OpenCloudOS-Kernel/drivers/firmware/arm_scmi/driver.c

2268 lines
64 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Message Protocol driver
*
* SCMI Message Protocol is used between the System Control Processor(SCP)
* and the Application Processors(AP). The Message Handling Unit(MHU)
* provides a mechanism for inter-processor communication between SCP's
* Cortex M3 and AP.
*
* SCP offers control and management of the core/cluster power states,
* various power domain DVFS including the core/cluster, certain system
* clocks configuration, thermal sensors and many others.
*
* Copyright (C) 2018-2021 ARM Ltd.
*/
#include <linux/bitmap.h>
#include <linux/device.h>
#include <linux/export.h>
#include <linux/idr.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/hashtable.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/processor.h>
#include <linux/refcount.h>
#include <linux/slab.h>
#include "common.h"
#include "notify.h"
#define CREATE_TRACE_POINTS
#include <trace/events/scmi.h>
enum scmi_error_codes {
SCMI_SUCCESS = 0, /* Success */
SCMI_ERR_SUPPORT = -1, /* Not supported */
SCMI_ERR_PARAMS = -2, /* Invalid Parameters */
SCMI_ERR_ACCESS = -3, /* Invalid access/permission denied */
SCMI_ERR_ENTRY = -4, /* Not found */
SCMI_ERR_RANGE = -5, /* Value out of range */
SCMI_ERR_BUSY = -6, /* Device busy */
SCMI_ERR_COMMS = -7, /* Communication Error */
SCMI_ERR_GENERIC = -8, /* Generic Error */
SCMI_ERR_HARDWARE = -9, /* Hardware Error */
SCMI_ERR_PROTOCOL = -10,/* Protocol Error */
};
/* List of all SCMI devices active in system */
static LIST_HEAD(scmi_list);
/* Protection for the entire list */
static DEFINE_MUTEX(scmi_list_mutex);
/* Track the unique id for the transfers for debug & profiling purpose */
static atomic_t transfer_last_id;
static DEFINE_IDR(scmi_requested_devices);
static DEFINE_MUTEX(scmi_requested_devices_mtx);
struct scmi_requested_dev {
const struct scmi_device_id *id_table;
struct list_head node;
};
/**
* struct scmi_xfers_info - Structure to manage transfer information
*
* @xfer_alloc_table: Bitmap table for allocated messages.
* Index of this bitmap table is also used for message
* sequence identifier.
* @xfer_lock: Protection for message allocation
* @max_msg: Maximum number of messages that can be pending
* @free_xfers: A free list for available to use xfers. It is initialized with
* a number of xfers equal to the maximum allowed in-flight
* messages.
* @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
* currently in-flight messages.
*/
struct scmi_xfers_info {
unsigned long *xfer_alloc_table;
spinlock_t xfer_lock;
int max_msg;
struct hlist_head free_xfers;
DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
};
/**
* struct scmi_protocol_instance - Describe an initialized protocol instance.
* @handle: Reference to the SCMI handle associated to this protocol instance.
* @proto: A reference to the protocol descriptor.
* @gid: A reference for per-protocol devres management.
* @users: A refcount to track effective users of this protocol.
* @priv: Reference for optional protocol private data.
* @ph: An embedded protocol handle that will be passed down to protocol
* initialization code to identify this instance.
*
* Each protocol is initialized independently once for each SCMI platform in
* which is defined by DT and implemented by the SCMI server fw.
*/
struct scmi_protocol_instance {
const struct scmi_handle *handle;
const struct scmi_protocol *proto;
void *gid;
refcount_t users;
void *priv;
struct scmi_protocol_handle ph;
};
#define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph)
/**
* struct scmi_info - Structure representing a SCMI instance
*
* @dev: Device pointer
* @desc: SoC description for this instance
* @version: SCMI revision information containing protocol version,
* implementation version and (sub-)vendor identification.
* @handle: Instance of SCMI handle to send to clients
* @tx_minfo: Universal Transmit Message management info
* @rx_minfo: Universal Receive Message management info
* @tx_idr: IDR object to map protocol id to Tx channel info pointer
* @rx_idr: IDR object to map protocol id to Rx channel info pointer
* @protocols: IDR for protocols' instance descriptors initialized for
* this SCMI instance: populated on protocol's first attempted
* usage.
* @protocols_mtx: A mutex to protect protocols instances initialization.
* @protocols_imp: List of protocols implemented, currently maximum of
* MAX_PROTOCOLS_IMP elements allocated by the base protocol
* @active_protocols: IDR storing device_nodes for protocols actually defined
* in the DT and confirmed as implemented by fw.
* @atomic_threshold: Optional system wide DT-configured threshold, expressed
* in microseconds, for atomic operations.
* Only SCMI synchronous commands reported by the platform
* to have an execution latency lesser-equal to the threshold
* should be considered for atomic mode operation: such
* decision is finally left up to the SCMI drivers.
* @notify_priv: Pointer to private data structure specific to notifications.
* @node: List head
* @users: Number of users of this instance
*/
struct scmi_info {
struct device *dev;
const struct scmi_desc *desc;
struct scmi_revision_info version;
struct scmi_handle handle;
struct scmi_xfers_info tx_minfo;
struct scmi_xfers_info rx_minfo;
struct idr tx_idr;
struct idr rx_idr;
struct idr protocols;
/* Ensure mutual exclusive access to protocols instance array */
struct mutex protocols_mtx;
u8 *protocols_imp;
struct idr active_protocols;
unsigned int atomic_threshold;
void *notify_priv;
struct list_head node;
int users;
};
#define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle)
static const int scmi_linux_errmap[] = {
/* better than switch case as long as return value is continuous */
0, /* SCMI_SUCCESS */
-EOPNOTSUPP, /* SCMI_ERR_SUPPORT */
-EINVAL, /* SCMI_ERR_PARAM */
-EACCES, /* SCMI_ERR_ACCESS */
-ENOENT, /* SCMI_ERR_ENTRY */
-ERANGE, /* SCMI_ERR_RANGE */
-EBUSY, /* SCMI_ERR_BUSY */
-ECOMM, /* SCMI_ERR_COMMS */
-EIO, /* SCMI_ERR_GENERIC */
-EREMOTEIO, /* SCMI_ERR_HARDWARE */
-EPROTO, /* SCMI_ERR_PROTOCOL */
};
static inline int scmi_to_linux_errno(int errno)
{
int err_idx = -errno;
if (err_idx >= SCMI_SUCCESS && err_idx < ARRAY_SIZE(scmi_linux_errmap))
return scmi_linux_errmap[err_idx];
return -EIO;
}
void scmi_notification_instance_data_set(const struct scmi_handle *handle,
void *priv)
{
struct scmi_info *info = handle_to_scmi_info(handle);
info->notify_priv = priv;
/* Ensure updated protocol private date are visible */
smp_wmb();
}
void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
{
struct scmi_info *info = handle_to_scmi_info(handle);
/* Ensure protocols_private_data has been updated */
smp_rmb();
return info->notify_priv;
}
/**
* scmi_xfer_token_set - Reserve and set new token for the xfer at hand
*
* @minfo: Pointer to Tx/Rx Message management info based on channel type
* @xfer: The xfer to act upon
*
* Pick the next unused monotonically increasing token and set it into
* xfer->hdr.seq: picking a monotonically increasing value avoids immediate
* reuse of freshly completed or timed-out xfers, thus mitigating the risk
* of incorrect association of a late and expired xfer with a live in-flight
* transaction, both happening to re-use the same token identifier.
*
* Since platform is NOT required to answer our request in-order we should
* account for a few rare but possible scenarios:
*
* - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
* using find_next_zero_bit() starting from candidate next_token bit
*
* - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
* are plenty of free tokens at start, so try a second pass using
* find_next_zero_bit() and starting from 0.
