OpenCloudOS-Kernel/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c

3032 lines
79 KiB
C

/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2008,2010 Intel Corporation
*/
#include <linux/intel-iommu.h>
#include <linux/dma-resv.h>
#include <linux/sync_file.h>
#include <linux/uaccess.h>
#include <drm/drm_syncobj.h>
#include "display/intel_frontbuffer.h"
#include "gem/i915_gem_ioctls.h"
#include "gt/intel_context.h"
#include "gt/intel_engine_pool.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_pm.h"
#include "gt/intel_ring.h"
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gem_context.h"
#include "i915_gem_ioctls.h"
#include "i915_sw_fence_work.h"
#include "i915_trace.h"
enum {
FORCE_CPU_RELOC = 1,
FORCE_GTT_RELOC,
FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
#define __EXEC_OBJECT_HAS_REF BIT(31)
#define __EXEC_OBJECT_HAS_PIN BIT(30)
#define __EXEC_OBJECT_HAS_FENCE BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
#define __EXEC_HAS_RELOC BIT(31)
#define __EXEC_VALIDATED BIT(30)
#define __EXEC_INTERNAL_FLAGS (~0u << 30)
#define UPDATE PIN_OFFSET_FIXED
#define BATCH_OFFSET_BIAS (256*1024)
#define __I915_EXEC_ILLEGAL_FLAGS \
(__I915_EXEC_UNKNOWN_FLAGS | \
I915_EXEC_CONSTANTS_MASK | \
I915_EXEC_RESOURCE_STREAMER)
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
22; \
})
#endif
/**
* DOC: User command execution
*
* Userspace submits commands to be executed on the GPU as an instruction
* stream within a GEM object we call a batchbuffer. This instructions may
* refer to other GEM objects containing auxiliary state such as kernels,
* samplers, render targets and even secondary batchbuffers. Userspace does
* not know where in the GPU memory these objects reside and so before the
* batchbuffer is passed to the GPU for execution, those addresses in the
* batchbuffer and auxiliary objects are updated. This is known as relocation,
* or patching. To try and avoid having to relocate each object on the next
* execution, userspace is told the location of those objects in this pass,
* but this remains just a hint as the kernel may choose a new location for
* any object in the future.
*
* At the level of talking to the hardware, submitting a batchbuffer for the
* GPU to execute is to add content to a buffer from which the HW
* command streamer is reading.
*
* 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
* Execlists, this command is not placed on the same buffer as the
* remaining items.
*
* 2. Add a command to invalidate caches to the buffer.
*
* 3. Add a batchbuffer start command to the buffer; the start command is
* essentially a token together with the GPU address of the batchbuffer
* to be executed.
*
* 4. Add a pipeline flush to the buffer.
*
* 5. Add a memory write command to the buffer to record when the GPU
* is done executing the batchbuffer. The memory write writes the
* global sequence number of the request, ``i915_request::global_seqno``;
* the i915 driver uses the current value in the register to determine
* if the GPU has completed the batchbuffer.
*
* 6. Add a user interrupt command to the buffer. This command instructs
* the GPU to issue an interrupt when the command, pipeline flush and
* memory write are completed.
*
* 7. Inform the hardware of the additional commands added to the buffer
* (by updating the tail pointer).
*
* Processing an execbuf ioctl is conceptually split up into a few phases.
*
* 1. Validation - Ensure all the pointers, handles and flags are valid.
* 2. Reservation - Assign GPU address space for every object
* 3. Relocation - Update any addresses to point to the final locations
* 4. Serialisation - Order the request with respect to its dependencies
* 5. Construction - Construct a request to execute the batchbuffer
* 6. Submission (at some point in the future execution)
*
* Reserving resources for the execbuf is the most complicated phase. We
* neither want to have to migrate the object in the address space, nor do
* we want to have to update any relocations pointing to this object. Ideally,
* we want to leave the object where it is and for all the existing relocations
* to match. If the object is given a new address, or if userspace thinks the
* object is elsewhere, we have to parse all the relocation entries and update
* the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
* all the target addresses in all of its objects match the value in the
* relocation entries and that they all match the presumed offsets given by the
* list of execbuffer objects. Using this knowledge, we know that if we haven't
* moved any buffers, all the relocation entries are valid and we can skip
* the update. (If userspace is wrong, the likely outcome is an impromptu GPU
* hang.) The requirement for using I915_EXEC_NO_RELOC are:
*
* The addresses written in the objects must match the corresponding
* reloc.presumed_offset which in turn must match the corresponding
* execobject.offset.
*
* Any render targets written to in the batch must be flagged with
* EXEC_OBJECT_WRITE.
*
* To avoid stalling, execobject.offset should match the current
* address of that object within the active context.
*
* The reservation is done is multiple phases. First we try and keep any
* object already bound in its current location - so as long as meets the
* constraints imposed by the new execbuffer. Any object left unbound after the
* first pass is then fitted into any available idle space. If an object does
* not fit, all objects are removed from the reservation and the process rerun
* after sorting the objects into a priority order (more difficult to fit
* objects are tried first). Failing that, the entire VM is cleared and we try
* to fit the execbuf once last time before concluding that it simply will not
* fit.
*
* A small complication to all of this is that we allow userspace not only to
* specify an alignment and a size for the object in the address space, but
* we also allow userspace to specify the exact offset. This objects are
* simpler to place (the location is known a priori) all we have to do is make
* sure the space is available.
*
* Once all the objects are in place, patching up the buried pointers to point
* to the final locations is a fairly simple job of walking over the relocation
* entry arrays, looking up the right address and rewriting the value into
* the object. Simple! ... The relocation entries are stored in user memory
* and so to access them we have to copy them into a local buffer. That copy
* has to avoid taking any pagefaults as they may lead back to a GEM object
* requiring the struct_mutex (i.e. recursive deadlock). So once again we split
* the relocation into multiple passes. First we try to do everything within an
* atomic context (avoid the pagefaults) which requires that we never wait. If
* we detect that we may wait, or if we need to fault, then we have to fallback
* to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
* bells yet?) Dropping the mutex means that we lose all the state we have
* built up so far for the execbuf and we must reset any global data. However,
* we do leave the objects pinned in their final locations - which is a
* potential issue for concurrent execbufs. Once we have left the mutex, we can
* allocate and copy all the relocation entries into a large array at our
* leisure, reacquire the mutex, reclaim all the objects and other state and
* then proceed to update any incorrect addresses with the objects.
*
* As we process the relocation entries, we maintain a record of whether the
* object is being written to. Using NORELOC, we expect userspace to provide
* this information instead. We also check whether we can skip the relocation
* by comparing the expected value inside the relocation entry with the target's
* final address. If they differ, we have to map the current object and rewrite
* the 4 or 8 byte pointer within.
*
* Serialising an execbuf is quite simple according to the rules of the GEM
* ABI. Execution within each context is ordered by the order of submission.
* Writes to any GEM object are in order of submission and are exclusive. Reads
* from a GEM object are unordered with respect to other reads, but ordered by
* writes. A write submitted after a read cannot occur before the read, and
* similarly any read submitted after a write cannot occur before the write.
* Writes are ordered between engines such that only one write occurs at any
* time (completing any reads beforehand) - using semaphores where available
* and CPU serialisation otherwise. Other GEM access obey the same rules, any
* write (either via mmaps using set-domain, or via pwrite) must flush all GPU
* reads before starting, and any read (either using set-domain or pread) must
* flush all GPU writes before starting. (Note we only employ a barrier before,
* we currently rely on userspace not concurrently starting a new execution
* whilst reading or writing to an object. This may be an advantage or not
* depending on how much you trust userspace not to shoot themselves in the
* foot.) Serialisation may just result in the request being inserted into
* a DAG awaiting its turn, but most simple is to wait on the CPU until
* all dependencies are resolved.
*
* After all of that, is just a matter of closing the request and handing it to
* the hardware (well, leaving it in a queue to be executed). However, we also
* offer the ability for batchbuffers to be run with elevated privileges so
* that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
* Before any batch is given extra privileges we first must check that it
* contains no nefarious instructions, we check that each instruction is from
* our whitelist and all registers are also from an allowed list. We first
* copy the user's batchbuffer to a shadow (so that the user doesn't have
* access to it, either by the CPU or GPU as we scan it) and then parse each
* instruction. If everything is ok, we set a flag telling the hardware to run
* the batchbuffer in trusted mode, otherwise the ioctl is rejected.
*/
struct i915_execbuffer {
struct drm_i915_private *i915; /** i915 backpointer */
struct drm_file *file; /** per-file lookup tables and limits */
struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
struct i915_vma **vma;
unsigned int *flags;
struct intel_engine_cs *engine; /** engine to queue the request to */
struct intel_context *context; /* logical state for the request */
struct i915_gem_context *gem_context; /** caller's context */
struct i915_request *request; /** our request to build */
struct i915_vma *batch; /** identity of the batch obj/vma */
struct i915_vma *trampoline; /** trampoline used for chaining */
/** actual size of execobj[] as we may extend it for the cmdparser */
unsigned int buffer_count;
/** list of vma not yet bound during reservation phase */
struct list_head unbound;
/** list of vma that have execobj.relocation_count */
struct list_head relocs;
/**
* Track the most recently used object for relocations, as we
* frequently have to perform multiple relocations within the same
* obj/page
*/
struct reloc_cache {
struct drm_mm_node node; /** temporary GTT binding */
unsigned long vaddr; /** Current kmap address */
unsigned long page; /** Currently mapped page index */
unsigned int gen; /** Cached value of INTEL_GEN */
bool use_64bit_reloc : 1;
bool has_llc : 1;
bool has_fence : 1;
bool needs_unfenced : 1;
struct i915_request *rq;
u32 *rq_cmd;
unsigned int rq_size;
} reloc_cache;
u64 invalid_flags; /** Set of execobj.flags that are invalid */
u32 context_flags; /** Set of execobj.flags to insert from the ctx */
u32 batch_start_offset; /** Location within object of batch */
u32 batch_len; /** Length of batch within object */
u32 batch_flags; /** Flags composed for emit_bb_start() */
/**
* Indicate either the size of the hastable used to resolve
* relocation handles, or if negative that we are using a direct
* index into the execobj[].
