OpenCloudOS-Kernel/drivers/net/wireless/rtlwifi/rtl8192ee/hw.c

2570 lines
72 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2014 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "../efuse.h"
#include "../base.h"
#include "../regd.h"
#include "../cam.h"
#include "../ps.h"
#include "../pci.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "dm.h"
#include "fw.h"
#include "led.h"
#include "hw.h"
#include "../pwrseqcmd.h"
#include "pwrseq.h"
#define LLT_CONFIG 5
static void _rtl92ee_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
u8 set_bits, u8 clear_bits)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpci->reg_bcn_ctrl_val |= set_bits;
rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val);
}
static void _rtl92ee_stop_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp;
tmp = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp & (~BIT(6)));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
tmp = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp &= ~(BIT(0));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp);
}
static void _rtl92ee_resume_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp;
tmp = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp | BIT(6));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
tmp = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp |= BIT(0);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp);
}
static void _rtl92ee_enable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl92ee_set_bcn_ctrl_reg(hw, 0, BIT(1));
}
static void _rtl92ee_return_beacon_queue_skb(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE];
unsigned long flags;
spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
while (skb_queue_len(&ring->queue)) {
struct rtl_tx_buffer_desc *entry =
&ring->buffer_desc[ring->idx];
struct sk_buff *skb = __skb_dequeue(&ring->queue);
pci_unmap_single(rtlpci->pdev,
rtlpriv->cfg->ops->get_desc(
(u8 *)entry, true, HW_DESC_TXBUFF_ADDR),
skb->len, PCI_DMA_TODEVICE);
kfree_skb(skb);
ring->idx = (ring->idx + 1) % ring->entries;
}
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
}
static void _rtl92ee_disable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl92ee_set_bcn_ctrl_reg(hw, BIT(1), 0);
}
static void _rtl92ee_set_fw_clock_on(struct ieee80211_hw *hw,
u8 rpwm_val, bool b_need_turn_off_ckk)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool b_support_remote_wake_up;
u32 count = 0, isr_regaddr, content;
bool b_schedule_timer = b_need_turn_off_ckk;
rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN,
(u8 *)(&b_support_remote_wake_up));
if (!rtlhal->fw_ready)
return;
if (!rtlpriv->psc.fw_current_inpsmode)
return;
while (1) {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
if (rtlhal->fw_clk_change_in_progress) {
while (rtlhal->fw_clk_change_in_progress) {
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
count++;
udelay(100);
if (count > 1000)
return;
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
}
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
} else {
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
break;
}
}
if (IS_IN_LOW_POWER_STATE_92E(rtlhal->fw_ps_state)) {
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
if (FW_PS_IS_ACK(rpwm_val)) {
isr_regaddr = REG_HISR;
content = rtl_read_dword(rtlpriv, isr_regaddr);
while (!(content & IMR_CPWM) && (count < 500)) {
udelay(50);
count++;
content = rtl_read_dword(rtlpriv, isr_regaddr);
}
if (content & IMR_CPWM) {
rtl_write_word(rtlpriv, isr_regaddr, 0x0100);
rtlhal->fw_ps_state = FW_PS_STATE_RF_ON_92E;
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
"Receive CPWM INT!!! PSState = %X\n",
rtlhal->fw_ps_state);
}
}
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
if (b_schedule_timer) {
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
}
} else {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
}
}
static void _rtl92ee_set_fw_clock_off(struct ieee80211_hw *hw, u8 rpwm_val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring;
enum rf_pwrstate rtstate;
bool b_schedule_timer = false;
u8 queue;
if (!rtlhal->fw_ready)
return;
if (!rtlpriv->psc.fw_current_inpsmode)
return;
if (!rtlhal->allow_sw_to_change_hwclc)
return;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate));
if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF)
return;
for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) {
ring = &rtlpci->tx_ring[queue];
if (skb_queue_len(&ring->queue)) {
b_schedule_timer = true;
break;
}
}
if (b_schedule_timer) {
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
return;
}
if (FW_PS_STATE(rtlhal->fw_ps_state) != FW_PS_STATE_RF_OFF_LOW_PWR) {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
if (!rtlhal->fw_clk_change_in_progress) {
rtlhal->fw_clk_change_in_progress = true;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val);
rtl_write_word(rtlpriv, REG_HISR, 0x0100);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
} else {
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
}
}
}
static void _rtl92ee_set_fw_ps_rf_on(struct ieee80211_hw *hw)
{
u8 rpwm_val = 0;
rpwm_val |= (FW_PS_STATE_RF_OFF_92E | FW_PS_ACK);
_rtl92ee_set_fw_clock_on(hw, rpwm_val, true);
}
static void _rtl92ee_set_fw_ps_rf_off_low_power(struct ieee80211_hw *hw)
{
u8 rpwm_val = 0;
rpwm_val |= FW_PS_STATE_RF_OFF_LOW_PWR;
_rtl92ee_set_fw_clock_off(hw, rpwm_val);
}
void rtl92ee_fw_clk_off_timer_callback(unsigned long data)
{
struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
_rtl92ee_set_fw_ps_rf_off_low_power(hw);
}
static void _rtl92ee_fwlps_leave(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool fw_current_inps = false;
u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE;
if (ppsc->low_power_enable) {
rpwm_val = (FW_PS_STATE_ALL_ON_92E | FW_PS_ACK);/* RF on */
_rtl92ee_set_fw_clock_on(hw, rpwm_val, false);
rtlhal->allow_sw_to_change_hwclc = false;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&fw_pwrmode));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
} else {
rpwm_val = FW_PS_STATE_ALL_ON_92E; /* RF on */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&fw_pwrmode));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
}
}
static void _rtl92ee_fwlps_enter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool fw_current_inps = true;
u8 rpwm_val;
if (ppsc->low_power_enable) {
rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR; /* RF off */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&ppsc->fwctrl_psmode));
rtlhal->allow_sw_to_change_hwclc = true;
_rtl92ee_set_fw_clock_off(hw, rpwm_val);
} else {
rpwm_val = FW_PS_STATE_RF_OFF_92E; /* RF off */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&ppsc->fwctrl_psmode));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
}
}
void rtl92ee_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
switch (variable) {
case HW_VAR_RCR:
*((u32 *)(val)) = rtlpci->receive_config;
break;
case HW_VAR_RF_STATE:
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
break;
case HW_VAR_FWLPS_RF_ON:{
enum rf_pwrstate rfstate;
u32 val_rcr;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
(u8 *)(&rfstate));
if (rfstate == ERFOFF) {
*((bool *)(val)) = true;
} else {
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
val_rcr &= 0x00070000;
if (val_rcr)
*((bool *)(val)) = false;
else
*((bool *)(val)) = true;
}
}
break;
case HW_VAR_FW_PSMODE_STATUS:
*((bool *)(val)) = ppsc->fw_current_inpsmode;
break;
case HW_VAR_CORRECT_TSF:{
u64 tsf;
u32 *ptsf_low = (u32 *)&tsf;
u32 *ptsf_high = ((u32 *)&tsf) + 1;
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
*((u64 *)(val)) = tsf;
}
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process %x\n", variable);
break;
}
}
static void _rtl92ee_download_rsvd_page(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp_regcr, tmp_reg422;
u8 bcnvalid_reg, txbc_reg;
u8 count = 0, dlbcn_count = 0;
bool b_recover = false;
/*Set REG_CR bit 8. DMA beacon by SW.*/
tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
rtl_write_byte(rtlpriv, REG_CR + 1, tmp_regcr | BIT(0));
/* Disable Hw protection for a time which revserd for Hw sending beacon.
* Fix download reserved page packet fail
* that access collision with the protection time.
* 2010.05.11. Added by tynli.
*/
_rtl92ee_set_bcn_ctrl_reg(hw, 0, BIT(3));
_rtl92ee_set_bcn_ctrl_reg(hw, BIT(4), 0);
/* Set FWHW_TXQ_CTRL 0x422[6]=0 to
* tell Hw the packet is not a real beacon frame.
