1;
DBG_LEAVE_ROUTINE
return 0;
}
static void hpc_release_ctlr(struct controller *ctrl)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) ctrl->hpc_ctlr_handle;
struct php_ctlr_state_s *p, *p_prev;
DBG_ENTER_ROUTINE
if (!ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return ;
}
if (shpchp_poll_mode) {
del_timer(&php_ctlr->int_poll_timer);
} else {
if (php_ctlr->irq) {
free_irq(php_ctlr->irq, ctrl);
php_ctlr->irq = 0;
pci_disable_msi(php_ctlr->pci_dev);
}
}
if (php_ctlr->pci_dev) {
dbg("%s: before calling iounmap & release_mem_region\n", __FUNCTION__);
iounmap(php_ctlr->creg);
release_mem_region(pci_resource_start(php_ctlr->pci_dev, 0), pci_resource_len(php_ctlr->pci_dev, 0));
dbg("%s: before calling iounmap & release_mem_region\n", __FUNCTION__);
php_ctlr->pci_dev = NULL;
}
spin_lock(&list_lock);
p = php_ctlr_list_head;
p_prev = NULL;
while (p) {
if (p == php_ctlr) {
if (p_prev)
p_prev->pnext = p->pnext;
else
php_ctlr_list_head = p->pnext;
break;
} else {
p_prev = p;
p = p->pnext;
}
}
spin_unlock(&list_lock);
kfree(php_ctlr);
DBG_LEAVE_ROUTINE
}
static int hpc_power_on_slot(struct slot * slot)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u8 slot_cmd;
int retval = 0;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
if (slot->hp_slot >= php_ctlr->num_slots) {
err("%s: Invalid HPC slot number!\n", __FUNCTION__);
return -1;
}
slot_cmd = 0x01;
retval = shpc_write_cmd(slot, slot->hp_slot, slot_cmd);
if (retval) {
err("%s: Write command failed!\n", __FUNCTION__);
return -1;
}
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_slot_enable(struct slot * slot)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u8 slot_cmd;
int retval = 0;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
if (slot->hp_slot >= php_ctlr->num_slots) {
err("%s: Invalid HPC slot number!\n", __FUNCTION__);
return -1;
}
/* 3A => Slot - Enable, Power Indicator - Blink, Attention Indicator - Off */
slot_cmd = 0x3A;
retval = shpc_write_cmd(slot, slot->hp_slot, slot_cmd);
if (retval) {
err("%s: Write command failed!\n", __FUNCTION__);
return -1;
}
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_slot_disable(struct slot * slot)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
u8 slot_cmd;
int retval = 0;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
if (slot->hp_slot >= php_ctlr->num_slots) {
err("%s: Invalid HPC slot number!\n", __FUNCTION__);
return -1;
}
/* 1F => Slot - Disable, Power Indicator - Off, Attention Indicator - On */
slot_cmd = 0x1F;
retval = shpc_write_cmd(slot, slot->hp_slot, slot_cmd);
if (retval) {
err("%s: Write command failed!\n", __FUNCTION__);
return -1;
}
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_enable_all_slots( struct slot *slot )
{
int retval = 0;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
retval = shpc_write_cmd(slot, 0, SET_ENABLE_ALL);
if (retval) {
err("%s: Write command failed!\n", __FUNCTION__);
return -1;
}
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_pwr_on_all_slots(struct slot *slot)
{
int retval = 0;
DBG_ENTER_ROUTINE
