OpenCloudOS-Kernel/drivers/android/binderfs.c

845 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/compiler_types.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/fsnotify.h>
#include <linux/gfp.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/ipc_namespace.h>
#include <linux/kdev_t.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/namei.h>
#include <linux/magic.h>
#include <linux/major.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/fs_parser.h>
#include <linux/radix-tree.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/spinlock_types.h>
#include <linux/stddef.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/user_namespace.h>
#include <linux/xarray.h>
#include <uapi/asm-generic/errno-base.h>
#include <uapi/linux/android/binder.h>
#include <uapi/linux/android/binderfs.h>
#include "binder_internal.h"
#define FIRST_INODE 1
#define SECOND_INODE 2
#define INODE_OFFSET 3
#define INTSTRLEN 21
#define BINDERFS_MAX_MINOR (1U << MINORBITS)
/* Ensure that the initial ipc namespace always has devices available. */
#define BINDERFS_MAX_MINOR_CAPPED (BINDERFS_MAX_MINOR - 4)
static dev_t binderfs_dev;
static DEFINE_MUTEX(binderfs_minors_mutex);
static DEFINE_IDA(binderfs_minors);
enum binderfs_param {
Opt_max,
Opt_stats_mode,
};
enum binderfs_stats_mode {
binderfs_stats_mode_unset,
binderfs_stats_mode_global,
};
struct binder_features {
bool oneway_spam_detection;
};
static const struct constant_table binderfs_param_stats[] = {
{ "global", binderfs_stats_mode_global },
{}
};
static const struct fs_parameter_spec binderfs_fs_parameters[] = {
fsparam_u32("max", Opt_max),
fsparam_enum("stats", Opt_stats_mode, binderfs_param_stats),
{}
};
static struct binder_features binder_features = {
.oneway_spam_detection = true,
};
static inline struct binderfs_info *BINDERFS_SB(const struct super_block *sb)
{
return sb->s_fs_info;
}
bool is_binderfs_device(const struct inode *inode)
{
if (inode->i_sb->s_magic == BINDERFS_SUPER_MAGIC)
return true;
return false;
}
/**
* binderfs_binder_device_create - allocate inode from super block of a
* binderfs mount
* @ref_inode: inode from wich the super block will be taken
* @userp: buffer to copy information about new device for userspace to
* @req: struct binderfs_device as copied from userspace
*
* This function allocates a new binder_device and reserves a new minor
* number for it.
* Minor numbers are limited and tracked globally in binderfs_minors. The
* function will stash a struct binder_device for the specific binder
* device in i_private of the inode.
* It will go on to allocate a new inode from the super block of the
* filesystem mount, stash a struct binder_device in its i_private field
* and attach a dentry to that inode.
*
* Return: 0 on success, negative errno on failure
*/
static int binderfs_binder_device_create(struct inode *ref_inode,
struct binderfs_device __user *userp,
struct binderfs_device *req)
{
int minor, ret;
struct dentry *dentry, *root;
struct binder_device *device;
char *name = NULL;
size_t name_len;
struct inode *inode = NULL;
struct super_block *sb = ref_inode->i_sb;
struct binderfs_info *info = sb->s_fs_info;
#if defined(CONFIG_IPC_NS)
bool use_reserve = (info->ipc_ns == &init_ipc_ns);
#else
bool use_reserve = true;
#endif
/* Reserve new minor number for the new device. */
mutex_lock(&binderfs_minors_mutex);
if (++info->device_count <= info->mount_opts.max)
minor = ida_alloc_max(&binderfs_minors,
use_reserve ? BINDERFS_MAX_MINOR :
BINDERFS_MAX_MINOR_CAPPED,
GFP_KERNEL);
else
minor = -ENOSPC;
if (minor < 0) {
--info->device_count;
mutex_unlock(&binderfs_minors_mutex);
return minor;
}
mutex_unlock(&binderfs_minors_mutex);
ret = -ENOMEM;
device = kzalloc(sizeof(*device), GFP_KERNEL);
if (!device)
goto err;
inode = new_inode(sb);
if (!inode)
goto err;
inode->i_ino = minor + INODE_OFFSET;
inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
init_special_inode(inode, S_IFCHR | 0600,
MKDEV(MAJOR(binderfs_dev), minor));
inode->i_fop = &binder_fops;
inode->i_uid = info->root_uid;
inode->i_gid = info->root_gid;