*
* X = used in-flight
*
* Normal
* ------
*
* |- xfer_id picked
* -----------+----------------------------------------------------------
* | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
* ----------------------------------------------------------------------
* ^
* |- next_token
*
* Out-of-order pending at start
* -----------------------------
*
* |- xfer_id picked, last_token fixed
* -----+----------------------------------------------------------------
* |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
* ----------------------------------------------------------------------
* ^
* |- next_token
*
*
* Out-of-order pending at end
* ---------------------------
*
* |- xfer_id picked, last_token fixed
* -----+----------------------------------------------------------------
* |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
* ----------------------------------------------------------------------
* ^
* |- next_token
*
* Context: Assumes to be called with @xfer_lock already acquired.
*
* Return: 0 on Success or error
*/
static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
struct scmi_xfer *xfer)
{
unsigned long xfer_id, next_token;
/*
* Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
* using the pre-allocated transfer_id as a base.
* Note that the global transfer_id is shared across all message types
* so there could be holes in the allocated set of monotonic sequence
* numbers, but that is going to limit the effectiveness of the
* mitigation only in very rare limit conditions.
*/
next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
/* Pick the next available xfer_id >= next_token */
xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
MSG_TOKEN_MAX, next_token);
if (xfer_id == MSG_TOKEN_MAX) {
/*
* After heavily out-of-order responses, there are no free
* tokens ahead, but only at start of xfer_alloc_table so
* try again from the beginning.
*/
xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
MSG_TOKEN_MAX, 0);
/*
* Something is wrong if we got here since there can be a
* maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
* but we have not found any free token [0, MSG_TOKEN_MAX - 1].
*/
if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
return -ENOMEM;
}
/* Update +/- last_token accordingly if we skipped some hole */
if (xfer_id != next_token)
atomic_add((int)(xfer_id - next_token), &transfer_last_id);
/* Set in-flight */
set_bit(xfer_id, minfo->xfer_alloc_table);
xfer->hdr.seq = (u16)xfer_id;
return 0;
}
/**
* scmi_xfer_token_clear - Release the token
*
* @minfo: Pointer to Tx/Rx Message management info based on channel type
* @xfer: The xfer to act upon
*/
static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
struct scmi_xfer *xfer)
{
clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
}
/**
* scmi_xfer_get() - Allocate one message
*
* @handle: Pointer to SCMI entity handle
* @minfo: Pointer to Tx/Rx Message management info based on channel type
* @set_pending: If true a monotonic token is picked and the xfer is added to
* the pending hash table.
*
* Helper function which is used by various message functions that are
* exposed to clients of this driver for allocating a message traffic event.
*
* Picks an xfer from the free list @free_xfers (if any available) and, if
* required, sets a monotonically increasing token and stores the inflight xfer
* into the @pending_xfers hashtable for later retrieval.
*
* The successfully initialized xfer is refcounted.
*
* Context: Holds @xfer_lock while manipulating @xfer_alloc_table and
* @free_xfers.
*
* Return: 0 if all went fine, else corresponding error.
*/
static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
struct scmi_xfers_info *minfo,
bool set_pending)
{
int ret;
unsigned long flags;
struct scmi_xfer *xfer;
spin_lock_irqsave(&minfo->xfer_lock, flags);
if (hlist_empty(&minfo->free_xfers)) {
spin_unlock_irqrestore(&minfo->xfer_lock, flags);
return ERR_PTR(-ENOMEM);
}
/* grab an xfer from the free_list */
xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
hlist_del_init(&xfer->node);
/*
* Allocate transfer_id early so that can be used also as base for
* monotonic sequence number generation if needed.
*/
xfer->transfer_id = atomic_inc_return(&transfer_last_id);
if (set_pending) {
/* Pick and set monotonic token */
ret = scmi_xfer_token_set(minfo, xfer);
if (!ret) {
hash_add(minfo->pending_xfers, &xfer->node,
xfer->hdr.seq);
xfer->pending = true;
} else {
dev_err(handle->dev,
"Failed to get monotonic token %d\n", ret);
hlist_add_head(&xfer->node, &minfo->free_xfers);
xfer = ERR_PTR(ret);
}
}
if (!IS_ERR(xfer)) {
refcount_set(&xfer->users, 1);
atomic_set(&xfer->busy, SCMI_XFER_FREE);
}
spin_unlock_irqrestore(&minfo->xfer_lock, flags);
return xfer;
}
/**
* __scmi_xfer_put() - Release a message
*
* @minfo: Pointer to Tx/Rx Message management info based on channel type
* @xfer: message that was reserved by scmi_xfer_get
*
* After refcount check, possibly release an xfer, clearing the token slot,
* removing xfer from @pending_xfers and putting it back into free_xfers.
*
* This holds a spinlock to maintain integrity of internal data structures.
*/
static void
__scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
{
unsigned long flags;
spin_lock_irqsave(&minfo->xfer_lock, flags);
if (refcount_dec_and_test(&xfer->users)) {
if (xfer->pending) {
scmi_xfer_token_clear(minfo, xfer);
hash_del(&xfer->node);
xfer->pending = false;
}
hlist_add_head(&xfer->node, &minfo->free_xfers);
}
spin_unlock_irqrestore(&minfo->xfer_lock, flags);
}
/**
* scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id
*
* @minfo: Pointer to Tx/Rx Message management info based on channel type
* @xfer_id: Token ID to lookup in @pending_xfers
*
* Refcounting is untouched.
*
* Context: Assumes to be called with @xfer_lock already acquired.
*
* Return: A valid xfer on Success or error otherwise
*/
static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
{
struct scmi_xfer *xfer = NULL;
if (test_bit(xfer_id, minfo->xfer_alloc_table))
xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
return xfer ?: ERR_PTR(-EINVAL);
}
/**
* scmi_msg_response_validate - Validate message type against state of related
* xfer
*
* @cinfo: A reference to the channel descriptor.
* @msg_type: Message type to check
* @xfer: A reference to the xfer to validate against @msg_type
*
* This function checks if @msg_type is congruent with the current state of
* a pending @xfer; if an asynchronous delayed response is received before the
* related synchronous response (Out-of-Order Delayed Response) the missing
* synchronous response is assumed to be OK and completed, carrying on with the
* Delayed Response: this is done to address the case in which the underlying
* SCMI transport can deliver such out-of-order responses.
*
* Context: Assumes to be called with xfer->lock already acquired.
*
* Return: 0 on Success, error otherwise
*/
static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
u8 msg_type,
struct scmi_xfer *xfer)
{
/*
* Even if a response was indeed expected on this slot at this point,
* a buggy platform could wrongly reply feeding us an unexpected
* delayed response we're not prepared to handle: bail-out safely
* blaming firmware.
*/
if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
dev_err(cinfo->dev,
"Delayed Response for %d not expected! Buggy F/W ?\n",
xfer->hdr.seq);
return -EINVAL;
}
switch (xfer->state) {
case SCMI_XFER_SENT_OK:
if (msg_type == MSG_TYPE_DELAYED_RESP) {
/*
* Delayed Response expected but delivered earlier.
* Assume message RESPONSE was OK and skip state.
*/
xfer->hdr.status = SCMI_SUCCESS;
xfer->state = SCMI_XFER_RESP_OK;
complete(&xfer->done);
dev_warn(cinfo->dev,
"Received valid OoO Delayed Response for %d\n",
xfer->hdr.seq);
}
break;
case SCMI_XFER_RESP_OK:
if (msg_type != MSG_TYPE_DELAYED_RESP)
return -EINVAL;
break;
case SCMI_XFER_DRESP_OK:
/* No further message expected once in SCMI_XFER_DRESP_OK */
return -EINVAL;
}
return 0;
}
/**
* scmi_xfer_state_update - Update xfer state
*
* @xfer: A reference to the xfer to update
* @msg_type: Type of message being processed.