*/
int lut_size;
struct hlist_head *buckets; /** ht for relocation handles */
};
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
return intel_engine_requires_cmd_parser(eb->engine) ||
(intel_engine_using_cmd_parser(eb->engine) &&
eb->args->batch_len);
}
static int eb_create(struct i915_execbuffer *eb)
{
if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
unsigned int size = 1 + ilog2(eb->buffer_count);
/*
* Without a 1:1 association between relocation handles and
* the execobject[] index, we instead create a hashtable.
* We size it dynamically based on available memory, starting
* first with 1:1 assocative hash and scaling back until
* the allocation succeeds.
*
* Later on we use a positive lut_size to indicate we are
* using this hashtable, and a negative value to indicate a
* direct lookup.
*/
do {
gfp_t flags;
/* While we can still reduce the allocation size, don't
* raise a warning and allow the allocation to fail.
* On the last pass though, we want to try as hard
* as possible to perform the allocation and warn
* if it fails.
*/
flags = GFP_KERNEL;
if (size > 1)
flags |= __GFP_NORETRY | __GFP_NOWARN;
eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
flags);
if (eb->buckets)
break;
} while (--size);
if (unlikely(!size))
return -ENOMEM;
eb->lut_size = size;
} else {
eb->lut_size = -eb->buffer_count;
}
return 0;
}
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
const struct i915_vma *vma,
unsigned int flags)
{
if (vma->node.size < entry->pad_to_size)
return true;
if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
return true;
if (flags & EXEC_OBJECT_PINNED &&
vma->node.start != entry->offset)
return true;
if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
vma->node.start < BATCH_OFFSET_BIAS)
return true;
if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
(vma->node.start + vma->node.size - 1) >> 32)
return true;
if (flags & __EXEC_OBJECT_NEEDS_MAP &&
!i915_vma_is_map_and_fenceable(vma))
return true;
return false;
}
static inline bool
eb_pin_vma(struct i915_execbuffer *eb,
const struct drm_i915_gem_exec_object2 *entry,
struct i915_vma *vma)
{
unsigned int exec_flags = *vma->exec_flags;
u64 pin_flags;
if (vma->node.size)
pin_flags = vma->node.start;
else
pin_flags = entry->offset & PIN_OFFSET_MASK;
pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
pin_flags |= PIN_GLOBAL;
if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
return false;
if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
if (unlikely(i915_vma_pin_fence(vma))) {
i915_vma_unpin(vma);
return false;
}
if (vma->fence)
exec_flags |= __EXEC_OBJECT_HAS_FENCE;
}
*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
return !eb_vma_misplaced(entry, vma, exec_flags);
}
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
{
GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
__i915_vma_unpin_fence(vma);
__i915_vma_unpin(vma);
}
static inline void
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
{
if (!(*flags & __EXEC_OBJECT_HAS_PIN))
return;
__eb_unreserve_vma(vma, *flags);
*flags &= ~__EXEC_OBJECT_RESERVED;
}
static int
eb_validate_vma(struct i915_execbuffer *eb,
struct drm_i915_gem_exec_object2 *entry,
struct i915_vma *vma)
{
struct drm_i915_private *i915 = eb->i915;
if (unlikely(entry->flags & eb->invalid_flags))
return -EINVAL;
if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
return -EINVAL;
/*
* Offset can be used as input (EXEC_OBJECT_PINNED), reject
* any non-page-aligned or non-canonical addresses.
*/
if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
return -EINVAL;
/* pad_to_size was once a reserved field, so sanitize it */
if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
if (unlikely(offset_in_page(entry->pad_to_size)))
return -EINVAL;
} else {
entry->pad_to_size = 0;
}
if (unlikely(vma->exec_flags)) {
drm_dbg(&i915->drm,
"Object [handle %d, index %d] appears more than once in object list\n",
entry->handle, (int)(entry - eb->exec));
return -EINVAL;
}
/*
* From drm_mm perspective address space is continuous,
* so from this point we're always using non-canonical
* form internally.
*/
entry->offset = gen8_noncanonical_addr(entry->offset);
if (!eb->reloc_cache.has_fence) {
entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
} else {
if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
eb->reloc_cache.needs_unfenced) &&
i915_gem_object_is_tiled(vma->obj))
entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
}
if (!(entry->flags & EXEC_OBJECT_PINNED))
entry->flags |= eb->context_flags;
return 0;
}
static int
eb_add_vma(struct i915_execbuffer *eb,
unsigned int i, unsigned batch_idx,
struct i915_vma *vma)
{
struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
int err;
GEM_BUG_ON(i915_vma_is_closed(vma));
if (!(eb->args->flags & __EXEC_VALIDATED)) {
err = eb_validate_vma(eb, entry, vma);
if (unlikely(err))
return err;
}
if (eb->lut_size > 0) {
vma->exec_handle = entry->handle;
hlist_add_head(&vma->exec_node,
&eb->buckets[hash_32(entry->handle,
eb->lut_size)]);
}
if (entry->relocation_count)
list_add_tail(&vma->reloc_link, &eb->relocs);
/*
* Stash a pointer from the vma to execobj, so we can query its flags,
* size, alignment etc as provided by the user. Also we stash a pointer
* to the vma inside the execobj so that we can use a direct lookup
* to find the right target VMA when doing relocations.
*/
eb->vma[i] = vma;
eb->flags[i] = entry->flags;
vma->exec_flags = &eb->flags[i];
/*
* SNA is doing fancy tricks with compressing batch buffers, which leads
* to negative relocation deltas. Usually that works out ok since the
* relocate address is still positive, except when the batch is placed
* very low in the GTT. Ensure this doesn't happen.
*
* Note that actual hangs have only been observed on gen7, but for
* paranoia do it everywhere.
*/
if (i == batch_idx) {
if (entry->relocation_count &&
!(eb->flags[i] & EXEC_OBJECT_PINNED))
eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
if (eb->reloc_cache.has_fence)
eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
eb->batch = vma;
}
err = 0;
if (eb_pin_vma(eb, entry, vma)) {
if (entry->offset != vma->node.start) {
entry->offset = vma->node.start | UPDATE;
eb->args->flags |= __EXEC_HAS_RELOC;
}
} else {
eb_unreserve_vma(vma, vma->exec_flags);
list_add_tail(&vma->exec_link, &eb->unbound);
if (drm_mm_node_allocated(&vma->node))
err = i915_vma_unbind(vma);
if (unlikely(err))
vma->exec_flags = NULL;
}
return err;
}
static inline int use_cpu_reloc(const struct reloc_cache *cache,
const struct drm_i915_gem_object *obj)
{
if (!i915_gem_object_has_struct_page(obj))
return false;
if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
return true;
if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
return false;
return (cache->has_llc ||
obj->cache_dirty ||
obj->cache_level != I915_CACHE_NONE);
}
static int eb_reserve_vma(const struct i915_execbuffer *eb,
struct i915_vma *vma)
{
struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
unsigned int exec_flags = *vma->exec_flags;
u64 pin_flags;
int err;
pin_flags = PIN_USER | PIN_NONBLOCK;
if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
pin_flags |= PIN_GLOBAL;
/*
* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
* limit address to the first 4GBs for unflagged objects.
*/
if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
pin_flags |= PIN_ZONE_4G;
if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
pin_flags |= PIN_MAPPABLE;
if (exec_flags & EXEC_OBJECT_PINNED) {
pin_flags |= entry->offset | PIN_OFFSET_FIXED;
pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
}
err = i915_vma_pin(vma,
entry->pad_to_size, entry->alignment,
pin_flags);
if (err)
return err;
if (entry->offset != vma->node.start) {
entry->offset = vma->node.start | UPDATE;
eb->args->flags |= __EXEC_HAS_RELOC;
}
if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
err = i915_vma_pin_fence(vma);
if (unlikely(err)) {
i915_vma_unpin(vma);
return err;
}
if (vma->fence)
exec_flags |= __EXEC_OBJECT_HAS_FENCE;
}
*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
return 0;
}
static int eb_reserve(struct i915_execbuffer *eb)
{
const unsigned int count = eb->buffer_count;
struct list_head last;
struct i915_vma *vma;
unsigned int i, pass;
int err;
/*
* Attempt to pin all of the buffers into the GTT.
* This is done in 3 phases:
*
* 1a. Unbind all objects that do not match the GTT constraints for
* the execbuffer (fenceable, mappable, alignment etc).
* 1b. Increment pin count for already bound objects.
* 2. Bind new objects.
* 3. Decrement pin count.
*
* This avoid unnecessary unbinding of later objects in order to make
* room for the earlier objects *unless* we need to defragment.
