2947 lines
88 KiB
Plaintext
2947 lines
88 KiB
Plaintext
The Definitive KVM (Kernel-based Virtual Machine) API Documentation
|
||
===================================================================
|
||
|
||
1. General description
|
||
----------------------
|
||
|
||
The kvm API is a set of ioctls that are issued to control various aspects
|
||
of a virtual machine. The ioctls belong to three classes
|
||
|
||
- System ioctls: These query and set global attributes which affect the
|
||
whole kvm subsystem. In addition a system ioctl is used to create
|
||
virtual machines
|
||
|
||
- VM ioctls: These query and set attributes that affect an entire virtual
|
||
machine, for example memory layout. In addition a VM ioctl is used to
|
||
create virtual cpus (vcpus).
|
||
|
||
Only run VM ioctls from the same process (address space) that was used
|
||
to create the VM.
|
||
|
||
- vcpu ioctls: These query and set attributes that control the operation
|
||
of a single virtual cpu.
|
||
|
||
Only run vcpu ioctls from the same thread that was used to create the
|
||
vcpu.
|
||
|
||
|
||
2. File descriptors
|
||
-------------------
|
||
|
||
The kvm API is centered around file descriptors. An initial
|
||
open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
|
||
can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
|
||
handle will create a VM file descriptor which can be used to issue VM
|
||
ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
|
||
and return a file descriptor pointing to it. Finally, ioctls on a vcpu
|
||
fd can be used to control the vcpu, including the important task of
|
||
actually running guest code.
|
||
|
||
In general file descriptors can be migrated among processes by means
|
||
of fork() and the SCM_RIGHTS facility of unix domain socket. These
|
||
kinds of tricks are explicitly not supported by kvm. While they will
|
||
not cause harm to the host, their actual behavior is not guaranteed by
|
||
the API. The only supported use is one virtual machine per process,
|
||
and one vcpu per thread.
|
||
|
||
|
||
3. Extensions
|
||
-------------
|
||
|
||
As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
|
||
incompatible change are allowed. However, there is an extension
|
||
facility that allows backward-compatible extensions to the API to be
|
||
queried and used.
|
||
|
||
The extension mechanism is not based on the Linux version number.
|
||
Instead, kvm defines extension identifiers and a facility to query
|
||
whether a particular extension identifier is available. If it is, a
|
||
set of ioctls is available for application use.
|
||
|
||
|
||
4. API description
|
||
------------------
|
||
|
||
This section describes ioctls that can be used to control kvm guests.
|
||
For each ioctl, the following information is provided along with a
|
||
description:
|
||
|
||
Capability: which KVM extension provides this ioctl. Can be 'basic',
|
||
which means that is will be provided by any kernel that supports
|
||
API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
|
||
means availability needs to be checked with KVM_CHECK_EXTENSION
|
||
(see section 4.4).
|
||
|
||
Architectures: which instruction set architectures provide this ioctl.
|
||
x86 includes both i386 and x86_64.
|
||
|
||
Type: system, vm, or vcpu.
|
||
|
||
Parameters: what parameters are accepted by the ioctl.
|
||
|
||
Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
|
||
are not detailed, but errors with specific meanings are.
|
||
|
||
|
||
4.1 KVM_GET_API_VERSION
|
||
|
||
Capability: basic
|
||
Architectures: all
|
||
Type: system ioctl
|
||
Parameters: none
|
||
Returns: the constant KVM_API_VERSION (=12)
|
||
|
||
This identifies the API version as the stable kvm API. It is not
|
||
expected that this number will change. However, Linux 2.6.20 and
|
||
2.6.21 report earlier versions; these are not documented and not
|
||
supported. Applications should refuse to run if KVM_GET_API_VERSION
|
||
returns a value other than 12. If this check passes, all ioctls
|
||
described as 'basic' will be available.
|
||
|
||
|
||
4.2 KVM_CREATE_VM
|
||
|
||
Capability: basic
|
||
Architectures: all
|
||
Type: system ioctl
|
||
Parameters: machine type identifier (KVM_VM_*)
|
||
Returns: a VM fd that can be used to control the new virtual machine.
|
||
|
||
The new VM has no virtual cpus and no memory. An mmap() of a VM fd
|
||
will access the virtual machine's physical address space; offset zero
|
||
corresponds to guest physical address zero. Use of mmap() on a VM fd
|
||
is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
|
||
available.
|
||
You most certainly want to use 0 as machine type.
|
||
|
||
In order to create user controlled virtual machines on S390, check
|
||
KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
|
||
privileged user (CAP_SYS_ADMIN).
|
||
|
||
|
||
4.3 KVM_GET_MSR_INDEX_LIST
|
||
|
||
Capability: basic
|
||
Architectures: x86
|
||
Type: system
|
||
Parameters: struct kvm_msr_list (in/out)
|
||
Returns: 0 on success; -1 on error
|
||
Errors:
|
||
E2BIG: the msr index list is to be to fit in the array specified by
|
||
the user.
|
||
|
||
struct kvm_msr_list {
|
||
__u32 nmsrs; /* number of msrs in entries */
|
||
__u32 indices[0];
|
||
};
|
||
|
||
This ioctl returns the guest msrs that are supported. The list varies
|
||
by kvm version and host processor, but does not change otherwise. The
|
||
user fills in the size of the indices array in nmsrs, and in return
|
||
kvm adjusts nmsrs to reflect the actual number of msrs and fills in
|
||
the indices array with their numbers.
|
||
|
||
Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
|
||
not returned in the MSR list, as different vcpus can have a different number
|
||
of banks, as set via the KVM_X86_SETUP_MCE ioctl.
|
||
|
||
|
||
4.4 KVM_CHECK_EXTENSION
|
||
|
||
Capability: basic
|
||
Architectures: all
|
||
Type: system ioctl
|
||
Parameters: extension identifier (KVM_CAP_*)
|
||
Returns: 0 if unsupported; 1 (or some other positive integer) if supported
|
||
|
||
The API allows the application to query about extensions to the core
|
||
kvm API. Userspace passes an extension identifier (an integer) and
|
||
receives an integer that describes the extension availability.
|
||
Generally 0 means no and 1 means yes, but some extensions may report
|
||
additional information in the integer return value.
|
||
|
||
|
||
4.5 KVM_GET_VCPU_MMAP_SIZE
|
||
|
||
Capability: basic
|
||
Architectures: all
|
||
Type: system ioctl
|
||
Parameters: none
|
||
Returns: size of vcpu mmap area, in bytes
|
||
|
||
The KVM_RUN ioctl (cf.) communicates with userspace via a shared
|
||
memory region. This ioctl returns the size of that region. See the
|
||
KVM_RUN documentation for details.
|
||
|
||
|
||
4.6 KVM_SET_MEMORY_REGION
|
||
|
||
Capability: basic
|
||
Architectures: all
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_memory_region (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
This ioctl is obsolete and has been removed.
|
||
|
||
|
||
4.7 KVM_CREATE_VCPU
|
||
|
||
Capability: basic
|
||
Architectures: all
|
||
Type: vm ioctl
|
||
Parameters: vcpu id (apic id on x86)
|
||
Returns: vcpu fd on success, -1 on error
|
||
|
||
This API adds a vcpu to a virtual machine. The vcpu id is a small integer
|
||
in the range [0, max_vcpus).
|
||
|
||
The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
|
||
the KVM_CHECK_EXTENSION ioctl() at run-time.
|
||
The maximum possible value for max_vcpus can be retrieved using the
|
||
KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
|
||
|
||
If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
|
||
cpus max.
|
||
If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
|
||
same as the value returned from KVM_CAP_NR_VCPUS.
|
||
|
||
On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
|
||
threads in one or more virtual CPU cores. (This is because the
|
||
hardware requires all the hardware threads in a CPU core to be in the
|
||
same partition.) The KVM_CAP_PPC_SMT capability indicates the number
|
||
of vcpus per virtual core (vcore). The vcore id is obtained by
|
||
dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
|
||
given vcore will always be in the same physical core as each other
|
||
(though that might be a different physical core from time to time).
|
||
Userspace can control the threading (SMT) mode of the guest by its
|
||
allocation of vcpu ids. For example, if userspace wants
|
||
single-threaded guest vcpus, it should make all vcpu ids be a multiple
|
||
of the number of vcpus per vcore.
|
||
|
||
For virtual cpus that have been created with S390 user controlled virtual
|
||
machines, the resulting vcpu fd can be memory mapped at page offset
|
||
KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
|
||
cpu's hardware control block.
|
||
|
||
|
||
4.8 KVM_GET_DIRTY_LOG (vm ioctl)
|
||
|
||
Capability: basic
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_dirty_log (in/out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
/* for KVM_GET_DIRTY_LOG */
|
||
struct kvm_dirty_log {
|
||
__u32 slot;
|
||
__u32 padding;
|
||
union {
|
||
void __user *dirty_bitmap; /* one bit per page */
|
||
__u64 padding;
|
||
};
|
||
};
|
||
|
||
Given a memory slot, return a bitmap containing any pages dirtied
|
||
since the last call to this ioctl. Bit 0 is the first page in the
|
||
memory slot. Ensure the entire structure is cleared to avoid padding
|
||
issues.
|
||
|
||
|
||
4.9 KVM_SET_MEMORY_ALIAS
|
||
|
||
Capability: basic
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_memory_alias (in)
|
||
Returns: 0 (success), -1 (error)
|
||
|
||
This ioctl is obsolete and has been removed.