*
* Note that this message is assumed to have been already successfully validated
* by @scmi_msg_response_validate(), so here we just update the state.
*
* Context: Assumes to be called on an xfer exclusively acquired using the
* busy flag.
*/
static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
{
xfer->hdr.type = msg_type;
/* Unknown command types were already discarded earlier */
if (xfer->hdr.type == MSG_TYPE_COMMAND)
xfer->state = SCMI_XFER_RESP_OK;
else
xfer->state = SCMI_XFER_DRESP_OK;
}
static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
{
int ret;
ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
return ret == SCMI_XFER_FREE;
}
/**
* scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer
*
* @cinfo: A reference to the channel descriptor.
* @msg_hdr: A message header to use as lookup key
*
* When a valid xfer is found for the sequence number embedded in the provided
* msg_hdr, reference counting is properly updated and exclusive access to this
* xfer is granted till released with @scmi_xfer_command_release.
*
* Return: A valid @xfer on Success or error otherwise.
*/
static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
{
int ret;
unsigned long flags;
struct scmi_xfer *xfer;
struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
struct scmi_xfers_info *minfo = &info->tx_minfo;
u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
/* Are we even expecting this? */
spin_lock_irqsave(&minfo->xfer_lock, flags);
xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
if (IS_ERR(xfer)) {
dev_err(cinfo->dev,
"Message for %d type %d is not expected!\n",
xfer_id, msg_type);
spin_unlock_irqrestore(&minfo->xfer_lock, flags);
return xfer;
}
refcount_inc(&xfer->users);
spin_unlock_irqrestore(&minfo->xfer_lock, flags);
spin_lock_irqsave(&xfer->lock, flags);
ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
/*
* If a pending xfer was found which was also in a congruent state with
* the received message, acquire exclusive access to it setting the busy
* flag.
* Spins only on the rare limit condition of concurrent reception of
* RESP and DRESP for the same xfer.
*/
if (!ret) {
spin_until_cond(scmi_xfer_acquired(xfer));
scmi_xfer_state_update(xfer, msg_type);
}
spin_unlock_irqrestore(&xfer->lock, flags);
if (ret) {
dev_err(cinfo->dev,
"Invalid message type:%d for %d - HDR:0x%X state:%d\n",
msg_type, xfer_id, msg_hdr, xfer->state);
/* On error the refcount incremented above has to be dropped */
__scmi_xfer_put(minfo, xfer);
xfer = ERR_PTR(-EINVAL);
}
return xfer;
}
static inline void scmi_xfer_command_release(struct scmi_info *info,
struct scmi_xfer *xfer)
{
atomic_set(&xfer->busy, SCMI_XFER_FREE);
__scmi_xfer_put(&info->tx_minfo, xfer);
}
static inline void scmi_clear_channel(struct scmi_info *info,
struct scmi_chan_info *cinfo)
{
if (info->desc->ops->clear_channel)
info->desc->ops->clear_channel(cinfo);
}
static inline bool is_polling_required(struct scmi_chan_info *cinfo,
struct scmi_info *info)
{
return cinfo->no_completion_irq || info->desc->force_polling;
}
static inline bool is_transport_polling_capable(struct scmi_info *info)
{
return info->desc->ops->poll_done ||
info->desc->sync_cmds_completed_on_ret;
}
static inline bool is_polling_enabled(struct scmi_chan_info *cinfo,
struct scmi_info *info)
{
return is_polling_required(cinfo, info) &&
is_transport_polling_capable(info);
}
static void scmi_handle_notification(struct scmi_chan_info *cinfo,
u32 msg_hdr, void *priv)
{
struct scmi_xfer *xfer;
struct device *dev = cinfo->dev;
struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
struct scmi_xfers_info *minfo = &info->rx_minfo;
ktime_t ts;
ts = ktime_get_boottime();
xfer = scmi_xfer_get(cinfo->handle, minfo, false);
if (IS_ERR(xfer)) {
dev_err(dev, "failed to get free message slot (%ld)\n",
PTR_ERR(xfer));
scmi_clear_channel(info, cinfo);
return;
}
unpack_scmi_header(msg_hdr, &xfer->hdr);
if (priv)
/* Ensure order between xfer->priv store and following ops */
smp_store_mb(xfer->priv, priv);
info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
xfer);
scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
xfer->hdr.protocol_id, xfer->hdr.seq,
MSG_TYPE_NOTIFICATION);
__scmi_xfer_put(minfo, xfer);
scmi_clear_channel(info, cinfo);
}
static void scmi_handle_response(struct scmi_chan_info *cinfo,
u32 msg_hdr, void *priv)
{
struct scmi_xfer *xfer;
struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
if (IS_ERR(xfer)) {
if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
scmi_clear_channel(info, cinfo);
return;
}
/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
xfer->rx.len = info->desc->max_msg_size;
if (priv)
/* Ensure order between xfer->priv store and following ops */
smp_store_mb(xfer->priv, priv);
info->desc->ops->fetch_response(cinfo, xfer);
trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
xfer->hdr.protocol_id, xfer->hdr.seq,
xfer->hdr.type);
if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
scmi_clear_channel(info, cinfo);
complete(xfer->async_done);
} else {
complete(&xfer->done);
}
scmi_xfer_command_release(info, xfer);
}
/**
* scmi_rx_callback() - callback for receiving messages
*
* @cinfo: SCMI channel info
* @msg_hdr: Message header
* @priv: Transport specific private data.
*
* Processes one received message to appropriate transfer information and
* signals completion of the transfer.
*
* NOTE: This function will be invoked in IRQ context, hence should be
* as optimal as possible.
*/
void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
{
u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
switch (msg_type) {
case MSG_TYPE_NOTIFICATION:
scmi_handle_notification(cinfo, msg_hdr, priv);
break;
case MSG_TYPE_COMMAND:
case MSG_TYPE_DELAYED_RESP:
scmi_handle_response(cinfo, msg_hdr, priv);
break;
default:
WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
break;
}
}
/**
* xfer_put() - Release a transmit message
*
* @ph: Pointer to SCMI protocol handle
* @xfer: message that was reserved by xfer_get_init
*/
static void xfer_put(const struct scmi_protocol_handle *ph,
struct scmi_xfer *xfer)
{
const struct scmi_protocol_instance *pi = ph_to_pi(ph);
struct scmi_info *info = handle_to_scmi_info(pi->handle);
__scmi_xfer_put(&info->tx_minfo, xfer);
}
static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
struct scmi_xfer *xfer, ktime_t stop)
{
struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
/*
* Poll also on xfer->done so that polling can be forcibly terminated
* in case of out-of-order receptions of delayed responses
*/
return info->desc->ops->poll_done(cinfo, xfer) ||
try_wait_for_completion(&xfer->done) ||
ktime_after(ktime_get(), stop);
}
/**
* scmi_wait_for_message_response - An helper to group all the possible ways of
* waiting for a synchronous message response.
*
* @cinfo: SCMI channel info
* @xfer: Reference to the transfer being waited for.
*
* Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
* configuration flags like xfer->hdr.poll_completion.
*
* Return: 0 on Success, error otherwise.
*/
static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
struct scmi_xfer *xfer)
{
struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
struct device *dev = info->dev;
int ret = 0, timeout_ms = info->desc->max_rx_timeout_ms;
trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
xfer->hdr.protocol_id, xfer->hdr.seq,
timeout_ms,
xfer->hdr.poll_completion);
if (xfer->hdr.poll_completion) {
/*
* Real polling is needed only if transport has NOT declared
* itself to support synchronous commands replies.
*/
if (!info->desc->sync_cmds_completed_on_ret) {
/*
* Poll on xfer using transport provided .poll_done();
* assumes no completion interrupt was available.