*/
tmp_reg422 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 & (~BIT(6)));
if (tmp_reg422 & BIT(6))
b_recover = true;
do {
/* Clear beacon valid check bit */
bcnvalid_reg = rtl_read_byte(rtlpriv, REG_DWBCN0_CTRL + 2);
rtl_write_byte(rtlpriv, REG_DWBCN0_CTRL + 2,
bcnvalid_reg | BIT(0));
/* Return Beacon TCB */
_rtl92ee_return_beacon_queue_skb(hw);
/* download rsvd page */
rtl92ee_set_fw_rsvdpagepkt(hw, false);
txbc_reg = rtl_read_byte(rtlpriv, REG_MGQ_TXBD_NUM + 3);
count = 0;
while ((txbc_reg & BIT(4)) && count < 20) {
count++;
udelay(10);
txbc_reg = rtl_read_byte(rtlpriv, REG_MGQ_TXBD_NUM + 3);
}
rtl_write_byte(rtlpriv, REG_MGQ_TXBD_NUM + 3,
txbc_reg | BIT(4));
/* check rsvd page download OK. */
bcnvalid_reg = rtl_read_byte(rtlpriv, REG_DWBCN0_CTRL + 2);
count = 0;
while (!(bcnvalid_reg & BIT(0)) && count < 20) {
count++;
udelay(50);
bcnvalid_reg = rtl_read_byte(rtlpriv,
REG_DWBCN0_CTRL + 2);
}
if (bcnvalid_reg & BIT(0))
rtl_write_byte(rtlpriv, REG_DWBCN0_CTRL + 2, BIT(0));
dlbcn_count++;
} while (!(bcnvalid_reg & BIT(0)) && dlbcn_count < 5);
if (!(bcnvalid_reg & BIT(0)))
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"Download RSVD page failed!\n");
/* Enable Bcn */
_rtl92ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
_rtl92ee_set_bcn_ctrl_reg(hw, 0, BIT(4));
if (b_recover)
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422);
tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
rtl_write_byte(rtlpriv, REG_CR + 1, tmp_regcr & (~BIT(0)));
}
void rtl92ee_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *efuse = rtl_efuse(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 idx;
switch (variable) {
case HW_VAR_ETHER_ADDR:
for (idx = 0; idx < ETH_ALEN; idx++)
rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]);
break;
case HW_VAR_BASIC_RATE:{
u16 b_rate_cfg = ((u16 *)val)[0];
b_rate_cfg = b_rate_cfg & 0x15f;
b_rate_cfg |= 0x01;
b_rate_cfg = (b_rate_cfg | 0xd) & (~BIT(1));
rtl_write_byte(rtlpriv, REG_RRSR, b_rate_cfg & 0xff);
rtl_write_byte(rtlpriv, REG_RRSR + 1, (b_rate_cfg >> 8) & 0xff);
break; }
case HW_VAR_BSSID:
for (idx = 0; idx < ETH_ALEN; idx++)
rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]);
break;
case HW_VAR_SIFS:
rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
if (!mac->ht_enable)
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e);
else
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
*((u16 *)val));
break;
case HW_VAR_SLOT_TIME:{
u8 e_aci;
RT_TRACE(rtlpriv, COMP_MLME, DBG_TRACE,
"HW_VAR_SLOT_TIME %x\n", val[0]);
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM,
(u8 *)(&e_aci));
}
break; }
case HW_VAR_ACK_PREAMBLE:{
u8 reg_tmp;
u8 short_preamble = (bool)(*(u8 *)val);
reg_tmp = (rtlpriv->mac80211.cur_40_prime_sc) << 5;
if (short_preamble)
reg_tmp |= 0x80;
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
rtlpriv->mac80211.short_preamble = short_preamble;
}
break;
case HW_VAR_WPA_CONFIG:
rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *)val));
break;
case HW_VAR_AMPDU_FACTOR:{
u8 regtoset_normal[4] = { 0x41, 0xa8, 0x72, 0xb9 };
u8 fac;
u8 *reg = NULL;
u8 i = 0;
reg = regtoset_normal;
fac = *((u8 *)val);
if (fac <= 3) {
fac = (1 << (fac + 2));
if (fac > 0xf)
fac = 0xf;
for (i = 0; i < 4; i++) {
if ((reg[i] & 0xf0) > (fac << 4))
reg[i] = (reg[i] & 0x0f) |
(fac << 4);
if ((reg[i] & 0x0f) > fac)
reg[i] = (reg[i] & 0xf0) | fac;
rtl_write_byte(rtlpriv,
(REG_AGGLEN_LMT + i),
reg[i]);
}
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_FACTOR:%#x\n", fac);
}
}
break;
case HW_VAR_AC_PARAM:{
u8 e_aci = *((u8 *)val);
if (rtlpci->acm_method != EACMWAY2_SW)
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
(u8 *)(&e_aci));
}
break;
case HW_VAR_ACM_CTRL:{
u8 e_aci = *((u8 *)val);
union aci_aifsn *aifs = (union aci_aifsn *)(&mac->ac[0].aifs);
u8 acm = aifs->f.acm;
u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
if (acm) {
switch (e_aci) {
case AC0_BE:
acm_ctrl |= ACMHW_BEQEN;
break;
case AC2_VI:
acm_ctrl |= ACMHW_VIQEN;
break;
case AC3_VO:
acm_ctrl |= ACMHW_VOQEN;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
acm);
break;
}
} else {
switch (e_aci) {
case AC0_BE:
acm_ctrl &= (~ACMHW_BEQEN);
break;
case AC2_VI:
acm_ctrl &= (~ACMHW_VIQEN);
break;
case AC3_VO:
acm_ctrl &= (~ACMHW_BEQEN);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process\n");
break;
}
}
RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
acm_ctrl);
rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
}
break;
case HW_VAR_RCR:{
rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]);
rtlpci->receive_config = ((u32 *)(val))[0];
}
break;
case HW_VAR_RETRY_LIMIT:{
u8 retry_limit = ((u8 *)(val))[0];
rtl_write_word(rtlpriv, REG_RETRY_LIMIT,
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
retry_limit << RETRY_LIMIT_LONG_SHIFT);
}
break;
case HW_VAR_DUAL_TSF_RST:
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
break;
case HW_VAR_EFUSE_BYTES:
efuse->efuse_usedbytes = *((u16 *)val);
break;
case HW_VAR_EFUSE_USAGE:
efuse->efuse_usedpercentage = *((u8 *)val);
break;
case HW_VAR_IO_CMD:
rtl92ee_phy_set_io_cmd(hw, (*(enum io_type *)val));
break;
case HW_VAR_SET_RPWM:{
u8 rpwm_val;
rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
udelay(1);
if (rpwm_val & BIT(7)) {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, (*(u8 *)val));
} else {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
((*(u8 *)val) | BIT(7)));
}
}
break;
case HW_VAR_H2C_FW_PWRMODE:
rtl92ee_set_fw_pwrmode_cmd(hw, (*(u8 *)val));
break;
case HW_VAR_FW_PSMODE_STATUS:
ppsc->fw_current_inpsmode = *((bool *)val);
break;
case HW_VAR_RESUME_CLK_ON:
_rtl92ee_set_fw_ps_rf_on(hw);
break;
case HW_VAR_FW_LPS_ACTION:{
bool b_enter_fwlps = *((bool *)val);
if (b_enter_fwlps)
_rtl92ee_fwlps_enter(hw);
else
_rtl92ee_fwlps_leave(hw);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT:{
u8 mstatus = (*(u8 *)val);
if (mstatus == RT_MEDIA_CONNECT) {
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL);
_rtl92ee_download_rsvd_page(hw);
}
rtl92ee_set_fw_media_status_rpt_cmd(hw, mstatus);
}
break;
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl92ee_set_p2p_ps_offload_cmd(hw, (*(u8 *)val));
break;
case HW_VAR_AID:{
u16 u2btmp;
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
u2btmp &= 0xC000;
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
(u2btmp | mac->assoc_id));
}
break;
case HW_VAR_CORRECT_TSF:{
u8 btype_ibss = ((u8 *)(val))[0];
if (btype_ibss)
_rtl92ee_stop_tx_beacon(hw);
_rtl92ee_set_bcn_ctrl_reg(hw, 0, BIT(3));
rtl_write_dword(rtlpriv, REG_TSFTR,
(u32)(mac->tsf & 0xffffffff));
rtl_write_dword(rtlpriv, REG_TSFTR + 4,
(u32)((mac->tsf >> 32) & 0xffffffff));
_rtl92ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
if (btype_ibss)
_rtl92ee_resume_tx_beacon(hw);
}
break;
case HW_VAR_KEEP_ALIVE: {
u8 array[2];
array[0] = 0xff;
array[1] = *((u8 *)val);
rtl92ee_fill_h2c_cmd(hw, H2C_92E_KEEP_ALIVE_CTRL, 2, array);
}
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process %x\n", variable);
break;
}
}
static bool _rtl92ee_llt_table_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 txpktbuf_bndy;
u8 u8tmp, testcnt = 0;
txpktbuf_bndy = 0xFA;
rtl_write_dword(rtlpriv, REG_RQPN, 0x80E90808);
rtl_write_byte(rtlpriv, REG_TRXFF_BNDY, txpktbuf_bndy);
rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x3d00 - 1);