|
||
|
||
|
||
4.10 KVM_RUN
|
||
|
||
Capability: basic
|
||
Architectures: all
|
||
Type: vcpu ioctl
|
||
Parameters: none
|
||
Returns: 0 on success, -1 on error
|
||
Errors:
|
||
EINTR: an unmasked signal is pending
|
||
|
||
This ioctl is used to run a guest virtual cpu. While there are no
|
||
explicit parameters, there is an implicit parameter block that can be
|
||
obtained by mmap()ing the vcpu fd at offset 0, with the size given by
|
||
KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
|
||
kvm_run' (see below).
|
||
|
||
|
||
4.11 KVM_GET_REGS
|
||
|
||
Capability: basic
|
||
Architectures: all except ARM, arm64
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_regs (out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Reads the general purpose registers from the vcpu.
|
||
|
||
/* x86 */
|
||
struct kvm_regs {
|
||
/* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
|
||
__u64 rax, rbx, rcx, rdx;
|
||
__u64 rsi, rdi, rsp, rbp;
|
||
__u64 r8, r9, r10, r11;
|
||
__u64 r12, r13, r14, r15;
|
||
__u64 rip, rflags;
|
||
};
|
||
|
||
|
||
4.12 KVM_SET_REGS
|
||
|
||
Capability: basic
|
||
Architectures: all except ARM, arm64
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_regs (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Writes the general purpose registers into the vcpu.
|
||
|
||
See KVM_GET_REGS for the data structure.
|
||
|
||
|
||
4.13 KVM_GET_SREGS
|
||
|
||
Capability: basic
|
||
Architectures: x86, ppc
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_sregs (out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Reads special registers from the vcpu.
|
||
|
||
/* x86 */
|
||
struct kvm_sregs {
|
||
struct kvm_segment cs, ds, es, fs, gs, ss;
|
||
struct kvm_segment tr, ldt;
|
||
struct kvm_dtable gdt, idt;
|
||
__u64 cr0, cr2, cr3, cr4, cr8;
|
||
__u64 efer;
|
||
__u64 apic_base;
|
||
__u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
|
||
};
|
||
|
||
/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
|
||
|
||
interrupt_bitmap is a bitmap of pending external interrupts. At most
|
||
one bit may be set. This interrupt has been acknowledged by the APIC
|
||
but not yet injected into the cpu core.
|
||
|
||
|
||
4.14 KVM_SET_SREGS
|
||
|
||
Capability: basic
|
||
Architectures: x86, ppc
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_sregs (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Writes special registers into the vcpu. See KVM_GET_SREGS for the
|
||
data structures.
|
||
|
||
|
||
4.15 KVM_TRANSLATE
|
||
|
||
Capability: basic
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_translation (in/out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Translates a virtual address according to the vcpu's current address
|
||
translation mode.
|
||
|
||
struct kvm_translation {
|
||
/* in */
|
||
__u64 linear_address;
|
||
|
||
/* out */
|
||
__u64 physical_address;
|
||
__u8 valid;
|
||
__u8 writeable;
|
||
__u8 usermode;
|
||
__u8 pad[5];
|
||
};
|
||
|
||
|
||
4.16 KVM_INTERRUPT
|
||
|
||
Capability: basic
|
||
Architectures: x86, ppc
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_interrupt (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Queues a hardware interrupt vector to be injected. This is only
|
||
useful if in-kernel local APIC or equivalent is not used.
|
||
|
||
/* for KVM_INTERRUPT */
|
||
struct kvm_interrupt {
|
||
/* in */
|
||
__u32 irq;
|
||
};
|
||
|
||
X86:
|
||
|
||
Note 'irq' is an interrupt vector, not an interrupt pin or line.
|
||
|
||
PPC:
|
||
|
||
Queues an external interrupt to be injected. This ioctl is overleaded
|
||
with 3 different irq values:
|
||
|
||
a) KVM_INTERRUPT_SET
|
||
|
||
This injects an edge type external interrupt into the guest once it's ready
|
||
to receive interrupts. When injected, the interrupt is done.
|
||
|
||
b) KVM_INTERRUPT_UNSET
|
||
|
||
This unsets any pending interrupt.
|
||
|
||
Only available with KVM_CAP_PPC_UNSET_IRQ.
|
||
|
||
c) KVM_INTERRUPT_SET_LEVEL
|
||
|
||
This injects a level type external interrupt into the guest context. The
|
||
interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
|
||
is triggered.
|
||
|
||
Only available with KVM_CAP_PPC_IRQ_LEVEL.
|
||
|
||
Note that any value for 'irq' other than the ones stated above is invalid
|
||
and incurs unexpected behavior.
|
||
|
||
|
||
4.17 KVM_DEBUG_GUEST
|
||
|
||
Capability: basic
|
||
Architectures: none
|
||
Type: vcpu ioctl
|
||
Parameters: none)
|
||
Returns: -1 on error
|
||
|
||
Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
|
||
|
||
|
||
4.18 KVM_GET_MSRS
|
||
|
||
Capability: basic
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_msrs (in/out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Reads model-specific registers from the vcpu. Supported msr indices can
|
||
be obtained using KVM_GET_MSR_INDEX_LIST.
|
||
|
||
struct kvm_msrs {
|
||
__u32 nmsrs; /* number of msrs in entries */
|
||
__u32 pad;
|
||
|
||
struct kvm_msr_entry entries[0];
|
||
};
|
||
|
||
struct kvm_msr_entry {
|
||
__u32 index;
|
||
__u32 reserved;
|
||
__u64 data;
|
||
};
|
||
|
||
Application code should set the 'nmsrs' member (which indicates the
|
||
size of the entries array) and the 'index' member of each array entry.
|
||
kvm will fill in the 'data' member.
|
||
|
||
|
||
4.19 KVM_SET_MSRS
|
||
|
||
Capability: basic
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_msrs (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
|
||
data structures.
|
||
|
||
Application code should set the 'nmsrs' member (which indicates the
|
||
size of the entries array), and the 'index' and 'data' members of each
|
||
array entry.
|
||
|
||
|
||
4.20 KVM_SET_CPUID
|
||
|
||
Capability: basic
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_cpuid (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Defines the vcpu responses to the cpuid instruction. Applications
|
||
should use the KVM_SET_CPUID2 ioctl if available.
|
||
|
||
|
||
struct kvm_cpuid_entry {
|
||
__u32 function;
|
||
__u32 eax;
|
||
__u32 ebx;
|
||
__u32 ecx;
|
||
__u32 edx;
|
||
__u32 padding;
|
||
};
|
||
|
||
/* for KVM_SET_CPUID */
|
||
struct kvm_cpuid {
|
||
__u32 nent;
|
||
__u32 padding;
|
||
struct kvm_cpuid_entry entries[0];
|
||
};
|
||
|
||
|
||
4.21 KVM_SET_SIGNAL_MASK
|
||
|
||
Capability: basic
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_signal_mask (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Defines which signals are blocked during execution of KVM_RUN. This
|
||
signal mask temporarily overrides the threads signal mask. Any
|
||
unblocked signal received (except SIGKILL and SIGSTOP, which retain
|
||
their traditional behaviour) will cause KVM_RUN to return with -EINTR.
|
||
|
||
Note the signal will only be delivered if not blocked by the original
|
||
signal mask.
|
||
|
||
/* for KVM_SET_SIGNAL_MASK */
|
||
struct kvm_signal_mask {
|
||
__u32 len;
|
||
__u8 sigset[0];
|
||
};
|
||
|
||
|
||
4.22 KVM_GET_FPU
|
||
|
||
Capability: basic
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_fpu (out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Reads the floating point state from the vcpu.
|
||
|
||
/* for KVM_GET_FPU and KVM_SET_FPU */
|
||
struct kvm_fpu {
|
||
__u8 fpr[8][16];
|
||
__u16 fcw;
|
||
__u16 fsw;
|
||
__u8 ftwx; /* in fxsave format */
|
||
__u8 pad1;
|
||
__u16 last_opcode;
|
||
__u64 last_ip;
|
||
__u64 last_dp;
|
||
__u8 xmm[16][16];
|
||
__u32 mxcsr;
|
||
__u32 pad2;
|
||
};
|
||
|
||
|
||
4.23 KVM_SET_FPU
|
||
|
||
Capability: basic
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_fpu (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Writes the floating point state to the vcpu.
|
||
|
||
/* for KVM_GET_FPU and KVM_SET_FPU */
|
||
struct kvm_fpu {
|
||
__u8 fpr[8][16];
|
||
__u16 fcw;
|
||
__u16 fsw;
|
||
__u8 ftwx; /* in fxsave format */
|
||
__u8 pad1;
|
||
__u16 last_opcode;
|
||
__u64 last_ip;
|
||
__u64 last_dp;
|
||
__u8 xmm[16][16];
|
||
__u32 mxcsr;
|
||
__u32 pad2;
|
||
};
|
||
|
||
|
||
4.24 KVM_CREATE_IRQCHIP
|
||
|
||
Capability: KVM_CAP_IRQCHIP
|
||
Architectures: x86, ia64, ARM, arm64
|
||
Type: vm ioctl
|
||
Parameters: none
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Creates an interrupt controller model in the kernel. On x86, creates a virtual
|
||
ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
|
||
local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
|
||
only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM/arm64, a GIC is
|
||
created.
|
||
|
||
|
||
4.25 KVM_IRQ_LINE
|
||
|
||
Capability: KVM_CAP_IRQCHIP
|
||
Architectures: x86, ia64, arm, arm64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_irq_level
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Sets the level of a GSI input to the interrupt controller model in the kernel.
|
||
On some architectures it is required that an interrupt controller model has
|
||
been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
|
||
interrupts require the level to be set to 1 and then back to 0.
