OpenCloudOS-Kernel/drivers/net/wireless/bcm43xx/bcm43xx_phy.c

2123 lines
63 KiB
C

/*
Broadcom BCM43xx wireless driver
Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
Stefano Brivio <st3@riseup.net>
Michael Buesch <mbuesch@freenet.de>
Danny van Dyk <kugelfang@gentoo.org>
Andreas Jaggi <andreas.jaggi@waterwave.ch>
Some parts of the code in this file are derived from the ipw2200
driver Copyright(c) 2003 - 2004 Intel Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/types.h>
#include "bcm43xx.h"
#include "bcm43xx_phy.h"
#include "bcm43xx_main.h"
#include "bcm43xx_radio.h"
#include "bcm43xx_ilt.h"
#include "bcm43xx_power.h"
static const s8 bcm43xx_tssi2dbm_b_table[] = {
0x4D, 0x4C, 0x4B, 0x4A,
0x4A, 0x49, 0x48, 0x47,
0x47, 0x46, 0x45, 0x45,
0x44, 0x43, 0x42, 0x42,
0x41, 0x40, 0x3F, 0x3E,
0x3D, 0x3C, 0x3B, 0x3A,
0x39, 0x38, 0x37, 0x36,
0x35, 0x34, 0x32, 0x31,
0x30, 0x2F, 0x2D, 0x2C,
0x2B, 0x29, 0x28, 0x26,
0x25, 0x23, 0x21, 0x1F,
0x1D, 0x1A, 0x17, 0x14,
0x10, 0x0C, 0x06, 0x00,
-7, -7, -7, -7,
-7, -7, -7, -7,
-7, -7, -7, -7,
};
static const s8 bcm43xx_tssi2dbm_g_table[] = {
77, 77, 77, 76,
76, 76, 75, 75,
74, 74, 73, 73,
73, 72, 72, 71,
71, 70, 70, 69,
68, 68, 67, 67,
66, 65, 65, 64,
63, 63, 62, 61,
60, 59, 58, 57,
56, 55, 54, 53,
52, 50, 49, 47,
45, 43, 40, 37,
33, 28, 22, 14,
5, -7, -20, -20,
-20, -20, -20, -20,
-20, -20, -20, -20,
};
static void bcm43xx_phy_initg(struct bcm43xx_private *bcm);
void bcm43xx_raw_phy_lock(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
assert(irqs_disabled());
if (bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD) == 0x00000000) {
phy->is_locked = 0;
return;
}
if (bcm->current_core->rev < 3) {
bcm43xx_mac_suspend(bcm);
spin_lock(&phy->lock);
} else {
if (bcm->ieee->iw_mode != IW_MODE_MASTER)
bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
}
phy->is_locked = 1;
}
void bcm43xx_raw_phy_unlock(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
assert(irqs_disabled());
if (bcm->current_core->rev < 3) {
if (phy->is_locked) {
spin_unlock(&phy->lock);
bcm43xx_mac_enable(bcm);
}
} else {
if (bcm->ieee->iw_mode != IW_MODE_MASTER)
bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
}
phy->is_locked = 0;
}
u16 bcm43xx_phy_read(struct bcm43xx_private *bcm, u16 offset)
{
bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_CONTROL, offset);
return bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_DATA);
}
void bcm43xx_phy_write(struct bcm43xx_private *bcm, u16 offset, u16 val)
{
bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_CONTROL, offset);
bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_DATA, val);
}
void bcm43xx_phy_calibrate(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
unsigned long flags;
bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* Dummy read. */
if (phy->calibrated)
return;
if (phy->type == BCM43xx_PHYTYPE_G && phy->rev == 1) {
/* We do not want to be preempted while calibrating
* the hardware.
*/
local_irq_save(flags);
bcm43xx_wireless_core_reset(bcm, 0);
bcm43xx_phy_initg(bcm);
bcm43xx_wireless_core_reset(bcm, 1);
local_irq_restore(flags);
}
phy->calibrated = 1;
}
/* Connect the PHY
* http://bcm-specs.sipsolutions.net/SetPHY
*/
int bcm43xx_phy_connect(struct bcm43xx_private *bcm, int connect)
{
u32 flags;
if (bcm->current_core->rev < 5) {
if (connect) {
bcm->current_core->phy->connected = 1;
dprintk(KERN_INFO PFX "PHY connected\n");
} else {
bcm->current_core->phy->connected = 0;
dprintk(KERN_INFO PFX "PHY disconnected\n");
}
return 0;
}
flags = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
if (connect) {
if (!(flags & 0x00010000))
return -ENODEV;
bcm->current_core->phy->connected = 1;
flags = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
flags |= (0x800 << 18);
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, flags);
dprintk(KERN_INFO PFX "PHY connected\n");
} else {
if (!(flags & 0x00020000))
return -ENODEV;
bcm->current_core->phy->connected = 0;
flags = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
flags &= ~(0x800 << 18);
bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, flags);
dprintk(KERN_INFO PFX "PHY disconnected\n");
}
return 0;
}
/* intialize B PHY power control
* as described in http://bcm-specs.sipsolutions.net/InitPowerControl
*/
static void bcm43xx_phy_init_pctl(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
u16 saved_batt = 0, saved_ratt = 0, saved_txctl1 = 0;
int must_reset_txpower = 0;
assert(phy->type != BCM43xx_PHYTYPE_A);
if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM) &&
(bcm->board_type == 0x0416))
return;
bcm43xx_write16(bcm, 0x03E6, bcm43xx_read16(bcm, 0x03E6) & 0xFFDF);
bcm43xx_phy_write(bcm, 0x0028, 0x8018);
if (phy->type == BCM43xx_PHYTYPE_G) {
if (!phy->connected)
return;
bcm43xx_phy_write(bcm, 0x047A, 0xC111);
}
if (phy->savedpctlreg != 0xFFFF)
return;
if (phy->type == BCM43xx_PHYTYPE_B &&
phy->rev >= 2 &&
radio->version == 0x2050) {
bcm43xx_radio_write16(bcm, 0x0076,
bcm43xx_radio_read16(bcm, 0x0076) | 0x0084);
} else {
saved_batt = radio->txpower[0];
saved_ratt = radio->txpower[1];
saved_txctl1 = radio->txpower[2];
if ((radio->revision >= 6) && (radio->revision <= 8)
&& /*FIXME: incomplete specs for 5 < revision < 9 */ 0)
bcm43xx_radio_set_txpower_bg(bcm, 0xB, 0x1F, 0);
else
bcm43xx_radio_set_txpower_bg(bcm, 0xB, 9, 0);
must_reset_txpower = 1;
}
bcm43xx_dummy_transmission(bcm);
phy->savedpctlreg = bcm43xx_phy_read(bcm, BCM43xx_PHY_G_PCTL);
if (must_reset_txpower)
bcm43xx_radio_set_txpower_bg(bcm, saved_batt, saved_ratt, saved_txctl1);
else
bcm43xx_radio_write16(bcm, 0x0076, bcm43xx_radio_read16(bcm, 0x0076) & 0xFF7B);
bcm43xx_radio_clear_tssi(bcm);
}
static void bcm43xx_phy_agcsetup(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
u16 offset = 0x0000;
if (phy->rev == 1)
offset = 0x4C00;
bcm43xx_ilt_write16(bcm, offset, 0x00FE);
bcm43xx_ilt_write16(bcm, offset + 1, 0x000D);
bcm43xx_ilt_write16(bcm, offset + 2, 0x0013);
bcm43xx_ilt_write16(bcm, offset + 3, 0x0019);
if (phy->rev == 1) {
bcm43xx_ilt_write16(bcm, 0x1800, 0x2710);
bcm43xx_ilt_write16(bcm, 0x1801, 0x9B83);
bcm43xx_ilt_write16(bcm, 0x1802, 0x9B83);
bcm43xx_ilt_write16(bcm, 0x1803, 0x0F8D);
bcm43xx_phy_write(bcm, 0x0455, 0x0004);
}
bcm43xx_phy_write(bcm, 0x04A5, (bcm43xx_phy_read(bcm, 0x04A5) & 0x00FF) | 0x5700);
bcm43xx_phy_write(bcm, 0x041A, (bcm43xx_phy_read(bcm, 0x041A) & 0xFF80) | 0x000F);
bcm43xx_phy_write(bcm, 0x041A, (bcm43xx_phy_read(bcm, 0x041A) & 0xC07F) | 0x2B80);
bcm43xx_phy_write(bcm, 0x048C, (bcm43xx_phy_read(bcm, 0x048C) & 0xF0FF) | 0x0300);
bcm43xx_radio_write16(bcm, 0x007A, bcm43xx_radio_read16(bcm, 0x007A) | 0x0008);
bcm43xx_phy_write(bcm, 0x04A0, (bcm43xx_phy_read(bcm, 0x04A0) & 0xFFF0) | 0x0008);
bcm43xx_phy_write(bcm, 0x04A1, (bcm43xx_phy_read(bcm, 0x04A1) & 0xF0FF) | 0x0600);
bcm43xx_phy_write(bcm, 0x04A2, (bcm43xx_phy_read(bcm, 0x04A2) & 0xF0FF) | 0x0700);
bcm43xx_phy_write(bcm, 0x04A0, (bcm43xx_phy_read(bcm, 0x04A0) & 0xF0FF) | 0x0100);
if (phy->rev == 1)
bcm43xx_phy_write(bcm, 0x04A2, (bcm43xx_phy_read(bcm, 0x04A2) & 0xFFF0) | 0x0007);
bcm43xx_phy_write(bcm, 0x0488, (bcm43xx_phy_read(bcm, 0x0488) & 0xFF00) | 0x001C);
bcm43xx_phy_write(bcm, 0x0488, (bcm43xx_phy_read(bcm, 0x0488) & 0xC0FF) | 0x0200);
bcm43xx_phy_write(bcm, 0x0496, (bcm43xx_phy_read(bcm, 0x0496) & 0xFF00) | 0x001C);
bcm43xx_phy_write(bcm, 0x0489, (bcm43xx_phy_read(bcm, 0x0489) & 0xFF00) | 0x0020);
bcm43xx_phy_write(bcm, 0x0489, (bcm43xx_phy_read(bcm, 0x0489) & 0xC0FF) | 0x0200);