rtl_write_byte(rtlpriv, REG_DWBCN0_CTRL + 1, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_DWBCN1_CTRL + 1, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_BCNQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_BCNQ1_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_MGQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_PBP, 0x31);
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
u8tmp = rtl_read_byte(rtlpriv, REG_AUTO_LLT + 2);
rtl_write_byte(rtlpriv, REG_AUTO_LLT + 2, u8tmp | BIT(0));
while (u8tmp & BIT(0)) {
u8tmp = rtl_read_byte(rtlpriv, REG_AUTO_LLT + 2);
udelay(10);
testcnt++;
if (testcnt > 10)
break;
}
return true;
}
static void _rtl92ee_gen_refresh_led_state(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_led *pled0 = &pcipriv->ledctl.sw_led0;
if (rtlpriv->rtlhal.up_first_time)
return;
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
rtl92ee_sw_led_on(hw, pled0);
else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
rtl92ee_sw_led_on(hw, pled0);
else
rtl92ee_sw_led_off(hw, pled0);
}
static bool _rtl92ee_init_mac(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 bytetmp;
u16 wordtmp;
u32 dwordtmp;
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
dwordtmp = rtl_read_dword(rtlpriv, REG_SYS_CFG1);
if (dwordtmp & BIT(24)) {
rtl_write_byte(rtlpriv, 0x7c, 0xc3);
} else {
bytetmp = rtl_read_byte(rtlpriv, 0x16);
rtl_write_byte(rtlpriv, 0x16, bytetmp | BIT(4) | BIT(6));
rtl_write_byte(rtlpriv, 0x7c, 0x83);
}
/* 1. 40Mhz crystal source*/
bytetmp = rtl_read_byte(rtlpriv, REG_AFE_CTRL2);
bytetmp &= 0xfb;
rtl_write_byte(rtlpriv, REG_AFE_CTRL2, bytetmp);
dwordtmp = rtl_read_dword(rtlpriv, REG_AFE_CTRL4);
dwordtmp &= 0xfffffc7f;
rtl_write_dword(rtlpriv, REG_AFE_CTRL4, dwordtmp);
/* 2. 92E AFE parameter
* MP chip then check version
*/
bytetmp = rtl_read_byte(rtlpriv, REG_AFE_CTRL2);
bytetmp &= 0xbf;
rtl_write_byte(rtlpriv, REG_AFE_CTRL2, bytetmp);
dwordtmp = rtl_read_dword(rtlpriv, REG_AFE_CTRL4);
dwordtmp &= 0xffdfffff;
rtl_write_dword(rtlpriv, REG_AFE_CTRL4, dwordtmp);
/* HW Power on sequence */
if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK,
RTL8192E_NIC_ENABLE_FLOW)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"init MAC Fail as rtl_hal_pwrseqcmdparsing\n");
return false;
}
/* Release MAC IO register reset */
bytetmp = rtl_read_byte(rtlpriv, REG_CR);
bytetmp = 0xff;
rtl_write_byte(rtlpriv, REG_CR, bytetmp);
mdelay(2);
bytetmp = 0x7f;
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, bytetmp);
mdelay(2);
/* Add for wakeup online */
bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR);
rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp | BIT(3));
bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG + 1);
rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG + 1, bytetmp & (~BIT(4)));
/* Release MAC IO register reset */
rtl_write_word(rtlpriv, REG_CR, 0x2ff);
if (!rtlhal->mac_func_enable) {
if (_rtl92ee_llt_table_init(hw) == false) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"LLT table init fail\n");
return false;
}
}
rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff);
wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
wordtmp &= 0xf;
wordtmp |= 0xF5B1;
rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
/* Reported Tx status from HW for rate adaptive.*/
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
/* Set RCR register */
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xffff);
/* Set TCR register */
rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
/* Set TX/RX descriptor physical address(from OS API). */
rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
((u64)rtlpci->tx_ring[BEACON_QUEUE].buffer_desc_dma) &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_MGQ_DESA,
(u64)rtlpci->tx_ring[MGNT_QUEUE].buffer_desc_dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VOQ_DESA,
(u64)rtlpci->tx_ring[VO_QUEUE].buffer_desc_dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VIQ_DESA,
(u64)rtlpci->tx_ring[VI_QUEUE].buffer_desc_dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BEQ_DESA,
(u64)rtlpci->tx_ring[BE_QUEUE].buffer_desc_dma &
DMA_BIT_MASK(32));
dwordtmp = rtl_read_dword(rtlpriv, REG_BEQ_DESA);
rtl_write_dword(rtlpriv, REG_BKQ_DESA,
(u64)rtlpci->tx_ring[BK_QUEUE].buffer_desc_dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_HQ0_DESA,
(u64)rtlpci->tx_ring[HIGH_QUEUE].buffer_desc_dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_RX_DESA,
(u64)rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
DMA_BIT_MASK(32));
/* if we want to support 64 bit DMA, we should set it here,
* but now we do not support 64 bit DMA
*/
rtl_write_dword(rtlpriv, REG_TSFTIMER_HCI, 0x3fffffff);
bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 3);
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, bytetmp | 0xF7);
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
rtl_write_word(rtlpriv, REG_MGQ_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_VOQ_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_VIQ_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_BEQ_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_VOQ_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_BKQ_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_HI0Q_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_HI1Q_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_HI2Q_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_HI3Q_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_HI4Q_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_HI5Q_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_HI6Q_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
rtl_write_word(rtlpriv, REG_HI7Q_TXBD_NUM,
TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000));
/*Rx*/
#if (DMA_IS_64BIT == 1)
rtl_write_word(rtlpriv, REG_RX_RXBD_NUM,
RX_DESC_NUM_92E |
((RTL8192EE_SEG_NUM << 13) & 0x6000) | 0x8000);
#else
rtl_write_word(rtlpriv, REG_RX_RXBD_NUM,
RX_DESC_NUM_92E |
((RTL8192EE_SEG_NUM << 13) & 0x6000) | 0x0000);
#endif
rtl_write_dword(rtlpriv, REG_TSFTIMER_HCI, 0XFFFFFFFF);
_rtl92ee_gen_refresh_led_state(hw);
return true;
}
static void _rtl92ee_hw_configure(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u32 reg_rrsr;
reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
/* Init value for RRSR. */
rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
/* ARFB table 9 for 11ac 5G 2SS */
rtl_write_dword(rtlpriv, REG_ARFR0, 0x00000010);
rtl_write_dword(rtlpriv, REG_ARFR0 + 4, 0x3e0ff000);
/* ARFB table 10 for 11ac 5G 1SS */
rtl_write_dword(rtlpriv, REG_ARFR1, 0x00000010);
rtl_write_dword(rtlpriv, REG_ARFR1 + 4, 0x000ff000);
/* Set SLOT time */
rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
/* CF-End setting. */
rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
/* Set retry limit */
rtl_write_word(rtlpriv, REG_RETRY_LIMIT, 0x0707);
/* BAR settings */
rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x0201ffff);
/* Set Data / Response auto rate fallack retry count */
rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
/* Beacon related, for rate adaptive */
rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
rtlpci->reg_bcn_ctrl_val = 0x1d;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
/* Marked out by Bruce, 2010-09-09.
* This register is configured for the 2nd Beacon (multiple BSSID).
* We shall disable this register if we only support 1 BSSID.