retval = shpc_write_cmd(slot, 0, SET_PWR_ON_ALL);
if (retval) {
err("%s: Write command failed!\n", __FUNCTION__);
return -1;
}
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_set_bus_speed_mode(struct slot * slot, enum pci_bus_speed value)
{
u8 slot_cmd;
u8 pi;
int retval = 0;
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
pi = readb(php_ctlr->creg + PROG_INTERFACE);
if (pi == 1) {
switch (value) {
case 0:
slot_cmd = SETA_PCI_33MHZ;
break;
case 1:
slot_cmd = SETA_PCI_66MHZ;
break;
case 2:
slot_cmd = SETA_PCIX_66MHZ;
break;
case 3:
slot_cmd = SETA_PCIX_100MHZ;
break;
case 4:
slot_cmd = SETA_PCIX_133MHZ;
break;
default:
slot_cmd = PCI_SPEED_UNKNOWN;
retval = -ENODEV;
return retval;
}
} else {
switch (value) {
case 0:
slot_cmd = SETB_PCI_33MHZ;
break;
case 1:
slot_cmd = SETB_PCI_66MHZ;
break;
case 2:
slot_cmd = SETB_PCIX_66MHZ_PM;
break;
case 3:
slot_cmd = SETB_PCIX_100MHZ_PM;
break;
case 4:
slot_cmd = SETB_PCIX_133MHZ_PM;
break;
case 5:
slot_cmd = SETB_PCIX_66MHZ_EM;
break;
case 6:
slot_cmd = SETB_PCIX_100MHZ_EM;
break;
case 7:
slot_cmd = SETB_PCIX_133MHZ_EM;
break;
case 8:
slot_cmd = SETB_PCIX_66MHZ_266;
break;
case 0x9:
slot_cmd = SETB_PCIX_100MHZ_266;
break;
case 0xa:
slot_cmd = SETB_PCIX_133MHZ_266;
break;
case 0xb:
slot_cmd = SETB_PCIX_66MHZ_533;
break;
case 0xc:
slot_cmd = SETB_PCIX_100MHZ_533;
break;
case 0xd:
slot_cmd = SETB_PCIX_133MHZ_533;
break;
default:
slot_cmd = PCI_SPEED_UNKNOWN;
retval = -ENODEV;
return retval;
}
}
retval = shpc_write_cmd(slot, 0, slot_cmd);
if (retval) {
err("%s: Write command failed!\n", __FUNCTION__);
return -1;
}
DBG_LEAVE_ROUTINE
return retval;
}
static irqreturn_t shpc_isr(int IRQ, void *dev_id, struct pt_regs *regs)
{
struct controller *ctrl = NULL;
struct php_ctlr_state_s *php_ctlr;
u8 schedule_flag = 0;
u8 temp_byte;
u32 temp_dword, intr_loc, intr_loc2;
int hp_slot;
if (!dev_id)
return IRQ_NONE;
if (!shpchp_poll_mode) {
ctrl = (struct controller *)dev_id;
php_ctlr = ctrl->hpc_ctlr_handle;
} else {
php_ctlr = (struct php_ctlr_state_s *) dev_id;
ctrl = (struct controller *)php_ctlr->callback_instance_id;
}
if (!ctrl)
return IRQ_NONE;
if (!php_ctlr || !php_ctlr->creg)
return IRQ_NONE;
/* Check to see if it was our interrupt */
intr_loc = readl(php_ctlr->creg + INTR_LOC);
if (!intr_loc)
return IRQ_NONE;
dbg("%s: shpc_isr proceeds\n", __FUNCTION__);
dbg("%s: intr_loc = %x\n",__FUNCTION__, intr_loc);
if(!shpchp_poll_mode) {
/* Mask Global Interrupt Mask - see implementation note on p. 139 */
/* of SHPC spec rev 1.0*/
temp_dword = readl(php_ctlr->creg + SERR_INTR_ENABLE);
dbg("%s: Before masking global interrupt, temp_dword = %x\n",
__FUNCTION__, temp_dword);
temp_dword |= 0x00000001;
dbg("%s: After masking global interrupt, temp_dword = %x\n",
__FUNCTION__, temp_dword);
writel(temp_dword, php_ctlr->creg + SERR_INTR_ENABLE);
intr_loc2 = readl(php_ctlr->creg + INTR_LOC);
dbg("%s: intr_loc2 = %x\n",__FUNCTION__, intr_loc2);
}
if (intr_loc & 0x0001) {
/*
* Command Complete Interrupt Pending
* RO only - clear by writing 0 to the Command Completion