*/
ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
xfer, stop));
if (ktime_after(ktime_get(), stop)) {
dev_err(dev,
"timed out in resp(caller: %pS) - polling\n",
(void *)_RET_IP_);
ret = -ETIMEDOUT;
}
}
if (!ret) {
unsigned long flags;
/*
* Do not fetch_response if an out-of-order delayed
* response is being processed.
*/
spin_lock_irqsave(&xfer->lock, flags);
if (xfer->state == SCMI_XFER_SENT_OK) {
info->desc->ops->fetch_response(cinfo, xfer);
xfer->state = SCMI_XFER_RESP_OK;
}
spin_unlock_irqrestore(&xfer->lock, flags);
}
} else {
/* And we wait for the response. */
if (!wait_for_completion_timeout(&xfer->done,
msecs_to_jiffies(timeout_ms))) {
dev_err(dev, "timed out in resp(caller: %pS)\n",
(void *)_RET_IP_);
ret = -ETIMEDOUT;
}
}
return ret;
}
/**
* do_xfer() - Do one transfer
*
* @ph: Pointer to SCMI protocol handle
* @xfer: Transfer to initiate and wait for response
*
* Return: -ETIMEDOUT in case of no response, if transmit error,
* return corresponding error, else if all goes well,
* return 0.
*/
static int do_xfer(const struct scmi_protocol_handle *ph,
struct scmi_xfer *xfer)
{
int ret;
const struct scmi_protocol_instance *pi = ph_to_pi(ph);
struct scmi_info *info = handle_to_scmi_info(pi->handle);
struct device *dev = info->dev;
struct scmi_chan_info *cinfo;
/* Check for polling request on custom command xfers at first */
if (xfer->hdr.poll_completion && !is_transport_polling_capable(info)) {
dev_warn_once(dev,
"Polling mode is not supported by transport.\n");
return -EINVAL;
}
cinfo = idr_find(&info->tx_idr, pi->proto->id);
if (unlikely(!cinfo))
return -EINVAL;
/* True ONLY if also supported by transport. */
if (is_polling_enabled(cinfo, info))
xfer->hdr.poll_completion = true;
/*
* Initialise protocol id now from protocol handle to avoid it being
* overridden by mistake (or malice) by the protocol code mangling with
* the scmi_xfer structure prior to this.
*/
xfer->hdr.protocol_id = pi->proto->id;
reinit_completion(&xfer->done);
trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
xfer->hdr.protocol_id, xfer->hdr.seq,
xfer->hdr.poll_completion);
xfer->state = SCMI_XFER_SENT_OK;
/*
* Even though spinlocking is not needed here since no race is possible
* on xfer->state due to the monotonically increasing tokens allocation,
* we must anyway ensure xfer->state initialization is not re-ordered
* after the .send_message() to be sure that on the RX path an early
* ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
*/
smp_mb();
ret = info->desc->ops->send_message(cinfo, xfer);
if (ret < 0) {
dev_dbg(dev, "Failed to send message %d\n", ret);
return ret;
}
ret = scmi_wait_for_message_response(cinfo, xfer);
if (!ret && xfer->hdr.status)
ret = scmi_to_linux_errno(xfer->hdr.status);
if (info->desc->ops->mark_txdone)
info->desc->ops->mark_txdone(cinfo, ret, xfer);
trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
xfer->hdr.protocol_id, xfer->hdr.seq, ret);
return ret;
}
static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
struct scmi_xfer *xfer)
{
const struct scmi_protocol_instance *pi = ph_to_pi(ph);
struct scmi_info *info = handle_to_scmi_info(pi->handle);
xfer->rx.len = info->desc->max_msg_size;
}
#define SCMI_MAX_RESPONSE_TIMEOUT (2 * MSEC_PER_SEC)
/**
* do_xfer_with_response() - Do one transfer and wait until the delayed
* response is received
*
* @ph: Pointer to SCMI protocol handle
* @xfer: Transfer to initiate and wait for response
*
* Using asynchronous commands in atomic/polling mode should be avoided since
* it could cause long busy-waiting here, so ignore polling for the delayed
* response and WARN if it was requested for this command transaction since
* upper layers should refrain from issuing such kind of requests.
*
* The only other option would have been to refrain from using any asynchronous
* command even if made available, when an atomic transport is detected, and
* instead forcibly use the synchronous version (thing that can be easily
* attained at the protocol layer), but this would also have led to longer
* stalls of the channel for synchronous commands and possibly timeouts.
* (in other words there is usually a good reason if a platform provides an
* asynchronous version of a command and we should prefer to use it...just not
* when using atomic/polling mode)
*
* Return: -ETIMEDOUT in case of no delayed response, if transmit error,
* return corresponding error, else if all goes well, return 0.
*/
static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
struct scmi_xfer *xfer)
{
int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
DECLARE_COMPLETION_ONSTACK(async_response);
xfer->async_done = &async_response;
/*
* Delayed responses should not be polled, so an async command should
* not have been used when requiring an atomic/poll context; WARN and
* perform instead a sleeping wait.
* (Note Async + IgnoreDelayedResponses are sent via do_xfer)
*/
WARN_ON_ONCE(xfer->hdr.poll_completion);
ret = do_xfer(ph, xfer);
if (!ret) {
if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
dev_err(ph->dev,
"timed out in delayed resp(caller: %pS)\n",
(void *)_RET_IP_);
ret = -ETIMEDOUT;
} else if (xfer->hdr.status) {
ret = scmi_to_linux_errno(xfer->hdr.status);
}
}
xfer->async_done = NULL;
return ret;
}
/**
* xfer_get_init() - Allocate and initialise one message for transmit
*
* @ph: Pointer to SCMI protocol handle
* @msg_id: Message identifier
* @tx_size: transmit message size
* @rx_size: receive message size
* @p: pointer to the allocated and initialised message
*
* This function allocates the message using @scmi_xfer_get and
* initialise the header.
*
* Return: 0 if all went fine with @p pointing to message, else
* corresponding error.
*/
static int xfer_get_init(const struct scmi_protocol_handle *ph,
u8 msg_id, size_t tx_size, size_t rx_size,
struct scmi_xfer **p)
{
int ret;
struct scmi_xfer *xfer;
const struct scmi_protocol_instance *pi = ph_to_pi(ph);
struct scmi_info *info = handle_to_scmi_info(pi->handle);
struct scmi_xfers_info *minfo = &info->tx_minfo;
struct device *dev = info->dev;
/* Ensure we have sane transfer sizes */
if (rx_size > info->desc->max_msg_size ||
tx_size > info->desc->max_msg_size)
return -ERANGE;
xfer = scmi_xfer_get(pi->handle, minfo, true);
if (IS_ERR(xfer)) {
ret = PTR_ERR(xfer);
dev_err(dev, "failed to get free message slot(%d)\n", ret);
return ret;
}
xfer->tx.len = tx_size;
xfer->rx.len = rx_size ? : info->desc->max_msg_size;
xfer->hdr.type = MSG_TYPE_COMMAND;
xfer->hdr.id = msg_id;
xfer->hdr.poll_completion = false;
*p = xfer;
return 0;
}
/**
* version_get() - command to get the revision of the SCMI entity
*
* @ph: Pointer to SCMI protocol handle
* @version: Holds returned version of protocol.
*
* Updates the SCMI information in the internal data structure.
*
* Return: 0 if all went fine, else return appropriate error.
*/
static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
{
int ret;
__le32 *rev_info;
struct scmi_xfer *t;
ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
if (ret)
return ret;
ret = do_xfer(ph, t);
if (!ret) {
rev_info = t->rx.buf;
*version = le32_to_cpu(*rev_info);
}
xfer_put(ph, t);
return ret;
}
/**
* scmi_set_protocol_priv - Set protocol specific data at init time
*
* @ph: A reference to the protocol handle.