*/
pass = 0;
err = 0;
do {
list_for_each_entry(vma, &eb->unbound, exec_link) {
err = eb_reserve_vma(eb, vma);
if (err)
break;
}
if (err != -ENOSPC)
return err;
/* Resort *all* the objects into priority order */
INIT_LIST_HEAD(&eb->unbound);
INIT_LIST_HEAD(&last);
for (i = 0; i < count; i++) {
unsigned int flags = eb->flags[i];
struct i915_vma *vma = eb->vma[i];
if (flags & EXEC_OBJECT_PINNED &&
flags & __EXEC_OBJECT_HAS_PIN)
continue;
eb_unreserve_vma(vma, &eb->flags[i]);
if (flags & EXEC_OBJECT_PINNED)
/* Pinned must have their slot */
list_add(&vma->exec_link, &eb->unbound);
else if (flags & __EXEC_OBJECT_NEEDS_MAP)
/* Map require the lowest 256MiB (aperture) */
list_add_tail(&vma->exec_link, &eb->unbound);
else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
/* Prioritise 4GiB region for restricted bo */
list_add(&vma->exec_link, &last);
else
list_add_tail(&vma->exec_link, &last);
}
list_splice_tail(&last, &eb->unbound);
switch (pass++) {
case 0:
break;
case 1:
/* Too fragmented, unbind everything and retry */
mutex_lock(&eb->context->vm->mutex);
err = i915_gem_evict_vm(eb->context->vm);
mutex_unlock(&eb->context->vm->mutex);
if (err)
return err;
break;
default:
return -ENOSPC;
}
} while (1);
}
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
if (eb->args->flags & I915_EXEC_BATCH_FIRST)
return 0;
else
return eb->buffer_count - 1;
}
static int eb_select_context(struct i915_execbuffer *eb)
{
struct i915_gem_context *ctx;
ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
if (unlikely(!ctx))
return -ENOENT;
eb->gem_context = ctx;
if (rcu_access_pointer(ctx->vm))
eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
eb->context_flags = 0;
if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
return 0;
}
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
struct drm_i915_gem_object *obj;
unsigned int i, batch;
int err;
INIT_LIST_HEAD(&eb->relocs);
INIT_LIST_HEAD(&eb->unbound);
batch = eb_batch_index(eb);
mutex_lock(&eb->gem_context->mutex);
if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
err = -ENOENT;
goto err_ctx;
}
for (i = 0; i < eb->buffer_count; i++) {
u32 handle = eb->exec[i].handle;
struct i915_lut_handle *lut;
struct i915_vma *vma;
vma = radix_tree_lookup(handles_vma, handle);
if (likely(vma))
goto add_vma;
obj = i915_gem_object_lookup(eb->file, handle);
if (unlikely(!obj)) {
err = -ENOENT;
goto err_vma;
}
vma = i915_vma_instance(obj, eb->context->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_obj;
}
lut = i915_lut_handle_alloc();
if (unlikely(!lut)) {
err = -ENOMEM;
goto err_obj;
}
err = radix_tree_insert(handles_vma, handle, vma);
if (unlikely(err)) {
i915_lut_handle_free(lut);
goto err_obj;
}
/* transfer ref to lut */
if (!atomic_fetch_inc(&vma->open_count))
i915_vma_reopen(vma);
lut->handle = handle;
lut->ctx = eb->gem_context;
i915_gem_object_lock(obj);
list_add(&lut->obj_link, &obj->lut_list);
i915_gem_object_unlock(obj);
add_vma:
err = eb_add_vma(eb, i, batch, vma);
if (unlikely(err))
goto err_vma;
GEM_BUG_ON(vma != eb->vma[i]);
GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
}
mutex_unlock(&eb->gem_context->mutex);
eb->args->flags |= __EXEC_VALIDATED;
return eb_reserve(eb);
err_obj:
i915_gem_object_put(obj);
err_vma:
eb->vma[i] = NULL;
err_ctx:
mutex_unlock(&eb->gem_context->mutex);
return err;
}
static struct i915_vma *
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
{
if (eb->lut_size < 0) {
if (handle >= -eb->lut_size)
return NULL;
return eb->vma[handle];
} else {
struct hlist_head *head;
struct i915_vma *vma;
head = &eb->buckets[hash_32(handle, eb->lut_size)];
hlist_for_each_entry(vma, head, exec_node) {
if (vma->exec_handle == handle)
return vma;
}
return NULL;
}
}
static void eb_release_vmas(const struct i915_execbuffer *eb)
{
const unsigned int count = eb->buffer_count;
unsigned int i;
for (i = 0; i < count; i++) {
struct i915_vma *vma = eb->vma[i];
unsigned int flags = eb->flags[i];
if (!vma)
break;
GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
vma->exec_flags = NULL;
eb->vma[i] = NULL;
if (flags & __EXEC_OBJECT_HAS_PIN)
__eb_unreserve_vma(vma, flags);
if (flags & __EXEC_OBJECT_HAS_REF)
i915_vma_put(vma);
}
}
static void eb_reset_vmas(const struct i915_execbuffer *eb)
{
eb_release_vmas(eb);
if (eb->lut_size > 0)
memset(eb->buckets, 0,
sizeof(struct hlist_head) << eb->lut_size);
}
static void eb_destroy(const struct i915_execbuffer *eb)
{
GEM_BUG_ON(eb->reloc_cache.rq);
if (eb->lut_size > 0)
kfree(eb->buckets);
}
static inline u64
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
const struct i915_vma *target)
{
return gen8_canonical_addr((int)reloc->delta + target->node.start);
}
static void reloc_cache_init(struct reloc_cache *cache,
struct drm_i915_private *i915)
{
cache->page = -1;
cache->vaddr = 0;
/* Must be a variable in the struct to allow GCC to unroll. */
cache->gen = INTEL_GEN(i915);
cache->has_llc = HAS_LLC(i915);
cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
cache->has_fence = cache->gen < 4;
cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
cache->node.flags = 0;
cache->rq = NULL;
cache->rq_size = 0;
}
static inline void *unmask_page(unsigned long p)
{
return (void *)(uintptr_t)(p & PAGE_MASK);
}
static inline unsigned int unmask_flags(unsigned long p)
{
return p & ~PAGE_MASK;
}
#define KMAP 0x4 /* after CLFLUSH_FLAGS */
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
struct drm_i915_private *i915 =
container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
return &i915->ggtt;
}
static void reloc_gpu_flush(struct reloc_cache *cache)
{
GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
i915_gem_object_unpin_map(cache->rq->batch->obj);
intel_gt_chipset_flush(cache->rq->engine->gt);
i915_request_add(cache->rq);
cache->rq = NULL;
}
static void reloc_cache_reset(struct reloc_cache *cache)
{
void *vaddr;
if (cache->rq)
reloc_gpu_flush(cache);
if (!cache->vaddr)
return;
vaddr = unmask_page(cache->vaddr);
if (cache->vaddr & KMAP) {
if (cache->vaddr & CLFLUSH_AFTER)
mb();
kunmap_atomic(vaddr);
i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
} else {
struct i915_ggtt *ggtt = cache_to_ggtt(cache);
intel_gt_flush_ggtt_writes(ggtt->vm.gt);
io_mapping_unmap_atomic((void __iomem *)vaddr);
if (drm_mm_node_allocated(&cache->node)) {
ggtt->vm.clear_range(&ggtt->vm,
cache->node.start,
cache->node.size);
mutex_lock(&ggtt->vm.mutex);
drm_mm_remove_node(&cache->node);
mutex_unlock(&ggtt->vm.mutex);
} else {
i915_vma_unpin((struct i915_vma *)cache->node.mm);
}
}
cache->vaddr = 0;
cache->page = -1;
}
static void *reloc_kmap(struct drm_i915_gem_object *obj,
struct reloc_cache *cache,
unsigned long page)
{
void *vaddr;
if (cache->vaddr) {
kunmap_atomic(unmask_page(cache->vaddr));
} else {
unsigned int flushes;
int err;
err = i915_gem_object_prepare_write(obj, &flushes);
if (err)
return ERR_PTR(err);
BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
cache->vaddr = flushes | KMAP;
cache->node.mm = (void *)obj;
if (flushes)
mb();
}
vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
cache->page = page;
return vaddr;
}
static void *reloc_iomap(struct drm_i915_gem_object *obj,
struct reloc_cache *cache,
unsigned long page)
{
struct i915_ggtt *ggtt = cache_to_ggtt(cache);
unsigned long offset;
void *vaddr;
if (cache->vaddr) {
intel_gt_flush_ggtt_writes(ggtt->vm.gt);
io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
} else {
struct i915_vma *vma;
int err;
if (i915_gem_object_is_tiled(obj))
return ERR_PTR(-EINVAL);
if (use_cpu_reloc(cache, obj))
return NULL;
i915_gem_object_lock(obj);
err = i915_gem_object_set_to_gtt_domain(obj, true);
i915_gem_object_unlock(obj);
if (err)
return ERR_PTR(err);
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
PIN_MAPPABLE |
PIN_NONBLOCK /* NOWARN */ |
PIN_NOEVICT);
if (IS_ERR(vma)) {
memset(&cache->node, 0, sizeof(cache->node));
mutex_lock(&ggtt->vm.mutex);
err = drm_mm_insert_node_in_range
(&ggtt->vm.mm, &cache->node,
PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
0, ggtt->mappable_end,
DRM_MM_INSERT_LOW);
mutex_unlock(&ggtt->vm.mutex);
if (err) /* no inactive aperture space, use cpu reloc */
return NULL;
} else {
cache->node.start = vma->node.start;
cache->node.mm = (void *)vma;
}
}
offset = cache->node.start;
if (drm_mm_node_allocated(&cache->node)) {
ggtt->vm.insert_page(&ggtt->vm,
i915_gem_object_get_dma_address(obj, page),
offset, I915_CACHE_NONE, 0);
} else {
offset += page << PAGE_SHIFT;
}
vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
offset);
cache->page = page;
cache->vaddr = (unsigned long)vaddr;
return vaddr;
}
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
struct reloc_cache *cache,
unsigned long page)
{
void *vaddr;
if (cache->page == page) {
vaddr = unmask_page(cache->vaddr);
} else {
vaddr = NULL;
if ((cache->vaddr & KMAP) == 0)
vaddr = reloc_iomap(obj, cache, page);
if (!vaddr)
vaddr = reloc_kmap(obj, cache, page);
}
return vaddr;
}
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
if (flushes & CLFLUSH_BEFORE) {
clflushopt(addr);
mb();
}
*addr = value;
/*
* Writes to the same cacheline are serialised by the CPU
* (including clflush). On the write path, we only require
* that it hits memory in an orderly fashion and place
* mb barriers at the start and end of the relocation phase
* to ensure ordering of clflush wrt to the system.