bcm43xx_phy_write(bcm, 0x0482, (bcm43xx_phy_read(bcm, 0x0482) & 0xFF00) | 0x002E);
bcm43xx_phy_write(bcm, 0x0496, (bcm43xx_phy_read(bcm, 0x0496) & 0x00FF) | 0x1A00);
bcm43xx_phy_write(bcm, 0x0481, (bcm43xx_phy_read(bcm, 0x0481) & 0xFF00) | 0x0028);
bcm43xx_phy_write(bcm, 0x0481, (bcm43xx_phy_read(bcm, 0x0481) & 0x00FF) | 0x2C00);
if (phy->rev == 1) {
bcm43xx_phy_write(bcm, 0x0430, 0x092B);
bcm43xx_phy_write(bcm, 0x041B, (bcm43xx_phy_read(bcm, 0x041B) & 0xFFE1) | 0x0002);
} else {
bcm43xx_phy_write(bcm, 0x041B, bcm43xx_phy_read(bcm, 0x041B) & 0xFFE1);
bcm43xx_phy_write(bcm, 0x041F, 0x287A);
bcm43xx_phy_write(bcm, 0x0420, (bcm43xx_phy_read(bcm, 0x0420) & 0xFFF0) | 0x0004);
}
if (phy->rev > 2) {
bcm43xx_phy_write(bcm, 0x0422, 0x287A);
bcm43xx_phy_write(bcm, 0x0420, (bcm43xx_phy_read(bcm, 0x0420) & 0x0FFF) | 0x3000);
}
bcm43xx_phy_write(bcm, 0x04A8, (bcm43xx_phy_read(bcm, 0x04A8) & 0x8080) | 0x7874);
bcm43xx_phy_write(bcm, 0x048E, 0x1C00);
if (phy->rev == 1) {
bcm43xx_phy_write(bcm, 0x04AB, (bcm43xx_phy_read(bcm, 0x04AB) & 0xF0FF) | 0x0600);
bcm43xx_phy_write(bcm, 0x048B, 0x005E);
bcm43xx_phy_write(bcm, 0x048C, (bcm43xx_phy_read(bcm, 0x048C) & 0xFF00) | 0x001E);
bcm43xx_phy_write(bcm, 0x048D, 0x0002);
}
bcm43xx_ilt_write16(bcm, offset + 0x0800, 0);
bcm43xx_ilt_write16(bcm, offset + 0x0801, 7);
bcm43xx_ilt_write16(bcm, offset + 0x0802, 16);
bcm43xx_ilt_write16(bcm, offset + 0x0803, 28);
}
static void bcm43xx_phy_setupg(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
u16 i;
assert(phy->type == BCM43xx_PHYTYPE_G);
if (phy->rev == 1) {
bcm43xx_phy_write(bcm, 0x0406, 0x4F19);
bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS,
(bcm43xx_phy_read(bcm, BCM43xx_PHY_G_CRS) & 0xFC3F) | 0x0340);
bcm43xx_phy_write(bcm, 0x042C, 0x005A);
bcm43xx_phy_write(bcm, 0x0427, 0x001A);
for (i = 0; i < BCM43xx_ILT_FINEFREQG_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x5800 + i, bcm43xx_ilt_finefreqg[i]);
for (i = 0; i < BCM43xx_ILT_NOISEG1_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x1800 + i, bcm43xx_ilt_noiseg1[i]);
for (i = 0; i < BCM43xx_ILT_ROTOR_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x2000 + i, bcm43xx_ilt_rotor[i]);
} else {
/* nrssi values are signed 6-bit values. Not sure why we write 0x7654 here... */
bcm43xx_nrssi_hw_write(bcm, 0xBA98, (s16)0x7654);
if (phy->rev == 2) {
bcm43xx_phy_write(bcm, 0x04C0, 0x1861);
bcm43xx_phy_write(bcm, 0x04C1, 0x0271);
} else if (phy->rev > 2) {
bcm43xx_phy_write(bcm, 0x04C0, 0x0098);
bcm43xx_phy_write(bcm, 0x04C1, 0x0070);
bcm43xx_phy_write(bcm, 0x04C9, 0x0080);
}
bcm43xx_phy_write(bcm, 0x042B, bcm43xx_phy_read(bcm, 0x042B) | 0x800);
for (i = 0; i < 64; i++)
bcm43xx_ilt_write16(bcm, 0x4000 + i, i);
for (i = 0; i < BCM43xx_ILT_NOISEG2_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x1800 + i, bcm43xx_ilt_noiseg2[i]);
}
if (phy->rev <= 2)
for (i = 0; i < BCM43xx_ILT_NOISESCALEG_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x1400 + i, bcm43xx_ilt_noisescaleg1[i]);
else if ((phy->rev == 7) && (bcm43xx_phy_read(bcm, 0x0449) & 0x0200))
for (i = 0; i < BCM43xx_ILT_NOISESCALEG_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x1400 + i, bcm43xx_ilt_noisescaleg3[i]);
else
for (i = 0; i < BCM43xx_ILT_NOISESCALEG_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x1400 + i, bcm43xx_ilt_noisescaleg2[i]);
if (phy->rev == 2)
for (i = 0; i < BCM43xx_ILT_SIGMASQR_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x5000 + i, bcm43xx_ilt_sigmasqr1[i]);
else if ((phy->rev > 2) && (phy->rev <= 7))
for (i = 0; i < BCM43xx_ILT_SIGMASQR_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x5000 + i, bcm43xx_ilt_sigmasqr2[i]);
if (phy->rev == 1) {
for (i = 0; i < BCM43xx_ILT_RETARD_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x2400 + i, bcm43xx_ilt_retard[i]);
for (i = 0; i < 4; i++) {
bcm43xx_ilt_write16(bcm, 0x5404 + i, 0x0020);
bcm43xx_ilt_write16(bcm, 0x5408 + i, 0x0020);
bcm43xx_ilt_write16(bcm, 0x540C + i, 0x0020);
bcm43xx_ilt_write16(bcm, 0x5410 + i, 0x0020);
}
bcm43xx_phy_agcsetup(bcm);
if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM) &&
(bcm->board_type == 0x0416) &&
(bcm->board_revision == 0x0017))
return;
bcm43xx_ilt_write16(bcm, 0x5001, 0x0002);
bcm43xx_ilt_write16(bcm, 0x5002, 0x0001);
} else {
for (i = 0; i <= 0x2F; i++)
bcm43xx_ilt_write16(bcm, 0x1000 + i, 0x0820);
bcm43xx_phy_agcsetup(bcm);
bcm43xx_phy_read(bcm, 0x0400); /* dummy read */
bcm43xx_phy_write(bcm, 0x0403, 0x1000);
bcm43xx_ilt_write16(bcm, 0x3C02, 0x000F);
bcm43xx_ilt_write16(bcm, 0x3C03, 0x0014);
if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM) &&
(bcm->board_type == 0x0416) &&
(bcm->board_revision == 0x0017))
return;
bcm43xx_ilt_write16(bcm, 0x0401, 0x0002);
bcm43xx_ilt_write16(bcm, 0x0402, 0x0001);
}
}
/* Initialize the noisescaletable for APHY */
static void bcm43xx_phy_init_noisescaletbl(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
int i;
bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_CTRL, 0x1400);
for (i = 0; i < 12; i++) {
if (phy->rev == 2)
bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x6767);
else
bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x2323);
}
if (phy->rev == 2)
bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x6700);
else
bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x2300);
for (i = 0; i < 11; i++) {
if (phy->rev == 2)
bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x6767);
else
bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x2323);
}
if (phy->rev == 2)
bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x0067);
else
bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x0023);
}
static void bcm43xx_phy_setupa(struct bcm43xx_private *bcm)
{
u16 i;
assert(bcm->current_core->phy->type == BCM43xx_PHYTYPE_A);
switch (bcm->current_core->phy->rev) {
case 2:
bcm43xx_phy_write(bcm, 0x008E, 0x3800);
bcm43xx_phy_write(bcm, 0x0035, 0x03FF);
bcm43xx_phy_write(bcm, 0x0036, 0x0400);
bcm43xx_ilt_write16(bcm, 0x3807, 0x0051);
bcm43xx_phy_write(bcm, 0x001C, 0x0FF9);
bcm43xx_phy_write(bcm, 0x0020, bcm43xx_phy_read(bcm, 0x0020) & 0xFF0F);
bcm43xx_ilt_write16(bcm, 0x3C0C, 0x07BF);
bcm43xx_radio_write16(bcm, 0x0002, 0x07BF);
bcm43xx_phy_write(bcm, 0x0024, 0x4680);
bcm43xx_phy_write(bcm, 0x0020, 0x0003);
bcm43xx_phy_write(bcm, 0x001D, 0x0F40);
bcm43xx_phy_write(bcm, 0x001F, 0x1C00);
bcm43xx_phy_write(bcm, 0x002A, (bcm43xx_phy_read(bcm, 0x002A) & 0x00FF) | 0x0400);
bcm43xx_phy_write(bcm, 0x002B, bcm43xx_phy_read(bcm, 0x002B) & 0xFBFF);
bcm43xx_phy_write(bcm, 0x008E, 0x58C1);
bcm43xx_ilt_write16(bcm, 0x0803, 0x000F);
bcm43xx_ilt_write16(bcm, 0x0804, 0x001F);
bcm43xx_ilt_write16(bcm, 0x0805, 0x002A);
bcm43xx_ilt_write16(bcm, 0x0805, 0x0030);
bcm43xx_ilt_write16(bcm, 0x0807, 0x003A);
bcm43xx_ilt_write16(bcm, 0x0000, 0x0013);
bcm43xx_ilt_write16(bcm, 0x0001, 0x0013);
bcm43xx_ilt_write16(bcm, 0x0002, 0x0013);
bcm43xx_ilt_write16(bcm, 0x0003, 0x0013);
bcm43xx_ilt_write16(bcm, 0x0004, 0x0015);
bcm43xx_ilt_write16(bcm, 0x0005, 0x0015);
bcm43xx_ilt_write16(bcm, 0x0006, 0x0019);
bcm43xx_ilt_write16(bcm, 0x0404, 0x0003);
bcm43xx_ilt_write16(bcm, 0x0405, 0x0003);
bcm43xx_ilt_write16(bcm, 0x0406, 0x0007);
for (i = 0; i < 16; i++)
bcm43xx_ilt_write16(bcm, 0x4000 + i, (0x8 + i) & 0x000F);
bcm43xx_ilt_write16(bcm, 0x3003, 0x1044);
bcm43xx_ilt_write16(bcm, 0x3004, 0x7201);
bcm43xx_ilt_write16(bcm, 0x3006, 0x0040);
bcm43xx_ilt_write16(bcm, 0x3001, (bcm43xx_ilt_read16(bcm, 0x3001) & 0x0010) | 0x0008);
for (i = 0; i < BCM43xx_ILT_FINEFREQA_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x5800 + i, bcm43xx_ilt_finefreqa[i]);