* vivi guess 92d also need this, also 92d now doesnot set this reg
*/
rtl_write_byte(rtlpriv, REG_BCN_CTRL_1, 0);
/* TBTT prohibit hold time. Suggested by designer TimChen. */
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); /* 8 ms */
rtl_write_byte(rtlpriv, REG_PIFS, 0);
rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0040);
rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x08ff);
/* For Rx TP. Suggested by SD1 Richard. Added by tynli. 2010.04.12.*/
rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666);
/* ACKTO for IOT issue. */
rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
/* Set Spec SIFS (used in NAV) */
rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x100a);
rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x100a);
/* Set SIFS for CCK */
rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x100a);
/* Set SIFS for OFDM */
rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x100a);
/* Note Data sheet don't define */
rtl_write_word(rtlpriv, 0x4C7, 0x80);
rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x20);
rtl_write_word(rtlpriv, REG_MAX_AGGR_NUM, 0x1717);
/* Set Multicast Address. 2009.01.07. by tynli. */
rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
}
static void _rtl92ee_enable_aspm_back_door(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u32 tmp32 = 0, count = 0;
u8 tmp8 = 0;
rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0x78);
rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x2);
tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2);
count = 0;
while (tmp8 && count < 20) {
udelay(10);
tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2);
count++;
}
if (0 == tmp8) {
tmp32 = rtl_read_dword(rtlpriv, REG_BACKDOOR_DBI_RDATA);
if ((tmp32 & 0xff00) != 0x2000) {
tmp32 &= 0xffff00ff;
rtl_write_dword(rtlpriv, REG_BACKDOOR_DBI_WDATA,
tmp32 | BIT(13));
rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0xf078);
rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x1);
tmp8 = rtl_read_byte(rtlpriv,
REG_BACKDOOR_DBI_DATA + 2);
count = 0;
while (tmp8 && count < 20) {
udelay(10);
tmp8 = rtl_read_byte(rtlpriv,
REG_BACKDOOR_DBI_DATA + 2);
count++;
}
}
}
rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0x70c);
rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x2);
tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2);
count = 0;
while (tmp8 && count < 20) {
udelay(10);
tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2);
count++;
}
if (0 == tmp8) {
tmp32 = rtl_read_dword(rtlpriv, REG_BACKDOOR_DBI_RDATA);
rtl_write_dword(rtlpriv, REG_BACKDOOR_DBI_WDATA,
tmp32 | BIT(31));
rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0xf70c);
rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x1);
}
tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2);
count = 0;
while (tmp8 && count < 20) {
udelay(10);
tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2);
count++;
}
rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0x718);
rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x2);
tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2);
count = 0;
while (tmp8 && count < 20) {
udelay(10);
tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2);
count++;
}
if (ppsc->support_backdoor || (0 == tmp8)) {
tmp32 = rtl_read_dword(rtlpriv, REG_BACKDOOR_DBI_RDATA);
rtl_write_dword(rtlpriv, REG_BACKDOOR_DBI_WDATA,
tmp32 | BIT(11) | BIT(12));
rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0xf718);
rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x1);
}
tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2);
count = 0;
while (tmp8 && count < 20) {
udelay(10);
tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2);
count++;
}
}
void rtl92ee_enable_hw_security_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 sec_reg_value;
u8 tmp;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
rtlpriv->sec.pairwise_enc_algorithm,
rtlpriv->sec.group_enc_algorithm);
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"not open hw encryption\n");
return;
}
sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE;
if (rtlpriv->sec.use_defaultkey) {
sec_reg_value |= SCR_TXUSEDK;
sec_reg_value |= SCR_RXUSEDK;
}
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
tmp = rtl_read_byte(rtlpriv, REG_CR + 1);
rtl_write_byte(rtlpriv, REG_CR + 1, tmp | BIT(1));
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"The SECR-value %x\n", sec_reg_value);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}
int rtl92ee_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
bool rtstatus = true;
int err = 0;
u8 tmp_u1b, u1byte;
u32 tmp_u4b;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, " Rtl8192EE hw init\n");
rtlpriv->rtlhal.being_init_adapter = true;
rtlpriv->intf_ops->disable_aspm(hw);
tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CLKR+1);
u1byte = rtl_read_byte(rtlpriv, REG_CR);
if ((tmp_u1b & BIT(3)) && (u1byte != 0 && u1byte != 0xEA)) {
rtlhal->mac_func_enable = true;
} else {
rtlhal->mac_func_enable = false;
rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_92E;
}
rtstatus = _rtl92ee_init_mac(hw);
rtl_write_byte(rtlpriv, 0x577, 0x03);
/*for Crystal 40 Mhz setting */
rtl_write_byte(rtlpriv, REG_AFE_CTRL4, 0x2A);
rtl_write_byte(rtlpriv, REG_AFE_CTRL4 + 1, 0x00);
rtl_write_byte(rtlpriv, REG_AFE_CTRL2, 0x83);
/*Forced the antenna b to wifi */
if (rtlpriv->btcoexist.btc_info.btcoexist == 1) {
rtl_write_byte(rtlpriv, 0x64, 0);
rtl_write_byte(rtlpriv, 0x65, 1);
}
if (!rtstatus) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
err = 1;
return err;
}
rtlhal->rx_tag = 0;
rtl_write_word(rtlpriv, REG_PCIE_CTRL_REG, 0x8000);
err = rtl92ee_download_fw(hw, false);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Failed to download FW. Init HW without FW now..\n");
err = 1;
rtlhal->fw_ready = false;
return err;
}
rtlhal->fw_ready = true;
/*fw related variable initialize */
ppsc->fw_current_inpsmode = false;
rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_92E;
rtlhal->fw_clk_change_in_progress = false;
rtlhal->allow_sw_to_change_hwclc = false;
rtlhal->last_hmeboxnum = 0;
rtl92ee_phy_mac_config(hw);
rtl92ee_phy_bb_config(hw);
rtl92ee_phy_rf_config(hw);
rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, RF90_PATH_A,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, RF90_PATH_B,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->backup_rf_0x1a = (u32)rtl_get_rfreg(hw, RF90_PATH_A, RF_RX_G1,
RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[0] = (rtlphy->rfreg_chnlval[0] & 0xfffff3ff) |
BIT(10) | BIT(11);
rtl_set_rfreg(hw, RF90_PATH_A, RF_CHNLBW, RFREG_OFFSET_MASK,
rtlphy->rfreg_chnlval[0]);
rtl_set_rfreg(hw, RF90_PATH_B, RF_CHNLBW, RFREG_OFFSET_MASK,
rtlphy->rfreg_chnlval[0]);
/*---- Set CCK and OFDM Block "ON"----*/
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
/* Must set this,
* otherwise the rx sensitivity will be very pool. Maddest
*/
rtl_set_rfreg(hw, RF90_PATH_A, 0xB1, RFREG_OFFSET_MASK, 0x54418);
/*Set Hardware(MAC default setting.)*/
_rtl92ee_hw_configure(hw);
rtlhal->mac_func_enable = true;
rtl_cam_reset_all_entry(hw);
rtl92ee_enable_hw_security_config(hw);
ppsc->rfpwr_state = ERFON;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
_rtl92ee_enable_aspm_back_door(hw);
rtlpriv->intf_ops->enable_aspm(hw);
rtl92ee_bt_hw_init(hw);
rtlpriv->rtlhal.being_init_adapter = false;
if (ppsc->rfpwr_state == ERFON) {
if (rtlphy->iqk_initialized) {
rtl92ee_phy_iq_calibrate(hw, true);
} else {
rtl92ee_phy_iq_calibrate(hw, false);
rtlphy->iqk_initialized = true;
}
}
rtlphy->rfpath_rx_enable[0] = true;
if (rtlphy->rf_type == RF_2T2R)
rtlphy->rfpath_rx_enable[1] = true;
efuse_one_byte_read(hw, 0x1FA, &tmp_u1b);
if (!(tmp_u1b & BIT(0))) {
rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PA BIAS path A\n");
}
if ((!(tmp_u1b & BIT(1))) && (rtlphy->rf_type == RF_2T2R)) {
rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0F, 0x05);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PA BIAS path B\n");
}
rtl_write_byte(rtlpriv, REG_NAV_UPPER, ((30000 + 127) / 128));
/*Fixed LDPC rx hang issue. */
tmp_u4b = rtl_read_dword(rtlpriv, REG_SYS_SWR_CTRL1);
rtl_write_byte(rtlpriv, REG_SYS_SWR_CTRL2, 0x75);
tmp_u4b = (tmp_u4b & 0xfff00fff) | (0x7E << 12);
rtl_write_dword(rtlpriv, REG_SYS_SWR_CTRL1, tmp_u4b);
rtl92ee_dm_init(hw);
rtl_write_dword(rtlpriv, 0x4fc, 0);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"end of Rtl8192EE hw init %x\n", err);
return 0;
}
static enum version_8192e _rtl92ee_read_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
enum version_8192e version = VERSION_UNKNOWN;
u32 value32;
rtlphy->rf_type = RF_2T2R;
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG1);
if (value32 & TRP_VAUX_EN)
version = (enum version_8192e)VERSION_TEST_CHIP_2T2R_8192E;
else
version = (enum version_8192e)VERSION_NORMAL_CHIP_2T2R_8192E;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ?