*/
if (flushes & CLFLUSH_AFTER)
clflushopt(addr);
} else
*addr = value;
}
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
struct drm_i915_gem_object *obj = vma->obj;
int err;
i915_vma_lock(vma);
if (obj->cache_dirty & ~obj->cache_coherent)
i915_gem_clflush_object(obj, 0);
obj->write_domain = 0;
err = i915_request_await_object(rq, vma->obj, true);
if (err == 0)
err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
i915_vma_unlock(vma);
return err;
}
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
struct i915_vma *vma,
unsigned int len)
{
struct reloc_cache *cache = &eb->reloc_cache;
struct intel_engine_pool_node *pool;
struct i915_request *rq;
struct i915_vma *batch;
u32 *cmd;
int err;
pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
if (IS_ERR(pool))
return PTR_ERR(pool);
cmd = i915_gem_object_pin_map(pool->obj,
cache->has_llc ?
I915_MAP_FORCE_WB :
I915_MAP_FORCE_WC);
if (IS_ERR(cmd)) {
err = PTR_ERR(cmd);
goto out_pool;
}
batch = i915_vma_instance(pool->obj, vma->vm, NULL);
if (IS_ERR(batch)) {
err = PTR_ERR(batch);
goto err_unmap;
}
err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
if (err)
goto err_unmap;
rq = i915_request_create(eb->context);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_unpin;
}
err = intel_engine_pool_mark_active(pool, rq);
if (err)
goto err_request;
err = reloc_move_to_gpu(rq, vma);
if (err)
goto err_request;
err = eb->engine->emit_bb_start(rq,
batch->node.start, PAGE_SIZE,
cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
if (err)
goto skip_request;
i915_vma_lock(batch);
err = i915_request_await_object(rq, batch->obj, false);
if (err == 0)
err = i915_vma_move_to_active(batch, rq, 0);
i915_vma_unlock(batch);
if (err)
goto skip_request;
rq->batch = batch;
i915_vma_unpin(batch);
cache->rq = rq;
cache->rq_cmd = cmd;
cache->rq_size = 0;
/* Return with batch mapping (cmd) still pinned */
goto out_pool;
skip_request:
i915_request_skip(rq, err);
err_request:
i915_request_add(rq);
err_unpin:
i915_vma_unpin(batch);
err_unmap:
i915_gem_object_unpin_map(pool->obj);
out_pool:
intel_engine_pool_put(pool);
return err;
}
static u32 *reloc_gpu(struct i915_execbuffer *eb,
struct i915_vma *vma,
unsigned int len)
{
struct reloc_cache *cache = &eb->reloc_cache;
u32 *cmd;
if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
reloc_gpu_flush(cache);
if (unlikely(!cache->rq)) {
int err;
if (!intel_engine_can_store_dword(eb->engine))
return ERR_PTR(-ENODEV);
err = __reloc_gpu_alloc(eb, vma, len);
if (unlikely(err))
return ERR_PTR(err);
}
cmd = cache->rq_cmd + cache->rq_size;
cache->rq_size += len;
return cmd;
}
static u64
relocate_entry(struct i915_vma *vma,
const struct drm_i915_gem_relocation_entry *reloc,
struct i915_execbuffer *eb,
const struct i915_vma *target)
{
u64 offset = reloc->offset;
u64 target_offset = relocation_target(reloc, target);
bool wide = eb->reloc_cache.use_64bit_reloc;
void *vaddr;
if (!eb->reloc_cache.vaddr &&
(DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
!dma_resv_test_signaled_rcu(vma->resv, true))) {
const unsigned int gen = eb->reloc_cache.gen;
unsigned int len;
u32 *batch;
u64 addr;
if (wide)
len = offset & 7 ? 8 : 5;
else if (gen >= 4)
len = 4;
else
len = 3;
batch = reloc_gpu(eb, vma, len);
if (IS_ERR(batch))
goto repeat;
addr = gen8_canonical_addr(vma->node.start + offset);
if (wide) {
if (offset & 7) {
*batch++ = MI_STORE_DWORD_IMM_GEN4;
*batch++ = lower_32_bits(addr);
*batch++ = upper_32_bits(addr);
*batch++ = lower_32_bits(target_offset);
addr = gen8_canonical_addr(addr + 4);
*batch++ = MI_STORE_DWORD_IMM_GEN4;
*batch++ = lower_32_bits(addr);
*batch++ = upper_32_bits(addr);
*batch++ = upper_32_bits(target_offset);
} else {
*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
*batch++ = lower_32_bits(addr);
*batch++ = upper_32_bits(addr);
*batch++ = lower_32_bits(target_offset);
*batch++ = upper_32_bits(target_offset);
}
} else if (gen >= 6) {
*batch++ = MI_STORE_DWORD_IMM_GEN4;
*batch++ = 0;
*batch++ = addr;
*batch++ = target_offset;
} else if (gen >= 4) {
*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*batch++ = 0;
*batch++ = addr;
*batch++ = target_offset;
} else {
*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
*batch++ = addr;
*batch++ = target_offset;
}
goto out;
}
repeat:
vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
clflush_write32(vaddr + offset_in_page(offset),
lower_32_bits(target_offset),
eb->reloc_cache.vaddr);
if (wide) {
offset += sizeof(u32);
target_offset >>= 32;
wide = false;
goto repeat;
}
out:
return target->node.start | UPDATE;
}
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
struct i915_vma *vma,
const struct drm_i915_gem_relocation_entry *reloc)
{
struct drm_i915_private *i915 = eb->i915;
struct i915_vma *target;
int err;
/* we've already hold a reference to all valid objects */
target = eb_get_vma(eb, reloc->target_handle);
if (unlikely(!target))
return -ENOENT;
/* Validate that the target is in a valid r/w GPU domain */
if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
drm_dbg(&i915->drm, "reloc with multiple write domains: "
"target %d offset %d "
"read %08x write %08x",
reloc->target_handle,
(int) reloc->offset,
reloc->read_domains,
reloc->write_domain);
return -EINVAL;
}
if (unlikely((reloc->write_domain | reloc->read_domains)
& ~I915_GEM_GPU_DOMAINS)) {
drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
"target %d offset %d "
"read %08x write %08x",
reloc->target_handle,
(int) reloc->offset,
reloc->read_domains,
reloc->write_domain);
return -EINVAL;
}
if (reloc->write_domain) {
*target->exec_flags |= EXEC_OBJECT_WRITE;
/*
* Sandybridge PPGTT errata: We need a global gtt mapping
* for MI and pipe_control writes because the gpu doesn't
* properly redirect them through the ppgtt for non_secure
* batchbuffers.
*/
if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
IS_GEN(eb->i915, 6)) {
err = i915_vma_bind(target, target->obj->cache_level,
PIN_GLOBAL, NULL);
if (WARN_ONCE(err,
"Unexpected failure to bind target VMA!"))
return err;
}
}
/*
* If the relocation already has the right value in it, no
* more work needs to be done.
*/
if (!DBG_FORCE_RELOC &&
gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
return 0;
/* Check that the relocation address is valid... */
if (unlikely(reloc->offset >
vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
drm_dbg(&i915->drm, "Relocation beyond object bounds: "
"target %d offset %d size %d.\n",
reloc->target_handle,
(int)reloc->offset,
(int)vma->size);
return -EINVAL;
}
if (unlikely(reloc->offset & 3)) {
drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
"target %d offset %d.\n",
reloc->target_handle,
(int)reloc->offset);
return -EINVAL;
}
/*
* If we write into the object, we need to force the synchronisation
* barrier, either with an asynchronous clflush or if we executed the
* patching using the GPU (though that should be serialised by the
* timeline). To be completely sure, and since we are required to
* do relocations we are already stalling, disable the user's opt
* out of our synchronisation.
*/
*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
/* and update the user's relocation entry */
return relocate_entry(vma, reloc, eb, target);
}
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
{
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
struct drm_i915_gem_relocation_entry __user *urelocs;
const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
unsigned int remain;
urelocs = u64_to_user_ptr(entry->relocs_ptr);
remain = entry->relocation_count;
if (unlikely(remain > N_RELOC(ULONG_MAX)))
return -EINVAL;
/*
* We must check that the entire relocation array is safe
* to read. However, if the array is not writable the user loses
* the updated relocation values.