req->name[BINDERFS_MAX_NAME] = '\0'; /* NUL-terminate */
name_len = strlen(req->name);
/* Make sure to include terminating NUL byte */
name = kmemdup(req->name, name_len + 1, GFP_KERNEL);
if (!name)
goto err;
refcount_set(&device->ref, 1);
device->binderfs_inode = inode;
device->context.binder_context_mgr_uid = INVALID_UID;
device->context.name = name;
device->miscdev.name = name;
device->miscdev.minor = minor;
mutex_init(&device->context.context_mgr_node_lock);
req->major = MAJOR(binderfs_dev);
req->minor = minor;
if (userp && copy_to_user(userp, req, sizeof(*req))) {
ret = -EFAULT;
goto err;
}
root = sb->s_root;
inode_lock(d_inode(root));
/* look it up */
dentry = lookup_one_len(name, root, name_len);
if (IS_ERR(dentry)) {
inode_unlock(d_inode(root));
ret = PTR_ERR(dentry);
goto err;
}
if (d_really_is_positive(dentry)) {
/* already exists */
dput(dentry);
inode_unlock(d_inode(root));
ret = -EEXIST;
goto err;
}
inode->i_private = device;
d_instantiate(dentry, inode);
fsnotify_create(root->d_inode, dentry);
inode_unlock(d_inode(root));
return 0;
err:
kfree(name);
kfree(device);
mutex_lock(&binderfs_minors_mutex);
--info->device_count;
ida_free(&binderfs_minors, minor);
mutex_unlock(&binderfs_minors_mutex);
iput(inode);
return ret;
}
/**
* binderfs_ctl_ioctl - handle binder device node allocation requests
*
* The request handler for the binder-control device. All requests operate on
* the binderfs mount the binder-control device resides in:
* - BINDER_CTL_ADD
* Allocate a new binder device.
*
* Return: 0 on success, negative errno on failure
*/
static long binder_ctl_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
int ret = -EINVAL;
struct inode *inode = file_inode(file);
struct binderfs_device __user *device = (struct binderfs_device __user *)arg;
struct binderfs_device device_req;
switch (cmd) {
case BINDER_CTL_ADD:
ret = copy_from_user(&device_req, device, sizeof(device_req));
if (ret) {
ret = -EFAULT;
break;
}
ret = binderfs_binder_device_create(inode, device, &device_req);
break;
default:
break;
}
return ret;
}
static void binderfs_evict_inode(struct inode *inode)
{
struct binder_device *device = inode->i_private;
struct binderfs_info *info = BINDERFS_SB(inode->i_sb);
clear_inode(inode);
if (!S_ISCHR(inode->i_mode) || !device)
return;
mutex_lock(&binderfs_minors_mutex);
--info->device_count;
ida_free(&binderfs_minors, device->miscdev.minor);
mutex_unlock(&binderfs_minors_mutex);
if (refcount_dec_and_test(&device->ref)) {
kfree(device->context.name);
kfree(device);
}
}
static int binderfs_fs_context_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
int opt;
struct binderfs_mount_opts *ctx = fc->fs_private;
struct fs_parse_result result;
opt = fs_parse(fc, binderfs_fs_parameters, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_max:
if (result.uint_32 > BINDERFS_MAX_MINOR)
return invalfc(fc, "Bad value for '%s'", param->key);
ctx->max = result.uint_32;
break;
case Opt_stats_mode:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ctx->stats_mode = result.uint_32;
break;
default:
return invalfc(fc, "Unsupported parameter '%s'", param->key);
}
return 0;
}
static int binderfs_fs_context_reconfigure(struct fs_context *fc)
{
struct binderfs_mount_opts *ctx = fc->fs_private;
struct binderfs_info *info = BINDERFS_SB(fc->root->d_sb);
if (info->mount_opts.stats_mode != ctx->stats_mode)
return invalfc(fc, "Binderfs stats mode cannot be changed during a remount");
info->mount_opts.stats_mode = ctx->stats_mode;
info->mount_opts.max = ctx->max;
return 0;
}
static int binderfs_show_options(struct seq_file *seq, struct dentry *root)
{
struct binderfs_info *info = BINDERFS_SB(root->d_sb);
if (info->mount_opts.max <= BINDERFS_MAX_MINOR)
seq_printf(seq, ",max=%d", info->mount_opts.max);
switch (info->mount_opts.stats_mode) {
case binderfs_stats_mode_unset:
break;
case binderfs_stats_mode_global:
seq_printf(seq, ",stats=global");
break;
}
return 0;
}
static void binderfs_put_super(struct super_block *sb)
{
struct binderfs_info *info = sb->s_fs_info;
if (info && info->ipc_ns)
