OpenCloudOS-Kernel/drivers/net/ethernet/atheros/alx/main.c

2025 lines
47 KiB
C

/*
* Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
*
* This file is free software: you may copy, redistribute and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 2 of the License, or (at your
* option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* This file incorporates work covered by the following copyright and
* permission notice:
*
* Copyright (c) 2012 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
#include <linux/mdio.h>
#include <linux/aer.h>
#include <linux/bitops.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <net/ip6_checksum.h>
#include <linux/crc32.h>
#include "alx.h"
#include "hw.h"
#include "reg.h"
const char alx_drv_name[] = "alx";
static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
{
struct alx_buffer *txb = &txq->bufs[entry];
if (dma_unmap_len(txb, size)) {
dma_unmap_single(txq->dev,
dma_unmap_addr(txb, dma),
dma_unmap_len(txb, size),
DMA_TO_DEVICE);
dma_unmap_len_set(txb, size, 0);
}
if (txb->skb) {
dev_kfree_skb_any(txb->skb);
txb->skb = NULL;
}
}
static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
{
struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
struct sk_buff *skb;
struct alx_buffer *cur_buf;
dma_addr_t dma;
u16 cur, next, count = 0;
next = cur = rxq->write_idx;
if (++next == alx->rx_ringsz)
next = 0;
cur_buf = &rxq->bufs[cur];
while (!cur_buf->skb && next != rxq->read_idx) {
struct alx_rfd *rfd = &rxq->rfd[cur];
/*
* When DMA RX address is set to something like
* 0x....fc0, it will be very likely to cause DMA
* RFD overflow issue.
*
* To work around it, we apply rx skb with 64 bytes
* longer space, and offset the address whenever
* 0x....fc0 is detected.
*/
skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
if (!skb)
break;
if (((unsigned long)skb->data & 0xfff) == 0xfc0)
skb_reserve(skb, 64);
dma = dma_map_single(&alx->hw.pdev->dev,
skb->data, alx->rxbuf_size,
DMA_FROM_DEVICE);
if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
dev_kfree_skb(skb);
break;
}
/* Unfortunately, RX descriptor buffers must be 4-byte
* aligned, so we can't use IP alignment.
*/
if (WARN_ON(dma & 3)) {
dev_kfree_skb(skb);
break;
}
cur_buf->skb = skb;
dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
dma_unmap_addr_set(cur_buf, dma, dma);
rfd->addr = cpu_to_le64(dma);
cur = next;
if (++next == alx->rx_ringsz)
next = 0;
cur_buf = &rxq->bufs[cur];
count++;
}
if (count) {
/* flush all updates before updating hardware */
wmb();
rxq->write_idx = cur;
alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
}
return count;
}
static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
struct sk_buff *skb)
{
unsigned int r_idx = skb->queue_mapping;
if (r_idx >= alx->num_txq)
r_idx = r_idx % alx->num_txq;
return alx->qnapi[r_idx]->txq;
}
static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
{
return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
}
static inline int alx_tpd_avail(struct alx_tx_queue *txq)
{
if (txq->write_idx >= txq->read_idx)
return txq->count + txq->read_idx - txq->write_idx - 1;
return txq->read_idx - txq->write_idx - 1;
}
static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
{
struct alx_priv *alx;
struct netdev_queue *tx_queue;
u16 hw_read_idx, sw_read_idx;
unsigned int total_bytes = 0, total_packets = 0;
int budget = ALX_DEFAULT_TX_WORK;
alx = netdev_priv(txq->netdev);
tx_queue = alx_get_tx_queue(txq);
sw_read_idx = txq->read_idx;
hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
if (sw_read_idx != hw_read_idx) {
while (sw_read_idx != hw_read_idx && budget > 0) {
struct sk_buff *skb;
skb = txq->bufs[sw_read_idx].skb;
if (skb) {
total_bytes += skb->len;
total_packets++;
budget--;
}
alx_free_txbuf(txq, sw_read_idx);
if (++sw_read_idx == txq->count)
sw_read_idx = 0;
}
txq->read_idx = sw_read_idx;
netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
}
if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
alx_tpd_avail(txq) > txq->count / 4)
netif_tx_wake_queue(tx_queue);
return sw_read_idx == hw_read_idx;
}
static void alx_schedule_link_check(struct alx_priv *alx)
{
schedule_work(&alx->link_check_wk);
}
static void alx_schedule_reset(struct alx_priv *alx)
{
schedule_work(&alx->reset_wk);
}
static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
{
struct alx_priv *alx;
struct alx_rrd *rrd;
struct alx_buffer *rxb;
struct sk_buff *skb;
u16 length, rfd_cleaned = 0;
int work = 0;
alx = netdev_priv(rxq->netdev);
while (work < budget) {
rrd = &rxq->rrd[rxq->rrd_read_idx];
if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
break;
rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
RRD_SI) != rxq->read_idx ||
ALX_GET_FIELD(le32_to_cpu(rrd->word0),
RRD_NOR) != 1) {
alx_schedule_reset(alx);
return work;
}
rxb = &rxq->bufs[rxq->read_idx];
dma_unmap_single(rxq->dev,
dma_unmap_addr(rxb, dma),
dma_unmap_len(rxb, size),