*/
if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
return -EFAULT;
do {
struct drm_i915_gem_relocation_entry *r = stack;
unsigned int count =
min_t(unsigned int, remain, ARRAY_SIZE(stack));
unsigned int copied;
/*
* This is the fast path and we cannot handle a pagefault
* whilst holding the struct mutex lest the user pass in the
* relocations contained within a mmaped bo. For in such a case
* we, the page fault handler would call i915_gem_fault() and
* we would try to acquire the struct mutex again. Obviously
* this is bad and so lockdep complains vehemently.
*/
pagefault_disable();
copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
pagefault_enable();
if (unlikely(copied)) {
remain = -EFAULT;
goto out;
}
remain -= count;
do {
u64 offset = eb_relocate_entry(eb, vma, r);
if (likely(offset == 0)) {
} else if ((s64)offset < 0) {
remain = (int)offset;
goto out;
} else {
/*
* Note that reporting an error now
* leaves everything in an inconsistent
* state as we have *already* changed
* the relocation value inside the
* object. As we have not changed the
* reloc.presumed_offset or will not
* change the execobject.offset, on the
* call we may not rewrite the value
* inside the object, leaving it
* dangling and causing a GPU hang. Unless
* userspace dynamically rebuilds the
* relocations on each execbuf rather than
* presume a static tree.
*
* We did previously check if the relocations
* were writable (access_ok), an error now
* would be a strange race with mprotect,
* having already demonstrated that we
* can read from this userspace address.
*/
offset = gen8_canonical_addr(offset & ~UPDATE);
if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
remain = -EFAULT;
goto out;
}
}
} while (r++, --count);
urelocs += ARRAY_SIZE(stack);
} while (remain);
out:
reloc_cache_reset(&eb->reloc_cache);
return remain;
}
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
{
const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
struct drm_i915_gem_relocation_entry *relocs =
u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
unsigned int i;
int err;
for (i = 0; i < entry->relocation_count; i++) {
u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
if ((s64)offset < 0) {
err = (int)offset;
goto err;
}
}
err = 0;
err:
reloc_cache_reset(&eb->reloc_cache);
return err;
}
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
const char __user *addr, *end;
unsigned long size;
char __maybe_unused c;
size = entry->relocation_count;
if (size == 0)
return 0;
if (size > N_RELOC(ULONG_MAX))
return -EINVAL;
addr = u64_to_user_ptr(entry->relocs_ptr);
size *= sizeof(struct drm_i915_gem_relocation_entry);
if (!access_ok(addr, size))
return -EFAULT;
end = addr + size;
for (; addr < end; addr += PAGE_SIZE) {
int err = __get_user(c, addr);
if (err)
return err;
}
return __get_user(c, end - 1);
}
static int eb_copy_relocations(const struct i915_execbuffer *eb)
{
struct drm_i915_gem_relocation_entry *relocs;
const unsigned int count = eb->buffer_count;
unsigned int i;
int err;
for (i = 0; i < count; i++) {
const unsigned int nreloc = eb->exec[i].relocation_count;
struct drm_i915_gem_relocation_entry __user *urelocs;
unsigned long size;
unsigned long copied;
if (nreloc == 0)
continue;
err = check_relocations(&eb->exec[i]);
if (err)
goto err;
urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
size = nreloc * sizeof(*relocs);
relocs = kvmalloc_array(size, 1, GFP_KERNEL);
if (!relocs) {
err = -ENOMEM;
goto err;
}
/* copy_from_user is limited to < 4GiB */
copied = 0;
do {
unsigned int len =
min_t(u64, BIT_ULL(31), size - copied);
if (__copy_from_user((char *)relocs + copied,
(char __user *)urelocs + copied,
len))
goto end;
copied += len;
} while (copied < size);
/*
* As we do not update the known relocation offsets after
* relocating (due to the complexities in lock handling),
* we need to mark them as invalid now so that we force the
* relocation processing next time. Just in case the target
* object is evicted and then rebound into its old
* presumed_offset before the next execbuffer - if that
* happened we would make the mistake of assuming that the
* relocations were valid.
*/
if (!user_access_begin(urelocs, size))
goto end;
for (copied = 0; copied < nreloc; copied++)
unsafe_put_user(-1,
&urelocs[copied].presumed_offset,
end_user);
user_access_end();
eb->exec[i].relocs_ptr = (uintptr_t)relocs;
}
return 0;
end_user:
user_access_end();
end:
kvfree(relocs);
err = -EFAULT;
err:
while (i--) {
relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
if (eb->exec[i].relocation_count)
kvfree(relocs);
}
return err;
}
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
const unsigned int count = eb->buffer_count;
unsigned int i;
for (i = 0; i < count; i++) {
int err;
err = check_relocations(&eb->exec[i]);
if (err)
return err;
}
return 0;
}
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
{
struct drm_device *dev = &eb->i915->drm;
bool have_copy = false;
struct i915_vma *vma;
int err = 0;
repeat:
if (signal_pending(current)) {
err = -ERESTARTSYS;
goto out;
}
/* We may process another execbuffer during the unlock... */
eb_reset_vmas(eb);
mutex_unlock(&dev->struct_mutex);
/*
* We take 3 passes through the slowpatch.
*
* 1 - we try to just prefault all the user relocation entries and
* then attempt to reuse the atomic pagefault disabled fast path again.
*
* 2 - we copy the user entries to a local buffer here outside of the
* local and allow ourselves to wait upon any rendering before
* relocations
*
* 3 - we already have a local copy of the relocation entries, but
* were interrupted (EAGAIN) whilst waiting for the objects, try again.
*/
if (!err) {
err = eb_prefault_relocations(eb);
} else if (!have_copy) {
err = eb_copy_relocations(eb);
have_copy = err == 0;
} else {
cond_resched();
err = 0;
}
if (err) {
mutex_lock(&dev->struct_mutex);
goto out;
}
/* A frequent cause for EAGAIN are currently unavailable client pages */
flush_workqueue(eb->i915->mm.userptr_wq);
err = i915_mutex_lock_interruptible(dev);
if (err) {
mutex_lock(&dev->struct_mutex);
goto out;
}
/* reacquire the objects */
err = eb_lookup_vmas(eb);
if (err)
goto err;
GEM_BUG_ON(!eb->batch);
list_for_each_entry(vma, &eb->relocs, reloc_link) {
if (!have_copy) {
pagefault_disable();
err = eb_relocate_vma(eb, vma);
pagefault_enable();
if (err)
goto repeat;
} else {
err = eb_relocate_vma_slow(eb, vma);
if (err)
goto err;
}
}
/*
* Leave the user relocations as are, this is the painfully slow path,
* and we want to avoid the complication of dropping the lock whilst
* having buffers reserved in the aperture and so causing spurious
* ENOSPC for random operations.
*/
err:
if (err == -EAGAIN)
goto repeat;
out:
if (have_copy) {
const unsigned int count = eb->buffer_count;
unsigned int i;
for (i = 0; i < count; i++) {
const struct drm_i915_gem_exec_object2 *entry =
&eb->exec[i];
struct drm_i915_gem_relocation_entry *relocs;
if (!entry->relocation_count)
continue;
relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
kvfree(relocs);
}
}
return err;
}
static int eb_relocate(struct i915_execbuffer *eb)
{
if (eb_lookup_vmas(eb))
goto slow;
/* The objects are in their final locations, apply the relocations. */
if (eb->args->flags & __EXEC_HAS_RELOC) {
struct i915_vma *vma;
list_for_each_entry(vma, &eb->relocs, reloc_link) {
if (eb_relocate_vma(eb, vma))
goto slow;
}
}
return 0;
slow:
return eb_relocate_slow(eb);
}
static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
const unsigned int count = eb->buffer_count;
struct ww_acquire_ctx acquire;
unsigned int i;
int err = 0;
ww_acquire_init(&acquire, &reservation_ww_class);
for (i = 0; i < count; i++) {
struct i915_vma *vma = eb->vma[i];
err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
if (!err)
continue;
GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
if (err == -EDEADLK) {
GEM_BUG_ON(i == 0);
do {
int j = i - 1;
ww_mutex_unlock(&eb->vma[j]->resv->lock);
swap(eb->flags[i], eb->flags[j]);
swap(eb->vma[i], eb->vma[j]);
eb->vma[i]->exec_flags = &eb->flags[i];
} while (--i);
GEM_BUG_ON(vma != eb->vma[0]);
vma->exec_flags = &eb->flags[0];
err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
&acquire);
}
if (err)
break;
}
ww_acquire_done(&acquire);
while (i--) {
unsigned int flags = eb->flags[i];
struct i915_vma *vma = eb->vma[i];
struct drm_i915_gem_object *obj = vma->obj;
assert_vma_held(vma);
if (flags & EXEC_OBJECT_CAPTURE) {
struct i915_capture_list *capture;
capture = kmalloc(sizeof(*capture), GFP_KERNEL);
if (capture) {
capture->next = eb->request->capture_list;
capture->vma = vma;
eb->request->capture_list = capture;
}
}
/*
* If the GPU is not _reading_ through the CPU cache, we need
* to make sure that any writes (both previous GPU writes from
* before a change in snooping levels and normal CPU writes)
* caught in that cache are flushed to main memory.
*
* We want to say
* obj->cache_dirty &&
* !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
* but gcc's optimiser doesn't handle that as well and emits
* two jumps instead of one. Maybe one day...