"RF_2T2R" : "RF_1T1R");
return version;
}
static int _rtl92ee_set_media_status(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bt_msr = rtl_read_byte(rtlpriv, MSR) & 0xfc;
enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
u8 mode = MSR_NOLINK;
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
mode = MSR_NOLINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to NO LINK!\n");
break;
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
mode = MSR_ADHOC;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to Ad Hoc!\n");
break;
case NL80211_IFTYPE_STATION:
mode = MSR_INFRA;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to STA!\n");
break;
case NL80211_IFTYPE_AP:
mode = MSR_AP;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to AP!\n");
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"Network type %d not support!\n", type);
return 1;
}
/* MSR_INFRA == Link in infrastructure network;
* MSR_ADHOC == Link in ad hoc network;
* Therefore, check link state is necessary.
*
* MSR_AP == AP mode; link state is not cared here.
*/
if (mode != MSR_AP && rtlpriv->mac80211.link_state < MAC80211_LINKED) {
mode = MSR_NOLINK;
ledaction = LED_CTL_NO_LINK;
}
if (mode == MSR_NOLINK || mode == MSR_INFRA) {
_rtl92ee_stop_tx_beacon(hw);
_rtl92ee_enable_bcn_sub_func(hw);
} else if (mode == MSR_ADHOC || mode == MSR_AP) {
_rtl92ee_resume_tx_beacon(hw);
_rtl92ee_disable_bcn_sub_func(hw);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n",
mode);
}
rtl_write_byte(rtlpriv, (MSR), bt_msr | mode);
rtlpriv->cfg->ops->led_control(hw, ledaction);
if (mode == MSR_AP)
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
else
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
return 0;
}
void rtl92ee_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u32 reg_rcr = rtlpci->receive_config;
if (rtlpriv->psc.rfpwr_state != ERFON)
return;
if (check_bssid) {
reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *)(&reg_rcr));
_rtl92ee_set_bcn_ctrl_reg(hw, 0, BIT(4));
} else {
reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
_rtl92ee_set_bcn_ctrl_reg(hw, BIT(4), 0);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *)(&reg_rcr));
}
}
int rtl92ee_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (_rtl92ee_set_media_status(hw, type))
return -EOPNOTSUPP;
if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
if (type != NL80211_IFTYPE_AP &&
type != NL80211_IFTYPE_MESH_POINT)
rtl92ee_set_check_bssid(hw, true);
} else {
rtl92ee_set_check_bssid(hw, false);
}
return 0;
}
/* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
void rtl92ee_set_qos(struct ieee80211_hw *hw, int aci)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl92ee_dm_init_edca_turbo(hw);
switch (aci) {
case AC1_BK:
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
break;
case AC0_BE:
/* rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param); */
break;
case AC2_VI:
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
break;
case AC3_VO:
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
break;
default:
RT_ASSERT(false, "invalid aci: %d !\n", aci);
break;
}
}
static void rtl92ee_clear_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 tmp;
tmp = rtl_read_dword(rtlpriv, REG_HISR);
rtl_write_dword(rtlpriv, REG_HISR, tmp);
tmp = rtl_read_dword(rtlpriv, REG_HISRE);
rtl_write_dword(rtlpriv, REG_HISRE, tmp);
tmp = rtl_read_dword(rtlpriv, REG_HSISR);
rtl_write_dword(rtlpriv, REG_HSISR, tmp);
}
void rtl92ee_enable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl92ee_clear_interrupt(hw);/*clear it here first*/
rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
rtlpci->irq_enabled = true;
}
void rtl92ee_disable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED);
rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED);
rtlpci->irq_enabled = false;
/*synchronize_irq(rtlpci->pdev->irq);*/
}
static void _rtl92ee_poweroff_adapter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 u1b_tmp;
rtlhal->mac_func_enable = false;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "POWER OFF adapter\n");
/* Run LPS WL RFOFF flow */
rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK, RTL8192E_NIC_LPS_ENTER_FLOW);
/* turn off RF */
rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
/* ==== Reset digital sequence ====== */
if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && rtlhal->fw_ready)
rtl92ee_firmware_selfreset(hw);
/* Reset MCU */
u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2))));
/* reset MCU ready status */
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
/* HW card disable configuration. */
rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK, RTL8192E_NIC_DISABLE_FLOW);
/* Reset MCU IO Wrapper */
u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1);
rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp & (~BIT(0))));
u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1);
rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp | BIT(0)));
/* lock ISO/CLK/Power control register */
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
}
void rtl92ee_card_disable(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
enum nl80211_iftype opmode;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "RTL8192ee card disable\n");
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
mac->link_state = MAC80211_NOLINK;
opmode = NL80211_IFTYPE_UNSPECIFIED;
_rtl92ee_set_media_status(hw, opmode);
if (rtlpriv->rtlhal.driver_is_goingto_unload ||
ppsc->rfoff_reason > RF_CHANGE_BY_PS)
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
_rtl92ee_poweroff_adapter(hw);
/* after power off we should do iqk again */
rtlpriv->phy.iqk_initialized = false;
}
void rtl92ee_interrupt_recognized(struct ieee80211_hw *hw,
u32 *p_inta, u32 *p_intb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
rtl_write_dword(rtlpriv, ISR, *p_inta);
*p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
rtl_write_dword(rtlpriv, REG_HISRE, *p_intb);
}
void rtl92ee_set_beacon_related_registers(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u16 bcn_interval, atim_window;
bcn_interval = mac->beacon_interval;
atim_window = 2; /*FIX MERGE */
rtl92ee_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
rtl_write_byte(rtlpriv, 0x606, 0x30);
rtlpci->reg_bcn_ctrl_val |= BIT(3);
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val);
}
void rtl92ee_set_beacon_interval(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval = mac->beacon_interval;
RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
"beacon_interval:%d\n", bcn_interval);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
}
void rtl92ee_update_interrupt_mask(struct ieee80211_hw *hw,
u32 add_msr, u32 rm_msr)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
"add_msr:%x, rm_msr:%x\n", add_msr, rm_msr);
if (add_msr)
rtlpci->irq_mask[0] |= add_msr;