DMA_FROM_DEVICE);
dma_unmap_len_set(rxb, size, 0);
skb = rxb->skb;
rxb->skb = NULL;
if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
rrd->word3 = 0;
dev_kfree_skb_any(skb);
goto next_pkt;
}
length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
RRD_PKTLEN) - ETH_FCS_LEN;
skb_put(skb, length);
skb->protocol = eth_type_trans(skb, rxq->netdev);
skb_checksum_none_assert(skb);
if (alx->dev->features & NETIF_F_RXCSUM &&
!(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
RRD_PID)) {
case RRD_PID_IPV6UDP:
case RRD_PID_IPV4UDP:
case RRD_PID_IPV4TCP:
case RRD_PID_IPV6TCP:
skb->ip_summed = CHECKSUM_UNNECESSARY;
break;
}
}
napi_gro_receive(&rxq->np->napi, skb);
work++;
next_pkt:
if (++rxq->read_idx == rxq->count)
rxq->read_idx = 0;
if (++rxq->rrd_read_idx == rxq->count)
rxq->rrd_read_idx = 0;
if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
}
if (rfd_cleaned)
alx_refill_rx_ring(alx, GFP_ATOMIC);
return work;
}
static int alx_poll(struct napi_struct *napi, int budget)
{
struct alx_napi *np = container_of(napi, struct alx_napi, napi);
struct alx_priv *alx = np->alx;
struct alx_hw *hw = &alx->hw;
unsigned long flags;
bool tx_complete = true;
int work = 0;
if (np->txq)
tx_complete = alx_clean_tx_irq(np->txq);
if (np->rxq)
work = alx_clean_rx_irq(np->rxq, budget);
if (!tx_complete || work == budget)
return budget;
napi_complete_done(&np->napi, work);
/* enable interrupt */
if (alx->hw.pdev->msix_enabled) {
alx_mask_msix(hw, np->vec_idx, false);
} else {
spin_lock_irqsave(&alx->irq_lock, flags);
alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
spin_unlock_irqrestore(&alx->irq_lock, flags);
}
alx_post_write(hw);
return work;
}
static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
{
struct alx_hw *hw = &alx->hw;
if (intr & ALX_ISR_FATAL) {
netif_warn(alx, hw, alx->dev,
"fatal interrupt 0x%x, resetting\n", intr);
alx_schedule_reset(alx);
return true;
}
if (intr & ALX_ISR_ALERT)
netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
if (intr & ALX_ISR_PHY) {
/* suppress PHY interrupt, because the source
* is from PHY internal. only the internal status
* is cleared, the interrupt status could be cleared.
*/
alx->int_mask &= ~ALX_ISR_PHY;
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
alx_schedule_link_check(alx);
}
return false;
}
static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
{
struct alx_hw *hw = &alx->hw;
spin_lock(&alx->irq_lock);
/* ACK interrupt */
alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
intr &= alx->int_mask;
if (alx_intr_handle_misc(alx, intr))
goto out;
if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
napi_schedule(&alx->qnapi[0]->napi);
/* mask rx/tx interrupt, enable them when napi complete */
alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
}
alx_write_mem32(hw, ALX_ISR, 0);
out:
spin_unlock(&alx->irq_lock);
return IRQ_HANDLED;
}
static irqreturn_t alx_intr_msix_ring(int irq, void *data)
{
struct alx_napi *np = data;
struct alx_hw *hw = &np->alx->hw;
/* mask interrupt to ACK chip */
alx_mask_msix(hw, np->vec_idx, true);
/* clear interrupt status */
alx_write_mem32(hw, ALX_ISR, np->vec_mask);
napi_schedule(&np->napi);
return IRQ_HANDLED;
}
static irqreturn_t alx_intr_msix_misc(int irq, void *data)
{
struct alx_priv *alx = data;
struct alx_hw *hw = &alx->hw;
u32 intr;
/* mask interrupt to ACK chip */
alx_mask_msix(hw, 0, true);
/* read interrupt status */
intr = alx_read_mem32(hw, ALX_ISR);
intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
if (alx_intr_handle_misc(alx, intr))
return IRQ_HANDLED;
/* clear interrupt status */
alx_write_mem32(hw, ALX_ISR, intr);
/* enable interrupt again */
alx_mask_msix(hw, 0, false);
return IRQ_HANDLED;
}
static irqreturn_t alx_intr_msi(int irq, void *data)
{
struct alx_priv *alx = data;
return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
}
static irqreturn_t alx_intr_legacy(int irq, void *data)
{
struct alx_priv *alx = data;
struct alx_hw *hw = &alx->hw;
u32 intr;
intr = alx_read_mem32(hw, ALX_ISR);
if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
return IRQ_NONE;
return alx_intr_handle(alx, intr);
}
static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
ALX_TPD_PRI1_ADDR_LO,
ALX_TPD_PRI2_ADDR_LO,
ALX_TPD_PRI3_ADDR_LO};
static void alx_init_ring_ptrs(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
struct alx_napi *np;
int i;
for (i = 0; i < alx->num_napi; i++) {
np = alx->qnapi[i];
if (np->txq) {
np->txq->read_idx = 0;
np->txq->write_idx = 0;
alx_write_mem32(hw,
txring_header_reg[np->txq->queue_idx],
np->txq->tpd_dma);
}
if (np->rxq) {
np->rxq->read_idx = 0;
np->rxq->write_idx = 0;
np->rxq->rrd_read_idx = 0;
alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
}
}
alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
/* load these pointers into the chip */
alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
}
static void alx_free_txring_buf(struct alx_tx_queue *txq)