*/
if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
if (i915_gem_clflush_object(obj, 0))
flags &= ~EXEC_OBJECT_ASYNC;
}
if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
err = i915_request_await_object
(eb->request, obj, flags & EXEC_OBJECT_WRITE);
}
if (err == 0)
err = i915_vma_move_to_active(vma, eb->request, flags);
i915_vma_unlock(vma);
__eb_unreserve_vma(vma, flags);
vma->exec_flags = NULL;
if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
i915_vma_put(vma);
}
ww_acquire_fini(&acquire);
if (unlikely(err))
goto err_skip;
eb->exec = NULL;
/* Unconditionally flush any chipset caches (for streaming writes). */
intel_gt_chipset_flush(eb->engine->gt);
return 0;
err_skip:
i915_request_skip(eb->request, err);
return err;
}
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
{
if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
return -EINVAL;
/* Kernel clipping was a DRI1 misfeature */
if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
if (exec->num_cliprects || exec->cliprects_ptr)
return -EINVAL;
}
if (exec->DR4 == 0xffffffff) {
DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
exec->DR4 = 0;
}
if (exec->DR1 || exec->DR4)
return -EINVAL;
if ((exec->batch_start_offset | exec->batch_len) & 0x7)
return -EINVAL;
return 0;
}
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
{
u32 *cs;
int i;
if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
return -EINVAL;
}
cs = intel_ring_begin(rq, 4 * 2 + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_LOAD_REGISTER_IMM(4);
for (i = 0; i < 4; i++) {
*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
*cs++ = 0;
}
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static struct i915_vma *
shadow_batch_pin(struct drm_i915_gem_object *obj,
struct i915_address_space *vm,
unsigned int flags)
{
struct i915_vma *vma;
int err;
vma = i915_vma_instance(obj, vm, NULL);
if (IS_ERR(vma))
return vma;
err = i915_vma_pin(vma, 0, 0, flags);
if (err)
return ERR_PTR(err);
return vma;
}
struct eb_parse_work {
struct dma_fence_work base;
struct intel_engine_cs *engine;
struct i915_vma *batch;
struct i915_vma *shadow;
struct i915_vma *trampoline;
unsigned int batch_offset;
unsigned int batch_length;
};
static int __eb_parse(struct dma_fence_work *work)
{
struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
return intel_engine_cmd_parser(pw->engine,
pw->batch,
pw->batch_offset,
pw->batch_length,
pw->shadow,
pw->trampoline);
}
static void __eb_parse_release(struct dma_fence_work *work)
{
struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
if (pw->trampoline)
i915_active_release(&pw->trampoline->active);
i915_active_release(&pw->shadow->active);
i915_active_release(&pw->batch->active);
}
static const struct dma_fence_work_ops eb_parse_ops = {
.name = "eb_parse",
.work = __eb_parse,
.release = __eb_parse_release,
};
static int eb_parse_pipeline(struct i915_execbuffer *eb,
struct i915_vma *shadow,
struct i915_vma *trampoline)
{
struct eb_parse_work *pw;
int err;
pw = kzalloc(sizeof(*pw), GFP_KERNEL);
if (!pw)
return -ENOMEM;
err = i915_active_acquire(&eb->batch->active);
if (err)
goto err_free;
err = i915_active_acquire(&shadow->active);
if (err)
goto err_batch;
if (trampoline) {
err = i915_active_acquire(&trampoline->active);
if (err)
goto err_shadow;
}
dma_fence_work_init(&pw->base, &eb_parse_ops);
pw->engine = eb->engine;
pw->batch = eb->batch;
pw->batch_offset = eb->batch_start_offset;
pw->batch_length = eb->batch_len;
pw->shadow = shadow;
pw->trampoline = trampoline;
err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
if (err)
goto err_trampoline;
err = dma_resv_reserve_shared(pw->batch->resv, 1);
if (err)
goto err_batch_unlock;
/* Wait for all writes (and relocs) into the batch to complete */
err = i915_sw_fence_await_reservation(&pw->base.chain,
pw->batch->resv, NULL, false,
0, I915_FENCE_GFP);
if (err < 0)
goto err_batch_unlock;
/* Keep the batch alive and unwritten as we parse */
dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
dma_resv_unlock(pw->batch->resv);
/* Force execution to wait for completion of the parser */
dma_resv_lock(shadow->resv, NULL);
dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
dma_resv_unlock(shadow->resv);
dma_fence_work_commit(&pw->base);
return 0;
err_batch_unlock:
dma_resv_unlock(pw->batch->resv);
err_trampoline:
if (trampoline)
i915_active_release(&trampoline->active);
err_shadow:
i915_active_release(&shadow->active);
err_batch:
i915_active_release(&eb->batch->active);
err_free:
kfree(pw);
return err;
}
static int eb_parse(struct i915_execbuffer *eb)
{
struct drm_i915_private *i915 = eb->i915;
struct intel_engine_pool_node *pool;
struct i915_vma *shadow, *trampoline;
unsigned int len;
int err;
if (!eb_use_cmdparser(eb))
return 0;
len = eb->batch_len;
if (!CMDPARSER_USES_GGTT(eb->i915)) {
/*
* ppGTT backed shadow buffers must be mapped RO, to prevent
* post-scan tampering
*/
if (!eb->context->vm->has_read_only) {
drm_dbg(&i915->drm,
"Cannot prevent post-scan tampering without RO capable vm\n");
return -EINVAL;
}
} else {
len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
}
pool = intel_engine_get_pool(eb->engine, len);
if (IS_ERR(pool))
return PTR_ERR(pool);
shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
if (IS_ERR(shadow)) {
err = PTR_ERR(shadow);
goto err;
}
i915_gem_object_set_readonly(shadow->obj);
trampoline = NULL;
if (CMDPARSER_USES_GGTT(eb->i915)) {
trampoline = shadow;
shadow = shadow_batch_pin(pool->obj,
&eb->engine->gt->ggtt->vm,
PIN_GLOBAL);
if (IS_ERR(shadow)) {
err = PTR_ERR(shadow);
shadow = trampoline;
goto err_shadow;
}
eb->batch_flags |= I915_DISPATCH_SECURE;
}
err = eb_parse_pipeline(eb, shadow, trampoline);
if (err)
goto err_trampoline;
eb->vma[eb->buffer_count] = i915_vma_get(shadow);
eb->flags[eb->buffer_count] =
__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
shadow->exec_flags = &eb->flags[eb->buffer_count];
eb->buffer_count++;
eb->trampoline = trampoline;
eb->batch_start_offset = 0;
eb->batch = shadow;
shadow->private = pool;
return 0;
err_trampoline:
if (trampoline)
i915_vma_unpin(trampoline);
err_shadow:
i915_vma_unpin(shadow);
err:
intel_engine_pool_put(pool);
return err;
}
static void
add_to_client(struct i915_request *rq, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
rq->file_priv = file_priv;
spin_lock(&file_priv->mm.lock);
list_add_tail(&rq->client_link, &file_priv->mm.request_list);
spin_unlock(&file_priv->mm.lock);
}
static int eb_submit(struct i915_execbuffer *eb)
{
int err;
err = eb_move_to_gpu(eb);
if (err)
return err;
if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
err = i915_reset_gen7_sol_offsets(eb->request);
if (err)
return err;
}
/*
* After we completed waiting for other engines (using HW semaphores)
* then we can signal that this request/batch is ready to run. This
* allows us to determine if the batch is still waiting on the GPU
* or actually running by checking the breadcrumb.
*/
if (eb->engine->emit_init_breadcrumb) {
err = eb->engine->emit_init_breadcrumb(eb->request);
if (err)
return err;
}
err = eb->engine->emit_bb_start(eb->request,
eb->batch->node.start +
eb->batch_start_offset,
eb->batch_len,
eb->batch_flags);
if (err)
return err;
if (eb->trampoline) {
GEM_BUG_ON(eb->batch_start_offset);
err = eb->engine->emit_bb_start(eb->request,
eb->trampoline->node.start +
eb->batch_len,
0, 0);
if (err)
return err;
}
if (intel_context_nopreempt(eb->context))
__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
return 0;
}
static int num_vcs_engines(const struct drm_i915_private *i915)
{
return hweight64(INTEL_INFO(i915)->engine_mask &
GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}
/*
* Find one BSD ring to dispatch the corresponding BSD command.
* The engine index is returned.
*/
static unsigned int
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
/* Check whether the file_priv has already selected one ring. */
if ((int)file_priv->bsd_engine < 0)
file_priv->bsd_engine =
get_random_int() % num_vcs_engines(dev_priv);
return file_priv->bsd_engine;
}
static const enum intel_engine_id user_ring_map[] = {
[I915_EXEC_DEFAULT] = RCS0,
[I915_EXEC_RENDER] = RCS0,
[I915_EXEC_BLT] = BCS0,
[I915_EXEC_BSD] = VCS0,
[I915_EXEC_VEBOX] = VECS0
};
static struct i915_request *eb_throttle(struct intel_context *ce)
{
struct intel_ring *ring = ce->ring;
struct intel_timeline *tl = ce->timeline;
struct i915_request *rq;
/*
* Completely unscientific finger-in-the-air estimates for suitable
* maximum user request size (to avoid blocking) and then backoff.
*/
if (intel_ring_update_space(ring) >= PAGE_SIZE)
return NULL;
/*
* Find a request that after waiting upon, there will be at least half
* the ring available. The hysteresis allows us to compete for the
* shared ring and should mean that we sleep less often prior to
* claiming our resources, but not so long that the ring completely
* drains before we can submit our next request.