for (i = 0; i < BCM43xx_ILT_NOISEA2_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x1800 + i, bcm43xx_ilt_noisea2[i]);
for (i = 0; i < BCM43xx_ILT_ROTOR_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x2000 + i, bcm43xx_ilt_rotor[i]);
bcm43xx_phy_init_noisescaletbl(bcm);
for (i = 0; i < BCM43xx_ILT_RETARD_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x2400 + i, bcm43xx_ilt_retard[i]);
break;
case 3:
for (i = 0; i < 64; i++)
bcm43xx_ilt_write16(bcm, 0x4000 + i, i);
bcm43xx_ilt_write16(bcm, 0x3807, 0x0051);
bcm43xx_phy_write(bcm, 0x001C, 0x0FF9);
bcm43xx_phy_write(bcm, 0x0020, bcm43xx_phy_read(bcm, 0x0020) & 0xFF0F);
bcm43xx_radio_write16(bcm, 0x0002, 0x07BF);
bcm43xx_phy_write(bcm, 0x0024, 0x4680);
bcm43xx_phy_write(bcm, 0x0020, 0x0003);
bcm43xx_phy_write(bcm, 0x001D, 0x0F40);
bcm43xx_phy_write(bcm, 0x001F, 0x1C00);
bcm43xx_phy_write(bcm, 0x002A, (bcm43xx_phy_read(bcm, 0x002A) & 0x00FF) | 0x0400);
bcm43xx_ilt_write16(bcm, 0x3001, (bcm43xx_ilt_read16(bcm, 0x3001) & 0x0010) | 0x0008);
for (i = 0; i < BCM43xx_ILT_NOISEA3_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x1800 + i, bcm43xx_ilt_noisea3[i]);
bcm43xx_phy_init_noisescaletbl(bcm);
for (i = 0; i < BCM43xx_ILT_SIGMASQR_SIZE; i++)
bcm43xx_ilt_write16(bcm, 0x5000 + i, bcm43xx_ilt_sigmasqr1[i]);
bcm43xx_phy_write(bcm, 0x0003, 0x1808);
bcm43xx_ilt_write16(bcm, 0x0803, 0x000F);
bcm43xx_ilt_write16(bcm, 0x0804, 0x001F);
bcm43xx_ilt_write16(bcm, 0x0805, 0x002A);
bcm43xx_ilt_write16(bcm, 0x0805, 0x0030);
bcm43xx_ilt_write16(bcm, 0x0807, 0x003A);
bcm43xx_ilt_write16(bcm, 0x0000, 0x0013);
bcm43xx_ilt_write16(bcm, 0x0001, 0x0013);
bcm43xx_ilt_write16(bcm, 0x0002, 0x0013);
bcm43xx_ilt_write16(bcm, 0x0003, 0x0013);
bcm43xx_ilt_write16(bcm, 0x0004, 0x0015);
bcm43xx_ilt_write16(bcm, 0x0005, 0x0015);
bcm43xx_ilt_write16(bcm, 0x0006, 0x0019);
bcm43xx_ilt_write16(bcm, 0x0404, 0x0003);
bcm43xx_ilt_write16(bcm, 0x0405, 0x0003);
bcm43xx_ilt_write16(bcm, 0x0406, 0x0007);
bcm43xx_ilt_write16(bcm, 0x3C02, 0x000F);
bcm43xx_ilt_write16(bcm, 0x3C03, 0x0014);
break;
default:
assert(0);
}
}
/* Initialize APHY. This is also called for the GPHY in some cases. */
static void bcm43xx_phy_inita(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
u16 tval;
if (phy->type == BCM43xx_PHYTYPE_A) {
bcm43xx_phy_setupa(bcm);
} else {
bcm43xx_phy_setupg(bcm);
if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
bcm43xx_phy_write(bcm, 0x046E, 0x03CF);
return;
}
bcm43xx_phy_write(bcm, BCM43xx_PHY_A_CRS,
(bcm43xx_phy_read(bcm, BCM43xx_PHY_A_CRS) & 0xF83C) | 0x0340);
bcm43xx_phy_write(bcm, 0x0034, 0x0001);
TODO();//TODO: RSSI AGC
bcm43xx_phy_write(bcm, BCM43xx_PHY_A_CRS,
bcm43xx_phy_read(bcm, BCM43xx_PHY_A_CRS) | (1 << 14));
bcm43xx_radio_init2060(bcm);
if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM)
&& ((bcm->board_type == 0x0416) || (bcm->board_type == 0x040A))) {
if (bcm->current_core->radio->lofcal == 0xFFFF) {
TODO();//TODO: LOF Cal
bcm43xx_radio_set_tx_iq(bcm);
} else
bcm43xx_radio_write16(bcm, 0x001E, bcm->current_core->radio->lofcal);
}
bcm43xx_phy_write(bcm, 0x007A, 0xF111);
if (phy->savedpctlreg == 0xFFFF) {
bcm43xx_radio_write16(bcm, 0x0019, 0x0000);
bcm43xx_radio_write16(bcm, 0x0017, 0x0020);
tval = bcm43xx_ilt_read16(bcm, 0x3001);
if (phy->rev == 1) {
bcm43xx_ilt_write16(bcm, 0x3001,
(bcm43xx_ilt_read16(bcm, 0x3001) & 0xFF87)
| 0x0058);
} else {
bcm43xx_ilt_write16(bcm, 0x3001,
(bcm43xx_ilt_read16(bcm, 0x3001) & 0xFFC3)
| 0x002C);
}
bcm43xx_dummy_transmission(bcm);
phy->savedpctlreg = bcm43xx_phy_read(bcm, BCM43xx_PHY_A_PCTL);
bcm43xx_ilt_write16(bcm, 0x3001, tval);
bcm43xx_radio_set_txpower_a(bcm, 0x0018);
}
bcm43xx_radio_clear_tssi(bcm);
}
static void bcm43xx_phy_initb2(struct bcm43xx_private *bcm)
{
struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
u16 offset, val;
bcm43xx_write16(bcm, 0x03EC, 0x3F22);
bcm43xx_phy_write(bcm, 0x0020, 0x301C);
bcm43xx_phy_write(bcm, 0x0026, 0x0000);
bcm43xx_phy_write(bcm, 0x0030, 0x00C6);
bcm43xx_phy_write(bcm, 0x0088, 0x3E00);
val = 0x3C3D;
for (offset = 0x0089; offset < 0x00A7; offset++) {
bcm43xx_phy_write(bcm, offset, val);
val -= 0x0202;
}
bcm43xx_phy_write(bcm, 0x03E4, 0x3000);
if (radio->channel == 0xFF)
bcm43xx_radio_selectchannel(bcm, BCM43xx_RADIO_DEFAULT_CHANNEL_BG, 0);
else
bcm43xx_radio_selectchannel(bcm, radio->channel, 0);
if (radio->version != 0x2050) {
bcm43xx_radio_write16(bcm, 0x0075, 0x0080);
bcm43xx_radio_write16(bcm, 0x0079, 0x0081);
}
bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
if (radio->version == 0x2050) {
bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
bcm43xx_radio_write16(bcm, 0x007A, 0x000F);
bcm43xx_phy_write(bcm, 0x0038, 0x0677);
bcm43xx_radio_init2050(bcm);
}
bcm43xx_phy_write(bcm, 0x0014, 0x0080);
bcm43xx_phy_write(bcm, 0x0032, 0x00CA);
bcm43xx_phy_write(bcm, 0x0032, 0x00CC);
bcm43xx_phy_write(bcm, 0x0035, 0x07C2);
bcm43xx_phy_lo_b_measure(bcm);
bcm43xx_phy_write(bcm, 0x0026, 0xCC00);
if (radio->version != 0x2050)
bcm43xx_phy_write(bcm, 0x0026, 0xCE00);
bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, 0x1000);
bcm43xx_phy_write(bcm, 0x002A, 0x88A3);
if (radio->version != 0x2050)
bcm43xx_phy_write(bcm, 0x002A, 0x88C2);
bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
bcm43xx_phy_init_pctl(bcm);
}
static void bcm43xx_phy_initb4(struct bcm43xx_private *bcm)
{
struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
u16 offset, val;
bcm43xx_write16(bcm, 0x03EC, 0x3F22);
bcm43xx_phy_write(bcm, 0x0020, 0x301C);
bcm43xx_phy_write(bcm, 0x0026, 0x0000);
bcm43xx_phy_write(bcm, 0x0030, 0x00C6);
bcm43xx_phy_write(bcm, 0x0088, 0x3E00);
val = 0x3C3D;
for (offset = 0x0089; offset < 0x00A7; offset++) {
bcm43xx_phy_write(bcm, offset, val);
val -= 0x0202;
}
bcm43xx_phy_write(bcm, 0x03E4, 0x3000);
if (radio->channel == 0xFF)
bcm43xx_radio_selectchannel(bcm, BCM43xx_RADIO_DEFAULT_CHANNEL_BG, 0);
else
bcm43xx_radio_selectchannel(bcm, radio->channel, 0);
if (radio->version != 0x2050) {
bcm43xx_radio_write16(bcm, 0x0075, 0x0080);
bcm43xx_radio_write16(bcm, 0x0079, 0x0081);
}
bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
if (radio->version == 0x2050) {
bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
bcm43xx_radio_write16(bcm, 0x007A, 0x000F);
bcm43xx_phy_write(bcm, 0x0038, 0x0677);
bcm43xx_radio_init2050(bcm);
}
bcm43xx_phy_write(bcm, 0x0014, 0x0080);
bcm43xx_phy_write(bcm, 0x0032, 0x00CA);
if (radio->version == 0x2050)
bcm43xx_phy_write(bcm, 0x0032, 0x00E0);
bcm43xx_phy_write(bcm, 0x0035, 0x07C2);
bcm43xx_phy_lo_b_measure(bcm);
bcm43xx_phy_write(bcm, 0x0026, 0xCC00);
if (radio->version == 0x2050)
bcm43xx_phy_write(bcm, 0x0026, 0xCE00);
bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, 0x1100);
bcm43xx_phy_write(bcm, 0x002A, 0x88A3);
if (radio->version == 0x2050)
bcm43xx_phy_write(bcm, 0x002A, 0x88C2);
bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
bcm43xx_calc_nrssi_slope(bcm);
bcm43xx_calc_nrssi_threshold(bcm);
}
bcm43xx_phy_init_pctl(bcm);
}
static void bcm43xx_phy_initb5(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
u16 offset;
if (phy->version == 1 &&
radio->version == 0x2050) {
bcm43xx_radio_write16(bcm, 0x007A,
bcm43xx_radio_read16(bcm, 0x007A)
| 0x0050);
}
if ((bcm->board_vendor != PCI_VENDOR_ID_BROADCOM) &&
(bcm->board_type != 0x0416)) {
for (offset = 0x00A8 ; offset < 0x00C7; offset++) {
bcm43xx_phy_write(bcm, offset,
(bcm43xx_phy_read(bcm, offset) + 0x2020)
& 0x3F3F);
}
}
bcm43xx_phy_write(bcm, 0x0035,