* @priv: The private data to set.
*
* Return: 0 on Success
*/
static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
void *priv)
{
struct scmi_protocol_instance *pi = ph_to_pi(ph);
pi->priv = priv;
return 0;
}
/**
* scmi_get_protocol_priv - Set protocol specific data at init time
*
* @ph: A reference to the protocol handle.
*
* Return: Protocol private data if any was set.
*/
static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
{
const struct scmi_protocol_instance *pi = ph_to_pi(ph);
return pi->priv;
}
static const struct scmi_xfer_ops xfer_ops = {
.version_get = version_get,
.xfer_get_init = xfer_get_init,
.reset_rx_to_maxsz = reset_rx_to_maxsz,
.do_xfer = do_xfer,
.do_xfer_with_response = do_xfer_with_response,
.xfer_put = xfer_put,
};
/**
* scmi_revision_area_get - Retrieve version memory area.
*
* @ph: A reference to the protocol handle.
*
* A helper to grab the version memory area reference during SCMI Base protocol
* initialization.
*
* Return: A reference to the version memory area associated to the SCMI
* instance underlying this protocol handle.
*/
struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle *ph)
{
const struct scmi_protocol_instance *pi = ph_to_pi(ph);
return pi->handle->version;
}
/**
* scmi_alloc_init_protocol_instance - Allocate and initialize a protocol
* instance descriptor.
* @info: The reference to the related SCMI instance.
* @proto: The protocol descriptor.
*
* Allocate a new protocol instance descriptor, using the provided @proto
* description, against the specified SCMI instance @info, and initialize it;
* all resources management is handled via a dedicated per-protocol devres
* group.
*
* Context: Assumes to be called with @protocols_mtx already acquired.
* Return: A reference to a freshly allocated and initialized protocol instance
* or ERR_PTR on failure. On failure the @proto reference is at first
* put using @scmi_protocol_put() before releasing all the devres group.
*/
static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info *info,
const struct scmi_protocol *proto)
{
int ret = -ENOMEM;
void *gid;
struct scmi_protocol_instance *pi;
const struct scmi_handle *handle = &info->handle;
/* Protocol specific devres group */
gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
if (!gid) {
scmi_protocol_put(proto->id);
goto out;
}
pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
if (!pi)
goto clean;
pi->gid = gid;
pi->proto = proto;
pi->handle = handle;
pi->ph.dev = handle->dev;
pi->ph.xops = &xfer_ops;
pi->ph.set_priv = scmi_set_protocol_priv;
pi->ph.get_priv = scmi_get_protocol_priv;
refcount_set(&pi->users, 1);
/* proto->init is assured NON NULL by scmi_protocol_register */
ret = pi->proto->instance_init(&pi->ph);
if (ret)
goto clean;
ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
GFP_KERNEL);
if (ret != proto->id)
goto clean;
/*
* Warn but ignore events registration errors since we do not want
* to skip whole protocols if their notifications are messed up.
*/
if (pi->proto->events) {
ret = scmi_register_protocol_events(handle, pi->proto->id,
&pi->ph,
pi->proto->events);
if (ret)
dev_warn(handle->dev,
"Protocol:%X - Events Registration Failed - err:%d\n",
pi->proto->id, ret);
}
devres_close_group(handle->dev, pi->gid);
dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
return pi;
clean:
/* Take care to put the protocol module's owner before releasing all */
scmi_protocol_put(proto->id);
devres_release_group(handle->dev, gid);
out:
return ERR_PTR(ret);
}
/**
* scmi_get_protocol_instance - Protocol initialization helper.
* @handle: A reference to the SCMI platform instance.
* @protocol_id: The protocol being requested.
*
* In case the required protocol has never been requested before for this
* instance, allocate and initialize all the needed structures while handling
* resource allocation with a dedicated per-protocol devres subgroup.
*
* Return: A reference to an initialized protocol instance or error on failure:
* in particular returns -EPROBE_DEFER when the desired protocol could
* NOT be found.
*/
static struct scmi_protocol_instance * __must_check
scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
{
struct scmi_protocol_instance *pi;
struct scmi_info *info = handle_to_scmi_info(handle);
mutex_lock(&info->protocols_mtx);
pi = idr_find(&info->protocols, protocol_id);
if (pi) {
refcount_inc(&pi->users);
} else {
const struct scmi_protocol *proto;
/* Fails if protocol not registered on bus */
proto = scmi_protocol_get(protocol_id);
if (proto)
pi = scmi_alloc_init_protocol_instance(info, proto);
else
pi = ERR_PTR(-EPROBE_DEFER);
}
mutex_unlock(&info->protocols_mtx);
return pi;
}
/**
* scmi_protocol_acquire - Protocol acquire
* @handle: A reference to the SCMI platform instance.
* @protocol_id: The protocol being requested.
*
* Register a new user for the requested protocol on the specified SCMI
* platform instance, possibly triggering its initialization on first user.
*
* Return: 0 if protocol was acquired successfully.
*/
int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
{
return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
}
/**
* scmi_protocol_release - Protocol de-initialization helper.
* @handle: A reference to the SCMI platform instance.
* @protocol_id: The protocol being requested.
*
* Remove one user for the specified protocol and triggers de-initialization
* and resources de-allocation once the last user has gone.
*/
void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
{
struct scmi_info *info = handle_to_scmi_info(handle);
struct scmi_protocol_instance *pi;
mutex_lock(&info->protocols_mtx);
pi = idr_find(&info->protocols, protocol_id);
if (WARN_ON(!pi))
goto out;
if (refcount_dec_and_test(&pi->users)) {
void *gid = pi->gid;
if (pi->proto->events)
scmi_deregister_protocol_events(handle, protocol_id);
if (pi->proto->instance_deinit)
pi->proto->instance_deinit(&pi->ph);
idr_remove(&info->protocols, protocol_id);
scmi_protocol_put(protocol_id);
devres_release_group(handle->dev, gid);
dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
protocol_id);
}
out:
mutex_unlock(&info->protocols_mtx);
}
void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
u8 *prot_imp)
{
const struct scmi_protocol_instance *pi = ph_to_pi(ph);
struct scmi_info *info = handle_to_scmi_info(pi->handle);
info->protocols_imp = prot_imp;
}
static bool
scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
{
int i;
struct scmi_info *info = handle_to_scmi_info(handle);
if (!info->protocols_imp)
return false;
for (i = 0; i < MAX_PROTOCOLS_IMP; i++)
if (info->protocols_imp[i] == prot_id)
return true;
return false;
}
struct scmi_protocol_devres {
const struct scmi_handle *handle;
u8 protocol_id;
};
static void scmi_devm_release_protocol(struct device *dev, void *res)
{
struct scmi_protocol_devres *dres = res;
scmi_protocol_release(dres->handle, dres->protocol_id);
}
/**
* scmi_devm_protocol_get - Devres managed get protocol operations and handle
* @sdev: A reference to an scmi_device whose embedded struct device is to
* be used for devres accounting.
* @protocol_id: The protocol being requested.
* @ph: A pointer reference used to pass back the associated protocol handle.
*
* Get hold of a protocol accounting for its usage, eventually triggering its
* initialization, and returning the protocol specific operations and related
* protocol handle which will be used as first argument in most of the
* protocols operations methods.
* Being a devres based managed method, protocol hold will be automatically
* released, and possibly de-initialized on last user, once the SCMI driver
* owning the scmi_device is unbound from it.
*
* Return: A reference to the requested protocol operations or error.
* Must be checked for errors by caller.