put_ipc_ns(info->ipc_ns);
kfree(info);
sb->s_fs_info = NULL;
}
static const struct super_operations binderfs_super_ops = {
.evict_inode = binderfs_evict_inode,
.show_options = binderfs_show_options,
.statfs = simple_statfs,
.put_super = binderfs_put_super,
};
static inline bool is_binderfs_control_device(const struct dentry *dentry)
{
struct binderfs_info *info = dentry->d_sb->s_fs_info;
return info->control_dentry == dentry;
}
static int binderfs_rename(struct user_namespace *mnt_userns,
struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
if (is_binderfs_control_device(old_dentry) ||
is_binderfs_control_device(new_dentry))
return -EPERM;
return simple_rename(&init_user_ns, old_dir, old_dentry, new_dir,
new_dentry, flags);
}
static int binderfs_unlink(struct inode *dir, struct dentry *dentry)
{
if (is_binderfs_control_device(dentry))
return -EPERM;
return simple_unlink(dir, dentry);
}
static const struct file_operations binder_ctl_fops = {
.owner = THIS_MODULE,
.open = nonseekable_open,
.unlocked_ioctl = binder_ctl_ioctl,
.compat_ioctl = binder_ctl_ioctl,
.llseek = noop_llseek,
};
/**
* binderfs_binder_ctl_create - create a new binder-control device
* @sb: super block of the binderfs mount
*
* This function creates a new binder-control device node in the binderfs mount
* referred to by @sb.
*
* Return: 0 on success, negative errno on failure
*/
static int binderfs_binder_ctl_create(struct super_block *sb)
{
int minor, ret;
struct dentry *dentry;
struct binder_device *device;
struct inode *inode = NULL;
struct dentry *root = sb->s_root;
struct binderfs_info *info = sb->s_fs_info;
#if defined(CONFIG_IPC_NS)
bool use_reserve = (info->ipc_ns == &init_ipc_ns);
#else
bool use_reserve = true;
#endif
device = kzalloc(sizeof(*device), GFP_KERNEL);
if (!device)
return -ENOMEM;
/* If we have already created a binder-control node, return. */
if (info->control_dentry) {
ret = 0;
goto out;
}
ret = -ENOMEM;
inode = new_inode(sb);
if (!inode)
goto out;
/* Reserve a new minor number for the new device. */
mutex_lock(&binderfs_minors_mutex);
minor = ida_alloc_max(&binderfs_minors,
use_reserve ? BINDERFS_MAX_MINOR :
BINDERFS_MAX_MINOR_CAPPED,
GFP_KERNEL);
mutex_unlock(&binderfs_minors_mutex);
if (minor < 0) {
ret = minor;
goto out;
}
inode->i_ino = SECOND_INODE;
inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
init_special_inode(inode, S_IFCHR | 0600,
MKDEV(MAJOR(binderfs_dev), minor));
inode->i_fop = &binder_ctl_fops;
inode->i_uid = info->root_uid;
inode->i_gid = info->root_gid;
refcount_set(&device->ref, 1);
device->binderfs_inode = inode;
device->miscdev.minor = minor;
dentry = d_alloc_name(root, "binder-control");
if (!dentry)
goto out;
inode->i_private = device;
info->control_dentry = dentry;
d_add(dentry, inode);
return 0;
out:
kfree(device);
iput(inode);
return ret;
}
static const struct inode_operations binderfs_dir_inode_operations = {
.lookup = simple_lookup,
.rename = binderfs_rename,
.unlink = binderfs_unlink,
};
static struct inode *binderfs_make_inode(struct super_block *sb, int mode)
{
struct inode *ret;
ret = new_inode(sb);
if (ret) {
ret->i_ino = iunique(sb, BINDERFS_MAX_MINOR + INODE_OFFSET);
ret->i_mode = mode;
ret->i_atime = ret->i_mtime = ret->i_ctime = current_time(ret);
}
return ret;
}
static struct dentry *binderfs_create_dentry(struct dentry *parent,
const char *name)
{
struct dentry *dentry;
dentry = lookup_one_len(name, parent, strlen(name));
if (IS_ERR(dentry))
return dentry;
/* Return error if the file/dir already exists. */
if (d_really_is_positive(dentry)) {
dput(dentry);
return ERR_PTR(-EEXIST);
}
return dentry;
}
void binderfs_remove_file(struct dentry *dentry)
{
struct inode *parent_inode;
parent_inode = d_inode(dentry->d_parent);
inode_lock(parent_inode);
if (simple_positive(dentry)) {
dget(dentry);
simple_unlink(parent_inode, dentry);
d_delete(dentry);
dput(dentry);
}
inode_unlock(parent_inode);
}
struct dentry *binderfs_create_file(struct dentry *parent, const char *name,
const struct file_operations *fops,
void *data)
{
struct dentry *dentry;