(bcm43xx_phy_read(bcm, 0x0035) & 0xF0FF)
| 0x0700);
if (radio->version == 0x2050)
bcm43xx_phy_write(bcm, 0x0038, 0x0667);
if (phy->connected) {
if (radio->version == 0x2050) {
bcm43xx_radio_write16(bcm, 0x007A,
bcm43xx_radio_read16(bcm, 0x007A)
| 0x0020);
bcm43xx_radio_write16(bcm, 0x0051,
bcm43xx_radio_read16(bcm, 0x0051)
| 0x0004);
}
bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_RADIO, 0x0000);
bcm43xx_phy_write(bcm, 0x0802, bcm43xx_phy_read(bcm, 0x0802) | 0x0100);
bcm43xx_phy_write(bcm, 0x042B, bcm43xx_phy_read(bcm, 0x042B) | 0x2000);
bcm43xx_phy_write(bcm, 0x001C, 0x186A);
bcm43xx_phy_write(bcm, 0x0013, (bcm43xx_phy_read(bcm, 0x0013) & 0x00FF) | 0x1900);
bcm43xx_phy_write(bcm, 0x0035, (bcm43xx_phy_read(bcm, 0x0035) & 0xFFC0) | 0x0064);
bcm43xx_phy_write(bcm, 0x005D, (bcm43xx_phy_read(bcm, 0x005D) & 0xFF80) | 0x000A);
}
if (bcm->bad_frames_preempt) {
bcm43xx_phy_write(bcm, BCM43xx_PHY_RADIO_BITFIELD,
bcm43xx_phy_read(bcm, BCM43xx_PHY_RADIO_BITFIELD) | (1 << 11));
}
if (phy->version == 1 && radio->version == 0x2050) {
bcm43xx_phy_write(bcm, 0x0026, 0xCE00);
bcm43xx_phy_write(bcm, 0x0021, 0x3763);
bcm43xx_phy_write(bcm, 0x0022, 0x1BC3);
bcm43xx_phy_write(bcm, 0x0023, 0x06F9);
bcm43xx_phy_write(bcm, 0x0024, 0x037E);
} else
bcm43xx_phy_write(bcm, 0x0026, 0xCC00);
bcm43xx_phy_write(bcm, 0x0030, 0x00C6);
bcm43xx_write16(bcm, 0x03EC, 0x3F22);
if (phy->version == 1 && radio->version == 0x2050)
bcm43xx_phy_write(bcm, 0x0020, 0x3E1C);
else
bcm43xx_phy_write(bcm, 0x0020, 0x301C);
if (phy->version == 0)
bcm43xx_write16(bcm, 0x03E4, 0x3000);
/* Force to channel 7, even if not supported. */
bcm43xx_radio_selectchannel(bcm, 7, 0);
if (radio->version != 0x2050) {
bcm43xx_radio_write16(bcm, 0x0075, 0x0080);
bcm43xx_radio_write16(bcm, 0x0079, 0x0081);
}
bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
if (radio->version == 0x2050) {
bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
}
bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
bcm43xx_radio_write16(bcm, 0x007A, bcm43xx_radio_read16(bcm, 0x007A) | 0x0007);
bcm43xx_radio_selectchannel(bcm, BCM43xx_RADIO_DEFAULT_CHANNEL_BG, 0);
bcm43xx_phy_write(bcm, 0x0014, 0x0080);
bcm43xx_phy_write(bcm, 0x0032, 0x00CA);
bcm43xx_phy_write(bcm, 0x88A3, 0x002A);
bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
if (radio->version == 0x2050)
bcm43xx_radio_write16(bcm, 0x005D, 0x000D);
bcm43xx_write16(bcm, 0x03E4, (bcm43xx_read16(bcm, 0x03E4) & 0xFFC0) | 0x0004);
}
static void bcm43xx_phy_initb6(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
u16 offset, val;
bcm43xx_phy_write(bcm, 0x003E, 0x817A);
bcm43xx_radio_write16(bcm, 0x007A,
(bcm43xx_radio_read16(bcm, 0x007A) | 0x0058));
if ((radio->manufact == 0x17F) &&
(radio->version == 0x2050) &&
(radio->revision == 3 ||
radio->revision == 4 ||
radio->revision == 5)) {
bcm43xx_radio_write16(bcm, 0x0051, 0x001F);
bcm43xx_radio_write16(bcm, 0x0052, 0x0040);
bcm43xx_radio_write16(bcm, 0x0053, 0x005B);
bcm43xx_radio_write16(bcm, 0x0054, 0x0098);
bcm43xx_radio_write16(bcm, 0x005A, 0x0088);
bcm43xx_radio_write16(bcm, 0x005B, 0x0088);
bcm43xx_radio_write16(bcm, 0x005D, 0x0088);
bcm43xx_radio_write16(bcm, 0x005E, 0x0088);
bcm43xx_radio_write16(bcm, 0x007D, 0x0088);
}
if ((radio->manufact == 0x17F) &&
(radio->version == 0x2050) &&
(radio->revision == 6)) {
bcm43xx_radio_write16(bcm, 0x0051, 0x0000);
bcm43xx_radio_write16(bcm, 0x0052, 0x0040);
bcm43xx_radio_write16(bcm, 0x0053, 0x00B7);
bcm43xx_radio_write16(bcm, 0x0054, 0x0098);
bcm43xx_radio_write16(bcm, 0x005A, 0x0088);
bcm43xx_radio_write16(bcm, 0x005B, 0x008B);
bcm43xx_radio_write16(bcm, 0x005C, 0x00B5);
bcm43xx_radio_write16(bcm, 0x005D, 0x0088);
bcm43xx_radio_write16(bcm, 0x005E, 0x0088);
bcm43xx_radio_write16(bcm, 0x007D, 0x0088);
bcm43xx_radio_write16(bcm, 0x007C, 0x0001);
bcm43xx_radio_write16(bcm, 0x007E, 0x0008);
}
if ((radio->manufact == 0x17F) &&
(radio->version == 0x2050) &&
(radio->revision == 7)) {
bcm43xx_radio_write16(bcm, 0x0051, 0x0000);
bcm43xx_radio_write16(bcm, 0x0052, 0x0040);
bcm43xx_radio_write16(bcm, 0x0053, 0x00B7);
bcm43xx_radio_write16(bcm, 0x0054, 0x0098);
bcm43xx_radio_write16(bcm, 0x005A, 0x0088);
bcm43xx_radio_write16(bcm, 0x005B, 0x00A8);
bcm43xx_radio_write16(bcm, 0x005C, 0x0075);
bcm43xx_radio_write16(bcm, 0x005D, 0x00F5);
bcm43xx_radio_write16(bcm, 0x005E, 0x00B8);
bcm43xx_radio_write16(bcm, 0x007D, 0x00E8);
bcm43xx_radio_write16(bcm, 0x007C, 0x0001);
bcm43xx_radio_write16(bcm, 0x007E, 0x0008);
bcm43xx_radio_write16(bcm, 0x007B, 0x0000);
}
if ((radio->manufact == 0x17F) &&
(radio->version == 0x2050) &&
(radio->revision == 8)) {
bcm43xx_radio_write16(bcm, 0x0051, 0x0000);
bcm43xx_radio_write16(bcm, 0x0052, 0x0040);
bcm43xx_radio_write16(bcm, 0x0053, 0x00B7);
bcm43xx_radio_write16(bcm, 0x0054, 0x0098);
bcm43xx_radio_write16(bcm, 0x005A, 0x0088);
bcm43xx_radio_write16(bcm, 0x005B, 0x006B);
bcm43xx_radio_write16(bcm, 0x005C, 0x000F);
if (bcm->sprom.boardflags & 0x8000) {
bcm43xx_radio_write16(bcm, 0x005D, 0x00FA);
bcm43xx_radio_write16(bcm, 0x005E, 0x00D8);
} else {
bcm43xx_radio_write16(bcm, 0x005D, 0x00F5);
bcm43xx_radio_write16(bcm, 0x005E, 0x00B8);
}
bcm43xx_radio_write16(bcm, 0x0073, 0x0003);
bcm43xx_radio_write16(bcm, 0x007D, 0x00A8);
bcm43xx_radio_write16(bcm, 0x007C, 0x0001);
bcm43xx_radio_write16(bcm, 0x007E, 0x0008);
}
val = 0x1E1F;
for (offset = 0x0088; offset < 0x0098; offset++) {
bcm43xx_phy_write(bcm, offset, val);
val -= 0x0202;
}
val = 0x3E3F;
for (offset = 0x0098; offset < 0x00A8; offset++) {
bcm43xx_phy_write(bcm, offset, val);
val -= 0x0202;
}
val = 0x2120;
for (offset = 0x00A8; offset < 0x00C8; offset++) {
bcm43xx_phy_write(bcm, offset, (val & 0x3F3F));
val += 0x0202;
}
if (phy->type == BCM43xx_PHYTYPE_G) {
bcm43xx_radio_write16(bcm, 0x007A,
bcm43xx_radio_read16(bcm, 0x007A) | 0x0020);
bcm43xx_radio_write16(bcm, 0x0051,
bcm43xx_radio_read16(bcm, 0x0051) | 0x0004);
bcm43xx_phy_write(bcm, 0x0802,
bcm43xx_phy_read(bcm, 0x0802) | 0x0100);
bcm43xx_phy_write(bcm, 0x042B,
bcm43xx_phy_read(bcm, 0x042B) | 0x2000);
}
/* Force to channel 7, even if not supported. */
bcm43xx_radio_selectchannel(bcm, 7, 0);
bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
udelay(40);
bcm43xx_radio_write16(bcm, 0x007C, (bcm43xx_radio_read16(bcm, 0x007C) | 0x0002));
bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
if ((bcm->current_core->radio->manufact == 0x17F) &&
(bcm->current_core->radio->version == 0x2050) &&
(bcm->current_core->radio->revision <= 2)) {
bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
}
bcm43xx_radio_write16(bcm, 0x007A,
(bcm43xx_radio_read16(bcm, 0x007A) & 0x00F8) | 0x0007);
bcm43xx_radio_selectchannel(bcm, BCM43xx_RADIO_DEFAULT_CHANNEL_BG, 0);
bcm43xx_phy_write(bcm, 0x0014, 0x0200);
if (radio->version == 0x2050){
if (radio->revision == 3 ||
radio->revision == 4 ||
radio->revision == 5)
bcm43xx_phy_write(bcm, 0x002A, 0x8AC0);
else
bcm43xx_phy_write(bcm, 0x002A, 0x88C2);
}
bcm43xx_phy_write(bcm, 0x0038, 0x0668);
bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
if (radio->version == 0x2050) {
if (radio->revision == 3 ||
radio->revision == 4 ||
radio->revision == 5)
bcm43xx_phy_write(bcm, 0x005D, bcm43xx_phy_read(bcm, 0x005D) | 0x0003);
else if (radio->revision <= 2)
bcm43xx_radio_write16(bcm, 0x005D, 0x000D);
}
if (phy->rev == 4)
bcm43xx_phy_write(bcm, 0x0002, (bcm43xx_phy_read(bcm, 0x0002) & 0xFFC0) | 0x0004);
else
bcm43xx_write16(bcm, 0x03E4, 0x0009);
if (phy->type == BCM43xx_PHYTYPE_B) {
bcm43xx_write16(bcm, 0x03E6, 0x8140);