*/
list_for_each_entry(rq, &tl->requests, link) {
if (rq->ring != ring)
continue;
if (__intel_ring_space(rq->postfix,
ring->emit, ring->size) > ring->size / 2)
break;
}
if (&rq->link == &tl->requests)
return NULL; /* weird, we will check again later for real */
return i915_request_get(rq);
}
static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
struct intel_timeline *tl;
struct i915_request *rq;
int err;
/*
* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
* EIO if the GPU is already wedged.
*/
err = intel_gt_terminally_wedged(ce->engine->gt);
if (err)
return err;
if (unlikely(intel_context_is_banned(ce)))
return -EIO;
/*
* Pinning the contexts may generate requests in order to acquire
* GGTT space, so do this first before we reserve a seqno for
* ourselves.
*/
err = intel_context_pin(ce);
if (err)
return err;
/*
* Take a local wakeref for preparing to dispatch the execbuf as
* we expect to access the hardware fairly frequently in the
* process, and require the engine to be kept awake between accesses.
* Upon dispatch, we acquire another prolonged wakeref that we hold
* until the timeline is idle, which in turn releases the wakeref
* taken on the engine, and the parent device.
*/
tl = intel_context_timeline_lock(ce);
if (IS_ERR(tl)) {
err = PTR_ERR(tl);
goto err_unpin;
}
intel_context_enter(ce);
rq = eb_throttle(ce);
intel_context_timeline_unlock(tl);
if (rq) {
bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
long timeout;
timeout = MAX_SCHEDULE_TIMEOUT;
if (nonblock)
timeout = 0;
timeout = i915_request_wait(rq,
I915_WAIT_INTERRUPTIBLE,
timeout);
i915_request_put(rq);
if (timeout < 0) {
err = nonblock ? -EWOULDBLOCK : timeout;
goto err_exit;
}
}
eb->engine = ce->engine;
eb->context = ce;
return 0;
err_exit:
mutex_lock(&tl->mutex);
intel_context_exit(ce);
intel_context_timeline_unlock(tl);
err_unpin:
intel_context_unpin(ce);
return err;
}
static void eb_unpin_engine(struct i915_execbuffer *eb)
{
struct intel_context *ce = eb->context;
struct intel_timeline *tl = ce->timeline;
mutex_lock(&tl->mutex);
intel_context_exit(ce);
mutex_unlock(&tl->mutex);
intel_context_unpin(ce);
}
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
struct drm_file *file,
struct drm_i915_gem_execbuffer2 *args)
{
struct drm_i915_private *i915 = eb->i915;
unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
if (user_ring_id != I915_EXEC_BSD &&
(args->flags & I915_EXEC_BSD_MASK)) {
drm_dbg(&i915->drm,
"execbuf with non bsd ring but with invalid "
"bsd dispatch flags: %d\n", (int)(args->flags));
return -1;
}
if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
bsd_idx = gen8_dispatch_bsd_engine(i915, file);
} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
bsd_idx <= I915_EXEC_BSD_RING2) {
bsd_idx >>= I915_EXEC_BSD_SHIFT;
bsd_idx--;
} else {
drm_dbg(&i915->drm,
"execbuf with unknown bsd ring: %u\n",
bsd_idx);
return -1;
}
return _VCS(bsd_idx);
}
if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
user_ring_id);
return -1;
}
return user_ring_map[user_ring_id];
}
static int
eb_pin_engine(struct i915_execbuffer *eb,
struct drm_file *file,
struct drm_i915_gem_execbuffer2 *args)
{
struct intel_context *ce;
unsigned int idx;
int err;
if (i915_gem_context_user_engines(eb->gem_context))
idx = args->flags & I915_EXEC_RING_MASK;
else
idx = eb_select_legacy_ring(eb, file, args);
ce = i915_gem_context_get_engine(eb->gem_context, idx);
if (IS_ERR(ce))
return PTR_ERR(ce);
err = __eb_pin_engine(eb, ce);
intel_context_put(ce);
return err;
}
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
while (n--)
drm_syncobj_put(ptr_mask_bits(fences[n], 2));
kvfree(fences);
}
static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
struct drm_file *file)
{
const unsigned long nfences = args->num_cliprects;
struct drm_i915_gem_exec_fence __user *user;
struct drm_syncobj **fences;
unsigned long n;
int err;
if (!(args->flags & I915_EXEC_FENCE_ARRAY))
return NULL;
/* Check multiplication overflow for access_ok() and kvmalloc_array() */
BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
if (nfences > min_t(unsigned long,
ULONG_MAX / sizeof(*user),
SIZE_MAX / sizeof(*fences)))
return ERR_PTR(-EINVAL);
user = u64_to_user_ptr(args->cliprects_ptr);
if (!access_ok(user, nfences * sizeof(*user)))
return ERR_PTR(-EFAULT);
fences = kvmalloc_array(nfences, sizeof(*fences),
__GFP_NOWARN | GFP_KERNEL);
if (!fences)
return ERR_PTR(-ENOMEM);
for (n = 0; n < nfences; n++) {
struct drm_i915_gem_exec_fence fence;
struct drm_syncobj *syncobj;
if (__copy_from_user(&fence, user++, sizeof(fence))) {
err = -EFAULT;
goto err;
}
if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
err = -EINVAL;
goto err;
}
syncobj = drm_syncobj_find(file, fence.handle);
if (!syncobj) {
DRM_DEBUG("Invalid syncobj handle provided\n");
err = -ENOENT;
goto err;
}
BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
}
return fences;
err:
__free_fence_array(fences, n);
return ERR_PTR(err);
}
static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
struct drm_syncobj **fences)
{
if (fences)
__free_fence_array(fences, args->num_cliprects);
}
static int
await_fence_array(struct i915_execbuffer *eb,
struct drm_syncobj **fences)
{
const unsigned int nfences = eb->args->num_cliprects;
unsigned int n;
int err;
for (n = 0; n < nfences; n++) {
struct drm_syncobj *syncobj;
struct dma_fence *fence;
unsigned int flags;
syncobj = ptr_unpack_bits(fences[n], &flags, 2);
if (!(flags & I915_EXEC_FENCE_WAIT))
continue;
fence = drm_syncobj_fence_get(syncobj);
if (!fence)
return -EINVAL;
err = i915_request_await_dma_fence(eb->request, fence);
dma_fence_put(fence);
if (err < 0)
return err;
}
return 0;
}
static void
signal_fence_array(struct i915_execbuffer *eb,
struct drm_syncobj **fences)
{
const unsigned int nfences = eb->args->num_cliprects;
struct dma_fence * const fence = &eb->request->fence;
unsigned int n;
for (n = 0; n < nfences; n++) {
struct drm_syncobj *syncobj;
unsigned int flags;
syncobj = ptr_unpack_bits(fences[n], &flags, 2);
if (!(flags & I915_EXEC_FENCE_SIGNAL))
continue;
drm_syncobj_replace_fence(syncobj, fence);
}
}
static int
i915_gem_do_execbuffer(struct drm_device *dev,
struct drm_file *file,
struct drm_i915_gem_execbuffer2 *args,
struct drm_i915_gem_exec_object2 *exec,
struct drm_syncobj **fences)
{
struct drm_i915_private *i915 = to_i915(dev);
struct i915_execbuffer eb;
struct dma_fence *in_fence = NULL;
struct dma_fence *exec_fence = NULL;
struct sync_file *out_fence = NULL;
int out_fence_fd = -1;
int err;
BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
~__EXEC_OBJECT_UNKNOWN_FLAGS);
eb.i915 = i915;
eb.file = file;
eb.args = args;
if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
args->flags |= __EXEC_HAS_RELOC;
eb.exec = exec;
eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
eb.vma[0] = NULL;
eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
reloc_cache_init(&eb.reloc_cache, eb.i915);
eb.buffer_count = args->buffer_count;
eb.batch_start_offset = args->batch_start_offset;
eb.batch_len = args->batch_len;
eb.trampoline = NULL;
eb.batch_flags = 0;
if (args->flags & I915_EXEC_SECURE) {
if (INTEL_GEN(i915) >= 11)
return -ENODEV;
/* Return -EPERM to trigger fallback code on old binaries. */
if (!HAS_SECURE_BATCHES(i915))
return -EPERM;
if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
return -EPERM;
eb.batch_flags |= I915_DISPATCH_SECURE;
}
if (args->flags & I915_EXEC_IS_PINNED)
eb.batch_flags |= I915_DISPATCH_PINNED;
if (args->flags & I915_EXEC_FENCE_IN) {
in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
if (!in_fence)
return -EINVAL;
}
if (args->flags & I915_EXEC_FENCE_SUBMIT) {
if (in_fence) {
err = -EINVAL;
goto err_in_fence;
}
exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
if (!exec_fence) {
err = -EINVAL;
goto err_in_fence;
}
}
if (args->flags & I915_EXEC_FENCE_OUT) {
out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
if (out_fence_fd < 0) {
err = out_fence_fd;
goto err_exec_fence;
}
}
err = eb_create(&eb);
if (err)
goto err_out_fence;
GEM_BUG_ON(!eb.lut_size);
err = eb_select_context(&eb);
if (unlikely(err))
goto err_destroy;
err = eb_pin_engine(&eb, file, args);
if (unlikely(err))
goto err_context;
err = i915_mutex_lock_interruptible(dev);
if (err)
goto err_engine;
err = eb_relocate(&eb);
if (err) {
/*
* If the user expects the execobject.offset and
* reloc.presumed_offset to be an exact match,
* as for using NO_RELOC, then we cannot update
* the execobject.offset until we have completed
* relocation.