{
int i;
if (!txq->bufs)
return;
for (i = 0; i < txq->count; i++)
alx_free_txbuf(txq, i);
memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
txq->write_idx = 0;
txq->read_idx = 0;
netdev_tx_reset_queue(alx_get_tx_queue(txq));
}
static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
{
struct alx_buffer *cur_buf;
u16 i;
if (!rxq->bufs)
return;
for (i = 0; i < rxq->count; i++) {
cur_buf = rxq->bufs + i;
if (cur_buf->skb) {
dma_unmap_single(rxq->dev,
dma_unmap_addr(cur_buf, dma),
dma_unmap_len(cur_buf, size),
DMA_FROM_DEVICE);
dev_kfree_skb(cur_buf->skb);
cur_buf->skb = NULL;
dma_unmap_len_set(cur_buf, size, 0);
dma_unmap_addr_set(cur_buf, dma, 0);
}
}
rxq->write_idx = 0;
rxq->read_idx = 0;
rxq->rrd_read_idx = 0;
}
static void alx_free_buffers(struct alx_priv *alx)
{
int i;
for (i = 0; i < alx->num_txq; i++)
if (alx->qnapi[i] && alx->qnapi[i]->txq)
alx_free_txring_buf(alx->qnapi[i]->txq);
if (alx->qnapi[0] && alx->qnapi[0]->rxq)
alx_free_rxring_buf(alx->qnapi[0]->rxq);
}
static int alx_reinit_rings(struct alx_priv *alx)
{
alx_free_buffers(alx);
alx_init_ring_ptrs(alx);
if (!alx_refill_rx_ring(alx, GFP_KERNEL))
return -ENOMEM;
return 0;
}
static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
{
u32 crc32, bit, reg;
crc32 = ether_crc(ETH_ALEN, addr);
reg = (crc32 >> 31) & 0x1;
bit = (crc32 >> 26) & 0x1F;
mc_hash[reg] |= BIT(bit);
}
static void __alx_set_rx_mode(struct net_device *netdev)
{
struct alx_priv *alx = netdev_priv(netdev);
struct alx_hw *hw = &alx->hw;
struct netdev_hw_addr *ha;
u32 mc_hash[2] = {};
if (!(netdev->flags & IFF_ALLMULTI)) {
netdev_for_each_mc_addr(ha, netdev)
alx_add_mc_addr(hw, ha->addr, mc_hash);
alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
}
hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
if (netdev->flags & IFF_PROMISC)
hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
if (netdev->flags & IFF_ALLMULTI)
hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
}
static void alx_set_rx_mode(struct net_device *netdev)
{
__alx_set_rx_mode(netdev);
}
static int alx_set_mac_address(struct net_device *netdev, void *data)
{
struct alx_priv *alx = netdev_priv(netdev);
struct alx_hw *hw = &alx->hw;
struct sockaddr *addr = data;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (netdev->addr_assign_type & NET_ADDR_RANDOM)
netdev->addr_assign_type ^= NET_ADDR_RANDOM;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
alx_set_macaddr(hw, hw->mac_addr);
return 0;
}
static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
int offset)
{
txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
if (!txq->bufs)
return -ENOMEM;
txq->tpd = alx->descmem.virt + offset;
txq->tpd_dma = alx->descmem.dma + offset;
offset += sizeof(struct alx_txd) * txq->count;
return offset;
}
static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
int offset)
{
rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
if (!rxq->bufs)
return -ENOMEM;
rxq->rrd = alx->descmem.virt + offset;
rxq->rrd_dma = alx->descmem.dma + offset;
offset += sizeof(struct alx_rrd) * rxq->count;
rxq->rfd = alx->descmem.virt + offset;
rxq->rfd_dma = alx->descmem.dma + offset;
offset += sizeof(struct alx_rfd) * rxq->count;
return offset;
}
static int alx_alloc_rings(struct alx_priv *alx)
{
int i, offset = 0;
/* physical tx/rx ring descriptors
*
* Allocate them as a single chunk because they must not cross a
* 4G boundary (hardware has a single register for high 32 bits
* of addresses only)
*/
alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
alx->num_txq +
sizeof(struct alx_rrd) * alx->rx_ringsz +
sizeof(struct alx_rfd) * alx->rx_ringsz;
alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
alx->descmem.size,
&alx->descmem.dma,
GFP_KERNEL);
if (!alx->descmem.virt)
return -ENOMEM;
/* alignment requirements */
BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
for (i = 0; i < alx->num_txq; i++) {
offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
if (offset < 0) {
netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
return -ENOMEM;
}
}
offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
if (offset < 0) {
netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
return -ENOMEM;
}
return 0;
}
static void alx_free_rings(struct alx_priv *alx)
{
int i;
alx_free_buffers(alx);
for (i = 0; i < alx->num_txq; i++)
if (alx->qnapi[i] && alx->qnapi[i]->txq)
kfree(alx->qnapi[i]->txq->bufs);
if (alx->qnapi[0] && alx->qnapi[0]->rxq)
kfree(alx->qnapi[0]->rxq->bufs);
if (alx->descmem.virt)
dma_free_coherent(&alx->hw.pdev->dev,
alx->descmem.size,
alx->descmem.virt,
alx->descmem.dma);
}
static void alx_free_napis(struct alx_priv *alx)
{
struct alx_napi *np;
int i;
for (i = 0; i < alx->num_napi; i++) {
np = alx->qnapi[i];
if (!np)
continue;
netif_napi_del(&np->napi);
kfree(np->txq);
kfree(np->rxq);
kfree(np);
alx->qnapi[i] = NULL;
}
}
static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