if (rm_msr)
rtlpci->irq_mask[0] &= (~rm_msr);
rtl92ee_disable_interrupt(hw);
rtl92ee_enable_interrupt(hw);
}
static u8 _rtl92ee_get_chnl_group(u8 chnl)
{
u8 group = 0;
if (chnl <= 14) {
if (1 <= chnl && chnl <= 2)
group = 0;
else if (3 <= chnl && chnl <= 5)
group = 1;
else if (6 <= chnl && chnl <= 8)
group = 2;
else if (9 <= chnl && chnl <= 11)
group = 3;
else if (12 <= chnl && chnl <= 14)
group = 4;
} else {
if (36 <= chnl && chnl <= 42)
group = 0;
else if (44 <= chnl && chnl <= 48)
group = 1;
else if (50 <= chnl && chnl <= 58)
group = 2;
else if (60 <= chnl && chnl <= 64)
group = 3;
else if (100 <= chnl && chnl <= 106)
group = 4;
else if (108 <= chnl && chnl <= 114)
group = 5;
else if (116 <= chnl && chnl <= 122)
group = 6;
else if (124 <= chnl && chnl <= 130)
group = 7;
else if (132 <= chnl && chnl <= 138)
group = 8;
else if (140 <= chnl && chnl <= 144)
group = 9;
else if (149 <= chnl && chnl <= 155)
group = 10;
else if (157 <= chnl && chnl <= 161)
group = 11;
else if (165 <= chnl && chnl <= 171)
group = 12;
else if (173 <= chnl && chnl <= 177)
group = 13;
}
return group;
}
static void _rtl8192ee_read_power_value_fromprom(struct ieee80211_hw *hw,
struct txpower_info_2g *pwr2g,
struct txpower_info_5g *pwr5g,
bool autoload_fail, u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 rf, addr = EEPROM_TX_PWR_INX, group, i = 0;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"hal_ReadPowerValueFromPROM92E(): PROMContent[0x%x]=0x%x\n",
(addr + 1), hwinfo[addr + 1]);
if (0xFF == hwinfo[addr+1]) /*YJ,add,120316*/
autoload_fail = true;
if (autoload_fail) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"auto load fail : Use Default value!\n");
for (rf = 0 ; rf < MAX_RF_PATH ; rf++) {
/* 2.4G default value */
for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) {
pwr2g->index_cck_base[rf][group] = 0x2D;
pwr2g->index_bw40_base[rf][group] = 0x2D;
}
for (i = 0; i < MAX_TX_COUNT; i++) {
if (i == 0) {
pwr2g->bw20_diff[rf][0] = 0x02;
pwr2g->ofdm_diff[rf][0] = 0x04;
} else {
pwr2g->bw20_diff[rf][i] = 0xFE;
pwr2g->bw40_diff[rf][i] = 0xFE;
pwr2g->cck_diff[rf][i] = 0xFE;
pwr2g->ofdm_diff[rf][i] = 0xFE;
}
}
/*5G default value*/
for (group = 0 ; group < MAX_CHNL_GROUP_5G; group++)
pwr5g->index_bw40_base[rf][group] = 0x2A;
for (i = 0; i < MAX_TX_COUNT; i++) {
if (i == 0) {
pwr5g->ofdm_diff[rf][0] = 0x04;
pwr5g->bw20_diff[rf][0] = 0x00;
pwr5g->bw80_diff[rf][0] = 0xFE;
pwr5g->bw160_diff[rf][0] = 0xFE;
} else {
pwr5g->ofdm_diff[rf][0] = 0xFE;
pwr5g->bw20_diff[rf][0] = 0xFE;
pwr5g->bw40_diff[rf][0] = 0xFE;
pwr5g->bw80_diff[rf][0] = 0xFE;
pwr5g->bw160_diff[rf][0] = 0xFE;
}
}
}
return;
}
rtl_priv(hw)->efuse.txpwr_fromeprom = true;
for (rf = 0 ; rf < MAX_RF_PATH ; rf++) {
/*2.4G default value*/
for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) {
pwr2g->index_cck_base[rf][group] = hwinfo[addr++];
if (pwr2g->index_cck_base[rf][group] == 0xFF)
pwr2g->index_cck_base[rf][group] = 0x2D;
}
for (group = 0 ; group < MAX_CHNL_GROUP_24G - 1; group++) {
pwr2g->index_bw40_base[rf][group] = hwinfo[addr++];
if (pwr2g->index_bw40_base[rf][group] == 0xFF)
pwr2g->index_bw40_base[rf][group] = 0x2D;
}
for (i = 0; i < MAX_TX_COUNT; i++) {
if (i == 0) {
pwr2g->bw40_diff[rf][i] = 0;
if (hwinfo[addr] == 0xFF) {
pwr2g->bw20_diff[rf][i] = 0x02;
} else {
pwr2g->bw20_diff[rf][i] = (hwinfo[addr]
& 0xf0) >> 4;
if (pwr2g->bw20_diff[rf][i] & BIT(3))
pwr2g->bw20_diff[rf][i] |= 0xF0;
}
if (hwinfo[addr] == 0xFF) {
pwr2g->ofdm_diff[rf][i] = 0x04;
} else {
pwr2g->ofdm_diff[rf][i] = (hwinfo[addr]
& 0x0f);
if (pwr2g->ofdm_diff[rf][i] & BIT(3))
pwr2g->ofdm_diff[rf][i] |= 0xF0;
}
pwr2g->cck_diff[rf][i] = 0;
addr++;
} else {
if (hwinfo[addr] == 0xFF) {
pwr2g->bw40_diff[rf][i] = 0xFE;
} else {
pwr2g->bw40_diff[rf][i] = (hwinfo[addr]
& 0xf0) >> 4;
if (pwr2g->bw40_diff[rf][i] & BIT(3))
pwr2g->bw40_diff[rf][i] |= 0xF0;
}
if (hwinfo[addr] == 0xFF) {
pwr2g->bw20_diff[rf][i] = 0xFE;
} else {
pwr2g->bw20_diff[rf][i] = (hwinfo[addr]
& 0x0f);
if (pwr2g->bw20_diff[rf][i] & BIT(3))
pwr2g->bw20_diff[rf][i] |= 0xF0;
}
addr++;
if (hwinfo[addr] == 0xFF) {
pwr2g->ofdm_diff[rf][i] = 0xFE;
} else {
pwr2g->ofdm_diff[rf][i] = (hwinfo[addr]
& 0xf0) >> 4;
if (pwr2g->ofdm_diff[rf][i] & BIT(3))
pwr2g->ofdm_diff[rf][i] |= 0xF0;
}
if (hwinfo[addr] == 0xFF) {
pwr2g->cck_diff[rf][i] = 0xFE;
} else {
pwr2g->cck_diff[rf][i] = (hwinfo[addr]
& 0x0f);
if (pwr2g->cck_diff[rf][i] & BIT(3))
pwr2g->cck_diff[rf][i] |= 0xF0;
}
addr++;
}
}
/*5G default value*/
for (group = 0 ; group < MAX_CHNL_GROUP_5G; group++) {
pwr5g->index_bw40_base[rf][group] = hwinfo[addr++];
if (pwr5g->index_bw40_base[rf][group] == 0xFF)
pwr5g->index_bw40_base[rf][group] = 0xFE;
}
for (i = 0; i < MAX_TX_COUNT; i++) {
if (i == 0) {
pwr5g->bw40_diff[rf][i] = 0;
if (hwinfo[addr] == 0xFF) {
pwr5g->bw20_diff[rf][i] = 0;
} else {
pwr5g->bw20_diff[rf][0] = (hwinfo[addr]
& 0xf0) >> 4;
if (pwr5g->bw20_diff[rf][i] & BIT(3))
pwr5g->bw20_diff[rf][i] |= 0xF0;
}
if (hwinfo[addr] == 0xFF) {
pwr5g->ofdm_diff[rf][i] = 0x04;
} else {
pwr5g->ofdm_diff[rf][0] = (hwinfo[addr]
& 0x0f);
if (pwr5g->ofdm_diff[rf][i] & BIT(3))
pwr5g->ofdm_diff[rf][i] |= 0xF0;
}
addr++;
} else {
if (hwinfo[addr] == 0xFF) {
pwr5g->bw40_diff[rf][i] = 0xFE;
} else {
pwr5g->bw40_diff[rf][i] = (hwinfo[addr]
& 0xf0) >> 4;
if (pwr5g->bw40_diff[rf][i] & BIT(3))
pwr5g->bw40_diff[rf][i] |= 0xF0;
}
if (hwinfo[addr] == 0xFF) {
pwr5g->bw20_diff[rf][i] = 0xFE;
} else {
pwr5g->bw20_diff[rf][i] = (hwinfo[addr]
& 0x0f);
if (pwr5g->bw20_diff[rf][i] & BIT(3))
pwr5g->bw20_diff[rf][i] |= 0xF0;
}
addr++;
}
}
if (hwinfo[addr] == 0xFF) {
pwr5g->ofdm_diff[rf][1] = 0xFE;
pwr5g->ofdm_diff[rf][2] = 0xFE;
} else {
pwr5g->ofdm_diff[rf][1] = (hwinfo[addr] & 0xf0) >> 4;
pwr5g->ofdm_diff[rf][2] = (hwinfo[addr] & 0x0f);
}
addr++;
if (hwinfo[addr] == 0xFF)
pwr5g->ofdm_diff[rf][3] = 0xFE;
else
pwr5g->ofdm_diff[rf][3] = (hwinfo[addr] & 0x0f);
addr++;
for (i = 1; i < MAX_TX_COUNT; i++) {
if (pwr5g->ofdm_diff[rf][i] == 0xFF)
pwr5g->ofdm_diff[rf][i] = 0xFE;
else if (pwr5g->ofdm_diff[rf][i] & BIT(3))
pwr5g->ofdm_diff[rf][i] |= 0xF0;
}
for (i = 0; i < MAX_TX_COUNT; i++) {
if (hwinfo[addr] == 0xFF) {
pwr5g->bw80_diff[rf][i] = 0xFE;
} else {
pwr5g->bw80_diff[rf][i] = (hwinfo[addr] & 0xf0)
>> 4;
if (pwr5g->bw80_diff[rf][i] & BIT(3))
pwr5g->bw80_diff[rf][i] |= 0xF0;
}
if (hwinfo[addr] == 0xFF) {
pwr5g->bw160_diff[rf][i] = 0xFE;
} else {
pwr5g->bw160_diff[rf][i] =
(hwinfo[addr] & 0x0f);
if (pwr5g->bw160_diff[rf][i] & BIT(3))
pwr5g->bw160_diff[rf][i] |= 0xF0;
}
addr++;
}
}
}
static void _rtl92ee_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
bool autoload_fail, u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *efu = rtl_efuse(rtl_priv(hw));
struct txpower_info_2g pwr2g;
struct txpower_info_5g pwr5g;
u8 channel5g[CHANNEL_MAX_NUMBER_5G] = {
36, 38, 40, 42, 44, 46, 48, 50, 52, 54,