* Detect bit in Controller SERR-INT register
*/
temp_dword = readl(php_ctlr->creg + SERR_INTR_ENABLE);
dbg("%s: Before clearing CCIP, temp_dword = %x\n",
__FUNCTION__, temp_dword);
temp_dword &= 0xfffeffff;
dbg("%s: After clearing CCIP, temp_dword = %x\n",
__FUNCTION__, temp_dword);
writel(temp_dword, php_ctlr->creg + SERR_INTR_ENABLE);
wake_up_interruptible(&ctrl->queue);
}
if ((intr_loc = (intr_loc >> 1)) == 0) {
/* Unmask Global Interrupt Mask */
temp_dword = readl(php_ctlr->creg + SERR_INTR_ENABLE);
dbg("%s: 1-Before unmasking global interrupt, temp_dword = %x\n",
__FUNCTION__, temp_dword);
temp_dword &= 0xfffffffe;
dbg("%s: 1-After unmasking global interrupt, temp_dword = %x\n",
__FUNCTION__, temp_dword);
writel(temp_dword, php_ctlr->creg + SERR_INTR_ENABLE);
return IRQ_NONE;
}
for (hp_slot = 0; hp_slot < ctrl->num_slots; hp_slot++) {
/* To find out which slot has interrupt pending */
if ((intr_loc >> hp_slot) & 0x01) {
temp_dword = readl(php_ctlr->creg + SLOT1 + (4*hp_slot));
dbg("%s: Slot %x with intr, temp_dword = %x\n",
__FUNCTION__, hp_slot, temp_dword);
temp_byte = (temp_dword >> 16) & 0xFF;
dbg("%s: Slot with intr, temp_byte = %x\n",
__FUNCTION__, temp_byte);
if ((php_ctlr->switch_change_callback) && (temp_byte & 0x08))
schedule_flag += php_ctlr->switch_change_callback(
hp_slot, php_ctlr->callback_instance_id);
if ((php_ctlr->attention_button_callback) && (temp_byte & 0x04))
schedule_flag += php_ctlr->attention_button_callback(
hp_slot, php_ctlr->callback_instance_id);
if ((php_ctlr->presence_change_callback) && (temp_byte & 0x01))
schedule_flag += php_ctlr->presence_change_callback(
hp_slot , php_ctlr->callback_instance_id);
if ((php_ctlr->power_fault_callback) && (temp_byte & 0x12))
schedule_flag += php_ctlr->power_fault_callback(
hp_slot, php_ctlr->callback_instance_id);
/* Clear all slot events */
temp_dword = 0xe01f3fff;
dbg("%s: Clearing slot events, temp_dword = %x\n",
__FUNCTION__, temp_dword);
writel(temp_dword, php_ctlr->creg + SLOT1 + (4*hp_slot));
intr_loc2 = readl(php_ctlr->creg + INTR_LOC);
dbg("%s: intr_loc2 = %x\n",__FUNCTION__, intr_loc2);
}
}
if (!shpchp_poll_mode) {
/* Unmask Global Interrupt Mask */
temp_dword = readl(php_ctlr->creg + SERR_INTR_ENABLE);
dbg("%s: 2-Before unmasking global interrupt, temp_dword = %x\n",
__FUNCTION__, temp_dword);
temp_dword &= 0xfffffffe;
dbg("%s: 2-After unmasking global interrupt, temp_dword = %x\n",
__FUNCTION__, temp_dword);
writel(temp_dword, php_ctlr->creg + SERR_INTR_ENABLE);
}
return IRQ_HANDLED;
}
static int hpc_get_max_bus_speed (struct slot *slot, enum pci_bus_speed *value)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
enum pci_bus_speed bus_speed = PCI_SPEED_UNKNOWN;
int retval = 0;
u8 pi;
u32 slot_avail1, slot_avail2;
int slot_num;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
if (slot->hp_slot >= php_ctlr->num_slots) {
err("%s: Invalid HPC slot number!\n", __FUNCTION__);
return -1;
}
pi = readb(php_ctlr->creg + PROG_INTERFACE);
slot_avail1 = readl(php_ctlr->creg + SLOT_AVAIL1);
slot_avail2 = readl(php_ctlr->creg + SLOT_AVAIL2);