*/
static const void __must_check *
scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
struct scmi_protocol_handle **ph)
{
struct scmi_protocol_instance *pi;
struct scmi_protocol_devres *dres;
struct scmi_handle *handle = sdev->handle;
if (!ph)
return ERR_PTR(-EINVAL);
dres = devres_alloc(scmi_devm_release_protocol,
sizeof(*dres), GFP_KERNEL);
if (!dres)
return ERR_PTR(-ENOMEM);
pi = scmi_get_protocol_instance(handle, protocol_id);
if (IS_ERR(pi)) {
devres_free(dres);
return pi;
}
dres->handle = handle;
dres->protocol_id = protocol_id;
devres_add(&sdev->dev, dres);
*ph = &pi->ph;
return pi->proto->ops;
}
static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
{
struct scmi_protocol_devres *dres = res;
if (WARN_ON(!dres || !data))
return 0;
return dres->protocol_id == *((u8 *)data);
}
/**
* scmi_devm_protocol_put - Devres managed put protocol operations and handle
* @sdev: A reference to an scmi_device whose embedded struct device is to
* be used for devres accounting.
* @protocol_id: The protocol being requested.
*
* Explicitly release a protocol hold previously obtained calling the above
* @scmi_devm_protocol_get.
*/
static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
{
int ret;
ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
scmi_devm_protocol_match, &protocol_id);
WARN_ON(ret);
}
/**
* scmi_is_transport_atomic - Method to check if underlying transport for an
* SCMI instance is configured as atomic.
*
* @handle: A reference to the SCMI platform instance.
* @atomic_threshold: An optional return value for the system wide currently
* configured threshold for atomic operations.
*
* Return: True if transport is configured as atomic
*/
static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
unsigned int *atomic_threshold)
{
bool ret;
struct scmi_info *info = handle_to_scmi_info(handle);
ret = info->desc->atomic_enabled && is_transport_polling_capable(info);
if (ret && atomic_threshold)
*atomic_threshold = info->atomic_threshold;
return ret;
}
static inline
struct scmi_handle *scmi_handle_get_from_info_unlocked(struct scmi_info *info)
{
info->users++;
return &info->handle;
}
/**
* scmi_handle_get() - Get the SCMI handle for a device
*
* @dev: pointer to device for which we want SCMI handle
*
* NOTE: The function does not track individual clients of the framework
* and is expected to be maintained by caller of SCMI protocol library.
* scmi_handle_put must be balanced with successful scmi_handle_get
*
* Return: pointer to handle if successful, NULL on error
*/
struct scmi_handle *scmi_handle_get(struct device *dev)
{
struct list_head *p;
struct scmi_info *info;
struct scmi_handle *handle = NULL;
mutex_lock(&scmi_list_mutex);
list_for_each(p, &scmi_list) {
info = list_entry(p, struct scmi_info, node);
if (dev->parent == info->dev) {
handle = scmi_handle_get_from_info_unlocked(info);
break;
}
}
mutex_unlock(&scmi_list_mutex);
return handle;
}
/**
* scmi_handle_put() - Release the handle acquired by scmi_handle_get
*
* @handle: handle acquired by scmi_handle_get
*
* NOTE: The function does not track individual clients of the framework
* and is expected to be maintained by caller of SCMI protocol library.
* scmi_handle_put must be balanced with successful scmi_handle_get
*
* Return: 0 is successfully released
* if null was passed, it returns -EINVAL;
*/
int scmi_handle_put(const struct scmi_handle *handle)
{
struct scmi_info *info;
if (!handle)
return -EINVAL;
info = handle_to_scmi_info(handle);
mutex_lock(&scmi_list_mutex);
if (!WARN_ON(!info->users))
info->users--;
mutex_unlock(&scmi_list_mutex);
return 0;
}
static int __scmi_xfer_info_init(struct scmi_info *sinfo,
struct scmi_xfers_info *info)
{
int i;
struct scmi_xfer *xfer;
struct device *dev = sinfo->dev;
const struct scmi_desc *desc = sinfo->desc;
/* Pre-allocated messages, no more than what hdr.seq can support */
if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
dev_err(dev,
"Invalid maximum messages %d, not in range [1 - %lu]\n",
info->max_msg, MSG_TOKEN_MAX);
return -EINVAL;
}
hash_init(info->pending_xfers);
/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(MSG_TOKEN_MAX),
sizeof(long), GFP_KERNEL);
if (!info->xfer_alloc_table)
return -ENOMEM;
/*
* Preallocate a number of xfers equal to max inflight messages,
* pre-initialize the buffer pointer to pre-allocated buffers and
* attach all of them to the free list
*/
INIT_HLIST_HEAD(&info->free_xfers);
for (i = 0; i < info->max_msg; i++) {
xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
if (!xfer)
return -ENOMEM;
xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
GFP_KERNEL);
if (!xfer->rx.buf)
return -ENOMEM;
xfer->tx.buf = xfer->rx.buf;
init_completion(&xfer->done);
spin_lock_init(&xfer->lock);
/* Add initialized xfer to the free list */
hlist_add_head(&xfer->node, &info->free_xfers);
}
spin_lock_init(&info->xfer_lock);
return 0;
}
static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
{
const struct scmi_desc *desc = sinfo->desc;
if (!desc->ops->get_max_msg) {
sinfo->tx_minfo.max_msg = desc->max_msg;
sinfo->rx_minfo.max_msg = desc->max_msg;
} else {
struct scmi_chan_info *base_cinfo;
base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
if (!base_cinfo)
return -EINVAL;
sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
/* RX channel is optional so can be skipped */
base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
if (base_cinfo)
sinfo->rx_minfo.max_msg =
desc->ops->get_max_msg(base_cinfo);
}
return 0;
}
static int scmi_xfer_info_init(struct scmi_info *sinfo)
{
int ret;
ret = scmi_channels_max_msg_configure(sinfo);
if (ret)
return ret;
ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
if (!ret && idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE))
ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
return ret;
}
static int scmi_chan_setup(struct scmi_info *info, struct device *dev,
int prot_id, bool tx)
{
int ret, idx;
struct scmi_chan_info *cinfo;
struct idr *idr;
/* Transmit channel is first entry i.e. index 0 */
idx = tx ? 0 : 1;
idr = tx ? &info->tx_idr : &info->rx_idr;
/* check if already allocated, used for multiple device per protocol */
cinfo = idr_find(idr, prot_id);
if (cinfo)
return 0;
if (!info->desc->ops->chan_available(dev, idx)) {
cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
return -EINVAL;
goto idr_alloc;
}
cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
if (!cinfo)
return -ENOMEM;
cinfo->dev = dev;
ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
if (ret)
return ret;
if (tx && is_polling_required(cinfo, info)) {
if (is_transport_polling_capable(info))
dev_info(dev,
"Enabled polling mode TX channel - prot_id:%d\n",
prot_id);
else
dev_warn(dev,
"Polling mode NOT supported by transport.\n");
}
idr_alloc:
ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
if (ret != prot_id) {
dev_err(dev, "unable to allocate SCMI idr slot err %d\n", ret);
return ret;
}
cinfo->handle = &info->handle;
return 0;
}
static inline int
scmi_txrx_setup(struct scmi_info *info, struct device *dev, int prot_id)
{
int ret = scmi_chan_setup(info, dev, prot_id, true);
if (!ret) /* Rx is optional, hence no error check */
scmi_chan_setup(info, dev, prot_id, false);
return ret;
}
/**
* scmi_get_protocol_device - Helper to get/create an SCMI device.
*
* @np: A device node representing a valid active protocols for the referred
* SCMI instance.
* @info: The referred SCMI instance for which we are getting/creating this
* device.
* @prot_id: The protocol ID.
* @name: The device name.
*
* Referring to the specific SCMI instance identified by @info, this helper
* takes care to return a properly initialized device matching the requested
* @proto_id and @name: if device was still not existent it is created as a
* child of the specified SCMI instance @info and its transport properly
* initialized as usual.