56, 58, 60, 62, 64, 100, 102, 104, 106,
108, 110, 112, 114, 116, 118, 120, 122,
124, 126, 128, 130, 132, 134, 136, 138,
140, 142, 144, 149, 151, 153, 155, 157,
159, 161, 163, 165, 167, 168, 169, 171,
173, 175, 177
};
u8 channel5g_80m[CHANNEL_MAX_NUMBER_5G_80M] = {
42, 58, 106, 122, 138, 155, 171
};
u8 rf, idx;
u8 i;
_rtl8192ee_read_power_value_fromprom(hw, &pwr2g, &pwr5g,
autoload_fail, hwinfo);
for (rf = 0; rf < MAX_RF_PATH; rf++) {
for (i = 0; i < 14; i++) {
idx = _rtl92ee_get_chnl_group(i + 1);
if (i == CHANNEL_MAX_NUMBER_2G - 1) {
efu->txpwrlevel_cck[rf][i] =
pwr2g.index_cck_base[rf][5];
efu->txpwrlevel_ht40_1s[rf][i] =
pwr2g.index_bw40_base[rf][idx];
} else {
efu->txpwrlevel_cck[rf][i] =
pwr2g.index_cck_base[rf][idx];
efu->txpwrlevel_ht40_1s[rf][i] =
pwr2g.index_bw40_base[rf][idx];
}
}
for (i = 0; i < CHANNEL_MAX_NUMBER_5G; i++) {
idx = _rtl92ee_get_chnl_group(channel5g[i]);
efu->txpwr_5g_bw40base[rf][i] =
pwr5g.index_bw40_base[rf][idx];
}
for (i = 0; i < CHANNEL_MAX_NUMBER_5G_80M; i++) {
u8 upper, lower;
idx = _rtl92ee_get_chnl_group(channel5g_80m[i]);
upper = pwr5g.index_bw40_base[rf][idx];
lower = pwr5g.index_bw40_base[rf][idx + 1];
efu->txpwr_5g_bw80base[rf][i] = (upper + lower) / 2;
}
for (i = 0; i < MAX_TX_COUNT; i++) {
efu->txpwr_cckdiff[rf][i] = pwr2g.cck_diff[rf][i];
efu->txpwr_legacyhtdiff[rf][i] = pwr2g.ofdm_diff[rf][i];
efu->txpwr_ht20diff[rf][i] = pwr2g.bw20_diff[rf][i];
efu->txpwr_ht40diff[rf][i] = pwr2g.bw40_diff[rf][i];
efu->txpwr_5g_ofdmdiff[rf][i] = pwr5g.ofdm_diff[rf][i];
efu->txpwr_5g_bw20diff[rf][i] = pwr5g.bw20_diff[rf][i];
efu->txpwr_5g_bw40diff[rf][i] = pwr5g.bw40_diff[rf][i];
efu->txpwr_5g_bw80diff[rf][i] = pwr5g.bw80_diff[rf][i];
}
}
if (!autoload_fail)
efu->eeprom_thermalmeter = hwinfo[EEPROM_THERMAL_METER_92E];
else
efu->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
if (efu->eeprom_thermalmeter == 0xff || autoload_fail) {
efu->apk_thermalmeterignore = true;
efu->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
}
efu->thermalmeter[0] = efu->eeprom_thermalmeter;
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"thermalmeter = 0x%x\n", efu->eeprom_thermalmeter);
if (!autoload_fail) {
efu->eeprom_regulatory = hwinfo[EEPROM_RF_BOARD_OPTION_92E]
& 0x07;
if (hwinfo[EEPROM_RF_BOARD_OPTION_92E] == 0xFF)
efu->eeprom_regulatory = 0;
} else {
efu->eeprom_regulatory = 0;
}
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"eeprom_regulatory = 0x%x\n", efu->eeprom_regulatory);
}
static void _rtl92ee_read_adapter_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u16 i, usvalue;
u8 hwinfo[HWSET_MAX_SIZE];
u16 eeprom_id;
if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
rtl_efuse_shadow_map_update(hw);
memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
HWSET_MAX_SIZE);
} else if (rtlefuse->epromtype == EEPROM_93C46) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"RTL819X Not boot from eeprom, check it !!");
return;
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"boot from neither eeprom nor efuse, check it !!");
return;
}
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP\n",
hwinfo, HWSET_MAX_SIZE);
eeprom_id = *((u16 *)&hwinfo[0]);
if (eeprom_id != RTL8192E_EEPROM_ID) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"EEPROM ID(%#x) is invalid!!\n", eeprom_id);
rtlefuse->autoload_failflag = true;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
}
if (rtlefuse->autoload_failflag)
return;
/*VID DID SVID SDID*/
rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
/*customer ID*/
rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
if (rtlefuse->eeprom_oemid == 0xFF)
rtlefuse->eeprom_oemid = 0;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
/*EEPROM version*/
rtlefuse->eeprom_version = *(u8 *)&hwinfo[EEPROM_VERSION];
/*mac address*/
for (i = 0; i < 6; i += 2) {
usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
*((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"dev_addr: %pM\n", rtlefuse->dev_addr);
/*channel plan */
rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
/* set channel paln to world wide 13 */
rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
/*tx power*/
_rtl92ee_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag,
hwinfo);
rtl92ee_read_bt_coexist_info_from_hwpg(hw, rtlefuse->autoload_failflag,
hwinfo);
/*board type*/
rtlefuse->board_type = (((*(u8 *)&hwinfo[EEPROM_RF_BOARD_OPTION_92E])
& 0xE0) >> 5);
if ((*(u8 *)&hwinfo[EEPROM_RF_BOARD_OPTION_92E]) == 0xFF)
rtlefuse->board_type = 0;
rtlhal->board_type = rtlefuse->board_type;
/*parse xtal*/
rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_92E];
if (hwinfo[EEPROM_XTAL_92E] == 0xFF)
rtlefuse->crystalcap = 0x20;
/*antenna diversity*/
rtlefuse->antenna_div_type = NO_ANTDIV;
rtlefuse->antenna_div_cfg = 0;
if (rtlhal->oem_id == RT_CID_DEFAULT) {
switch (rtlefuse->eeprom_oemid) {
case EEPROM_CID_DEFAULT:
if (rtlefuse->eeprom_did == 0x818B) {
if ((rtlefuse->eeprom_svid == 0x10EC) &&
(rtlefuse->eeprom_smid == 0x001B))
rtlhal->oem_id = RT_CID_819X_LENOVO;
} else {
rtlhal->oem_id = RT_CID_DEFAULT;
}
break;
default:
rtlhal->oem_id = RT_CID_DEFAULT;
break;
}
}
}
static void _rtl92ee_hal_customized_behavior(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
pcipriv->ledctl.led_opendrain = true;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"RT Customized ID: 0x%02X\n", rtlhal->oem_id);
}
void rtl92ee_read_eeprom_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_u1b;
rtlhal->version = _rtl92ee_read_chip_version(hw);
if (get_rf_type(rtlphy) == RF_1T1R) {
rtlpriv->dm.rfpath_rxenable[0] = true;
} else {
rtlpriv->dm.rfpath_rxenable[0] = true;
rtlpriv->dm.rfpath_rxenable[1] = true;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
rtlhal->version);
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
if (tmp_u1b & BIT(4)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
rtlefuse->epromtype = EEPROM_93C46;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
}
if (tmp_u1b & BIT(5)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
_rtl92ee_read_adapter_info(hw);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
}
_rtl92ee_hal_customized_behavior(hw);
rtlphy->rfpath_rx_enable[0] = true;
if (rtlphy->rf_type == RF_2T2R)
rtlphy->rfpath_rx_enable[1] = true;
}
static u8 _rtl92ee_mrate_idx_to_arfr_id(struct ieee80211_hw *hw, u8 rate_index)
{
u8 ret = 0;
switch (rate_index) {
case RATR_INX_WIRELESS_NGB:
ret = 0;
break;
case RATR_INX_WIRELESS_N:
case RATR_INX_WIRELESS_NG:
ret = 4;
break;
case RATR_INX_WIRELESS_NB:
ret = 2;
break;
case RATR_INX_WIRELESS_GB:
ret = 6;
break;
case RATR_INX_WIRELESS_G:
ret = 7;
break;
case RATR_INX_WIRELESS_B:
ret = 8;
break;
default:
ret = 0;
break;
}
return ret;
}
static void rtl92ee_update_hal_rate_mask(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u8 rssi_level)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u32 ratr_bitmap;