if (pi == 2) {
if ((slot_num = ((slot_avail2 & SLOT_133MHZ_PCIX_533) >> 27) ) != 0 )
bus_speed = PCIX_133MHZ_533;
else if ((slot_num = ((slot_avail2 & SLOT_100MHZ_PCIX_533) >> 23) ) != 0 )
bus_speed = PCIX_100MHZ_533;
else if ((slot_num = ((slot_avail2 & SLOT_66MHZ_PCIX_533) >> 19) ) != 0 )
bus_speed = PCIX_66MHZ_533;
else if ((slot_num = ((slot_avail2 & SLOT_133MHZ_PCIX_266) >> 15) ) != 0 )
bus_speed = PCIX_133MHZ_266;
else if ((slot_num = ((slot_avail2 & SLOT_100MHZ_PCIX_266) >> 11) ) != 0 )
bus_speed = PCIX_100MHZ_266;
else if ((slot_num = ((slot_avail2 & SLOT_66MHZ_PCIX_266) >> 7) ) != 0 )
bus_speed = PCIX_66MHZ_266;
else if ((slot_num = ((slot_avail1 & SLOT_133MHZ_PCIX) >> 23) ) != 0 )
bus_speed = PCIX_133MHZ;
else if ((slot_num = ((slot_avail1 & SLOT_100MHZ_PCIX) >> 15) ) != 0 )
bus_speed = PCIX_100MHZ;
else if ((slot_num = ((slot_avail1 & SLOT_66MHZ_PCIX) >> 7) ) != 0 )
bus_speed = PCIX_66MHZ;
else if ((slot_num = (slot_avail2 & SLOT_66MHZ)) != 0 )
bus_speed = PCI_66MHZ;
else if ((slot_num = (slot_avail1 & SLOT_33MHZ)) != 0 )
bus_speed = PCI_33MHZ;
else bus_speed = PCI_SPEED_UNKNOWN;
} else {
if ((slot_num = ((slot_avail1 & SLOT_133MHZ_PCIX) >> 23) ) != 0 )
bus_speed = PCIX_133MHZ;
else if ((slot_num = ((slot_avail1 & SLOT_100MHZ_PCIX) >> 15) ) != 0 )
bus_speed = PCIX_100MHZ;
else if ((slot_num = ((slot_avail1 & SLOT_66MHZ_PCIX) >> 7) ) != 0 )
bus_speed = PCIX_66MHZ;
else if ((slot_num = (slot_avail2 & SLOT_66MHZ)) != 0 )
bus_speed = PCI_66MHZ;
else if ((slot_num = (slot_avail1 & SLOT_33MHZ)) != 0 )
bus_speed = PCI_33MHZ;
else bus_speed = PCI_SPEED_UNKNOWN;
}
*value = bus_speed;
dbg("Max bus speed = %d\n", bus_speed);
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_get_cur_bus_speed (struct slot *slot, enum pci_bus_speed *value)
{
struct php_ctlr_state_s *php_ctlr = (struct php_ctlr_state_s *) slot->ctrl->hpc_ctlr_handle;
enum pci_bus_speed bus_speed = PCI_SPEED_UNKNOWN;
u16 sec_bus_status;
int retval = 0;
u8 pi;
DBG_ENTER_ROUTINE
if (!slot->ctrl->hpc_ctlr_handle) {
err("%s: Invalid HPC controller handle!\n", __FUNCTION__);
return -1;
}
if (slot->hp_slot >= php_ctlr->num_slots) {
err("%s: Invalid HPC slot number!\n", __FUNCTION__);
return -1;
}
pi = readb(php_ctlr->creg + PROG_INTERFACE);
sec_bus_status = readw(php_ctlr->creg + SEC_BUS_CONFIG);
if (pi == 2) {
switch (sec_bus_status & 0x000f) {
case 0:
bus_speed = PCI_SPEED_33MHz;
break;
case 1:
bus_speed = PCI_SPEED_66MHz;
break;
case 2:
bus_speed = PCI_SPEED_66MHz_PCIX;
break;
case 3:
bus_speed = PCI_SPEED_100MHz_PCIX;
break;
case 4:
bus_speed = PCI_SPEED_133MHz_PCIX;
break;
case 5:
bus_speed = PCI_SPEED_66MHz_PCIX_ECC;
break;
case 6:
bus_speed = PCI_SPEED_100MHz_PCIX_ECC;
break;
case 7:
bus_speed = PCI_SPEED_133MHz_PCIX_ECC;
break;
case 8:
bus_speed = PCI_SPEED_66MHz_PCIX_266;
break;
case 9:
bus_speed = PCI_SPEED_100MHz_PCIX_266;
break;
case 0xa:
bus_speed = PCI_SPEED_133MHz_PCIX_266;
break;
case 0xb:
bus_speed = PCI_SPEED_66MHz_PCIX_533;
break;
case 0xc:
bus_speed = PCI_SPEED_100MHz_PCIX_533;
break;
case 0xd:
bus_speed = PCI_SPEED_133MHz_PCIX_533;
break;
case 0xe:
case 0xf:
default:
bus_speed = PCI_SPEED_UNKNOWN;
break;
}
} else {
/* In the case where pi is undefined, default it to 1 */
switch (sec_bus_status & 0x0007) {
case 0:
bus_speed = PCI_SPEED_33MHz;
break;
case 1:
bus_speed = PCI_SPEED_66MHz;
break;
case 2:
bus_speed = PCI_SPEED_66MHz_PCIX;
break;
case 3:
bus_speed = PCI_SPEED_100MHz_PCIX;
break;
case 4:
bus_speed = PCI_SPEED_133MHz_PCIX;
break;
case 5:
bus_speed = PCI_SPEED_UNKNOWN; /* Reserved */
break;
case 6:
bus_speed = PCI_SPEED_UNKNOWN; /* Reserved */
break;
case 7:
bus_speed = PCI_SPEED_UNKNOWN; /* Reserved */
break;
default:
bus_speed = PCI_SPEED_UNKNOWN;
break;
}
}
*value = bus_speed;
dbg("Current bus speed = %d\n", bus_speed);
DBG_LEAVE_ROUTINE
return retval;
}
static struct hpc_ops shpchp_hpc_ops = {
.power_on_slot = hpc_power_on_slot,
.slot_enable = hpc_slot_enable,
.slot_disable = hpc_slot_disable,
.enable_all_slots = hpc_enable_all_slots,
.pwr_on_all_slots = hpc_pwr_on_all_slots,
.set_bus_speed_mode = hpc_set_bus_speed_mode,
.set_attention_status = hpc_set_attention_status,
.get_power_status = hpc_get_power_status,
.get_attention_status = hpc_get_attention_status,
.get_latch_status = hpc_get_latch_status,
.get_adapter_status = hpc_get_adapter_status,
.get_max_bus_speed = hpc_get_max_bus_speed,
.get_cur_bus_speed = hpc_get_cur_bus_speed,
.get_adapter_speed = hpc_get_adapter_speed,
.get_mode1_ECC_cap = hpc_get_mode1_ECC_cap,
.get_prog_int = hpc_get_prog_int,
.query_power_fault = hpc_query_power_fault,
.green_led_on = hpc_set_green_led_on,
.green_led_off = hpc_set_green_led_off,
.green_led_blink = hpc_set_green_led_blink,
.release_ctlr = hpc_release_ctlr,
.check_cmd_status = hpc_check_cmd_status,
};
int shpc_init(struct controller * ctrl,
struct pci_dev * pdev,
php_intr_callback_t attention_button_callback,
php_intr_callback_t switch_change_callback,
php_intr_callback_t presence_change_callback,
php_intr_callback_t power_fault_callback)
{
struct php_ctlr_state_s *php_ctlr, *p;
void *instance_id = ctrl;
int rc;
u8 hp_slot;
static int first = 1;
u32 shpc_cap_offset, shpc_base_offset;
u32 tempdword, slot_reg;
u16 vendor_id, device_id;
u8 i;
DBG_ENTER_ROUTINE
spin_lock_init(&list_lock);
php_ctlr = (struct php_ctlr_state_s *) kmalloc(sizeof(struct php_ctlr_state_s), GFP_KERNEL);
if (!php_ctlr) { /* allocate controller state data */
err("%s: HPC controller memory allocation error!\n", __FUNCTION__);
goto abort;
}
memset(php_ctlr, 0, sizeof(struct php_ctlr_state_s));
php_ctlr->pci_dev = pdev; /* save pci_dev in context */
rc = pci_read_config_word(pdev, PCI_VENDOR_ID, &vendor_id);
dbg("%s: Vendor ID: %x\n",__FUNCTION__, vendor_id);
if (rc) {
err("%s: unable to read PCI configuration data\n", __FUNCTION__);
goto abort_free_ctlr;
}
rc = pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
dbg("%s: Device ID: %x\n",__FUNCTION__, device_id);
if (rc) {
err("%s: unable to read PCI configuration data\n", __FUNCTION__);
goto abort_free_ctlr;
}
if ((vendor_id == PCI_VENDOR_ID_AMD) || (device_id == PCI_DEVICE_ID_AMD_GOLAM_7450)) {