|
||
|
||
ARM/arm64 can signal an interrupt either at the CPU level, or at the
|
||
in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
|
||
use PPIs designated for specific cpus. The irq field is interpreted
|
||
like this:
|
||
|
||
bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
|
||
field: | irq_type | vcpu_index | irq_id |
|
||
|
||
The irq_type field has the following values:
|
||
- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
|
||
- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
|
||
(the vcpu_index field is ignored)
|
||
- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
|
||
|
||
(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
|
||
|
||
In both cases, level is used to raise/lower the line.
|
||
|
||
struct kvm_irq_level {
|
||
union {
|
||
__u32 irq; /* GSI */
|
||
__s32 status; /* not used for KVM_IRQ_LEVEL */
|
||
};
|
||
__u32 level; /* 0 or 1 */
|
||
};
|
||
|
||
|
||
4.26 KVM_GET_IRQCHIP
|
||
|
||
Capability: KVM_CAP_IRQCHIP
|
||
Architectures: x86, ia64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_irqchip (in/out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Reads the state of a kernel interrupt controller created with
|
||
KVM_CREATE_IRQCHIP into a buffer provided by the caller.
|
||
|
||
struct kvm_irqchip {
|
||
__u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
|
||
__u32 pad;
|
||
union {
|
||
char dummy[512]; /* reserving space */
|
||
struct kvm_pic_state pic;
|
||
struct kvm_ioapic_state ioapic;
|
||
} chip;
|
||
};
|
||
|
||
|
||
4.27 KVM_SET_IRQCHIP
|
||
|
||
Capability: KVM_CAP_IRQCHIP
|
||
Architectures: x86, ia64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_irqchip (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Sets the state of a kernel interrupt controller created with
|
||
KVM_CREATE_IRQCHIP from a buffer provided by the caller.
|
||
|
||
struct kvm_irqchip {
|
||
__u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
|
||
__u32 pad;
|
||
union {
|
||
char dummy[512]; /* reserving space */
|
||
struct kvm_pic_state pic;
|
||
struct kvm_ioapic_state ioapic;
|
||
} chip;
|
||
};
|
||
|
||
|
||
4.28 KVM_XEN_HVM_CONFIG
|
||
|
||
Capability: KVM_CAP_XEN_HVM
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_xen_hvm_config (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Sets the MSR that the Xen HVM guest uses to initialize its hypercall
|
||
page, and provides the starting address and size of the hypercall
|
||
blobs in userspace. When the guest writes the MSR, kvm copies one
|
||
page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
|
||
memory.
|
||
|
||
struct kvm_xen_hvm_config {
|
||
__u32 flags;
|
||
__u32 msr;
|
||
__u64 blob_addr_32;
|
||
__u64 blob_addr_64;
|
||
__u8 blob_size_32;
|
||
__u8 blob_size_64;
|
||
__u8 pad2[30];
|
||
};
|
||
|
||
|
||
4.29 KVM_GET_CLOCK
|
||
|
||
Capability: KVM_CAP_ADJUST_CLOCK
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_clock_data (out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Gets the current timestamp of kvmclock as seen by the current guest. In
|
||
conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
|
||
such as migration.
|
||
|
||
struct kvm_clock_data {
|
||
__u64 clock; /* kvmclock current value */
|
||
__u32 flags;
|
||
__u32 pad[9];
|
||
};
|
||
|
||
|
||
4.30 KVM_SET_CLOCK
|
||
|
||
Capability: KVM_CAP_ADJUST_CLOCK
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_clock_data (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Sets the current timestamp of kvmclock to the value specified in its parameter.
|
||
In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
|
||
such as migration.
|
||
|
||
struct kvm_clock_data {
|
||
__u64 clock; /* kvmclock current value */
|
||
__u32 flags;
|
||
__u32 pad[9];
|
||
};
|
||
|
||
|
||
4.31 KVM_GET_VCPU_EVENTS
|
||
|
||
Capability: KVM_CAP_VCPU_EVENTS
|
||
Extended by: KVM_CAP_INTR_SHADOW
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_vcpu_event (out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Gets currently pending exceptions, interrupts, and NMIs as well as related
|
||
states of the vcpu.
|
||
|
||
struct kvm_vcpu_events {
|
||
struct {
|
||
__u8 injected;
|
||
__u8 nr;
|
||
__u8 has_error_code;
|
||
__u8 pad;
|
||
__u32 error_code;
|
||
} exception;
|
||
struct {
|
||
__u8 injected;
|
||
__u8 nr;
|
||
__u8 soft;
|
||
__u8 shadow;
|
||
} interrupt;
|
||
struct {
|
||
__u8 injected;
|
||
__u8 pending;
|
||
__u8 masked;
|
||
__u8 pad;
|
||
} nmi;
|
||
__u32 sipi_vector;
|
||
__u32 flags;
|
||
};
|
||
|
||
KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
|
||
interrupt.shadow contains a valid state. Otherwise, this field is undefined.
|
||
|
||
|
||
4.32 KVM_SET_VCPU_EVENTS
|
||
|
||
Capability: KVM_CAP_VCPU_EVENTS
|
||
Extended by: KVM_CAP_INTR_SHADOW
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_vcpu_event (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Set pending exceptions, interrupts, and NMIs as well as related states of the
|
||
vcpu.
|
||
|
||
See KVM_GET_VCPU_EVENTS for the data structure.
|
||
|
||
Fields that may be modified asynchronously by running VCPUs can be excluded
|
||
from the update. These fields are nmi.pending and sipi_vector. Keep the
|
||
corresponding bits in the flags field cleared to suppress overwriting the
|
||
current in-kernel state. The bits are:
|
||
|
||
KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
|
||
KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
|
||
|
||
If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
|
||
the flags field to signal that interrupt.shadow contains a valid state and
|
||
shall be written into the VCPU.
|
||
|
||
|
||
4.33 KVM_GET_DEBUGREGS
|
||
|
||
Capability: KVM_CAP_DEBUGREGS
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_debugregs (out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Reads debug registers from the vcpu.
|
||
|
||
struct kvm_debugregs {
|
||
__u64 db[4];
|
||
__u64 dr6;
|
||
__u64 dr7;
|
||
__u64 flags;
|
||
__u64 reserved[9];
|
||
};
|
||
|
||
|
||
4.34 KVM_SET_DEBUGREGS
|
||
|
||
Capability: KVM_CAP_DEBUGREGS
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_debugregs (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Writes debug registers into the vcpu.
|
||
|
||
See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
|
||
yet and must be cleared on entry.
|
||
|
||
|
||
4.35 KVM_SET_USER_MEMORY_REGION
|
||
|
||
Capability: KVM_CAP_USER_MEM
|
||
Architectures: all
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_userspace_memory_region (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
struct kvm_userspace_memory_region {
|
||
__u32 slot;
|
||
__u32 flags;
|
||
__u64 guest_phys_addr;
|
||
__u64 memory_size; /* bytes */
|
||
__u64 userspace_addr; /* start of the userspace allocated memory */
|
||
};
|
||
|
||
/* for kvm_memory_region::flags */
|
||
#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
|
||
#define KVM_MEM_READONLY (1UL << 1)
|
||
|
||
This ioctl allows the user to create or modify a guest physical memory
|
||
slot. When changing an existing slot, it may be moved in the guest
|
||
physical memory space, or its flags may be modified. It may not be
|
||
resized. Slots may not overlap in guest physical address space.
|
||
|
||
Memory for the region is taken starting at the address denoted by the
|
||
field userspace_addr, which must point at user addressable memory for
|
||
the entire memory slot size. Any object may back this memory, including
|
||
anonymous memory, ordinary files, and hugetlbfs.
|
||
|
||
It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
|
||
be identical. This allows large pages in the guest to be backed by large
|
||
pages in the host.
|
||
|
||
The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
|
||
KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
|
||
writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
|
||
use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
|
||
to make a new slot read-only. In this case, writes to this memory will be
|
||
posted to userspace as KVM_EXIT_MMIO exits.
|
||
|
||
When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
|
||
the memory region are automatically reflected into the guest. For example, an
|
||
mmap() that affects the region will be made visible immediately. Another
|
||
example is madvise(MADV_DROP).
|
||
|
||
It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
|
||
The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
|
||
allocation and is deprecated.
|
||
|
||
|
||
4.36 KVM_SET_TSS_ADDR
|
||
|
||
Capability: KVM_CAP_SET_TSS_ADDR
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: unsigned long tss_address (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
This ioctl defines the physical address of a three-page region in the guest
|
||
physical address space. The region must be within the first 4GB of the
|
||
guest physical address space and must not conflict with any memory slot
|
||
or any mmio address. The guest may malfunction if it accesses this memory
|
||
region.
|
||
|
||
This ioctl is required on Intel-based hosts. This is needed on Intel hardware
|
||
because of a quirk in the virtualization implementation (see the internals
|
||
documentation when it pops into existence).
|
||
|
||
|
||
4.37 KVM_ENABLE_CAP
|
||
|
||
Capability: KVM_CAP_ENABLE_CAP
|
||
Architectures: ppc, s390
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_enable_cap (in)
|
||
Returns: 0 on success; -1 on error
|
||
|
||
+Not all extensions are enabled by default. Using this ioctl the application
|
||
can enable an extension, making it available to the guest.
|
||
|
||
On systems that do not support this ioctl, it always fails. On systems that
|
||
do support it, it only works for extensions that are supported for enablement.
|
||
|
||
To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
|
||
be used.