struct inode *new_inode, *parent_inode;
struct super_block *sb;
parent_inode = d_inode(parent);
inode_lock(parent_inode);
dentry = binderfs_create_dentry(parent, name);
if (IS_ERR(dentry))
goto out;
sb = parent_inode->i_sb;
new_inode = binderfs_make_inode(sb, S_IFREG | 0444);
if (!new_inode) {
dput(dentry);
dentry = ERR_PTR(-ENOMEM);
goto out;
}
new_inode->i_fop = fops;
new_inode->i_private = data;
d_instantiate(dentry, new_inode);
fsnotify_create(parent_inode, dentry);
out:
inode_unlock(parent_inode);
return dentry;
}
static struct dentry *binderfs_create_dir(struct dentry *parent,
const char *name)
{
struct dentry *dentry;
struct inode *new_inode, *parent_inode;
struct super_block *sb;
parent_inode = d_inode(parent);
inode_lock(parent_inode);
dentry = binderfs_create_dentry(parent, name);
if (IS_ERR(dentry))
goto out;
sb = parent_inode->i_sb;
new_inode = binderfs_make_inode(sb, S_IFDIR | 0755);
if (!new_inode) {
dput(dentry);
dentry = ERR_PTR(-ENOMEM);
goto out;
}
new_inode->i_fop = &simple_dir_operations;
new_inode->i_op = &simple_dir_inode_operations;
set_nlink(new_inode, 2);
d_instantiate(dentry, new_inode);
inc_nlink(parent_inode);
fsnotify_mkdir(parent_inode, dentry);
out:
inode_unlock(parent_inode);
return dentry;
}
static int binder_features_show(struct seq_file *m, void *unused)
{
bool *feature = m->private;
seq_printf(m, "%d\n", *feature);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(binder_features);
static int init_binder_features(struct super_block *sb)
{
struct dentry *dentry, *dir;
dir = binderfs_create_dir(sb->s_root, "features");
if (IS_ERR(dir))
return PTR_ERR(dir);
dentry = binderfs_create_file(dir, "oneway_spam_detection",
&binder_features_fops,
&binder_features.oneway_spam_detection);
if (IS_ERR(dentry))
return PTR_ERR(dentry);
return 0;
}
static int init_binder_logs(struct super_block *sb)
{
struct dentry *binder_logs_root_dir, *dentry, *proc_log_dir;
struct binderfs_info *info;
int ret = 0;
binder_logs_root_dir = binderfs_create_dir(sb->s_root,
"binder_logs");
if (IS_ERR(binder_logs_root_dir)) {
ret = PTR_ERR(binder_logs_root_dir);
goto out;
}
dentry = binderfs_create_file(binder_logs_root_dir, "stats",
&binder_stats_fops, NULL);
if (IS_ERR(dentry)) {
ret = PTR_ERR(dentry);
goto out;
}
dentry = binderfs_create_file(binder_logs_root_dir, "state",
&binder_state_fops, NULL);
if (IS_ERR(dentry)) {
ret = PTR_ERR(dentry);
goto out;
}
dentry = binderfs_create_file(binder_logs_root_dir, "transactions",
&binder_transactions_fops, NULL);
if (IS_ERR(dentry)) {
ret = PTR_ERR(dentry);
goto out;
}
dentry = binderfs_create_file(binder_logs_root_dir,
"transaction_log",
&binder_transaction_log_fops,
&binder_transaction_log);
if (IS_ERR(dentry)) {
ret = PTR_ERR(dentry);
goto out;
}
dentry = binderfs_create_file(binder_logs_root_dir,
"failed_transaction_log",
&binder_transaction_log_fops,
&binder_transaction_log_failed);
if (IS_ERR(dentry)) {
ret = PTR_ERR(dentry);
goto out;
}
proc_log_dir = binderfs_create_dir(binder_logs_root_dir, "proc");
if (IS_ERR(proc_log_dir)) {
ret = PTR_ERR(proc_log_dir);
goto out;
}
info = sb->s_fs_info;
info->proc_log_dir = proc_log_dir;
out:
return ret;
}
static int binderfs_fill_super(struct super_block *sb, struct fs_context *fc)
{
int ret;
struct binderfs_info *info;
struct binderfs_mount_opts *ctx = fc->fs_private;
struct inode *inode = NULL;
struct binderfs_device device_info = {};
const char *name;
size_t len;
sb->s_blocksize = PAGE_SIZE;
sb->s_blocksize_bits = PAGE_SHIFT;
/*
* The binderfs filesystem can be mounted by userns root in a
* non-initial userns. By default such mounts have the SB_I_NODEV flag
* set in s_iflags to prevent security issues where userns root can
* just create random device nodes via mknod() since it owns the
* filesystem mount. But binderfs does not allow to create any files
* including devices nodes. The only way to create binder devices nodes
* is through the binder-control device which userns root is explicitly
* allowed to do. So removing the SB_I_NODEV flag from s_iflags is both
* necessary and safe.