bcm43xx_phy_write(bcm, 0x0016, 0x0410);
bcm43xx_phy_write(bcm, 0x0017, 0x0820);
bcm43xx_phy_write(bcm, 0x0062, 0x0007);
(void) bcm43xx_radio_calibrationvalue(bcm);
bcm43xx_phy_lo_b_measure(bcm);
if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
bcm43xx_calc_nrssi_slope(bcm);
bcm43xx_calc_nrssi_threshold(bcm);
}
bcm43xx_phy_init_pctl(bcm);
} else
bcm43xx_write16(bcm, 0x03E6, 0x0);
}
static void bcm43xx_phy_initg(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
u16 tmp;
if (phy->rev == 1)
bcm43xx_phy_initb5(bcm);
else if (phy->rev >= 2 && phy->rev <= 7)
bcm43xx_phy_initb6(bcm);
if (phy->rev >= 2 || phy->connected)
bcm43xx_phy_inita(bcm);
if (phy->rev >= 2) {
bcm43xx_phy_write(bcm, 0x0814, 0x0000);
bcm43xx_phy_write(bcm, 0x0815, 0x0000);
if (phy->rev == 2)
bcm43xx_phy_write(bcm, 0x0811, 0x0000);
else if (phy->rev >= 3)
bcm43xx_phy_write(bcm, 0x0811, 0x0400);
bcm43xx_phy_write(bcm, 0x0015, 0x00C0);
tmp = bcm43xx_phy_read(bcm, 0x0400) & 0xFF;
if (tmp == 3) {
bcm43xx_phy_write(bcm, 0x04C2, 0x1816);
bcm43xx_phy_write(bcm, 0x04C3, 0x8606);
} else if (tmp == 4 || tmp == 5) {
bcm43xx_phy_write(bcm, 0x04C2, 0x1816);
bcm43xx_phy_write(bcm, 0x04C3, 0x8006);
bcm43xx_phy_write(bcm, 0x04CC, (bcm43xx_phy_read(bcm, 0x04CC)
& 0x00FF) | 0x1F00);
}
}
if (radio->revision <= 3 && phy->connected)
bcm43xx_phy_write(bcm, 0x047E, 0x0078);
if (radio->revision >= 6 && radio->revision <= 8) {
bcm43xx_phy_write(bcm, 0x0801, bcm43xx_phy_read(bcm, 0x0801) | 0x0080);
bcm43xx_phy_write(bcm, 0x043E, bcm43xx_phy_read(bcm, 0x043E) | 0x0004);
}
if (radio->initval == 0xFFFF) {
radio->initval = bcm43xx_radio_init2050(bcm);
bcm43xx_phy_lo_g_measure(bcm);
} else {
bcm43xx_radio_write16(bcm, 0x0078, radio->initval);
bcm43xx_radio_write16(bcm, 0x0052,
(bcm43xx_radio_read16(bcm, 0x0052) & 0xFFF0)
| radio->txpower[3]);
}
if (phy->connected) {
bcm43xx_phy_lo_adjust(bcm, 0);
bcm43xx_phy_write(bcm, 0x080F, 0x8078);
if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
bcm43xx_phy_write(bcm, 0x002E, 0x807F);
else
bcm43xx_phy_write(bcm, 0x002E, 0x8075);
if (phy->rev < 2)
bcm43xx_phy_write(bcm, 0x002F, 0x0101);
else
bcm43xx_phy_write(bcm, 0x002F, 0x0202);
}
if ((bcm->sprom.boardflags & BCM43xx_BFL_RSSI) == 0) {
FIXME();//FIXME: 0x7FFFFFFF should be 16-bit !
bcm43xx_nrssi_hw_update(bcm, (u16)0x7FFFFFFF);
bcm43xx_calc_nrssi_threshold(bcm);
} else if (phy->connected) {
if (radio->nrssi[0] == -1000) {
assert(radio->nrssi[1] == -1000);
bcm43xx_calc_nrssi_slope(bcm);
} else
bcm43xx_calc_nrssi_threshold(bcm);
}
bcm43xx_phy_init_pctl(bcm);
}
static u16 bcm43xx_phy_lo_b_r15_loop(struct bcm43xx_private *bcm)
{
int i;
u16 ret = 0;
for (i = 0; i < 10; i++){
bcm43xx_phy_write(bcm, 0x0015, 0xAFA0);
udelay(1);
bcm43xx_phy_write(bcm, 0x0015, 0xEFA0);
udelay(10);
bcm43xx_phy_write(bcm, 0x0015, 0xFFA0);
udelay(40);
ret += bcm43xx_phy_read(bcm, 0x002C);
}
return ret;
}
void bcm43xx_phy_lo_b_measure(struct bcm43xx_private *bcm)
{
struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
u16 regstack[12] = { 0 };
u16 mls;
u16 fval;
int i, j;
regstack[0] = bcm43xx_phy_read(bcm, 0x0015);
regstack[1] = bcm43xx_radio_read16(bcm, 0x0052) & 0xFFF0;
if (radio->version == 0x2053) {
regstack[2] = bcm43xx_phy_read(bcm, 0x000A);
regstack[3] = bcm43xx_phy_read(bcm, 0x002A);
regstack[4] = bcm43xx_phy_read(bcm, 0x0035);
regstack[5] = bcm43xx_phy_read(bcm, 0x0003);
regstack[6] = bcm43xx_phy_read(bcm, 0x0001);
regstack[7] = bcm43xx_phy_read(bcm, 0x0030);
regstack[8] = bcm43xx_radio_read16(bcm, 0x0043);
regstack[9] = bcm43xx_radio_read16(bcm, 0x007A);
regstack[10] = bcm43xx_read16(bcm, 0x03EC);
regstack[11] = bcm43xx_radio_read16(bcm, 0x0052) & 0x00F0;
bcm43xx_phy_write(bcm, 0x0030, 0x00FF);
bcm43xx_write16(bcm, 0x03EC, 0x3F3F);
bcm43xx_phy_write(bcm, 0x0035, regstack[4] & 0xFF7F);
bcm43xx_radio_write16(bcm, 0x007A, regstack[9] & 0xFFF0);
}
bcm43xx_phy_write(bcm, 0x0015, 0xB000);
bcm43xx_phy_write(bcm, 0x002B, 0x0004);
if (radio->version == 0x2053) {
bcm43xx_phy_write(bcm, 0x002B, 0x0203);
bcm43xx_phy_write(bcm, 0x002A, 0x08A3);
}
phy->minlowsig[0] = 0xFFFF;
for (i = 0; i < 4; i++) {
bcm43xx_radio_write16(bcm, 0x0052, regstack[1] | i);
bcm43xx_phy_lo_b_r15_loop(bcm);
}
for (i = 0; i < 10; i++) {
bcm43xx_radio_write16(bcm, 0x0052, regstack[1] | i);
mls = bcm43xx_phy_lo_b_r15_loop(bcm) / 10;
if (mls < phy->minlowsig[0]) {
phy->minlowsig[0] = mls;
phy->minlowsigpos[0] = i;
}
}
bcm43xx_radio_write16(bcm, 0x0052, regstack[1] | phy->minlowsigpos[0]);
phy->minlowsig[1] = 0xFFFF;
for (i = -4; i < 5; i += 2) {
for (j = -4; j < 5; j += 2) {
if (j < 0)
fval = (0x0100 * i) + j + 0x0100;
else
fval = (0x0100 * i) + j;
bcm43xx_phy_write(bcm, 0x002F, fval);
mls = bcm43xx_phy_lo_b_r15_loop(bcm) / 10;
if (mls < phy->minlowsig[1]) {
phy->minlowsig[1] = mls;
phy->minlowsigpos[1] = fval;
}
}
}
phy->minlowsigpos[1] += 0x0101;
bcm43xx_phy_write(bcm, 0x002F, phy->minlowsigpos[1]);
if (radio->version == 0x2053) {
bcm43xx_phy_write(bcm, 0x000A, regstack[2]);
bcm43xx_phy_write(bcm, 0x002A, regstack[3]);
bcm43xx_phy_write(bcm, 0x0035, regstack[4]);
bcm43xx_phy_write(bcm, 0x0003, regstack[5]);
bcm43xx_phy_write(bcm, 0x0001, regstack[6]);
bcm43xx_phy_write(bcm, 0x0030, regstack[7]);
bcm43xx_radio_write16(bcm, 0x0043, regstack[8]);
bcm43xx_radio_write16(bcm, 0x007A, regstack[9]);
bcm43xx_radio_write16(bcm, 0x0052,
(bcm43xx_radio_read16(bcm, 0x0052) & 0x000F)
| regstack[11]);
bcm43xx_write16(bcm, 0x03EC, regstack[10]);
}
bcm43xx_phy_write(bcm, 0x0015, regstack[0]);
}
static inline
u16 bcm43xx_phy_lo_g_deviation_subval(struct bcm43xx_private *bcm, u16 control)
{
if (bcm->current_core->phy->connected) {
bcm43xx_phy_write(bcm, 0x15, 0xE300);
control <<= 8;
bcm43xx_phy_write(bcm, 0x0812, control | 0x00B0);
udelay(5);
bcm43xx_phy_write(bcm, 0x0812, control | 0x00B2);
udelay(2);
bcm43xx_phy_write(bcm, 0x0812, control | 0x00B3);
udelay(4);
bcm43xx_phy_write(bcm, 0x0015, 0xF300);
udelay(8);
} else {
bcm43xx_phy_write(bcm, 0x0015, control | 0xEFA0);
udelay(2);
bcm43xx_phy_write(bcm, 0x0015, control | 0xEFE0);
udelay(4);
bcm43xx_phy_write(bcm, 0x0015, control | 0xFFE0);
udelay(8);
}
return bcm43xx_phy_read(bcm, 0x002D);
}
static u32 bcm43xx_phy_lo_g_singledeviation(struct bcm43xx_private *bcm, u16 control)
{
int i;
u32 ret = 0;
for (i = 0; i < 8; i++)
ret += bcm43xx_phy_lo_g_deviation_subval(bcm, control);
return ret;
}
/* Write the LocalOscillator CONTROL */
static inline
void bcm43xx_lo_write(struct bcm43xx_private *bcm,
struct bcm43xx_lopair *pair)
{
u16 value;
value = (u8)(pair->low);
value |= ((u8)(pair->high)) << 8;
#ifdef CONFIG_BCM43XX_DEBUG
/* Sanity check. */
if (pair->low < -8 || pair->low > 8 ||
pair->high < -8 || pair->high > 8) {
printk(KERN_WARNING PFX
"WARNING: Writing invalid LOpair "
"(low: %d, high: %d, index: %lu)\n",
pair->low, pair->high,
(unsigned long)(pair - bcm->current_core->phy->_lo_pairs));
dump_stack();
}
#endif
bcm43xx_phy_write(bcm, BCM43xx_PHY_G_LO_CONTROL, value);
}
static inline
struct bcm43xx_lopair * bcm43xx_find_lopair(struct bcm43xx_private *bcm,
u16 baseband_attenuation,
u16 radio_attenuation,
u16 tx)
{
static const u8 dict[10] = { 11, 10, 11, 12, 13, 12, 13, 12, 13, 12 };
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
if (baseband_attenuation > 6)
baseband_attenuation = 6;
assert(radio_attenuation < 10);
assert(tx == 0 || tx == 3);
if (tx == 3) {
return bcm43xx_get_lopair(phy,
radio_attenuation,
baseband_attenuation);
}
return bcm43xx_get_lopair(phy, dict[radio_attenuation], baseband_attenuation);
}
static inline