static int alx_alloc_napis(struct alx_priv *alx)
{
struct alx_napi *np;
struct alx_rx_queue *rxq;
struct alx_tx_queue *txq;
int i;
alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
/* allocate alx_napi structures */
for (i = 0; i < alx->num_napi; i++) {
np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
if (!np)
goto err_out;
np->alx = alx;
netif_napi_add(alx->dev, &np->napi, alx_poll, 64);
alx->qnapi[i] = np;
}
/* allocate tx queues */
for (i = 0; i < alx->num_txq; i++) {
np = alx->qnapi[i];
txq = kzalloc(sizeof(*txq), GFP_KERNEL);
if (!txq)
goto err_out;
np->txq = txq;
txq->p_reg = tx_pidx_reg[i];
txq->c_reg = tx_cidx_reg[i];
txq->queue_idx = i;
txq->count = alx->tx_ringsz;
txq->netdev = alx->dev;
txq->dev = &alx->hw.pdev->dev;
np->vec_mask |= tx_vect_mask[i];
alx->int_mask |= tx_vect_mask[i];
}
/* allocate rx queues */
np = alx->qnapi[0];
rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
if (!rxq)
goto err_out;
np->rxq = rxq;
rxq->np = alx->qnapi[0];
rxq->queue_idx = 0;
rxq->count = alx->rx_ringsz;
rxq->netdev = alx->dev;
rxq->dev = &alx->hw.pdev->dev;
np->vec_mask |= rx_vect_mask[0];
alx->int_mask |= rx_vect_mask[0];
return 0;
err_out:
netdev_err(alx->dev, "error allocating internal structures\n");
alx_free_napis(alx);
return -ENOMEM;
}
static const int txq_vec_mapping_shift[] = {
0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
};
static void alx_config_vector_mapping(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
u32 tbl[2] = {0, 0};
int i, vector, idx, shift;
if (alx->hw.pdev->msix_enabled) {
/* tx mappings */
for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
idx = txq_vec_mapping_shift[i * 2];
shift = txq_vec_mapping_shift[i * 2 + 1];
tbl[idx] |= vector << shift;
}
/* rx mapping */
tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
}
alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
}
static int alx_enable_msix(struct alx_priv *alx)
{
int err, num_vec, num_txq, num_rxq;
num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
num_rxq = 1;
num_vec = max_t(int, num_txq, num_rxq) + 1;
err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
PCI_IRQ_MSIX);
if (err < 0) {
netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
return err;
}
alx->num_vec = num_vec;
alx->num_napi = num_vec - 1;
alx->num_txq = num_txq;
alx->num_rxq = num_rxq;
return err;
}
static int alx_request_msix(struct alx_priv *alx)
{
struct net_device *netdev = alx->dev;
int i, err, vector = 0, free_vector = 0;
err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
0, netdev->name, alx);
if (err)
goto out_err;
for (i = 0; i < alx->num_napi; i++) {
struct alx_napi *np = alx->qnapi[i];
vector++;
if (np->txq && np->rxq)
sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
np->txq->queue_idx);
else if (np->txq)
sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
np->txq->queue_idx);
else if (np->rxq)
sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
np->rxq->queue_idx);
else
sprintf(np->irq_lbl, "%s-unused", netdev->name);
np->vec_idx = vector;
err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
alx_intr_msix_ring, 0, np->irq_lbl, np);
if (err)
goto out_free;
}
return 0;
out_free:
free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
vector--;
for (i = 0; i < vector; i++)
free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
alx->qnapi[i]);
out_err:
return err;
}
static int alx_init_intr(struct alx_priv *alx)
{
int ret;
ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
PCI_IRQ_MSI | PCI_IRQ_LEGACY);
if (ret < 0)
return ret;
alx->num_vec = 1;
alx->num_napi = 1;
alx->num_txq = 1;
alx->num_rxq = 1;
return 0;
}
static void alx_irq_enable(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
int i;
/* level-1 interrupt switch */
alx_write_mem32(hw, ALX_ISR, 0);
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
alx_post_write(hw);
if (alx->hw.pdev->msix_enabled) {
/* enable all msix irqs */
for (i = 0; i < alx->num_vec; i++)
alx_mask_msix(hw, i, false);
}
}
static void alx_irq_disable(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
int i;
alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
alx_write_mem32(hw, ALX_IMR, 0);
alx_post_write(hw);
if (alx->hw.pdev->msix_enabled) {
for (i = 0; i < alx->num_vec; i++) {
alx_mask_msix(hw, i, true);
synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
}
} else {
synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
}
}
static int alx_realloc_resources(struct alx_priv *alx)
{
int err;
alx_free_rings(alx);
alx_free_napis(alx);
pci_free_irq_vectors(alx->hw.pdev);
err = alx_init_intr(alx);
if (err)
return err;
err = alx_alloc_napis(alx);
if (err)
return err;
err = alx_alloc_rings(alx);
if (err)
return err;
return 0;
}
static int alx_request_irq(struct alx_priv *alx)
{
struct pci_dev *pdev = alx->hw.pdev;
struct alx_hw *hw = &alx->hw;
int err;
u32 msi_ctrl;
msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