*/
sb->s_iflags &= ~SB_I_NODEV;
sb->s_iflags |= SB_I_NOEXEC;
sb->s_magic = BINDERFS_SUPER_MAGIC;
sb->s_op = &binderfs_super_ops;
sb->s_time_gran = 1;
sb->s_fs_info = kzalloc(sizeof(struct binderfs_info), GFP_KERNEL);
if (!sb->s_fs_info)
return -ENOMEM;
info = sb->s_fs_info;
info->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
info->root_gid = make_kgid(sb->s_user_ns, 0);
if (!gid_valid(info->root_gid))
info->root_gid = GLOBAL_ROOT_GID;
info->root_uid = make_kuid(sb->s_user_ns, 0);
if (!uid_valid(info->root_uid))
info->root_uid = GLOBAL_ROOT_UID;
info->mount_opts.max = ctx->max;
info->mount_opts.stats_mode = ctx->stats_mode;
inode = new_inode(sb);
if (!inode)
return -ENOMEM;
inode->i_ino = FIRST_INODE;
inode->i_fop = &simple_dir_operations;
inode->i_mode = S_IFDIR | 0755;
inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
inode->i_op = &binderfs_dir_inode_operations;
set_nlink(inode, 2);
sb->s_root = d_make_root(inode);
if (!sb->s_root)
return -ENOMEM;
ret = binderfs_binder_ctl_create(sb);
if (ret)
return ret;
name = binder_devices_param;
for (len = strcspn(name, ","); len > 0; len = strcspn(name, ",")) {
strscpy(device_info.name, name, len + 1);
ret = binderfs_binder_device_create(inode, NULL, &device_info);
if (ret)
return ret;
name += len;
if (*name == ',')
name++;
}
ret = init_binder_features(sb);
if (ret)
return ret;
if (info->mount_opts.stats_mode == binderfs_stats_mode_global)
return init_binder_logs(sb);
return 0;
}
static int binderfs_fs_context_get_tree(struct fs_context *fc)
{
return get_tree_nodev(fc, binderfs_fill_super);
}
static void binderfs_fs_context_free(struct fs_context *fc)
{
struct binderfs_mount_opts *ctx = fc->fs_private;
kfree(ctx);
}
static const struct fs_context_operations binderfs_fs_context_ops = {
.free = binderfs_fs_context_free,
.get_tree = binderfs_fs_context_get_tree,
.parse_param = binderfs_fs_context_parse_param,
.reconfigure = binderfs_fs_context_reconfigure,
};
static int binderfs_init_fs_context(struct fs_context *fc)
{
struct binderfs_mount_opts *ctx;
ctx = kzalloc(sizeof(struct binderfs_mount_opts), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->max = BINDERFS_MAX_MINOR;
ctx->stats_mode = binderfs_stats_mode_unset;
fc->fs_private = ctx;
fc->ops = &binderfs_fs_context_ops;
return 0;
}
static struct file_system_type binder_fs_type = {
.name = "binder",
.init_fs_context = binderfs_init_fs_context,
.parameters = binderfs_fs_parameters,
.kill_sb = kill_litter_super,
.fs_flags = FS_USERNS_MOUNT,
};
int __init init_binderfs(void)
{
int ret;
const char *name;
size_t len;
/* Verify that the default binderfs device names are valid. */
name = binder_devices_param;
for (len = strcspn(name, ","); len > 0; len = strcspn(name, ",")) {
if (len > BINDERFS_MAX_NAME)
return -E2BIG;
name += len;
if (*name == ',')
name++;
}
/* Allocate new major number for binderfs. */
ret = alloc_chrdev_region(&binderfs_dev, 0, BINDERFS_MAX_MINOR,
"binder");
if (ret)
return ret;
ret = register_filesystem(&binder_fs_type);
if (ret) {
unregister_chrdev_region(binderfs_dev, BINDERFS_MAX_MINOR);
return ret;
}
return ret;
}