|
||
|
||
struct kvm_enable_cap {
|
||
/* in */
|
||
__u32 cap;
|
||
|
||
The capability that is supposed to get enabled.
|
||
|
||
__u32 flags;
|
||
|
||
A bitfield indicating future enhancements. Has to be 0 for now.
|
||
|
||
__u64 args[4];
|
||
|
||
Arguments for enabling a feature. If a feature needs initial values to
|
||
function properly, this is the place to put them.
|
||
|
||
__u8 pad[64];
|
||
};
|
||
|
||
|
||
4.38 KVM_GET_MP_STATE
|
||
|
||
Capability: KVM_CAP_MP_STATE
|
||
Architectures: x86, ia64
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_mp_state (out)
|
||
Returns: 0 on success; -1 on error
|
||
|
||
struct kvm_mp_state {
|
||
__u32 mp_state;
|
||
};
|
||
|
||
Returns the vcpu's current "multiprocessing state" (though also valid on
|
||
uniprocessor guests).
|
||
|
||
Possible values are:
|
||
|
||
- KVM_MP_STATE_RUNNABLE: the vcpu is currently running
|
||
- KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
|
||
which has not yet received an INIT signal
|
||
- KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
|
||
now ready for a SIPI
|
||
- KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
|
||
is waiting for an interrupt
|
||
- KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
|
||
accessible via KVM_GET_VCPU_EVENTS)
|
||
|
||
This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
|
||
irqchip, the multiprocessing state must be maintained by userspace.
|
||
|
||
|
||
4.39 KVM_SET_MP_STATE
|
||
|
||
Capability: KVM_CAP_MP_STATE
|
||
Architectures: x86, ia64
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_mp_state (in)
|
||
Returns: 0 on success; -1 on error
|
||
|
||
Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
|
||
arguments.
|
||
|
||
This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
|
||
irqchip, the multiprocessing state must be maintained by userspace.
|
||
|
||
|
||
4.40 KVM_SET_IDENTITY_MAP_ADDR
|
||
|
||
Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: unsigned long identity (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
This ioctl defines the physical address of a one-page region in the guest
|
||
physical address space. The region must be within the first 4GB of the
|
||
guest physical address space and must not conflict with any memory slot
|
||
or any mmio address. The guest may malfunction if it accesses this memory
|
||
region.
|
||
|
||
This ioctl is required on Intel-based hosts. This is needed on Intel hardware
|
||
because of a quirk in the virtualization implementation (see the internals
|
||
documentation when it pops into existence).
|
||
|
||
|
||
4.41 KVM_SET_BOOT_CPU_ID
|
||
|
||
Capability: KVM_CAP_SET_BOOT_CPU_ID
|
||
Architectures: x86, ia64
|
||
Type: vm ioctl
|
||
Parameters: unsigned long vcpu_id
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Define which vcpu is the Bootstrap Processor (BSP). Values are the same
|
||
as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
|
||
is vcpu 0.
|
||
|
||
|
||
4.42 KVM_GET_XSAVE
|
||
|
||
Capability: KVM_CAP_XSAVE
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_xsave (out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
struct kvm_xsave {
|
||
__u32 region[1024];
|
||
};
|
||
|
||
This ioctl would copy current vcpu's xsave struct to the userspace.
|
||
|
||
|
||
4.43 KVM_SET_XSAVE
|
||
|
||
Capability: KVM_CAP_XSAVE
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_xsave (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
struct kvm_xsave {
|
||
__u32 region[1024];
|
||
};
|
||
|
||
This ioctl would copy userspace's xsave struct to the kernel.
|
||
|
||
|
||
4.44 KVM_GET_XCRS
|
||
|
||
Capability: KVM_CAP_XCRS
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_xcrs (out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
struct kvm_xcr {
|
||
__u32 xcr;
|
||
__u32 reserved;
|
||
__u64 value;
|
||
};
|
||
|
||
struct kvm_xcrs {
|
||
__u32 nr_xcrs;
|
||
__u32 flags;
|
||
struct kvm_xcr xcrs[KVM_MAX_XCRS];
|
||
__u64 padding[16];
|
||
};
|
||
|
||
This ioctl would copy current vcpu's xcrs to the userspace.
|
||
|
||
|
||
4.45 KVM_SET_XCRS
|
||
|
||
Capability: KVM_CAP_XCRS
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_xcrs (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
struct kvm_xcr {
|
||
__u32 xcr;
|
||
__u32 reserved;
|
||
__u64 value;
|
||
};
|
||
|
||
struct kvm_xcrs {
|
||
__u32 nr_xcrs;
|
||
__u32 flags;
|
||
struct kvm_xcr xcrs[KVM_MAX_XCRS];
|
||
__u64 padding[16];
|
||
};
|
||
|
||
This ioctl would set vcpu's xcr to the value userspace specified.
|
||
|
||
|
||
4.46 KVM_GET_SUPPORTED_CPUID
|
||
|
||
Capability: KVM_CAP_EXT_CPUID
|
||
Architectures: x86
|
||
Type: system ioctl
|
||
Parameters: struct kvm_cpuid2 (in/out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
struct kvm_cpuid2 {
|
||
__u32 nent;
|
||
__u32 padding;
|
||
struct kvm_cpuid_entry2 entries[0];
|
||
};
|
||
|
||
#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
|
||
#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
|
||
#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
|
||
|
||
struct kvm_cpuid_entry2 {
|
||
__u32 function;
|
||
__u32 index;
|
||
__u32 flags;
|
||
__u32 eax;
|
||
__u32 ebx;
|
||
__u32 ecx;
|
||
__u32 edx;
|
||
__u32 padding[3];
|
||
};
|
||
|
||
This ioctl returns x86 cpuid features which are supported by both the hardware
|
||
and kvm. Userspace can use the information returned by this ioctl to
|
||
construct cpuid information (for KVM_SET_CPUID2) that is consistent with
|
||
hardware, kernel, and userspace capabilities, and with user requirements (for
|
||
example, the user may wish to constrain cpuid to emulate older hardware,
|
||
or for feature consistency across a cluster).
|
||
|
||
Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
|
||
with the 'nent' field indicating the number of entries in the variable-size
|
||
array 'entries'. If the number of entries is too low to describe the cpu
|
||
capabilities, an error (E2BIG) is returned. If the number is too high,
|
||
the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
|
||
number is just right, the 'nent' field is adjusted to the number of valid
|
||
entries in the 'entries' array, which is then filled.
|
||
|
||
The entries returned are the host cpuid as returned by the cpuid instruction,
|
||
with unknown or unsupported features masked out. Some features (for example,
|
||
x2apic), may not be present in the host cpu, but are exposed by kvm if it can
|
||
emulate them efficiently. The fields in each entry are defined as follows:
|
||
|
||
function: the eax value used to obtain the entry
|
||
index: the ecx value used to obtain the entry (for entries that are
|
||
affected by ecx)
|
||
flags: an OR of zero or more of the following:
|
||
KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
|
||
if the index field is valid
|
||
KVM_CPUID_FLAG_STATEFUL_FUNC:
|
||
if cpuid for this function returns different values for successive
|
||
invocations; there will be several entries with the same function,
|
||
all with this flag set
|
||
KVM_CPUID_FLAG_STATE_READ_NEXT:
|
||
for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
|
||
the first entry to be read by a cpu
|
||
eax, ebx, ecx, edx: the values returned by the cpuid instruction for
|
||
this function/index combination
|
||
|
||
The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
|
||
as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
|
||
support. Instead it is reported via
|
||
|
||
ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
|
||
|
||
if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
|
||
feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
|
||
|
||
|
||
4.47 KVM_PPC_GET_PVINFO
|
||
|
||
Capability: KVM_CAP_PPC_GET_PVINFO
|
||
Architectures: ppc
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_ppc_pvinfo (out)
|
||
Returns: 0 on success, !0 on error
|
||
|
||
struct kvm_ppc_pvinfo {
|
||
__u32 flags;
|
||
__u32 hcall[4];
|
||
__u8 pad[108];
|
||
};
|
||
|
||
This ioctl fetches PV specific information that need to be passed to the guest
|
||
using the device tree or other means from vm context.
|
||
|
||
The hcall array defines 4 instructions that make up a hypercall.
|
||
|
||
If any additional field gets added to this structure later on, a bit for that
|
||
additional piece of information will be set in the flags bitmap.
|
||
|
||
The flags bitmap is defined as:
|
||
|
||
/* the host supports the ePAPR idle hcall
|
||
#define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
|
||
|
||
4.48 KVM_ASSIGN_PCI_DEVICE
|
||
|
||
Capability: KVM_CAP_DEVICE_ASSIGNMENT
|
||
Architectures: x86 ia64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_assigned_pci_dev (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Assigns a host PCI device to the VM.
|
||
|
||
struct kvm_assigned_pci_dev {
|
||
__u32 assigned_dev_id;
|
||
__u32 busnr;
|
||
__u32 devfn;
|
||
__u32 flags;
|
||
__u32 segnr;
|
||
union {
|
||
__u32 reserved[11];
|
||
};
|
||
};
|
||
|
||
The PCI device is specified by the triple segnr, busnr, and devfn.
|
||
Identification in succeeding service requests is done via assigned_dev_id. The
|
||
following flags are specified:
|
||
|
||
/* Depends on KVM_CAP_IOMMU */
|
||
#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
|
||
/* The following two depend on KVM_CAP_PCI_2_3 */
|
||
#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
|
||
#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
|
||
|
||
If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
|
||
via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
|
||
assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
|
||
guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
|
||
|
||
The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
|
||
isolation of the device. Usages not specifying this flag are deprecated.