*
* Return: A properly initialized scmi device, NULL otherwise.
*/
static inline struct scmi_device *
scmi_get_protocol_device(struct device_node *np, struct scmi_info *info,
int prot_id, const char *name)
{
struct scmi_device *sdev;
/* Already created for this parent SCMI instance ? */
sdev = scmi_child_dev_find(info->dev, prot_id, name);
if (sdev)
return sdev;
pr_debug("Creating SCMI device (%s) for protocol %x\n", name, prot_id);
sdev = scmi_device_create(np, info->dev, prot_id, name);
if (!sdev) {
dev_err(info->dev, "failed to create %d protocol device\n",
prot_id);
return NULL;
}
if (scmi_txrx_setup(info, &sdev->dev, prot_id)) {
dev_err(&sdev->dev, "failed to setup transport\n");
scmi_device_destroy(sdev);
return NULL;
}
return sdev;
}
static inline void
scmi_create_protocol_device(struct device_node *np, struct scmi_info *info,
int prot_id, const char *name)
{
struct scmi_device *sdev;
sdev = scmi_get_protocol_device(np, info, prot_id, name);
if (!sdev)
return;
/* setup handle now as the transport is ready */
scmi_set_handle(sdev);
}
/**
* scmi_create_protocol_devices - Create devices for all pending requests for
* this SCMI instance.
*
* @np: The device node describing the protocol
* @info: The SCMI instance descriptor
* @prot_id: The protocol ID
*
* All devices previously requested for this instance (if any) are found and
* created by scanning the proper @&scmi_requested_devices entry.
*/
static void scmi_create_protocol_devices(struct device_node *np,
struct scmi_info *info, int prot_id)
{
struct list_head *phead;
mutex_lock(&scmi_requested_devices_mtx);
phead = idr_find(&scmi_requested_devices, prot_id);
if (phead) {
struct scmi_requested_dev *rdev;
list_for_each_entry(rdev, phead, node)
scmi_create_protocol_device(np, info, prot_id,
rdev->id_table->name);
}
mutex_unlock(&scmi_requested_devices_mtx);
}
/**
* scmi_protocol_device_request - Helper to request a device
*
* @id_table: A protocol/name pair descriptor for the device to be created.
*
* This helper let an SCMI driver request specific devices identified by the
* @id_table to be created for each active SCMI instance.
*
* The requested device name MUST NOT be already existent for any protocol;
* at first the freshly requested @id_table is annotated in the IDR table
* @scmi_requested_devices, then a matching device is created for each already
* active SCMI instance. (if any)
*
* This way the requested device is created straight-away for all the already
* initialized(probed) SCMI instances (handles) and it remains also annotated
* as pending creation if the requesting SCMI driver was loaded before some
* SCMI instance and related transports were available: when such late instance
* is probed, its probe will take care to scan the list of pending requested
* devices and create those on its own (see @scmi_create_protocol_devices and
* its enclosing loop)
*
* Return: 0 on Success
*/
int scmi_protocol_device_request(const struct scmi_device_id *id_table)
{
int ret = 0;
unsigned int id = 0;
struct list_head *head, *phead = NULL;
struct scmi_requested_dev *rdev;
struct scmi_info *info;
pr_debug("Requesting SCMI device (%s) for protocol %x\n",
id_table->name, id_table->protocol_id);
/*
* Search for the matching protocol rdev list and then search
* of any existent equally named device...fails if any duplicate found.
*/
mutex_lock(&scmi_requested_devices_mtx);
idr_for_each_entry(&scmi_requested_devices, head, id) {
if (!phead) {
/* A list found registered in the IDR is never empty */
rdev = list_first_entry(head, struct scmi_requested_dev,
node);
if (rdev->id_table->protocol_id ==
id_table->protocol_id)
phead = head;
}
list_for_each_entry(rdev, head, node) {
if (!strcmp(rdev->id_table->name, id_table->name)) {
pr_err("Ignoring duplicate request [%d] %s\n",
rdev->id_table->protocol_id,
rdev->id_table->name);
ret = -EINVAL;
goto out;
}
}
}
/*
* No duplicate found for requested id_table, so let's create a new
* requested device entry for this new valid request.
*/
rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
if (!rdev) {
ret = -ENOMEM;
goto out;
}
rdev->id_table = id_table;
/*
* Append the new requested device table descriptor to the head of the
* related protocol list, eventually creating such head if not already
* there.
*/
if (!phead) {
phead = kzalloc(sizeof(*phead), GFP_KERNEL);
if (!phead) {
kfree(rdev);
ret = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(phead);
ret = idr_alloc(&scmi_requested_devices, (void *)phead,
id_table->protocol_id,
id_table->protocol_id + 1, GFP_KERNEL);
if (ret != id_table->protocol_id) {
pr_err("Failed to save SCMI device - ret:%d\n", ret);
kfree(rdev);
kfree(phead);
ret = -EINVAL;
goto out;
}
ret = 0;
}
list_add(&rdev->node, phead);
/*
* Now effectively create and initialize the requested device for every
* already initialized SCMI instance which has registered the requested
* protocol as a valid active one: i.e. defined in DT and supported by
* current platform FW.
*/
mutex_lock(&scmi_list_mutex);
list_for_each_entry(info, &scmi_list, node) {
struct device_node *child;
child = idr_find(&info->active_protocols,
id_table->protocol_id);
if (child) {
struct scmi_device *sdev;
sdev = scmi_get_protocol_device(child, info,
id_table->protocol_id,
id_table->name);
/* Set handle if not already set: device existed */
if (sdev && !sdev->handle)
sdev->handle =
scmi_handle_get_from_info_unlocked(info);
} else {
dev_err(info->dev,
"Failed. SCMI protocol %d not active.\n",
id_table->protocol_id);
}
}
mutex_unlock(&scmi_list_mutex);
out:
mutex_unlock(&scmi_requested_devices_mtx);
return ret;
}
/**
* scmi_protocol_device_unrequest - Helper to unrequest a device
*
* @id_table: A protocol/name pair descriptor for the device to be unrequested.
*
* An helper to let an SCMI driver release its request about devices; note that
* devices are created and initialized once the first SCMI driver request them
* but they destroyed only on SCMI core unloading/unbinding.
*
* The current SCMI transport layer uses such devices as internal references and
* as such they could be shared as same transport between multiple drivers so
* that cannot be safely destroyed till the whole SCMI stack is removed.
* (unless adding further burden of refcounting.)