u8 ratr_index;
u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
? 1 : 0;
u8 b_curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 b_curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = 0;
bool b_shortgi = false;
u8 rate_mask[7] = {0};
u8 macid = 0;
/*u8 mimo_ps = IEEE80211_SMPS_OFF;*/
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
wirelessmode = sta_entry->wireless_mode;
if (mac->opmode == NL80211_IFTYPE_STATION ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
curtxbw_40mhz = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC)
macid = sta->aid + 1;
ratr_bitmap = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_bitmap = 0xfff;
ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
ratr_index = RATR_INX_WIRELESS_B;
if (ratr_bitmap & 0x0000000c)
ratr_bitmap &= 0x0000000d;
else
ratr_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_index = RATR_INX_WIRELESS_GB;
if (rssi_level == 1)
ratr_bitmap &= 0x00000f00;
else if (rssi_level == 2)
ratr_bitmap &= 0x00000ff0;
else
ratr_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_N_24G:
if (curtxbw_40mhz)
ratr_index = RATR_INX_WIRELESS_NGB;
else
ratr_index = RATR_INX_WIRELESS_NB;
if (rtlphy->rf_type == RF_1T1R) {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff005;
}
} else {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x0f8f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0ffff000;
else
ratr_bitmap &= 0x0ffff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x0f8f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0ffff000;
else
ratr_bitmap &= 0x0ffff005;
}
}
if ((curtxbw_40mhz && b_curshortgi_40mhz) ||
(!curtxbw_40mhz && b_curshortgi_20mhz)) {
if (macid == 0)
b_shortgi = true;
else if (macid == 1)
b_shortgi = false;
}
break;
default:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T1R)
ratr_bitmap &= 0x000ff0ff;
else
ratr_bitmap &= 0x0f8ff0ff;
break;
}
ratr_index = _rtl92ee_mrate_idx_to_arfr_id(hw, ratr_index);
sta_entry->ratr_index = ratr_index;
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"ratr_bitmap :%x\n", ratr_bitmap);
*(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
(ratr_index << 28);
rate_mask[0] = macid;
rate_mask[1] = ratr_index | (b_shortgi ? 0x80 : 0x00);
rate_mask[2] = curtxbw_40mhz;
rate_mask[3] = (u8)(ratr_bitmap & 0x000000ff);
rate_mask[4] = (u8)((ratr_bitmap & 0x0000ff00) >> 8);
rate_mask[5] = (u8)((ratr_bitmap & 0x00ff0000) >> 16);
rate_mask[6] = (u8)((ratr_bitmap & 0xff000000) >> 24);
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x:%x:%x\n",
ratr_index, ratr_bitmap, rate_mask[0], rate_mask[1],
rate_mask[2], rate_mask[3], rate_mask[4],
rate_mask[5], rate_mask[6]);
rtl92ee_fill_h2c_cmd(hw, H2C_92E_RA_MASK, 7, rate_mask);
_rtl92ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
}
void rtl92ee_update_hal_rate_tbl(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi_level)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->dm.useramask)
rtl92ee_update_hal_rate_mask(hw, sta, rssi_level);
}
void rtl92ee_update_channel_access_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 sifs_timer;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
(u8 *)&mac->slot_time);
if (!mac->ht_enable)
sifs_timer = 0x0a0a;
else
sifs_timer = 0x0e0e;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}
bool rtl92ee_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
{
*valid = 1;
return true;
}
void rtl92ee_set_key(struct ieee80211_hw *hw, u32 key_index,
u8 *p_macaddr, bool is_group, u8 enc_algo,
bool is_wepkey, bool clear_all)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 *macaddr = p_macaddr;
u32 entry_id = 0;
bool is_pairwise = false;
static u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (clear_all) {
u8 idx = 0;
u8 cam_offset = 0;
u8 clear_number = 5;
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
} else {
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process\n");
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key_index];
entry_id = key_index;
} else {
if (is_group) {
macaddr = cam_const_broad;
entry_id = key_index;
} else {
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
entry_id = rtl_cam_get_free_entry(hw,
p_macaddr);
if (entry_id >= TOTAL_CAM_ENTRY) {
RT_TRACE(rtlpriv, COMP_SEC,
DBG_EMERG,
"Can not find free hw security cam entry\n");
return;
}
} else {
entry_id = CAM_PAIRWISE_KEY_POSITION;
}
key_index = PAIRWISE_KEYIDX;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key_index] == 0) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry, entry_id is %d\n",
entry_id);
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
rtl_cam_del_entry(hw, p_macaddr);
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"add one entry\n");
if (is_pairwise) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set Pairwiase key\n");
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[key_index]);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw,
rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo, CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
}
}
}
void rtl92ee_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
bool auto_load_fail, u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 value;
if (!auto_load_fail) {
value = hwinfo[EEPROM_RF_BOARD_OPTION_92E];
if (((value & 0xe0) >> 5) == 0x1)
rtlpriv->btcoexist.btc_info.btcoexist = 1;
else
rtlpriv->btcoexist.btc_info.btcoexist = 0;
rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8192E;
rtlpriv->btcoexist.btc_info.ant_num = ANT_TOTAL_X2;
} else {
rtlpriv->btcoexist.btc_info.btcoexist = 1;
rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8192E;
rtlpriv->btcoexist.btc_info.ant_num = ANT_TOTAL_X1;
}
}
void rtl92ee_bt_reg_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* 0:Low, 1:High, 2:From Efuse. */
rtlpriv->btcoexist.reg_bt_iso = 2;
/* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
rtlpriv->btcoexist.reg_bt_sco = 3;
/* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
rtlpriv->btcoexist.reg_bt_sco = 0;
}
void rtl92ee_bt_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->cfg->ops->get_btc_status())
rtlpriv->btcoexist.btc_ops->btc_init_hw_config(rtlpriv);
}
void rtl92ee_suspend(struct ieee80211_hw *hw)
{
}
void rtl92ee_resume(struct ieee80211_hw *hw)
{
}
/* Turn on AAP (RCR:bit 0) for promicuous mode. */
void rtl92ee_allow_all_destaddr(struct ieee80211_hw *hw,
bool allow_all_da, bool write_into_reg)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
if (allow_all_da) /* Set BIT0 */
rtlpci->receive_config |= RCR_AAP;
else /* Clear BIT0 */
rtlpci->receive_config &= ~RCR_AAP;
if (write_into_reg)
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
RT_TRACE(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD,
"receive_config=0x%08X, write_into_reg=%d\n",
rtlpci->receive_config, write_into_reg);
}