|
||
|
||
Only PCI header type 0 devices with PCI BAR resources are supported by
|
||
device assignment. The user requesting this ioctl must have read/write
|
||
access to the PCI sysfs resource files associated with the device.
|
||
|
||
|
||
4.49 KVM_DEASSIGN_PCI_DEVICE
|
||
|
||
Capability: KVM_CAP_DEVICE_DEASSIGNMENT
|
||
Architectures: x86 ia64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_assigned_pci_dev (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Ends PCI device assignment, releasing all associated resources.
|
||
|
||
See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
|
||
used in kvm_assigned_pci_dev to identify the device.
|
||
|
||
|
||
4.50 KVM_ASSIGN_DEV_IRQ
|
||
|
||
Capability: KVM_CAP_ASSIGN_DEV_IRQ
|
||
Architectures: x86 ia64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_assigned_irq (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Assigns an IRQ to a passed-through device.
|
||
|
||
struct kvm_assigned_irq {
|
||
__u32 assigned_dev_id;
|
||
__u32 host_irq; /* ignored (legacy field) */
|
||
__u32 guest_irq;
|
||
__u32 flags;
|
||
union {
|
||
__u32 reserved[12];
|
||
};
|
||
};
|
||
|
||
The following flags are defined:
|
||
|
||
#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
|
||
#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
|
||
#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
|
||
|
||
#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
|
||
#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
|
||
#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
|
||
|
||
It is not valid to specify multiple types per host or guest IRQ. However, the
|
||
IRQ type of host and guest can differ or can even be null.
|
||
|
||
|
||
4.51 KVM_DEASSIGN_DEV_IRQ
|
||
|
||
Capability: KVM_CAP_ASSIGN_DEV_IRQ
|
||
Architectures: x86 ia64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_assigned_irq (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Ends an IRQ assignment to a passed-through device.
|
||
|
||
See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
|
||
by assigned_dev_id, flags must correspond to the IRQ type specified on
|
||
KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
|
||
|
||
|
||
4.52 KVM_SET_GSI_ROUTING
|
||
|
||
Capability: KVM_CAP_IRQ_ROUTING
|
||
Architectures: x86 ia64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_irq_routing (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Sets the GSI routing table entries, overwriting any previously set entries.
|
||
|
||
struct kvm_irq_routing {
|
||
__u32 nr;
|
||
__u32 flags;
|
||
struct kvm_irq_routing_entry entries[0];
|
||
};
|
||
|
||
No flags are specified so far, the corresponding field must be set to zero.
|
||
|
||
struct kvm_irq_routing_entry {
|
||
__u32 gsi;
|
||
__u32 type;
|
||
__u32 flags;
|
||
__u32 pad;
|
||
union {
|
||
struct kvm_irq_routing_irqchip irqchip;
|
||
struct kvm_irq_routing_msi msi;
|
||
__u32 pad[8];
|
||
} u;
|
||
};
|
||
|
||
/* gsi routing entry types */
|
||
#define KVM_IRQ_ROUTING_IRQCHIP 1
|
||
#define KVM_IRQ_ROUTING_MSI 2
|
||
|
||
No flags are specified so far, the corresponding field must be set to zero.
|
||
|
||
struct kvm_irq_routing_irqchip {
|
||
__u32 irqchip;
|
||
__u32 pin;
|
||
};
|
||
|
||
struct kvm_irq_routing_msi {
|
||
__u32 address_lo;
|
||
__u32 address_hi;
|
||
__u32 data;
|
||
__u32 pad;
|
||
};
|
||
|
||
|
||
4.53 KVM_ASSIGN_SET_MSIX_NR
|
||
|
||
Capability: KVM_CAP_DEVICE_MSIX
|
||
Architectures: x86 ia64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_assigned_msix_nr (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Set the number of MSI-X interrupts for an assigned device. The number is
|
||
reset again by terminating the MSI-X assignment of the device via
|
||
KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
|
||
point will fail.
|
||
|
||
struct kvm_assigned_msix_nr {
|
||
__u32 assigned_dev_id;
|
||
__u16 entry_nr;
|
||
__u16 padding;
|
||
};
|
||
|
||
#define KVM_MAX_MSIX_PER_DEV 256
|
||
|
||
|
||
4.54 KVM_ASSIGN_SET_MSIX_ENTRY
|
||
|
||
Capability: KVM_CAP_DEVICE_MSIX
|
||
Architectures: x86 ia64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_assigned_msix_entry (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
|
||
the GSI vector to zero means disabling the interrupt.
|
||
|
||
struct kvm_assigned_msix_entry {
|
||
__u32 assigned_dev_id;
|
||
__u32 gsi;
|
||
__u16 entry; /* The index of entry in the MSI-X table */
|
||
__u16 padding[3];
|
||
};
|
||
|
||
|
||
4.55 KVM_SET_TSC_KHZ
|
||
|
||
Capability: KVM_CAP_TSC_CONTROL
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: virtual tsc_khz
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Specifies the tsc frequency for the virtual machine. The unit of the
|
||
frequency is KHz.
|
||
|
||
|
||
4.56 KVM_GET_TSC_KHZ
|
||
|
||
Capability: KVM_CAP_GET_TSC_KHZ
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: none
|
||
Returns: virtual tsc-khz on success, negative value on error
|
||
|
||
Returns the tsc frequency of the guest. The unit of the return value is
|
||
KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
|
||
error.
|
||
|
||
|
||
4.57 KVM_GET_LAPIC
|
||
|
||
Capability: KVM_CAP_IRQCHIP
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_lapic_state (out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
#define KVM_APIC_REG_SIZE 0x400
|
||
struct kvm_lapic_state {
|
||
char regs[KVM_APIC_REG_SIZE];
|
||
};
|
||
|
||
Reads the Local APIC registers and copies them into the input argument. The
|
||
data format and layout are the same as documented in the architecture manual.
|
||
|
||
|
||
4.58 KVM_SET_LAPIC
|
||
|
||
Capability: KVM_CAP_IRQCHIP
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_lapic_state (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
#define KVM_APIC_REG_SIZE 0x400
|
||
struct kvm_lapic_state {
|
||
char regs[KVM_APIC_REG_SIZE];
|
||
};
|
||
|
||
Copies the input argument into the the Local APIC registers. The data format
|
||
and layout are the same as documented in the architecture manual.
|
||
|
||
|
||
4.59 KVM_IOEVENTFD
|
||
|
||
Capability: KVM_CAP_IOEVENTFD
|
||
Architectures: all
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_ioeventfd (in)
|
||
Returns: 0 on success, !0 on error
|
||
|
||
This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
|
||
within the guest. A guest write in the registered address will signal the
|
||
provided event instead of triggering an exit.
|
||
|
||
struct kvm_ioeventfd {
|
||
__u64 datamatch;
|
||
__u64 addr; /* legal pio/mmio address */
|
||
__u32 len; /* 1, 2, 4, or 8 bytes */
|
||
__s32 fd;
|
||
__u32 flags;
|
||
__u8 pad[36];
|
||
};
|
||
|
||
For the special case of virtio-ccw devices on s390, the ioevent is matched
|
||
to a subchannel/virtqueue tuple instead.
|
||
|
||
The following flags are defined:
|
||
|
||
#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
|
||
#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
|
||
#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
|
||
#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
|
||
(1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
|
||
|
||
If datamatch flag is set, the event will be signaled only if the written value
|
||
to the registered address is equal to datamatch in struct kvm_ioeventfd.
|
||
|
||
For virtio-ccw devices, addr contains the subchannel id and datamatch the
|
||
virtqueue index.
|
||
|
||
|
||
4.60 KVM_DIRTY_TLB
|
||
|
||
Capability: KVM_CAP_SW_TLB
|
||
Architectures: ppc
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_dirty_tlb (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
struct kvm_dirty_tlb {
|
||
__u64 bitmap;
|
||
__u32 num_dirty;
|
||
};
|
||
|
||
This must be called whenever userspace has changed an entry in the shared
|
||
TLB, prior to calling KVM_RUN on the associated vcpu.
|
||
|
||
The "bitmap" field is the userspace address of an array. This array
|
||
consists of a number of bits, equal to the total number of TLB entries as
|
||
determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
|
||
nearest multiple of 64.
|
||
|
||
Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
|
||
array.
|
||
|
||
The array is little-endian: the bit 0 is the least significant bit of the
|
||
first byte, bit 8 is the least significant bit of the second byte, etc.
|
||
This avoids any complications with differing word sizes.
|
||
|
||
The "num_dirty" field is a performance hint for KVM to determine whether it
|
||
should skip processing the bitmap and just invalidate everything. It must
|
||
be set to the number of set bits in the bitmap.
|
||
|
||
|
||
4.61 KVM_ASSIGN_SET_INTX_MASK
|
||
|
||
Capability: KVM_CAP_PCI_2_3
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_assigned_pci_dev (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Allows userspace to mask PCI INTx interrupts from the assigned device. The
|
||
kernel will not deliver INTx interrupts to the guest between setting and
|
||
clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
|
||
and emulation of PCI 2.3 INTx disable command register behavior.
|
||
|
||
This may be used for both PCI 2.3 devices supporting INTx disable natively and
|
||
older devices lacking this support. Userspace is responsible for emulating the
|
||
read value of the INTx disable bit in the guest visible PCI command register.
|
||
When modifying the INTx disable state, userspace should precede updating the
|
||
physical device command register by calling this ioctl to inform the kernel of
|
||
the new intended INTx mask state.