*/
void scmi_protocol_device_unrequest(const struct scmi_device_id *id_table)
{
struct list_head *phead;
pr_debug("Unrequesting SCMI device (%s) for protocol %x\n",
id_table->name, id_table->protocol_id);
mutex_lock(&scmi_requested_devices_mtx);
phead = idr_find(&scmi_requested_devices, id_table->protocol_id);
if (phead) {
struct scmi_requested_dev *victim, *tmp;
list_for_each_entry_safe(victim, tmp, phead, node) {
if (!strcmp(victim->id_table->name, id_table->name)) {
list_del(&victim->node);
kfree(victim);
break;
}
}
if (list_empty(phead)) {
idr_remove(&scmi_requested_devices,
id_table->protocol_id);
kfree(phead);
}
}
mutex_unlock(&scmi_requested_devices_mtx);
}
static int scmi_cleanup_txrx_channels(struct scmi_info *info)
{
int ret;
struct idr *idr = &info->tx_idr;
ret = idr_for_each(idr, info->desc->ops->chan_free, idr);
idr_destroy(&info->tx_idr);
idr = &info->rx_idr;
ret = idr_for_each(idr, info->desc->ops->chan_free, idr);
idr_destroy(&info->rx_idr);
return ret;
}
static int scmi_probe(struct platform_device *pdev)
{
int ret;
struct scmi_handle *handle;
const struct scmi_desc *desc;
struct scmi_info *info;
struct device *dev = &pdev->dev;
struct device_node *child, *np = dev->of_node;
desc = of_device_get_match_data(dev);
if (!desc)
return -EINVAL;
info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->dev = dev;
info->desc = desc;
INIT_LIST_HEAD(&info->node);
idr_init(&info->protocols);
mutex_init(&info->protocols_mtx);
idr_init(&info->active_protocols);
platform_set_drvdata(pdev, info);
idr_init(&info->tx_idr);
idr_init(&info->rx_idr);
handle = &info->handle;
handle->dev = info->dev;
handle->version = &info->version;
handle->devm_protocol_get = scmi_devm_protocol_get;
handle->devm_protocol_put = scmi_devm_protocol_put;
/* System wide atomic threshold for atomic ops .. if any */
if (!of_property_read_u32(np, "atomic-threshold-us",
&info->atomic_threshold))
dev_info(dev,
"SCMI System wide atomic threshold set to %d us\n",
info->atomic_threshold);
handle->is_transport_atomic = scmi_is_transport_atomic;
if (desc->ops->link_supplier) {
ret = desc->ops->link_supplier(dev);
if (ret)
return ret;
}
ret = scmi_txrx_setup(info, dev, SCMI_PROTOCOL_BASE);
if (ret)
return ret;
ret = scmi_xfer_info_init(info);
if (ret)
goto clear_txrx_setup;
if (scmi_notification_init(handle))
dev_err(dev, "SCMI Notifications NOT available.\n");
if (info->desc->atomic_enabled && !is_transport_polling_capable(info))
dev_err(dev,
"Transport is not polling capable. Atomic mode not supported.\n");
/*
* Trigger SCMI Base protocol initialization.
* It's mandatory and won't be ever released/deinit until the
* SCMI stack is shutdown/unloaded as a whole.
*/
ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
if (ret) {
dev_err(dev, "unable to communicate with SCMI\n");
goto notification_exit;
}
mutex_lock(&scmi_list_mutex);
list_add_tail(&info->node, &scmi_list);
mutex_unlock(&scmi_list_mutex);
for_each_available_child_of_node(np, child) {
u32 prot_id;
if (of_property_read_u32(child, "reg", &prot_id))
continue;
if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
dev_err(dev, "Out of range protocol %d\n", prot_id);
if (!scmi_is_protocol_implemented(handle, prot_id)) {
dev_err(dev, "SCMI protocol %d not implemented\n",
prot_id);
continue;
}
/*
* Save this valid DT protocol descriptor amongst
* @active_protocols for this SCMI instance/
*/
ret = idr_alloc(&info->active_protocols, child,
prot_id, prot_id + 1, GFP_KERNEL);
if (ret != prot_id) {
dev_err(dev, "SCMI protocol %d already activated. Skip\n",
prot_id);
continue;
}
of_node_get(child);
scmi_create_protocol_devices(child, info, prot_id);
}
return 0;
notification_exit:
scmi_notification_exit(&info->handle);
clear_txrx_setup:
scmi_cleanup_txrx_channels(info);
return ret;
}
void scmi_free_channel(struct scmi_chan_info *cinfo, struct idr *idr, int id)
{
idr_remove(idr, id);
}
static int scmi_remove(struct platform_device *pdev)
{
int ret = 0, id;
struct scmi_info *info = platform_get_drvdata(pdev);
struct device_node *child;
mutex_lock(&scmi_list_mutex);
if (info->users)
ret = -EBUSY;
else
list_del(&info->node);
mutex_unlock(&scmi_list_mutex);
if (ret)
return ret;
scmi_notification_exit(&info->handle);
mutex_lock(&info->protocols_mtx);
idr_destroy(&info->protocols);
mutex_unlock(&info->protocols_mtx);
idr_for_each_entry(&info->active_protocols, child, id)
of_node_put(child);
idr_destroy(&info->active_protocols);
/* Safe to free channels since no more users */
return scmi_cleanup_txrx_channels(info);
}
static ssize_t protocol_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scmi_info *info = dev_get_drvdata(dev);
return sprintf(buf, "%u.%u\n", info->version.major_ver,
info->version.minor_ver);
}
static DEVICE_ATTR_RO(protocol_version);
static ssize_t firmware_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scmi_info *info = dev_get_drvdata(dev);
return sprintf(buf, "0x%x\n", info->version.impl_ver);
}
static DEVICE_ATTR_RO(firmware_version);
static ssize_t vendor_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scmi_info *info = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", info->version.vendor_id);
}
static DEVICE_ATTR_RO(vendor_id);
static ssize_t sub_vendor_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scmi_info *info = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", info->version.sub_vendor_id);
}
static DEVICE_ATTR_RO(sub_vendor_id);
static struct attribute *versions_attrs[] = {
&dev_attr_firmware_version.attr,
&dev_attr_protocol_version.attr,
&dev_attr_vendor_id.attr,
&dev_attr_sub_vendor_id.attr,
NULL,
};
ATTRIBUTE_GROUPS(versions);
/* Each compatible listed below must have descriptor associated with it */
static const struct of_device_id scmi_of_match[] = {
#ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
{ .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
#endif
#ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
{ .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
#endif
#ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
{ .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
#endif
#ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
{ .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
#endif
{ /* Sentinel */ },
};
MODULE_DEVICE_TABLE(of, scmi_of_match);
static struct platform_driver scmi_driver = {
.driver = {
.name = "arm-scmi",
.of_match_table = scmi_of_match,
.dev_groups = versions_groups,
},
.probe = scmi_probe,
.remove = scmi_remove,
};
/**
* __scmi_transports_setup - Common helper to call transport-specific
* .init/.exit code if provided.
*
* @init: A flag to distinguish between init and exit.
*
* Note that, if provided, we invoke .init/.exit functions for all the
* transports currently compiled in.
*
* Return: 0 on Success.
*/
static inline int __scmi_transports_setup(bool init)
{
int ret = 0;
const struct of_device_id *trans;
for (trans = scmi_of_match; trans->data; trans++) {
const struct scmi_desc *tdesc = trans->data;
if ((init && !tdesc->transport_init) ||
(!init && !tdesc->transport_exit))
continue;
if (init)
ret = tdesc->transport_init();
else
tdesc->transport_exit();
if (ret) {
pr_err("SCMI transport %s FAILED initialization!\n",
trans->compatible);
break;
}
}
return ret;
}
static int __init scmi_transports_init(void)
{
return __scmi_transports_setup(true);
}
static void __exit scmi_transports_exit(void)
{
__scmi_transports_setup(false);
}
static int __init scmi_driver_init(void)
{
int ret;
/* Bail out if no SCMI transport was configured */
if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
return -EINVAL;
scmi_bus_init();
/* Initialize any compiled-in transport which provided an init/exit */
ret = scmi_transports_init();
if (ret)
return ret;
scmi_base_register();
scmi_clock_register();
scmi_perf_register();
scmi_power_register();
scmi_reset_register();
scmi_sensors_register();
scmi_voltage_register();
scmi_system_register();
return platform_driver_register(&scmi_driver);
}
subsys_initcall(scmi_driver_init);
static void __exit scmi_driver_exit(void)
{
scmi_base_unregister();
scmi_clock_unregister();
scmi_perf_unregister();
scmi_power_unregister();
scmi_reset_unregister();
scmi_sensors_unregister();
scmi_voltage_unregister();
scmi_system_unregister();
scmi_bus_exit();
scmi_transports_exit();
platform_driver_unregister(&scmi_driver);
}
module_exit(scmi_driver_exit);
MODULE_ALIAS("platform:arm-scmi");
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("ARM SCMI protocol driver");
MODULE_LICENSE("GPL v2");