shpc_base_offset = 0; /* amd shpc driver doesn't use this; assume 0 */
} else {
if ((shpc_cap_offset = pci_find_capability(pdev, PCI_CAP_ID_SHPC)) == 0) {
err("%s : shpc_cap_offset == 0\n", __FUNCTION__);
goto abort_free_ctlr;
}
dbg("%s: shpc_cap_offset = %x\n", __FUNCTION__, shpc_cap_offset);
rc = pci_write_config_byte(pdev, (u8)shpc_cap_offset + DWORD_SELECT , BASE_OFFSET);
if (rc) {
err("%s : pci_word_config_byte failed\n", __FUNCTION__);
goto abort_free_ctlr;
}
rc = pci_read_config_dword(pdev, (u8)shpc_cap_offset + DWORD_DATA, &shpc_base_offset);
if (rc) {
err("%s : pci_read_config_dword failed\n", __FUNCTION__);
goto abort_free_ctlr;
}
for (i = 0; i <= 14; i++) {
rc = pci_write_config_byte(pdev, (u8)shpc_cap_offset + DWORD_SELECT , i);
if (rc) {
err("%s : pci_word_config_byte failed\n", __FUNCTION__);
goto abort_free_ctlr;
}
rc = pci_read_config_dword(pdev, (u8)shpc_cap_offset + DWORD_DATA, &tempdword);
if (rc) {
err("%s : pci_read_config_dword failed\n", __FUNCTION__);
goto abort_free_ctlr;
}
dbg("%s: offset %d: tempdword %x\n", __FUNCTION__,i, tempdword);
}
}
if (first) {
spin_lock_init(&hpc_event_lock);
first = 0;
}
dbg("pdev = %p: b:d:f:irq=0x%x:%x:%x:%x\n", pdev, pdev->bus->number, PCI_SLOT(pdev->devfn),
PCI_FUNC(pdev->devfn), pdev->irq);
for ( rc = 0; rc < DEVICE_COUNT_RESOURCE; rc++)
if (pci_resource_len(pdev, rc) > 0)
dbg("pci resource[%d] start=0x%lx(len=0x%lx), shpc_base_offset %x\n", rc,
pci_resource_start(pdev, rc), pci_resource_len(pdev, rc), shpc_base_offset);
info("HPC vendor_id %x device_id %x ss_vid %x ss_did %x\n", pdev->vendor, pdev->device, pdev->subsystem_vendor,
pdev->subsystem_device);
if (pci_enable_device(pdev))
goto abort_free_ctlr;
if (!request_mem_region(pci_resource_start(pdev, 0) + shpc_base_offset, pci_resource_len(pdev, 0), MY_NAME)) {
err("%s: cannot reserve MMIO region\n", __FUNCTION__);
goto abort_free_ctlr;
}
php_ctlr->creg = ioremap(pci_resource_start(pdev, 0) + shpc_base_offset, pci_resource_len(pdev, 0));
if (!php_ctlr->creg) {
err("%s: cannot remap MMIO region %lx @ %lx\n", __FUNCTION__, pci_resource_len(pdev, 0),
pci_resource_start(pdev, 0) + shpc_base_offset);
release_mem_region(pci_resource_start(pdev, 0) + shpc_base_offset, pci_resource_len(pdev, 0));
goto abort_free_ctlr;
}
dbg("%s: php_ctlr->creg %p\n", __FUNCTION__, php_ctlr->creg);
dbg("%s: physical addr %p\n", __FUNCTION__, (void*)pci_resource_start(pdev, 0));
init_MUTEX(&ctrl->crit_sect);
/* Setup wait queue */
init_waitqueue_head(&ctrl->queue);
/* Find the IRQ */
php_ctlr->irq = pdev->irq;
dbg("HPC interrupt = %d\n", php_ctlr->irq);
/* Save interrupt callback info */
php_ctlr->attention_button_callback = attention_button_callback;
php_ctlr->switch_change_callback = switch_change_callback;
php_ctlr->presence_change_callback = presence_change_callback;
php_ctlr->power_fault_callback = power_fault_callback;
php_ctlr->callback_instance_id = instance_id;
/* Return PCI Controller Info */
php_ctlr->slot_device_offset = (readl(php_ctlr->creg + SLOT_CONFIG) & FIRST_DEV_NUM ) >> 8;