|
||
|
||
Note that the kernel uses the device INTx disable bit to internally manage the
|
||
device interrupt state for PCI 2.3 devices. Reads of this register may
|
||
therefore not match the expected value. Writes should always use the guest
|
||
intended INTx disable value rather than attempting to read-copy-update the
|
||
current physical device state. Races between user and kernel updates to the
|
||
INTx disable bit are handled lazily in the kernel. It's possible the device
|
||
may generate unintended interrupts, but they will not be injected into the
|
||
guest.
|
||
|
||
See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
|
||
by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
|
||
evaluated.
|
||
|
||
|
||
4.62 KVM_CREATE_SPAPR_TCE
|
||
|
||
Capability: KVM_CAP_SPAPR_TCE
|
||
Architectures: powerpc
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_create_spapr_tce (in)
|
||
Returns: file descriptor for manipulating the created TCE table
|
||
|
||
This creates a virtual TCE (translation control entry) table, which
|
||
is an IOMMU for PAPR-style virtual I/O. It is used to translate
|
||
logical addresses used in virtual I/O into guest physical addresses,
|
||
and provides a scatter/gather capability for PAPR virtual I/O.
|
||
|
||
/* for KVM_CAP_SPAPR_TCE */
|
||
struct kvm_create_spapr_tce {
|
||
__u64 liobn;
|
||
__u32 window_size;
|
||
};
|
||
|
||
The liobn field gives the logical IO bus number for which to create a
|
||
TCE table. The window_size field specifies the size of the DMA window
|
||
which this TCE table will translate - the table will contain one 64
|
||
bit TCE entry for every 4kiB of the DMA window.
|
||
|
||
When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
|
||
table has been created using this ioctl(), the kernel will handle it
|
||
in real mode, updating the TCE table. H_PUT_TCE calls for other
|
||
liobns will cause a vm exit and must be handled by userspace.
|
||
|
||
The return value is a file descriptor which can be passed to mmap(2)
|
||
to map the created TCE table into userspace. This lets userspace read
|
||
the entries written by kernel-handled H_PUT_TCE calls, and also lets
|
||
userspace update the TCE table directly which is useful in some
|
||
circumstances.
|
||
|
||
|
||
4.63 KVM_ALLOCATE_RMA
|
||
|
||
Capability: KVM_CAP_PPC_RMA
|
||
Architectures: powerpc
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_allocate_rma (out)
|
||
Returns: file descriptor for mapping the allocated RMA
|
||
|
||
This allocates a Real Mode Area (RMA) from the pool allocated at boot
|
||
time by the kernel. An RMA is a physically-contiguous, aligned region
|
||
of memory used on older POWER processors to provide the memory which
|
||
will be accessed by real-mode (MMU off) accesses in a KVM guest.
|
||
POWER processors support a set of sizes for the RMA that usually
|
||
includes 64MB, 128MB, 256MB and some larger powers of two.
|
||
|
||
/* for KVM_ALLOCATE_RMA */
|
||
struct kvm_allocate_rma {
|
||
__u64 rma_size;
|
||
};
|
||
|
||
The return value is a file descriptor which can be passed to mmap(2)
|
||
to map the allocated RMA into userspace. The mapped area can then be
|
||
passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
|
||
RMA for a virtual machine. The size of the RMA in bytes (which is
|
||
fixed at host kernel boot time) is returned in the rma_size field of
|
||
the argument structure.
|
||
|
||
The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
|
||
is supported; 2 if the processor requires all virtual machines to have
|
||
an RMA, or 1 if the processor can use an RMA but doesn't require it,
|
||
because it supports the Virtual RMA (VRMA) facility.
|
||
|
||
|
||
4.64 KVM_NMI
|
||
|
||
Capability: KVM_CAP_USER_NMI
|
||
Architectures: x86
|
||
Type: vcpu ioctl
|
||
Parameters: none
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Queues an NMI on the thread's vcpu. Note this is well defined only
|
||
when KVM_CREATE_IRQCHIP has not been called, since this is an interface
|
||
between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
|
||
has been called, this interface is completely emulated within the kernel.
|
||
|
||
To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
|
||
following algorithm:
|
||
|
||
- pause the vpcu
|
||
- read the local APIC's state (KVM_GET_LAPIC)
|
||
- check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
|
||
- if so, issue KVM_NMI
|
||
- resume the vcpu
|
||
|
||
Some guests configure the LINT1 NMI input to cause a panic, aiding in
|
||
debugging.
|
||
|
||
|
||
4.65 KVM_S390_UCAS_MAP
|
||
|
||
Capability: KVM_CAP_S390_UCONTROL
|
||
Architectures: s390
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_s390_ucas_mapping (in)
|
||
Returns: 0 in case of success
|
||
|
||
The parameter is defined like this:
|
||
struct kvm_s390_ucas_mapping {
|
||
__u64 user_addr;
|
||
__u64 vcpu_addr;
|
||
__u64 length;
|
||
};
|
||
|
||
This ioctl maps the memory at "user_addr" with the length "length" to
|
||
the vcpu's address space starting at "vcpu_addr". All parameters need to
|
||
be aligned by 1 megabyte.
|
||
|
||
|
||
4.66 KVM_S390_UCAS_UNMAP
|
||
|
||
Capability: KVM_CAP_S390_UCONTROL
|
||
Architectures: s390
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_s390_ucas_mapping (in)
|
||
Returns: 0 in case of success
|
||
|
||
The parameter is defined like this:
|
||
struct kvm_s390_ucas_mapping {
|
||
__u64 user_addr;
|
||
__u64 vcpu_addr;
|
||
__u64 length;
|
||
};
|
||
|
||
This ioctl unmaps the memory in the vcpu's address space starting at
|
||
"vcpu_addr" with the length "length". The field "user_addr" is ignored.
|
||
All parameters need to be aligned by 1 megabyte.
|
||
|
||
|
||
4.67 KVM_S390_VCPU_FAULT
|
||
|
||
Capability: KVM_CAP_S390_UCONTROL
|
||
Architectures: s390
|
||
Type: vcpu ioctl
|
||
Parameters: vcpu absolute address (in)
|
||
Returns: 0 in case of success
|
||
|
||
This call creates a page table entry on the virtual cpu's address space
|
||
(for user controlled virtual machines) or the virtual machine's address
|
||
space (for regular virtual machines). This only works for minor faults,
|
||
thus it's recommended to access subject memory page via the user page
|
||
table upfront. This is useful to handle validity intercepts for user
|
||
controlled virtual machines to fault in the virtual cpu's lowcore pages
|
||
prior to calling the KVM_RUN ioctl.
|
||
|
||
|
||
4.68 KVM_SET_ONE_REG
|
||
|
||
Capability: KVM_CAP_ONE_REG
|
||
Architectures: all
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_one_reg (in)
|
||
Returns: 0 on success, negative value on failure
|
||
|
||
struct kvm_one_reg {
|
||
__u64 id;
|
||
__u64 addr;
|
||
};
|
||
|
||
Using this ioctl, a single vcpu register can be set to a specific value
|
||
defined by user space with the passed in struct kvm_one_reg, where id
|
||
refers to the register identifier as described below and addr is a pointer
|
||
to a variable with the respective size. There can be architecture agnostic
|
||
and architecture specific registers. Each have their own range of operation
|
||
and their own constants and width. To keep track of the implemented
|
||
registers, find a list below:
|
||
|
||
Arch | Register | Width (bits)
|
||
| |
|
||
PPC | KVM_REG_PPC_HIOR | 64
|
||
PPC | KVM_REG_PPC_IAC1 | 64
|
||
PPC | KVM_REG_PPC_IAC2 | 64
|
||
PPC | KVM_REG_PPC_IAC3 | 64
|
||
PPC | KVM_REG_PPC_IAC4 | 64
|
||
PPC | KVM_REG_PPC_DAC1 | 64
|
||
PPC | KVM_REG_PPC_DAC2 | 64
|
||
PPC | KVM_REG_PPC_DABR | 64
|
||
PPC | KVM_REG_PPC_DSCR | 64
|
||
PPC | KVM_REG_PPC_PURR | 64
|
||
PPC | KVM_REG_PPC_SPURR | 64
|
||
PPC | KVM_REG_PPC_DAR | 64
|
||
PPC | KVM_REG_PPC_DSISR | 32
|
||
PPC | KVM_REG_PPC_AMR | 64
|
||
PPC | KVM_REG_PPC_UAMOR | 64
|
||
PPC | KVM_REG_PPC_MMCR0 | 64
|
||
PPC | KVM_REG_PPC_MMCR1 | 64
|
||
PPC | KVM_REG_PPC_MMCRA | 64
|
||
PPC | KVM_REG_PPC_PMC1 | 32
|
||
PPC | KVM_REG_PPC_PMC2 | 32
|
||
PPC | KVM_REG_PPC_PMC3 | 32
|
||
PPC | KVM_REG_PPC_PMC4 | 32
|
||
PPC | KVM_REG_PPC_PMC5 | 32
|
||
PPC | KVM_REG_PPC_PMC6 | 32
|
||
PPC | KVM_REG_PPC_PMC7 | 32
|
||
PPC | KVM_REG_PPC_PMC8 | 32
|
||
PPC | KVM_REG_PPC_FPR0 | 64
|
||
...
|
||
PPC | KVM_REG_PPC_FPR31 | 64
|
||
PPC | KVM_REG_PPC_VR0 | 128
|
||
...
|
||
PPC | KVM_REG_PPC_VR31 | 128
|
||
PPC | KVM_REG_PPC_VSR0 | 128
|
||
...