*/
args->flags &= ~__EXEC_HAS_RELOC;
goto err_vma;
}
if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
drm_dbg(&i915->drm,
"Attempting to use self-modifying batch buffer\n");
err = -EINVAL;
goto err_vma;
}
if (eb.batch_start_offset > eb.batch->size ||
eb.batch_len > eb.batch->size - eb.batch_start_offset) {
drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
err = -EINVAL;
goto err_vma;
}
if (eb.batch_len == 0)
eb.batch_len = eb.batch->size - eb.batch_start_offset;
err = eb_parse(&eb);
if (err)
goto err_vma;
/*
* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
* batch" bit. Hence we need to pin secure batches into the global gtt.
* hsw should have this fixed, but bdw mucks it up again. */
if (eb.batch_flags & I915_DISPATCH_SECURE) {
struct i915_vma *vma;
/*
* So on first glance it looks freaky that we pin the batch here
* outside of the reservation loop. But:
* - The batch is already pinned into the relevant ppgtt, so we
* already have the backing storage fully allocated.
* - No other BO uses the global gtt (well contexts, but meh),
* so we don't really have issues with multiple objects not
* fitting due to fragmentation.
* So this is actually safe.
*/
vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_parse;
}
eb.batch = vma;
}
/* All GPU relocation batches must be submitted prior to the user rq */
GEM_BUG_ON(eb.reloc_cache.rq);
/* Allocate a request for this batch buffer nice and early. */
eb.request = i915_request_create(eb.context);
if (IS_ERR(eb.request)) {
err = PTR_ERR(eb.request);
goto err_batch_unpin;
}
if (in_fence) {
err = i915_request_await_dma_fence(eb.request, in_fence);
if (err < 0)
goto err_request;
}
if (exec_fence) {
err = i915_request_await_execution(eb.request, exec_fence,
eb.engine->bond_execute);
if (err < 0)
goto err_request;
}
if (fences) {
err = await_fence_array(&eb, fences);
if (err)
goto err_request;
}
if (out_fence_fd != -1) {
out_fence = sync_file_create(&eb.request->fence);
if (!out_fence) {
err = -ENOMEM;
goto err_request;
}
}
/*
* Whilst this request exists, batch_obj will be on the
* active_list, and so will hold the active reference. Only when this
* request is retired will the the batch_obj be moved onto the
* inactive_list and lose its active reference. Hence we do not need
* to explicitly hold another reference here.
*/
eb.request->batch = eb.batch;
if (eb.batch->private)
intel_engine_pool_mark_active(eb.batch->private, eb.request);
trace_i915_request_queue(eb.request, eb.batch_flags);
err = eb_submit(&eb);
err_request:
add_to_client(eb.request, file);
i915_request_get(eb.request);
i915_request_add(eb.request);
if (fences)
signal_fence_array(&eb, fences);
if (out_fence) {
if (err == 0) {
fd_install(out_fence_fd, out_fence->file);
args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
args->rsvd2 |= (u64)out_fence_fd << 32;
out_fence_fd = -1;
} else {
fput(out_fence->file);
}
}
i915_request_put(eb.request);
err_batch_unpin:
if (eb.batch_flags & I915_DISPATCH_SECURE)
i915_vma_unpin(eb.batch);
err_parse:
if (eb.batch->private)
intel_engine_pool_put(eb.batch->private);
err_vma:
if (eb.exec)
eb_release_vmas(&eb);
if (eb.trampoline)
i915_vma_unpin(eb.trampoline);
mutex_unlock(&dev->struct_mutex);
err_engine:
eb_unpin_engine(&eb);
err_context:
i915_gem_context_put(eb.gem_context);
err_destroy:
eb_destroy(&eb);
err_out_fence:
if (out_fence_fd != -1)
put_unused_fd(out_fence_fd);
err_exec_fence:
dma_fence_put(exec_fence);
err_in_fence:
dma_fence_put(in_fence);
return err;
}
static size_t eb_element_size(void)
{
return (sizeof(struct drm_i915_gem_exec_object2) +
sizeof(struct i915_vma *) +
sizeof(unsigned int));
}
static bool check_buffer_count(size_t count)
{
const size_t sz = eb_element_size();
/*
* When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
* array size (see eb_create()). Otherwise, we can accept an array as
* large as can be addressed (though use large arrays at your peril)!
*/
return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}
/*
* Legacy execbuffer just creates an exec2 list from the original exec object
* list array and passes it to the real function.
*/
int
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_execbuffer *args = data;
struct drm_i915_gem_execbuffer2 exec2;
struct drm_i915_gem_exec_object *exec_list = NULL;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
const size_t count = args->buffer_count;
unsigned int i;
int err;
if (!check_buffer_count(count)) {
drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
return -EINVAL;
}
exec2.buffers_ptr = args->buffers_ptr;
exec2.buffer_count = args->buffer_count;
exec2.batch_start_offset = args->batch_start_offset;
exec2.batch_len = args->batch_len;
exec2.DR1 = args->DR1;
exec2.DR4 = args->DR4;
exec2.num_cliprects = args->num_cliprects;
exec2.cliprects_ptr = args->cliprects_ptr;
exec2.flags = I915_EXEC_RENDER;
i915_execbuffer2_set_context_id(exec2, 0);
err = i915_gem_check_execbuffer(&exec2);
if (err)
return err;
/* Copy in the exec list from userland */
exec_list = kvmalloc_array(count, sizeof(*exec_list),
__GFP_NOWARN | GFP_KERNEL);
exec2_list = kvmalloc_array(count + 1, eb_element_size(),
__GFP_NOWARN | GFP_KERNEL);
if (exec_list == NULL || exec2_list == NULL) {
drm_dbg(&i915->drm,
"Failed to allocate exec list for %d buffers\n",
args->buffer_count);
kvfree(exec_list);
kvfree(exec2_list);
return -ENOMEM;
}
err = copy_from_user(exec_list,
u64_to_user_ptr(args->buffers_ptr),
sizeof(*exec_list) * count);
if (err) {
drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
args->buffer_count, err);
kvfree(exec_list);
kvfree(exec2_list);
return -EFAULT;
}
for (i = 0; i < args->buffer_count; i++) {
exec2_list[i].handle = exec_list[i].handle;
exec2_list[i].relocation_count = exec_list[i].relocation_count;
exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
exec2_list[i].alignment = exec_list[i].alignment;
exec2_list[i].offset = exec_list[i].offset;
if (INTEL_GEN(to_i915(dev)) < 4)
exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
else
exec2_list[i].flags = 0;
}
err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
if (exec2.flags & __EXEC_HAS_RELOC) {
struct drm_i915_gem_exec_object __user *user_exec_list =
u64_to_user_ptr(args->buffers_ptr);
/* Copy the new buffer offsets back to the user's exec list. */
for (i = 0; i < args->buffer_count; i++) {
if (!(exec2_list[i].offset & UPDATE))
continue;
exec2_list[i].offset =
gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
exec2_list[i].offset &= PIN_OFFSET_MASK;
if (__copy_to_user(&user_exec_list[i].offset,
&exec2_list[i].offset,
sizeof(user_exec_list[i].offset)))
break;
}
}
kvfree(exec_list);
kvfree(exec2_list);
return err;
}
int
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(dev);
struct drm_i915_gem_execbuffer2 *args = data;
struct drm_i915_gem_exec_object2 *exec2_list;
struct drm_syncobj **fences = NULL;
const size_t count = args->buffer_count;
int err;
if (!check_buffer_count(count)) {
drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
return -EINVAL;
}
err = i915_gem_check_execbuffer(args);
if (err)
return err;
/* Allocate an extra slot for use by the command parser */
exec2_list = kvmalloc_array(count + 1, eb_element_size(),
__GFP_NOWARN | GFP_KERNEL);
if (exec2_list == NULL) {
drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
count);
return -ENOMEM;
}
if (copy_from_user(exec2_list,
u64_to_user_ptr(args->buffers_ptr),
sizeof(*exec2_list) * count)) {
drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
kvfree(exec2_list);
return -EFAULT;
}
if (args->flags & I915_EXEC_FENCE_ARRAY) {
fences = get_fence_array(args, file);
if (IS_ERR(fences)) {
kvfree(exec2_list);
return PTR_ERR(fences);
}
}
err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
/*
* Now that we have begun execution of the batchbuffer, we ignore
* any new error after this point. Also given that we have already
* updated the associated relocations, we try to write out the current
* object locations irrespective of any error.
*/
if (args->flags & __EXEC_HAS_RELOC) {
struct drm_i915_gem_exec_object2 __user *user_exec_list =
u64_to_user_ptr(args->buffers_ptr);
unsigned int i;
/* Copy the new buffer offsets back to the user's exec list. */
/*
* Note: count * sizeof(*user_exec_list) does not overflow,
* because we checked 'count' in check_buffer_count().
*
* And this range already got effectively checked earlier
* when we did the "copy_from_user()" above.
*/
if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
goto end;
for (i = 0; i < args->buffer_count; i++) {
if (!(exec2_list[i].offset & UPDATE))
continue;
exec2_list[i].offset =
gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
unsafe_put_user(exec2_list[i].offset,
&user_exec_list[i].offset,
end_user);
}
end_user:
user_access_end();
end:;
}
args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
put_fence_array(args, fences);
kvfree(exec2_list);
return err;
}