php_ctlr->num_slots = readl(php_ctlr->creg + SLOT_CONFIG) & SLOT_NUM;
dbg("%s: slot_device_offset %x\n", __FUNCTION__, php_ctlr->slot_device_offset);
dbg("%s: num_slots %x\n", __FUNCTION__, php_ctlr->num_slots);
/* Mask Global Interrupt Mask & Command Complete Interrupt Mask */
tempdword = readl(php_ctlr->creg + SERR_INTR_ENABLE);
dbg("%s: SERR_INTR_ENABLE = %x\n", __FUNCTION__, tempdword);
tempdword = 0x0003000f;
writel(tempdword, php_ctlr->creg + SERR_INTR_ENABLE);
tempdword = readl(php_ctlr->creg + SERR_INTR_ENABLE);
dbg("%s: SERR_INTR_ENABLE = %x\n", __FUNCTION__, tempdword);
/* Mask the MRL sensor SERR Mask of individual slot in
* Slot SERR-INT Mask & clear all the existing event if any
*/
for (hp_slot = 0; hp_slot < php_ctlr->num_slots; hp_slot++) {
slot_reg = readl(php_ctlr->creg + SLOT1 + 4*hp_slot );
dbg("%s: Default Logical Slot Register %d value %x\n", __FUNCTION__,
hp_slot, slot_reg);
tempdword = 0xffff3fff;
writel(tempdword, php_ctlr->creg + SLOT1 + (4*hp_slot));
}
if (shpchp_poll_mode) {/* Install interrupt polling code */
/* Install and start the interrupt polling timer */
init_timer(&php_ctlr->int_poll_timer);
start_int_poll_timer( php_ctlr, 10 ); /* start with 10 second delay */
} else {
/* Installs the interrupt handler */
rc = pci_enable_msi(pdev);
if (rc) {
info("Can't get msi for the hotplug controller\n");
info("Use INTx for the hotplug controller\n");
dbg("%s: rc = %x\n", __FUNCTION__, rc);
} else
php_ctlr->irq = pdev->irq;
rc = request_irq(php_ctlr->irq, shpc_isr, SA_SHIRQ, MY_NAME, (void *) ctrl);
dbg("%s: request_irq %d for hpc%d (returns %d)\n", __FUNCTION__, php_ctlr->irq, ctlr_seq_num, rc);
if (rc) {
err("Can't get irq %d for the hotplug controller\n", php_ctlr->irq);
goto abort_free_ctlr;
}
/* Execute OSHP method here */
}
dbg("%s: Before adding HPC to HPC list\n", __FUNCTION__);
/* Add this HPC instance into the HPC list */
spin_lock(&list_lock);
if (php_ctlr_list_head == 0) {
php_ctlr_list_head = php_ctlr;
p = php_ctlr_list_head;
p->pnext = NULL;
} else {
p = php_ctlr_list_head;
while (p->pnext)
p = p->pnext;
p->pnext = php_ctlr;
}
spin_unlock(&list_lock);
ctlr_seq_num++;
ctrl->hpc_ctlr_handle = php_ctlr;
ctrl->hpc_ops = &shpchp_hpc_ops;
for (hp_slot = 0; hp_slot < php_ctlr->num_slots; hp_slot++) {
slot_reg = readl(php_ctlr->creg + SLOT1 + 4*hp_slot );
dbg("%s: Default Logical Slot Register %d value %x\n", __FUNCTION__,
hp_slot, slot_reg);
tempdword = 0xe01f3fff;
writel(tempdword, php_ctlr->creg + SLOT1 + (4*hp_slot));
}
if (!shpchp_poll_mode) {
/* Unmask all general input interrupts and SERR */
tempdword = readl(php_ctlr->creg + SERR_INTR_ENABLE);
tempdword = 0x0000000a;
writel(tempdword, php_ctlr->creg + SERR_INTR_ENABLE);
tempdword = readl(php_ctlr->creg + SERR_INTR_ENABLE);
dbg("%s: SERR_INTR_ENABLE = %x\n", __FUNCTION__, tempdword);
}
dbg("%s: Leaving shpc_init\n", __FUNCTION__);
DBG_LEAVE_ROUTINE
return 0;
/* We end up here for the many possible ways to fail this API. */
abort_free_ctlr:
kfree(php_ctlr);
abort:
DBG_LEAVE_ROUTINE
return -1;
}