|
||
PPC | KVM_REG_PPC_VSR31 | 128
|
||
PPC | KVM_REG_PPC_FPSCR | 64
|
||
PPC | KVM_REG_PPC_VSCR | 32
|
||
PPC | KVM_REG_PPC_VPA_ADDR | 64
|
||
PPC | KVM_REG_PPC_VPA_SLB | 128
|
||
PPC | KVM_REG_PPC_VPA_DTL | 128
|
||
PPC | KVM_REG_PPC_EPCR | 32
|
||
PPC | KVM_REG_PPC_EPR | 32
|
||
PPC | KVM_REG_PPC_TCR | 32
|
||
PPC | KVM_REG_PPC_TSR | 32
|
||
PPC | KVM_REG_PPC_OR_TSR | 32
|
||
PPC | KVM_REG_PPC_CLEAR_TSR | 32
|
||
PPC | KVM_REG_PPC_MAS0 | 32
|
||
PPC | KVM_REG_PPC_MAS1 | 32
|
||
PPC | KVM_REG_PPC_MAS2 | 64
|
||
PPC | KVM_REG_PPC_MAS7_3 | 64
|
||
PPC | KVM_REG_PPC_MAS4 | 32
|
||
PPC | KVM_REG_PPC_MAS6 | 32
|
||
PPC | KVM_REG_PPC_MMUCFG | 32
|
||
PPC | KVM_REG_PPC_TLB0CFG | 32
|
||
PPC | KVM_REG_PPC_TLB1CFG | 32
|
||
PPC | KVM_REG_PPC_TLB2CFG | 32
|
||
PPC | KVM_REG_PPC_TLB3CFG | 32
|
||
PPC | KVM_REG_PPC_TLB0PS | 32
|
||
PPC | KVM_REG_PPC_TLB1PS | 32
|
||
PPC | KVM_REG_PPC_TLB2PS | 32
|
||
PPC | KVM_REG_PPC_TLB3PS | 32
|
||
PPC | KVM_REG_PPC_EPTCFG | 32
|
||
PPC | KVM_REG_PPC_ICP_STATE | 64
|
||
PPC | KVM_REG_PPC_TB_OFFSET | 64
|
||
PPC | KVM_REG_PPC_SPMC1 | 32
|
||
PPC | KVM_REG_PPC_SPMC2 | 32
|
||
PPC | KVM_REG_PPC_IAMR | 64
|
||
PPC | KVM_REG_PPC_TFHAR | 64
|
||
PPC | KVM_REG_PPC_TFIAR | 64
|
||
PPC | KVM_REG_PPC_TEXASR | 64
|
||
PPC | KVM_REG_PPC_FSCR | 64
|
||
PPC | KVM_REG_PPC_PSPB | 32
|
||
PPC | KVM_REG_PPC_EBBHR | 64
|
||
PPC | KVM_REG_PPC_EBBRR | 64
|
||
PPC | KVM_REG_PPC_BESCR | 64
|
||
PPC | KVM_REG_PPC_TAR | 64
|
||
PPC | KVM_REG_PPC_DPDES | 64
|
||
PPC | KVM_REG_PPC_DAWR | 64
|
||
PPC | KVM_REG_PPC_DAWRX | 64
|
||
PPC | KVM_REG_PPC_CIABR | 64
|
||
PPC | KVM_REG_PPC_IC | 64
|
||
PPC | KVM_REG_PPC_VTB | 64
|
||
PPC | KVM_REG_PPC_CSIGR | 64
|
||
PPC | KVM_REG_PPC_TACR | 64
|
||
PPC | KVM_REG_PPC_TCSCR | 64
|
||
PPC | KVM_REG_PPC_PID | 64
|
||
PPC | KVM_REG_PPC_ACOP | 64
|
||
PPC | KVM_REG_PPC_VRSAVE | 32
|
||
PPC | KVM_REG_PPC_LPCR | 64
|
||
PPC | KVM_REG_PPC_PPR | 64
|
||
PPC | KVM_REG_PPC_ARCH_COMPAT 32
|
||
PPC | KVM_REG_PPC_DABRX | 32
|
||
PPC | KVM_REG_PPC_TM_GPR0 | 64
|
||
...
|
||
PPC | KVM_REG_PPC_TM_GPR31 | 64
|
||
PPC | KVM_REG_PPC_TM_VSR0 | 128
|
||
...
|
||
PPC | KVM_REG_PPC_TM_VSR63 | 128
|
||
PPC | KVM_REG_PPC_TM_CR | 64
|
||
PPC | KVM_REG_PPC_TM_LR | 64
|
||
PPC | KVM_REG_PPC_TM_CTR | 64
|
||
PPC | KVM_REG_PPC_TM_FPSCR | 64
|
||
PPC | KVM_REG_PPC_TM_AMR | 64
|
||
PPC | KVM_REG_PPC_TM_PPR | 64
|
||
PPC | KVM_REG_PPC_TM_VRSAVE | 64
|
||
PPC | KVM_REG_PPC_TM_VSCR | 32
|
||
PPC | KVM_REG_PPC_TM_DSCR | 64
|
||
PPC | KVM_REG_PPC_TM_TAR | 64
|
||
|
||
ARM registers are mapped using the lower 32 bits. The upper 16 of that
|
||
is the register group type, or coprocessor number:
|
||
|
||
ARM core registers have the following id bit patterns:
|
||
0x4020 0000 0010 <index into the kvm_regs struct:16>
|
||
|
||
ARM 32-bit CP15 registers have the following id bit patterns:
|
||
0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
|
||
|
||
ARM 64-bit CP15 registers have the following id bit patterns:
|
||
0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
|
||
|
||
ARM CCSIDR registers are demultiplexed by CSSELR value:
|
||
0x4020 0000 0011 00 <csselr:8>
|
||
|
||
ARM 32-bit VFP control registers have the following id bit patterns:
|
||
0x4020 0000 0012 1 <regno:12>
|
||
|
||
ARM 64-bit FP registers have the following id bit patterns:
|
||
0x4030 0000 0012 0 <regno:12>
|
||
|
||
|
||
arm64 registers are mapped using the lower 32 bits. The upper 16 of
|
||
that is the register group type, or coprocessor number:
|
||
|
||
arm64 core/FP-SIMD registers have the following id bit patterns. Note
|
||
that the size of the access is variable, as the kvm_regs structure
|
||
contains elements ranging from 32 to 128 bits. The index is a 32bit
|
||
value in the kvm_regs structure seen as a 32bit array.
|
||
0x60x0 0000 0010 <index into the kvm_regs struct:16>
|
||
|
||
arm64 CCSIDR registers are demultiplexed by CSSELR value:
|
||
0x6020 0000 0011 00 <csselr:8>
|
||
|
||
arm64 system registers have the following id bit patterns:
|
||
0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
|
||
|
||
4.69 KVM_GET_ONE_REG
|
||
|
||
Capability: KVM_CAP_ONE_REG
|
||
Architectures: all
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_one_reg (in and out)
|
||
Returns: 0 on success, negative value on failure
|
||
|
||
This ioctl allows to receive the value of a single register implemented
|
||
in a vcpu. The register to read is indicated by the "id" field of the
|
||
kvm_one_reg struct passed in. On success, the register value can be found
|
||
at the memory location pointed to by "addr".
|
||
|
||
The list of registers accessible using this interface is identical to the
|
||
list in 4.68.
|
||
|
||
|
||
4.70 KVM_KVMCLOCK_CTRL
|
||
|
||
Capability: KVM_CAP_KVMCLOCK_CTRL
|
||
Architectures: Any that implement pvclocks (currently x86 only)
|
||
Type: vcpu ioctl
|
||
Parameters: None
|
||
Returns: 0 on success, -1 on error
|
||
|
||
This signals to the host kernel that the specified guest is being paused by
|
||
userspace. The host will set a flag in the pvclock structure that is checked
|
||
from the soft lockup watchdog. The flag is part of the pvclock structure that
|
||
is shared between guest and host, specifically the second bit of the flags
|
||
field of the pvclock_vcpu_time_info structure. It will be set exclusively by
|
||
the host and read/cleared exclusively by the guest. The guest operation of
|
||
checking and clearing the flag must an atomic operation so
|
||
load-link/store-conditional, or equivalent must be used. There are two cases
|
||
where the guest will clear the flag: when the soft lockup watchdog timer resets
|
||
itself or when a soft lockup is detected. This ioctl can be called any time
|
||
after pausing the vcpu, but before it is resumed.
|
||
|
||
|
||
4.71 KVM_SIGNAL_MSI
|
||
|
||
Capability: KVM_CAP_SIGNAL_MSI
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_msi (in)
|
||
Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
|
||
|
||
Directly inject a MSI message. Only valid with in-kernel irqchip that handles
|
||
MSI messages.
|
||
|
||
struct kvm_msi {
|
||
__u32 address_lo;
|
||
__u32 address_hi;
|
||
__u32 data;
|
||
__u32 flags;
|
||
__u8 pad[16];
|
||
};
|
||
|
||
No flags are defined so far. The corresponding field must be 0.
|
||
|
||
|
||
4.71 KVM_CREATE_PIT2
|
||
|
||
Capability: KVM_CAP_PIT2
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_pit_config (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Creates an in-kernel device model for the i8254 PIT. This call is only valid
|
||
after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
|
||
parameters have to be passed:
|
||
|
||
struct kvm_pit_config {
|
||
__u32 flags;
|
||
__u32 pad[15];
|
||
};
|
||
|
||
Valid flags are:
|
||
|
||
#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
|
||
|
||
PIT timer interrupts may use a per-VM kernel thread for injection. If it
|
||
exists, this thread will have a name of the following pattern:
|
||
|
||
kvm-pit/<owner-process-pid>
|
||
|
||
When running a guest with elevated priorities, the scheduling parameters of
|
||
this thread may have to be adjusted accordingly.