if (alx->hw.pdev->msix_enabled) {
alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
err = alx_request_msix(alx);
if (!err)
goto out;
/* msix request failed, realloc resources */
err = alx_realloc_resources(alx);
if (err)
goto out;
}
if (alx->hw.pdev->msi_enabled) {
alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
msi_ctrl | ALX_MSI_MASK_SEL_LINE);
err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
alx->dev->name, alx);
if (!err)
goto out;
/* fall back to legacy interrupt */
pci_free_irq_vectors(alx->hw.pdev);
}
alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
alx->dev->name, alx);
out:
if (!err)
alx_config_vector_mapping(alx);
else
netdev_err(alx->dev, "IRQ registration failed!\n");
return err;
}
static void alx_free_irq(struct alx_priv *alx)
{
struct pci_dev *pdev = alx->hw.pdev;
int i;
free_irq(pci_irq_vector(pdev, 0), alx);
if (alx->hw.pdev->msix_enabled) {
for (i = 0; i < alx->num_napi; i++)
free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
}
pci_free_irq_vectors(pdev);
}
static int alx_identify_hw(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
int rev = alx_hw_revision(hw);
if (rev > ALX_REV_C0)
return -EINVAL;
hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
return 0;
}
static int alx_init_sw(struct alx_priv *alx)
{
struct pci_dev *pdev = alx->hw.pdev;
struct alx_hw *hw = &alx->hw;
int err;
err = alx_identify_hw(alx);
if (err) {
dev_err(&pdev->dev, "unrecognized chip, aborting\n");
return err;
}
alx->hw.lnk_patch =
pdev->device == ALX_DEV_ID_AR8161 &&
pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
pdev->subsystem_device == 0x0091 &&
pdev->revision == 0;
hw->smb_timer = 400;
hw->mtu = alx->dev->mtu;
alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
/* MTU range: 34 - 9256 */
alx->dev->min_mtu = 34;
alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
alx->tx_ringsz = 256;
alx->rx_ringsz = 512;
hw->imt = 200;
alx->int_mask = ALX_ISR_MISC;
hw->dma_chnl = hw->max_dma_chnl;
hw->ith_tpd = alx->tx_ringsz / 3;
hw->link_speed = SPEED_UNKNOWN;
hw->duplex = DUPLEX_UNKNOWN;
hw->adv_cfg = ADVERTISED_Autoneg |
ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_1000baseT_Full;
hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
ALX_MAC_CTRL_MHASH_ALG_HI5B |
ALX_MAC_CTRL_BRD_EN |
ALX_MAC_CTRL_PCRCE |
ALX_MAC_CTRL_CRCE |
ALX_MAC_CTRL_RXFC_EN |
ALX_MAC_CTRL_TXFC_EN |
7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
return err;
}
static netdev_features_t alx_fix_features(struct net_device *netdev,
netdev_features_t features)
{
if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
return features;
}
static void alx_netif_stop(struct alx_priv *alx)
{
int i;
netif_trans_update(alx->dev);
if (netif_carrier_ok(alx->dev)) {
netif_carrier_off(alx->dev);
netif_tx_disable(alx->dev);
for (i = 0; i < alx->num_napi; i++)
napi_disable(&alx->qnapi[i]->napi);
}
}
static void alx_halt(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
alx_netif_stop(alx);
hw->link_speed = SPEED_UNKNOWN;
hw->duplex = DUPLEX_UNKNOWN;
alx_reset_mac(hw);
/* disable l0s/l1 */
alx_enable_aspm(hw, false, false);
alx_irq_disable(alx);
alx_free_buffers(alx);
}
static void alx_configure(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
alx_configure_basic(hw);
alx_disable_rss(hw);
__alx_set_rx_mode(alx->dev);
alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
}
static void alx_activate(struct alx_priv *alx)
{
/* hardware setting lost, restore it */
alx_reinit_rings(alx);
alx_configure(alx);
/* clear old interrupts */
alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
alx_irq_enable(alx);
alx_schedule_link_check(alx);
}
static void alx_reinit(struct alx_priv *alx)
{
ASSERT_RTNL();
alx_halt(alx);
alx_activate(alx);
}
static int alx_change_mtu(struct net_device *netdev, int mtu)
{
struct alx_priv *alx = netdev_priv(netdev);
int max_frame = ALX_MAX_FRAME_LEN(mtu);
netdev->mtu = mtu;
alx->hw.mtu = mtu;
alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
netdev_update_features(netdev);
if (netif_running(netdev))
alx_reinit(alx);
return 0;
}
static void alx_netif_start(struct alx_priv *alx)
{
int i;
netif_tx_wake_all_queues(alx->dev);
for (i = 0; i < alx->num_napi; i++)
napi_enable(&alx->qnapi[i]->napi);
netif_carrier_on(alx->dev);
}
static int __alx_open(struct alx_priv *alx, bool resume)
{
int err;
err = alx_enable_msix(alx);
if (err < 0) {
err = alx_init_intr(alx);
if (err)
return err;
}
if (!resume)
netif_carrier_off(alx->dev);
err = alx_alloc_napis(alx);
if (err)
goto out_disable_adv_intr;
err = alx_alloc_rings(alx);
if (err)
goto out_free_rings;
alx_configure(alx);
err = alx_request_irq(alx);
if (err)
goto out_free_rings;
/* must be called after alx_request_irq because the chip stops working
* if we copy the dma addresses in alx_init_ring_ptrs twice when
* requesting msi-x interrupts failed
*/
alx_reinit_rings(alx);
netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
/* clear old interrupts */
alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
alx_irq_enable(alx);
if (!resume)
netif_tx_start_all_queues(alx->dev);
alx_schedule_link_check(alx);
return 0;
out_free_rings:
alx_free_rings(alx);
alx_free_napis(alx);
out_disable_adv_intr:
pci_free_irq_vectors(alx->hw.pdev);
return err;
}
static void __alx_stop(struct alx_priv *alx)
{
alx_halt(alx);
alx_free_irq(alx);
alx_free_rings(alx);
alx_free_napis(alx);
}
static const char *alx_speed_desc(struct alx_hw *hw)
{
switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
case ADVERTISED_1000baseT_Full:
return "1 Gbps Full";
case ADVERTISED_100baseT_Full:
return "100 Mbps Full";
case ADVERTISED_100baseT_Half:
return "100 Mbps Half";
case ADVERTISED_10baseT_Full:
return "10 Mbps Full";
case ADVERTISED_10baseT_Half:
return "10 Mbps Half";
default:
return "Unknown speed";
}
}
static void alx_check_link(struct alx_priv *alx)
{
struct alx_hw *hw = &alx->hw;
unsigned long flags;
int old_speed;
u8 old_duplex;
int err;
/* clear PHY internal interrupt status, otherwise the main
* interrupt status will be asserted forever
*/
alx_clear_phy_intr(hw);
old_speed = hw->link_speed;
old_duplex = hw->duplex;
err = alx_read_phy_link(hw);
if (err < 0)
goto reset;
spin_lock_irqsave(&alx->irq_lock, flags);
alx->int_mask |= ALX_ISR_PHY;
alx_write_mem32(hw, ALX_IMR, alx->int_mask);
spin_unlock_irqrestore(&alx->irq_lock, flags);
if (old_speed == hw->link_speed)
return;
if (hw->link_speed != SPEED_UNKNOWN) {
netif_info(alx, link, alx->dev,
"NIC Up: %s\n", alx_speed_desc(hw));
alx_post_phy_link(hw);
alx_enable_aspm(hw, true, true);
alx_start_mac(hw);
if (old_speed == SPEED_UNKNOWN)
alx_netif_start(alx);
} else {
/* link is now down */
alx_netif_stop(alx);
netif_info(alx, link, alx->dev, "Link Down\n");
err = alx_reset_mac(hw);
if (err)
goto reset;
alx_irq_disable(alx);
/* MAC reset causes all HW settings to be lost, restore all */
err = alx_reinit_rings(alx);
if (err)
goto reset;
alx_configure(alx);
alx_enable_aspm(hw, false, true);
alx_post_phy_link(hw);
alx_irq_enable(alx);
}
return;
reset:
alx_schedule_reset(alx);
}
static int alx_open(struct net_device *netdev)
{
return __alx_open(netdev_priv(netdev), false);
}
static int alx_stop(struct net_device *netdev)
{
__alx_stop(netdev_priv(netdev));
return 0;
}
static void alx_link_check(struct work_struct *work)
{
struct alx_priv *alx;
alx = container_of(work, struct alx_priv, link_check_wk);
rtnl_lock();
alx_check_link(alx);
rtnl_unlock();
}
static void alx_reset(struct work_struct *work)
{
struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
rtnl_lock();
alx_reinit(alx);
rtnl_unlock();
}
static int alx_tpd_req(struct sk_buff *skb)
{
int num;
num = skb_shinfo(skb)->nr_frags + 1;
/* we need one extra descriptor for LSOv2 */
if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
num++;
return num;
}
static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
{
u8 cso, css;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
cso = skb_checksum_start_offset(skb);
if (cso & 1)
return -EINVAL;
css = cso + skb->csum_offset;
first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
return 0;
}
static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
{
int err;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
0, IPPROTO_TCP, 0);
first->word1 |= 1 << TPD_IPV4_SHIFT;
} else if (skb_is_gso_v6(skb)) {
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
/* LSOv2: the first TPD only provides the packet length */
first->adrl.l.pkt_len = skb->len;
first->word1 |= 1 << TPD_LSO_V2_SHIFT;
}
first->word1 |= 1 << TPD_LSO_EN_SHIFT;
first->word1 |= (skb_transport_offset(skb) &
TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
first->word1 |= (skb_shinfo(skb)->gso_size &
TPD_MSS_MASK) << TPD_MSS_SHIFT;
return 1;
}
static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
{
struct alx_txd *tpd, *first_tpd;
dma_addr_t dma;
int maplen, f, first_idx = txq->write_idx;
first_tpd = &txq->tpd[txq->write_idx];
tpd = first_tpd;
if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
if (++txq->write_idx == txq->count)
txq->write_idx = 0;
tpd = &txq->tpd[txq->write_idx];
tpd->len = first_tpd->len;
tpd->vlan_tag = first_tpd->vlan_tag;
tpd->word1 = first_tpd->word1;
}
maplen = skb_headlen(skb);
dma = dma_map_single(txq->dev, skb->data, maplen,
DMA_TO_DEVICE);
if (dma_mapping_error(txq->dev, dma))
goto err_dma;
dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
tpd->adrl.addr = cpu_to_le64(dma);
tpd->len = cpu_to_le16(maplen);
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[f];
if (++txq->write_idx == txq->count)
txq->write_idx = 0;
tpd = &txq->tpd[txq->write_idx];
tpd->word1 = first_tpd->word1;
maplen = skb_frag_size(frag);
dma = skb_frag_dma_map(txq->dev, frag, 0,
maplen, DMA_TO_DEVICE);
if (dma_mapping_error(txq->dev, dma))
goto err_dma;
dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
tpd->adrl.addr = cpu_to_le64(dma);
tpd->len = cpu_to_le16(maplen);
}
/* last TPD, set EOP flag and store skb */
tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
txq->bufs[txq->write_idx].skb = skb;
if (++txq->write_idx == txq->count)
txq->write_idx = 0;
return 0;
err_dma:
f = first_idx;
while (f != txq->write_idx) {
alx_free_txbuf(txq, f);
if (++f == txq->count)
f = 0;
}
return -ENOMEM;
}
static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
struct alx_tx_queue *txq)
{
struct alx_priv *alx;
struct alx_txd *first;
int tso;
alx = netdev_priv(txq->netdev);
if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
netif_tx_stop_queue(alx_get_tx_queue(txq));
goto drop;
}
first = &txq->tpd[txq->write_idx];
memset(first, 0, sizeof(*first));
tso = alx_tso(skb, first);
if (tso < 0)
goto drop;
else if (!tso && alx_tx_csum(skb, first))
goto drop;
if (alx_map_tx_skb(txq, skb) < 0)
goto drop;
netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
/* flush updates before updating hardware */
wmb();
alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
if (alx_tpd_avail(txq) < txq->count / 8)
netif_tx_stop_queue(alx_get_tx_queue(txq));
return NETDEV_TX_OK;
drop:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct alx_priv *alx = netdev_priv(netdev);
return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
}
static void alx_tx_timeout(struct net_device *dev)
{
struct alx_priv *alx = netdev_priv(dev);
alx_schedule_reset(alx);
}
static int alx_mdio_read(struct net_device *netdev,
int prtad, int devad, u16 addr)
{
struct alx_priv *alx = netdev_priv(netdev);
struct alx_hw *hw = &alx->hw;
u16 val;
int err;
if (prtad != hw->mdio.prtad)
return -EINVAL;
if (devad == MDIO_DEVAD_NONE)
err = alx_read_phy_reg(hw, addr, &val);
else
err = alx_read_phy_ext(hw, devad, addr, &val);
if (err)
return err;
return val;
}
static int alx_mdio_write(struct net_device *netdev,
int prtad, int devad, u16 addr, u16 val)
{
struct alx_priv *alx = netdev_priv(netdev);
struct alx_hw *hw = &alx->hw;
if (prtad != hw->mdio.prtad)
return -EINVAL;
if (devad == MDIO_DEVAD_NONE)
return alx_write_phy_reg(hw, addr, val);
return alx_write_phy_ext(hw, devad, addr, val);
}
static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct alx_priv *alx = netdev_priv(netdev);
if (!netif_running(netdev))
return -EAGAIN;
return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void alx_poll_controller(struct net_device *netdev)
{
struct alx_priv *alx = netdev_priv(netdev);
int i;
if (alx->hw.pdev->msix_enabled) {
alx_intr_msix_misc(0, alx);
for (i = 0; i < alx->num_txq; i++)
alx_intr_msix_ring(0, alx->qnapi[i]);
} else if (alx->hw.pdev->msi_enabled)
alx_intr_msi(0, alx);
else
alx_intr_legacy(0, alx);
}
#endif
static void alx_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *net_stats)
{
struct alx_priv *alx = netdev_priv(dev);
struct alx_hw_stats *hw_stats = &alx->hw.stats;
spin_lock(&alx->stats_lock);
alx_update_hw_stats(&alx->hw);
net_stats->tx_bytes = hw_stats->tx_byte_cnt;
net_stats->rx_bytes = hw_stats->rx_byte_cnt;
net_stats->multicast = hw_stats->rx_mcast;
net_stats->collisions = hw_stats->tx_single_col +
hw_stats->tx_multi_col +
hw_stats->tx_late_col +
hw_stats->tx_abort_col;
net_stats->rx_errors = hw_stats->rx_frag +
hw_stats->rx_fcs_err +
hw_stats->rx_len_err +
hw_stats->rx_ov_sz +
hw_stats->rx_ov_rrd +
hw_stats->rx_align_err +
hw_stats->rx_ov_rxf;
net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf;
net_stats->rx_length_errors = hw_stats->rx_len_err;
net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
net_stats->rx_frame_errors = hw_stats->rx_align_err;
net_stats->rx_dropped = hw_stats->rx_ov_rrd;
net_stats->tx_errors = hw_stats->tx_late_col +
hw_stats->tx_abort_col +
hw_stats->tx_underrun +
hw_stats->tx_trunc;
net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
net_stats->tx_fifo_errors = hw_stats->tx_underrun;
net_stats->tx_window_errors = hw_stats->tx_late_col;
net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
spin_unlock(&alx->stats_lock);
}
static const struct net_device_ops alx_netdev_ops = {
.ndo_open = alx_open,
.ndo_stop = alx_stop,
.ndo_start_xmit = alx_start_xmit,
.ndo_get_stats64 = alx_get_stats64,
.ndo_set_rx_mode = alx_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = alx_set_mac_address,
.ndo_change_mtu = alx_change_mtu,
.ndo_do_ioctl = alx_ioctl,
.ndo_tx_timeout = alx_tx_timeout,
.ndo_fix_features = alx_fix_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = alx_poll_controller,
#endif
};
static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct alx_priv *alx;
struct alx_hw *hw;
bool phy_configured;
int err;
err = pci_enable_device_mem(pdev);
if (err)
return err;
/* The alx chip can DMA to 64-bit addresses, but it uses a single
* shared register for the high 32 bits, so only a single, aligned,
* 4 GB physical address range can be used for descriptors.