struct bcm43xx_lopair * bcm43xx_current_lopair(struct bcm43xx_private *bcm)
{
return bcm43xx_find_lopair(bcm,
bcm->current_core->radio->txpower[0],
bcm->current_core->radio->txpower[1],
bcm->current_core->radio->txpower[2]);
}
/* Adjust B/G LO */
void bcm43xx_phy_lo_adjust(struct bcm43xx_private *bcm, int fixed)
{
struct bcm43xx_lopair *pair;
if (fixed) {
/* Use fixed values. Only for initialization. */
pair = bcm43xx_find_lopair(bcm, 2, 3, 0);
} else
pair = bcm43xx_current_lopair(bcm);
bcm43xx_lo_write(bcm, pair);
}
static inline
void bcm43xx_phy_lo_g_measure_txctl2(struct bcm43xx_private *bcm)
{
u16 txctl2 = 0, i;
u32 smallest, tmp;
bcm43xx_radio_write16(bcm, 0x0052, 0x0000);
udelay(10);
smallest = bcm43xx_phy_lo_g_singledeviation(bcm, 0);
for (i = 0; i < 16; i++) {
bcm43xx_radio_write16(bcm, 0x0052, i);
udelay(10);
tmp = bcm43xx_phy_lo_g_singledeviation(bcm, 0);
if (tmp < smallest) {
smallest = tmp;
txctl2 = i;
}
}
bcm->current_core->radio->txpower[3] = txctl2;
}
static
void bcm43xx_phy_lo_g_state(struct bcm43xx_private *bcm,
const struct bcm43xx_lopair *in_pair,
struct bcm43xx_lopair *out_pair,
u16 r27)
{
static const struct bcm43xx_lopair transitions[8] = {
{ .high = 1, .low = 1, },
{ .high = 1, .low = 0, },
{ .high = 1, .low = -1, },
{ .high = 0, .low = -1, },
{ .high = -1, .low = -1, },
{ .high = -1, .low = 0, },
{ .high = -1, .low = 1, },
{ .high = 0, .low = 1, },
};
struct bcm43xx_lopair lowest_transition = {
.high = in_pair->high,
.low = in_pair->low,
};
struct bcm43xx_lopair tmp_pair;
struct bcm43xx_lopair transition;
int i = 12;
int state = 0;
int found_lower;
int j, begin, end;
u32 lowest_deviation;
u32 tmp;
/* Note that in_pair and out_pair can point to the same pair. Be careful. */
bcm43xx_lo_write(bcm, &lowest_transition);
lowest_deviation = bcm43xx_phy_lo_g_singledeviation(bcm, r27);
do {
found_lower = 0;
assert(state >= 0 && state <= 8);
if (state == 0) {
begin = 1;
end = 8;
} else if (state % 2 == 0) {
begin = state - 1;
end = state + 1;
} else {
begin = state - 2;
end = state + 2;
}
if (begin < 1)
begin += 8;
if (end > 8)
end -= 8;
j = begin;
tmp_pair.high = lowest_transition.high;
tmp_pair.low = lowest_transition.low;
while (1) {
assert(j >= 1 && j <= 8);
transition.high = tmp_pair.high + transitions[j - 1].high;
transition.low = tmp_pair.low + transitions[j - 1].low;
if ((abs(transition.low) < 9) && (abs(transition.high) < 9)) {
bcm43xx_lo_write(bcm, &transition);
tmp = bcm43xx_phy_lo_g_singledeviation(bcm, r27);
if (tmp < lowest_deviation) {
lowest_deviation = tmp;
state = j;
found_lower = 1;
lowest_transition.high = transition.high;
lowest_transition.low = transition.low;
}
}
if (j == end)
break;
if (j == 8)
j = 1;
else
j++;
}
} while (i-- && found_lower);
out_pair->high = lowest_transition.high;
out_pair->low = lowest_transition.low;
}
/* Set the baseband attenuation value on chip. */
void bcm43xx_phy_set_baseband_attenuation(struct bcm43xx_private *bcm,
u16 baseband_attenuation)
{
u16 value;
if (bcm->current_core->phy->version == 0) {
value = (bcm43xx_read16(bcm, 0x03E6) & 0xFFF0);
value |= (baseband_attenuation & 0x000F);
bcm43xx_write16(bcm, 0x03E6, value);
return;
}
if (bcm->current_core->phy->version > 1) {
value = bcm43xx_phy_read(bcm, 0x0060) & ~0x003C;
value |= (baseband_attenuation << 2) & 0x003C;
} else {
value = bcm43xx_phy_read(bcm, 0x0060) & ~0x0078;
value |= (baseband_attenuation << 3) & 0x0078;
}
bcm43xx_phy_write(bcm, 0x0060, value);
}
/* http://bcm-specs.sipsolutions.net/LocalOscillator/Measure */
void bcm43xx_phy_lo_g_measure(struct bcm43xx_private *bcm)
{
static const u8 pairorder[10] = { 3, 1, 5, 7, 9, 2, 0, 4, 6, 8 };
const int is_initializing = bcm43xx_is_initializing(bcm);
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
u16 h, i, oldi = 0, j;
struct bcm43xx_lopair control;
struct bcm43xx_lopair *tmp_control;
u16 tmp;
u16 regstack[16] = { 0 };
u8 oldchannel;
//XXX: What are these?
u8 r27 = 0, r31;
oldchannel = radio->channel;
/* Setup */
if (phy->connected) {
regstack[0] = bcm43xx_phy_read(bcm, BCM43xx_PHY_G_CRS);
regstack[1] = bcm43xx_phy_read(bcm, 0x0802);
bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0] & 0x7FFF);
bcm43xx_phy_write(bcm, 0x0802, regstack[1] & 0xFFFC);
}
regstack[3] = bcm43xx_read16(bcm, 0x03E2);
bcm43xx_write16(bcm, 0x03E2, regstack[3] | 0x8000);
regstack[4] = bcm43xx_read16(bcm, BCM43xx_MMIO_CHANNEL_EXT);
regstack[5] = bcm43xx_phy_read(bcm, 0x15);
regstack[6] = bcm43xx_phy_read(bcm, 0x2A);
regstack[7] = bcm43xx_phy_read(bcm, 0x35);
regstack[8] = bcm43xx_phy_read(bcm, 0x60);
regstack[9] = bcm43xx_radio_read16(bcm, 0x43);
regstack[10] = bcm43xx_radio_read16(bcm, 0x7A);
regstack[11] = bcm43xx_radio_read16(bcm, 0x52);
if (phy->connected) {
regstack[12] = bcm43xx_phy_read(bcm, 0x0811);
regstack[13] = bcm43xx_phy_read(bcm, 0x0812);
regstack[14] = bcm43xx_phy_read(bcm, 0x0814);
regstack[15] = bcm43xx_phy_read(bcm, 0x0815);
}
bcm43xx_radio_selectchannel(bcm, 6, 0);
if (phy->connected) {
bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0] & 0x7FFF);
bcm43xx_phy_write(bcm, 0x0802, regstack[1] & 0xFFFC);
bcm43xx_dummy_transmission(bcm);
}
bcm43xx_radio_write16(bcm, 0x0043, 0x0006);
bcm43xx_phy_set_baseband_attenuation(bcm, 2);
bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, 0x0000);
bcm43xx_phy_write(bcm, 0x002E, 0x007F);
bcm43xx_phy_write(bcm, 0x080F, 0x0078);
bcm43xx_phy_write(bcm, 0x0035, regstack[7] & ~(1 << 7));
bcm43xx_radio_write16(bcm, 0x007A, regstack[10] & 0xFFF0);
bcm43xx_phy_write(bcm, 0x002B, 0x0203);
bcm43xx_phy_write(bcm, 0x002A, 0x08A3);
if (phy->connected) {
bcm43xx_phy_write(bcm, 0x0814, regstack[14] | 0x0003);
bcm43xx_phy_write(bcm, 0x0815, regstack[15] & 0xFFFC);
bcm43xx_phy_write(bcm, 0x0811, 0x01B3);
bcm43xx_phy_write(bcm, 0x0812, 0x00B2);
}
if (is_initializing)
bcm43xx_phy_lo_g_measure_txctl2(bcm);
bcm43xx_phy_write(bcm, 0x080F, 0x8078);
/* Measure */
control.low = 0;
control.high = 0;
for (h = 0; h < 10; h++) {
/* Loop over each possible RadioAttenuation (0-9) */
i = pairorder[h];
if (is_initializing) {
if (i == 3) {
control.low = 0;
control.high = 0;
} else if (((i % 2 == 1) && (oldi % 2 == 1)) ||
((i % 2 == 0) && (oldi % 2 == 0))) {
tmp_control = bcm43xx_get_lopair(phy, oldi, 0);
memcpy(&control, tmp_control, sizeof(control));
} else {
tmp_control = bcm43xx_get_lopair(phy, 3, 0);
memcpy(&control, tmp_control, sizeof(control));
}
}
/* Loop over each possible BasebandAttenuation/2 */
for (j = 0; j < 4; j++) {
if (is_initializing) {
tmp = i * 2 + j;
r27 = 0;
r31 = 0;
if (tmp > 14) {
r31 = 1;
if (tmp > 17)
r27 = 1;
if (tmp > 19)
r27 = 2;
}
} else {
tmp_control = bcm43xx_get_lopair(phy, i, j * 2);
if (!tmp_control->used)
continue;
memcpy(&control, tmp_control, sizeof(control));
r27 = 3;
r31 = 0;
}
bcm43xx_radio_write16(bcm, 0x43, i);
bcm43xx_radio_write16(bcm, 0x52,
radio->txpower[3]);
udelay(10);
bcm43xx_phy_set_baseband_attenuation(bcm, j * 2);
tmp = (regstack[10] & 0xFFF0);
if (r31)
tmp |= 0x0008;
bcm43xx_radio_write16(bcm, 0x007A, tmp);
tmp_control = bcm43xx_get_lopair(phy, i, j * 2);
bcm43xx_phy_lo_g_state(bcm, &control, tmp_control, r27);
}
oldi = i;
}
/* Loop over each possible RadioAttenuation (10-13) */
for (i = 10; i < 14; i++) {
/* Loop over each possible BasebandAttenuation/2 */
for (j = 0; j < 4; j++) {
if (is_initializing) {
tmp_control = bcm43xx_get_lopair(phy, i - 9, j * 2);
memcpy(&control, tmp_control, sizeof(control));
tmp = (i - 9) * 2 + j - 5;//FIXME: This is wrong, as the following if statement can never trigger.