*/
if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
} else {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "No usable DMA config, aborting\n");
goto out_pci_disable;
}
}
err = pci_request_mem_regions(pdev, alx_drv_name);
if (err) {
dev_err(&pdev->dev,
"pci_request_mem_regions failed\n");
goto out_pci_disable;
}
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
if (!pdev->pm_cap) {
dev_err(&pdev->dev,
"Can't find power management capability, aborting\n");
err = -EIO;
goto out_pci_release;
}
netdev = alloc_etherdev_mqs(sizeof(*alx),
ALX_MAX_TX_QUEUES, 1);
if (!netdev) {
err = -ENOMEM;
goto out_pci_release;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
alx = netdev_priv(netdev);
spin_lock_init(&alx->hw.mdio_lock);
spin_lock_init(&alx->irq_lock);
spin_lock_init(&alx->stats_lock);
alx->dev = netdev;
alx->hw.pdev = pdev;
alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
hw = &alx->hw;
pci_set_drvdata(pdev, alx);
hw->hw_addr = pci_ioremap_bar(pdev, 0);
if (!hw->hw_addr) {
dev_err(&pdev->dev, "cannot map device registers\n");
err = -EIO;
goto out_free_netdev;
}
netdev->netdev_ops = &alx_netdev_ops;
netdev->ethtool_ops = &alx_ethtool_ops;
netdev->irq = pci_irq_vector(pdev, 0);
netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
err = alx_init_sw(alx);
if (err) {
dev_err(&pdev->dev, "net device private data init failed\n");
goto out_unmap;
}
alx_reset_pcie(hw);
phy_configured = alx_phy_configured(hw);
if (!phy_configured)
alx_reset_phy(hw);
err = alx_reset_mac(hw);
if (err) {
dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
goto out_unmap;
}
/* setup link to put it in a known good starting state */
if (!phy_configured) {
err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
if (err) {
dev_err(&pdev->dev,
"failed to configure PHY speed/duplex (err=%d)\n",
err);
goto out_unmap;
}
}
netdev->hw_features = NETIF_F_SG |
NETIF_F_HW_CSUM |
NETIF_F_RXCSUM |
NETIF_F_TSO |
NETIF_F_TSO6;
if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
dev_warn(&pdev->dev,
"Invalid permanent address programmed, using random one\n");
eth_hw_addr_random(netdev);
memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
}
memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
hw->mdio.prtad = 0;
hw->mdio.mmds = 0;
hw->mdio.dev = netdev;
hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
MDIO_SUPPORTS_C22 |
MDIO_EMULATE_C22;
hw->mdio.mdio_read = alx_mdio_read;
hw->mdio.mdio_write = alx_mdio_write;
if (!alx_get_phy_info(hw)) {
dev_err(&pdev->dev, "failed to identify PHY\n");
err = -EIO;
goto out_unmap;
}
INIT_WORK(&alx->link_check_wk, alx_link_check);
INIT_WORK(&alx->reset_wk, alx_reset);
netif_carrier_off(netdev);
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "register netdevice failed\n");
goto out_unmap;
}
netdev_info(netdev,
"Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
netdev->dev_addr);
return 0;
out_unmap:
iounmap(hw->hw_addr);
out_free_netdev:
free_netdev(netdev);
out_pci_release:
pci_release_mem_regions(pdev);
out_pci_disable:
pci_disable_device(pdev);
return err;
}
static void alx_remove(struct pci_dev *pdev)
{
struct alx_priv *alx = pci_get_drvdata(pdev);
struct alx_hw *hw = &alx->hw;
cancel_work_sync(&alx->link_check_wk);
cancel_work_sync(&alx->reset_wk);
/* restore permanent mac address */
alx_set_macaddr(hw, hw->perm_addr);
unregister_netdev(alx->dev);
iounmap(hw->hw_addr);
pci_release_mem_regions(pdev);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
free_netdev(alx->dev);
}
#ifdef CONFIG_PM_SLEEP
static int alx_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct alx_priv *alx = pci_get_drvdata(pdev);
if (!netif_running(alx->dev))
return 0;
netif_device_detach(alx->dev);
__alx_stop(alx);
return 0;
}
static int alx_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct alx_priv *alx = pci_get_drvdata(pdev);
struct alx_hw *hw = &alx->hw;
alx_reset_phy(hw);
if (!netif_running(alx->dev))
return 0;
netif_device_attach(alx->dev);
return __alx_open(alx, true);
}
static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
#define ALX_PM_OPS (&alx_pm_ops)
#else
#define ALX_PM_OPS NULL
#endif
static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct alx_priv *alx = pci_get_drvdata(pdev);
struct net_device *netdev = alx->dev;
pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
dev_info(&pdev->dev, "pci error detected\n");
rtnl_lock();
if (netif_running(netdev)) {
netif_device_detach(netdev);
alx_halt(alx);
}
if (state == pci_channel_io_perm_failure)
rc = PCI_ERS_RESULT_DISCONNECT;
else
pci_disable_device(pdev);
rtnl_unlock();
return rc;
}
static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
{
struct alx_priv *alx = pci_get_drvdata(pdev);
struct alx_hw *hw = &alx->hw;
pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
dev_info(&pdev->dev, "pci error slot reset\n");
rtnl_lock();
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
goto out;
}
pci_set_master(pdev);
alx_reset_pcie(hw);
if (!alx_reset_mac(hw))
rc = PCI_ERS_RESULT_RECOVERED;
out:
pci_cleanup_aer_uncorrect_error_status(pdev);
rtnl_unlock();
return rc;
}
static void alx_pci_error_resume(struct pci_dev *pdev)
{
struct alx_priv *alx = pci_get_drvdata(pdev);
struct net_device *netdev = alx->dev;
dev_info(&pdev->dev, "pci error resume\n");
rtnl_lock();
if (netif_running(netdev)) {
alx_activate(alx);
netif_device_attach(netdev);
}
rtnl_unlock();
}
static const struct pci_error_handlers alx_err_handlers = {
.error_detected = alx_pci_error_detected,
.slot_reset = alx_pci_error_slot_reset,
.resume = alx_pci_error_resume,
};
static const struct pci_device_id alx_pci_tbl[] = {
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
{}
};
static struct pci_driver alx_driver = {
.name = alx_drv_name,
.id_table = alx_pci_tbl,
.probe = alx_probe,
.remove = alx_remove,
.err_handler = &alx_err_handlers,
.driver.pm = ALX_PM_OPS,
};
module_pci_driver(alx_driver);
MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
MODULE_DESCRIPTION(
"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
MODULE_LICENSE("GPL");