r27 = 0;
r31 = 0;
if (tmp > 14) {
r31 = 1;
if (tmp > 17)
r27 = 1;
if (tmp > 19)
r27 = 2;
}
} else {
tmp_control = bcm43xx_get_lopair(phy, i - 9, j * 2);
if (!tmp_control->used)
continue;
memcpy(&control, tmp_control, sizeof(control));
r27 = 3;
r31 = 0;
}
bcm43xx_radio_write16(bcm, 0x43, i - 9);
bcm43xx_radio_write16(bcm, 0x52,
radio->txpower[3]
| (3/*txctl1*/ << 4));//FIXME: shouldn't txctl1 be zero here and 3 in the loop above?
udelay(10);
bcm43xx_phy_set_baseband_attenuation(bcm, j * 2);
tmp = (regstack[10] & 0xFFF0);
if (r31)
tmp |= 0x0008;
bcm43xx_radio_write16(bcm, 0x7A, tmp);
tmp_control = bcm43xx_get_lopair(phy, i, j * 2);
bcm43xx_phy_lo_g_state(bcm, &control, tmp_control, r27);
}
}
/* Restoration */
if (phy->connected) {
bcm43xx_phy_write(bcm, 0x0015, 0xE300);
bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA0);
udelay(5);
bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA2);
udelay(2);
bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA3);
} else
bcm43xx_phy_write(bcm, 0x0015, r27 | 0xEFA0);
bcm43xx_phy_lo_adjust(bcm, is_initializing);
bcm43xx_phy_write(bcm, 0x002E, 0x807F);
if (phy->connected)
bcm43xx_phy_write(bcm, 0x002F, 0x0202);
else
bcm43xx_phy_write(bcm, 0x002F, 0x0101);
bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, regstack[4]);
bcm43xx_phy_write(bcm, 0x0015, regstack[5]);
bcm43xx_phy_write(bcm, 0x002A, regstack[6]);
bcm43xx_phy_write(bcm, 0x0035, regstack[7]);
bcm43xx_phy_write(bcm, 0x0060, regstack[8]);
bcm43xx_radio_write16(bcm, 0x0043, regstack[9]);
bcm43xx_radio_write16(bcm, 0x007A, regstack[10]);
regstack[11] &= 0x00F0;
regstack[11] |= (bcm43xx_radio_read16(bcm, 0x52) & 0x000F);
bcm43xx_radio_write16(bcm, 0x52, regstack[11]);
bcm43xx_write16(bcm, 0x03E2, regstack[3]);
if (phy->connected) {
bcm43xx_phy_write(bcm, 0x0811, regstack[12]);
bcm43xx_phy_write(bcm, 0x0812, regstack[13]);
bcm43xx_phy_write(bcm, 0x0814, regstack[14]);
bcm43xx_phy_write(bcm, 0x0815, regstack[15]);
bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0]);
bcm43xx_phy_write(bcm, 0x0802, regstack[1]);
}
bcm43xx_radio_selectchannel(bcm, oldchannel, 1);
#ifdef CONFIG_BCM43XX_DEBUG
{
/* Sanity check for all lopairs. */
for (i = 0; i < BCM43xx_LO_COUNT; i++) {
tmp_control = phy->_lo_pairs + i;
if (tmp_control->low < -8 || tmp_control->low > 8 ||
tmp_control->high < -8 || tmp_control->high > 8) {
printk(KERN_WARNING PFX
"WARNING: Invalid LOpair (low: %d, high: %d, index: %d)\n",
tmp_control->low, tmp_control->high, i);
}
}
}
#endif /* CONFIG_BCM43XX_DEBUG */
}
static
void bcm43xx_phy_lo_mark_current_used(struct bcm43xx_private *bcm)
{
struct bcm43xx_lopair *pair;
pair = bcm43xx_current_lopair(bcm);
pair->used = 1;
}
void bcm43xx_phy_lo_mark_all_unused(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
struct bcm43xx_lopair *pair;
int i;
for (i = 0; i < BCM43xx_LO_COUNT; i++) {
pair = phy->_lo_pairs + i;
pair->used = 0;
}
}
/* http://bcm-specs.sipsolutions.net/EstimatePowerOut
* This function converts a TSSI value to dBm in Q5.2
*/
static s8 bcm43xx_phy_estimate_power_out(struct bcm43xx_private *bcm, s8 tssi)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
s8 dbm = 0;
s32 tmp;
tmp = phy->idle_tssi;
tmp += tssi;
tmp -= phy->savedpctlreg;
switch (phy->type) {
case BCM43xx_PHYTYPE_A:
tmp += 0x80;
tmp = limit_value(tmp, 0x00, 0xFF);
dbm = phy->tssi2dbm[tmp];
TODO(); //TODO: There's a FIXME on the specs
break;
case BCM43xx_PHYTYPE_B:
case BCM43xx_PHYTYPE_G:
tmp = limit_value(tmp, 0x00, 0x3F);
dbm = phy->tssi2dbm[tmp];
break;
default:
assert(0);
}
return dbm;
}
/* http://bcm-specs.sipsolutions.net/RecalculateTransmissionPower */
void bcm43xx_phy_xmitpower(struct bcm43xx_private *bcm)
{
struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
if (phy->savedpctlreg == 0xFFFF)
return;
if ((bcm->board_type == 0x0416) &&
(bcm->board_vendor == PCI_VENDOR_ID_BROADCOM))
return;
switch (phy->type) {
case BCM43xx_PHYTYPE_A: {
TODO(); //TODO: Nothing for A PHYs yet :-/
break;
}
case BCM43xx_PHYTYPE_B:
case BCM43xx_PHYTYPE_G: {
u16 tmp;
u16 txpower;
s8 v0, v1, v2, v3;
s8 average;
u8 max_pwr;
s16 desired_pwr, estimated_pwr, pwr_adjust;
s16 radio_att_delta, baseband_att_delta;
s16 radio_attenuation, baseband_attenuation;
unsigned long phylock_flags;
tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x0058);
v0 = (s8)(tmp & 0x00FF);
v1 = (s8)((tmp & 0xFF00) >> 8);
tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x005A);
v2 = (s8)(tmp & 0x00FF);
v3 = (s8)((tmp & 0xFF00) >> 8);
tmp = 0;
if (v0 == 0x7F || v1 == 0x7F || v2 == 0x7F || v3 == 0x7F) {
tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x0070);
v0 = (s8)(tmp & 0x00FF);
v1 = (s8)((tmp & 0xFF00) >> 8);
tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x0072);
v2 = (s8)(tmp & 0x00FF);
v3 = (s8)((tmp & 0xFF00) >> 8);
if (v0 == 0x7F || v1 == 0x7F || v2 == 0x7F || v3 == 0x7F)
return;
v0 = (v0 + 0x20) & 0x3F;
v1 = (v1 + 0x20) & 0x3F;
v2 = (v2 + 0x20) & 0x3F;
v3 = (v3 + 0x20) & 0x3F;
tmp = 1;
}
bcm43xx_radio_clear_tssi(bcm);
average = (v0 + v1 + v2 + v3 + 2) / 4;
if (tmp && (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x005E) & 0x8))
average -= 13;
estimated_pwr = bcm43xx_phy_estimate_power_out(bcm, average);
max_pwr = bcm->sprom.maxpower_bgphy;
if ((bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) &&
(phy->type == BCM43xx_PHYTYPE_G))
max_pwr -= 0x3;
/*TODO:
max_pwr = min(REG - bcm->sprom.antennagain_bgphy - 0x6, max_pwr)
where REG is the max power as per the regulatory domain
*/
desired_pwr = limit_value(radio->txpower_desired, 0, max_pwr);
/* Check if we need to adjust the current power. */
pwr_adjust = desired_pwr - estimated_pwr;
radio_att_delta = -(pwr_adjust + 7) >> 3;
baseband_att_delta = -(pwr_adjust >> 1) - (4 * radio_att_delta);
if ((radio_att_delta == 0) && (baseband_att_delta == 0)) {
bcm43xx_phy_lo_mark_current_used(bcm);
return;
}
/* Calculate the new attenuation values. */
baseband_attenuation = radio->txpower[0];
baseband_attenuation += baseband_att_delta;
radio_attenuation = radio->txpower[1];
radio_attenuation += radio_att_delta;
/* Get baseband and radio attenuation values into their permitted ranges.
* baseband 0-11, radio 0-9.
* Radio attenuation affects power level 4 times as much as baseband.
*/
if (radio_attenuation < 0) {
baseband_attenuation -= (4 * -radio_attenuation);
radio_attenuation = 0;
} else if (radio_attenuation > 9) {
baseband_attenuation += (4 * (radio_attenuation - 9));
radio_attenuation = 9;
} else {
while (baseband_attenuation < 0 && radio_attenuation > 0) {
baseband_attenuation += 4;
radio_attenuation--;
}
while (baseband_attenuation > 11 && radio_attenuation < 9) {
baseband_attenuation -= 4;
radio_attenuation++;
}
}
baseband_attenuation = limit_value(baseband_attenuation, 0, 11);
txpower = radio->txpower[2];
if ((radio->version == 0x2050) && (radio->revision == 2)) {
if (radio_attenuation <= 1) {
if (txpower == 0) {
txpower = 3;
radio_attenuation += 2;
baseband_attenuation += 2;
} else if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
baseband_attenuation += 4 * (radio_attenuation - 2);
radio_attenuation = 2;
}
} else if (radio_attenuation > 4 && txpower != 0) {
txpower = 0;
if (baseband_attenuation < 3) {
radio_attenuation -= 3;
baseband_attenuation += 2;
} else {
radio_attenuation -= 2;
baseband_attenuation -= 2;
}
}
}
radio->txpower[2] = txpower;
baseband_attenuation = limit_value(baseband_attenuation, 0, 11);
radio_attenuation = limit_value(radio_attenuation, 0, 9);
bcm43xx_phy_lock(bcm, phylock_flags);
bcm43xx_radio_lock(bcm);
bcm43xx_radio_set_txpower_bg(bcm, baseband_attenuation,
radio_attenuation, txpower);
bcm43xx_phy_lo_mark_current_used(bcm);
bcm43xx_radio_unlock(bcm);
bcm43xx_phy_unlock(bcm, phylock_flags);
break;
}
default:
assert(0);
}
}
static inline
s32 bcm43xx_tssi2dbm_ad(s32 num, s32 den)
{
if (num < 0)
return num/den;
else
return (num+den/2)/den;
}
static inline
s8 bcm43xx_tssi2dbm_entry(s8 entry [], u8 index, s16 pab0, s16 pab1, s16 pab2)
{
s32 m1, m2, f = 256, q, delta;
s8 i = 0;
m1 = bcm43xx_tssi2dbm_ad(16 * pab0 + index * pab1, 32);
m2 = max(bcm43xx_tssi2dbm_ad(32768 + index * pab2, 256), 1);
do {
if (i > 15)
return -EINVAL;
q = bcm43xx_tssi2dbm_ad(f * 4096 -
bcm43xx_tssi2dbm_ad(m2 * f, 16) * f, 2048);
delta = abs(q - f);
f = q;
i++;
} while (delta >= 2);
entry[index] = limit_value(bcm43xx_tssi2dbm_ad(m1 * f, 8192), -127, 128);
return 0;
}
/* http://bcm-specs.sipsolutions.net/TSSI_to_DBM_Table */
int bcm43xx_phy_init_tssi2dbm_table(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
s16 pab0, pab1, pab2;
u8 idx;
s8 *dyn_tssi2dbm;
if (phy->type == BCM43xx_PHYTYPE_A) {
pab0 = (s16)(bcm->sprom.pa1b0);
pab1 = (s16)(bcm->sprom.pa1b1);
pab2 = (s16)(bcm->sprom.pa1b2);
} else {
pab0 = (s16)(bcm->sprom.pa0b0);
pab1 = (s16)(bcm->sprom.pa0b1);
pab2 = (s16)(bcm->sprom.pa0b2);
}
if ((bcm->chip_id == 0x4301) && (radio->version != 0x2050)) {
phy->idle_tssi = 0x34;
phy->tssi2dbm = bcm43xx_tssi2dbm_b_table;
return 0;
}
if (pab0 != 0 && pab1 != 0 && pab2 != 0 &&
pab0 != -1 && pab1 != -1 && pab2 != -1) {
/* The pabX values are set in SPROM. Use them. */
if (phy->type == BCM43xx_PHYTYPE_A) {
if ((s8)bcm->sprom.idle_tssi_tgt_aphy != 0 &&
(s8)bcm->sprom.idle_tssi_tgt_aphy != -1)
phy->idle_tssi = (s8)(bcm->sprom.idle_tssi_tgt_aphy);
else
phy->idle_tssi = 62;
} else {
if ((s8)bcm->sprom.idle_tssi_tgt_bgphy != 0 &&
(s8)bcm->sprom.idle_tssi_tgt_bgphy != -1)
phy->idle_tssi = (s8)(bcm->sprom.idle_tssi_tgt_bgphy);
else
phy->idle_tssi = 62;
}
dyn_tssi2dbm = kmalloc(64, GFP_KERNEL);
if (dyn_tssi2dbm == NULL) {
printk(KERN_ERR PFX "Could not allocate memory"
"for tssi2dbm table\n");
return -ENOMEM;
}
for (idx = 0; idx < 64; idx++)
if (bcm43xx_tssi2dbm_entry(dyn_tssi2dbm, idx, pab0, pab1, pab2)) {
phy->tssi2dbm = NULL;
printk(KERN_ERR PFX "Could not generate "
"tssi2dBm table\n");
return -ENODEV;
}
phy->tssi2dbm = dyn_tssi2dbm;
phy->dyn_tssi_tbl = 1;
} else {
/* pabX values not set in SPROM. */
switch (phy->type) {
case BCM43xx_PHYTYPE_A:
/* APHY needs a generated table. */
phy->tssi2dbm = NULL;
printk(KERN_ERR PFX "Could not generate tssi2dBm "
"table (wrong SPROM info)!\n");
return -ENODEV;
case BCM43xx_PHYTYPE_B:
phy->idle_tssi = 0x34;
phy->tssi2dbm = bcm43xx_tssi2dbm_b_table;
break;
case BCM43xx_PHYTYPE_G:
phy->idle_tssi = 0x34;
phy->tssi2dbm = bcm43xx_tssi2dbm_g_table;
break;
}
}
return 0;
}
int bcm43xx_phy_init(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
int err = -ENODEV;
unsigned long flags;
/* We do not want to be preempted while calibrating
* the hardware.
*/
local_irq_save(flags);
switch (phy->type) {
case BCM43xx_PHYTYPE_A:
if (phy->rev == 2 || phy->rev == 3) {
bcm43xx_phy_inita(bcm);
err = 0;
}
break;
case BCM43xx_PHYTYPE_B:
switch (phy->rev) {
case 2:
bcm43xx_phy_initb2(bcm);
err = 0;
break;
case 4:
bcm43xx_phy_initb4(bcm);
err = 0;
break;
case 5:
bcm43xx_phy_initb5(bcm);
err = 0;
break;
case 6:
bcm43xx_phy_initb6(bcm);
err = 0;
break;
}
break;
case BCM43xx_PHYTYPE_G:
bcm43xx_phy_initg(bcm);
err = 0;
break;
}
local_irq_restore(flags);
if (err)
printk(KERN_WARNING PFX "Unknown PHYTYPE found!\n");
return err;
}
void bcm43xx_phy_set_antenna_diversity(struct bcm43xx_private *bcm)
{
struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
u16 antennadiv;
u16 offset;
u16 value;
u32 ucodeflags;
antennadiv = phy->antenna_diversity;
if (antennadiv == 0xFFFF)
antennadiv = 3;
assert(antennadiv <= 3);
ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODEFLAGS_OFFSET);
bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODEFLAGS_OFFSET,
ucodeflags & ~BCM43xx_UCODEFLAG_AUTODIV);
switch (phy->type) {
case BCM43xx_PHYTYPE_A:
case BCM43xx_PHYTYPE_G:
if (phy->type == BCM43xx_PHYTYPE_A)
offset = 0x0000;
else
offset = 0x0400;
if (antennadiv == 2)
value = (3/*automatic*/ << 7);
else
value = (antennadiv << 7);
bcm43xx_phy_write(bcm, offset + 1,
(bcm43xx_phy_read(bcm, offset + 1)
& 0x7E7F) | value);
if (antennadiv >= 2) {
if (antennadiv == 2)
value = (antennadiv << 7);
else
value = (0/*force0*/ << 7);
bcm43xx_phy_write(bcm, offset + 0x2B,
(bcm43xx_phy_read(bcm, offset + 0x2B)
& 0xFEFF) | value);
}
if (phy->type == BCM43xx_PHYTYPE_G) {
if (antennadiv >= 2)
bcm43xx_phy_write(bcm, 0x048C,
bcm43xx_phy_read(bcm, 0x048C)
| 0x2000);
else
bcm43xx_phy_write(bcm, 0x048C,
bcm43xx_phy_read(bcm, 0x048C)
& ~0x2000);
if (phy->rev >= 2) {
bcm43xx_phy_write(bcm, 0x0461,
bcm43xx_phy_read(bcm, 0x0461)
| 0x0010);
bcm43xx_phy_write(bcm, 0x04AD,
(bcm43xx_phy_read(bcm, 0x04AD)
& 0x00FF) | 0x0015);
if (phy->rev == 2)
bcm43xx_phy_write(bcm, 0x0427, 0x0008);
else
bcm43xx_phy_write(bcm, 0x0427,
(bcm43xx_phy_read(bcm, 0x0427)
& 0x00FF) | 0x0008);
}
else if (phy->rev >= 6)
bcm43xx_phy_write(bcm, 0x049B, 0x00DC);
} else {
if (phy->rev < 3)
bcm43xx_phy_write(bcm, 0x002B,
(bcm43xx_phy_read(bcm, 0x002B)
& 0x00FF) | 0x0024);
else {
bcm43xx_phy_write(bcm, 0x0061,
bcm43xx_phy_read(bcm, 0x0061)
| 0x0010);
if (phy->rev == 3) {
bcm43xx_phy_write(bcm, 0x0093, 0x001D);
bcm43xx_phy_write(bcm, 0x0027, 0x0008);
} else {
bcm43xx_phy_write(bcm, 0x0093, 0x003A);
bcm43xx_phy_write(bcm, 0x0027,
(bcm43xx_phy_read(bcm, 0x0027)
& 0x00FF) | 0x0008);
}
}
}
break;
case BCM43xx_PHYTYPE_B:
if (bcm->current_core->rev == 2)
value = (3/*automatic*/ << 7);
else
value = (antennadiv << 7);
bcm43xx_phy_write(bcm, 0x03E2,
(bcm43xx_phy_read(bcm, 0x03E2)
& 0xFE7F) | value);
break;
default:
assert(0);
}
if (antennadiv >= 2) {
ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODEFLAGS_OFFSET);
bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
BCM43xx_UCODEFLAGS_OFFSET,
ucodeflags | BCM43xx_UCODEFLAG_AUTODIV);
}
phy->antenna_diversity = antennadiv;
}