|
||
|
||
This IOCTL replaces the obsolete KVM_CREATE_PIT.
|
||
|
||
|
||
4.72 KVM_GET_PIT2
|
||
|
||
Capability: KVM_CAP_PIT_STATE2
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_pit_state2 (out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Retrieves the state of the in-kernel PIT model. Only valid after
|
||
KVM_CREATE_PIT2. The state is returned in the following structure:
|
||
|
||
struct kvm_pit_state2 {
|
||
struct kvm_pit_channel_state channels[3];
|
||
__u32 flags;
|
||
__u32 reserved[9];
|
||
};
|
||
|
||
Valid flags are:
|
||
|
||
/* disable PIT in HPET legacy mode */
|
||
#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
|
||
|
||
This IOCTL replaces the obsolete KVM_GET_PIT.
|
||
|
||
|
||
4.73 KVM_SET_PIT2
|
||
|
||
Capability: KVM_CAP_PIT_STATE2
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_pit_state2 (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
|
||
See KVM_GET_PIT2 for details on struct kvm_pit_state2.
|
||
|
||
This IOCTL replaces the obsolete KVM_SET_PIT.
|
||
|
||
|
||
4.74 KVM_PPC_GET_SMMU_INFO
|
||
|
||
Capability: KVM_CAP_PPC_GET_SMMU_INFO
|
||
Architectures: powerpc
|
||
Type: vm ioctl
|
||
Parameters: None
|
||
Returns: 0 on success, -1 on error
|
||
|
||
This populates and returns a structure describing the features of
|
||
the "Server" class MMU emulation supported by KVM.
|
||
This can in turn be used by userspace to generate the appropriate
|
||
device-tree properties for the guest operating system.
|
||
|
||
The structure contains some global informations, followed by an
|
||
array of supported segment page sizes:
|
||
|
||
struct kvm_ppc_smmu_info {
|
||
__u64 flags;
|
||
__u32 slb_size;
|
||
__u32 pad;
|
||
struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
|
||
};
|
||
|
||
The supported flags are:
|
||
|
||
- KVM_PPC_PAGE_SIZES_REAL:
|
||
When that flag is set, guest page sizes must "fit" the backing
|
||
store page sizes. When not set, any page size in the list can
|
||
be used regardless of how they are backed by userspace.
|
||
|
||
- KVM_PPC_1T_SEGMENTS
|
||
The emulated MMU supports 1T segments in addition to the
|
||
standard 256M ones.
|
||
|
||
The "slb_size" field indicates how many SLB entries are supported
|
||
|
||
The "sps" array contains 8 entries indicating the supported base
|
||
page sizes for a segment in increasing order. Each entry is defined
|
||
as follow:
|
||
|
||
struct kvm_ppc_one_seg_page_size {
|
||
__u32 page_shift; /* Base page shift of segment (or 0) */
|
||
__u32 slb_enc; /* SLB encoding for BookS */
|
||
struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
|
||
};
|
||
|
||
An entry with a "page_shift" of 0 is unused. Because the array is
|
||
organized in increasing order, a lookup can stop when encoutering
|
||
such an entry.
|
||
|
||
The "slb_enc" field provides the encoding to use in the SLB for the
|
||
page size. The bits are in positions such as the value can directly
|
||
be OR'ed into the "vsid" argument of the slbmte instruction.
|
||
|
||
The "enc" array is a list which for each of those segment base page
|
||
size provides the list of supported actual page sizes (which can be
|
||
only larger or equal to the base page size), along with the
|
||
corresponding encoding in the hash PTE. Similarly, the array is
|
||
8 entries sorted by increasing sizes and an entry with a "0" shift
|
||
is an empty entry and a terminator:
|
||
|
||
struct kvm_ppc_one_page_size {
|
||
__u32 page_shift; /* Page shift (or 0) */
|
||
__u32 pte_enc; /* Encoding in the HPTE (>>12) */
|
||
};
|
||
|
||
The "pte_enc" field provides a value that can OR'ed into the hash
|
||
PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
|
||
into the hash PTE second double word).
|
||
|
||
4.75 KVM_IRQFD
|
||
|
||
Capability: KVM_CAP_IRQFD
|
||
Architectures: x86
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_irqfd (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Allows setting an eventfd to directly trigger a guest interrupt.
|
||
kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
|
||
kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
|
||
an event is triggered on the eventfd, an interrupt is injected into
|
||
the guest using the specified gsi pin. The irqfd is removed using
|
||
the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
|
||
and kvm_irqfd.gsi.
|
||
|
||
With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
|
||
mechanism allowing emulation of level-triggered, irqfd-based
|
||
interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
|
||
additional eventfd in the kvm_irqfd.resamplefd field. When operating
|
||
in resample mode, posting of an interrupt through kvm_irq.fd asserts
|
||
the specified gsi in the irqchip. When the irqchip is resampled, such
|
||
as from an EOI, the gsi is de-asserted and the user is notified via
|
||
kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
|
||
the interrupt if the device making use of it still requires service.
|
||
Note that closing the resamplefd is not sufficient to disable the
|
||
irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
|
||
and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
|
||
|
||
4.76 KVM_PPC_ALLOCATE_HTAB
|
||
|
||
Capability: KVM_CAP_PPC_ALLOC_HTAB
|
||
Architectures: powerpc
|
||
Type: vm ioctl
|
||
Parameters: Pointer to u32 containing hash table order (in/out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
This requests the host kernel to allocate an MMU hash table for a
|
||
guest using the PAPR paravirtualization interface. This only does
|
||
anything if the kernel is configured to use the Book 3S HV style of
|
||
virtualization. Otherwise the capability doesn't exist and the ioctl
|
||
returns an ENOTTY error. The rest of this description assumes Book 3S
|
||
HV.
|
||
|
||
There must be no vcpus running when this ioctl is called; if there
|
||
are, it will do nothing and return an EBUSY error.
|
||
|
||
The parameter is a pointer to a 32-bit unsigned integer variable
|
||
containing the order (log base 2) of the desired size of the hash
|
||
table, which must be between 18 and 46. On successful return from the
|
||
ioctl, it will have been updated with the order of the hash table that
|
||
was allocated.
|
||
|
||
If no hash table has been allocated when any vcpu is asked to run
|
||
(with the KVM_RUN ioctl), the host kernel will allocate a
|
||
default-sized hash table (16 MB).
|
||
|
||
If this ioctl is called when a hash table has already been allocated,
|
||
the kernel will clear out the existing hash table (zero all HPTEs) and
|
||
return the hash table order in the parameter. (If the guest is using
|
||
the virtualized real-mode area (VRMA) facility, the kernel will
|
||
re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
|
||
|
||
4.77 KVM_S390_INTERRUPT
|
||
|
||
Capability: basic
|
||
Architectures: s390
|
||
Type: vm ioctl, vcpu ioctl
|
||
Parameters: struct kvm_s390_interrupt (in)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Allows to inject an interrupt to the guest. Interrupts can be floating
|
||
(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
|
||
|
||
Interrupt parameters are passed via kvm_s390_interrupt:
|
||
|
||
struct kvm_s390_interrupt {
|
||
__u32 type;
|
||
__u32 parm;
|
||
__u64 parm64;
|
||
};
|
||
|
||
type can be one of the following:
|
||
|
||
KVM_S390_SIGP_STOP (vcpu) - sigp restart
|
||
KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
|
||
KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
|
||
KVM_S390_RESTART (vcpu) - restart
|
||
KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
|
||
parameters in parm and parm64
|
||
KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
|
||
KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
|
||
KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
|
||
KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
|
||
I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
|
||
I/O interruption parameters in parm (subchannel) and parm64 (intparm,
|
||
interruption subclass)
|
||
KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
|
||
machine check interrupt code in parm64 (note that
|
||
machine checks needing further payload are not
|
||
supported by this ioctl)
|
||
|
||
Note that the vcpu ioctl is asynchronous to vcpu execution.
|
||
|
||
4.78 KVM_PPC_GET_HTAB_FD
|
||
|
||
Capability: KVM_CAP_PPC_HTAB_FD
|
||
Architectures: powerpc
|
||
Type: vm ioctl
|
||
Parameters: Pointer to struct kvm_get_htab_fd (in)
|
||
Returns: file descriptor number (>= 0) on success, -1 on error
|
||
|
||
This returns a file descriptor that can be used either to read out the
|
||
entries in the guest's hashed page table (HPT), or to write entries to
|
||
initialize the HPT. The returned fd can only be written to if the
|
||
KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
|
||
can only be read if that bit is clear. The argument struct looks like
|
||
this:
|
||
|
||
/* For KVM_PPC_GET_HTAB_FD */
|
||
struct kvm_get_htab_fd {
|
||
__u64 flags;
|
||
__u64 start_index;
|
||
__u64 reserved[2];
|
||
};
|
||
|
||
/* Values for kvm_get_htab_fd.flags */
|
||
#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
|
||
#define KVM_GET_HTAB_WRITE ((__u64)0x2)
|
||
|
||
The `start_index' field gives the index in the HPT of the entry at
|
||
which to start reading. It is ignored when writing.
|
||
|
||
Reads on the fd will initially supply information about all
|
||
"interesting" HPT entries. Interesting entries are those with the
|
||
bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
|
||
all entries. When the end of the HPT is reached, the read() will
|
||
return. If read() is called again on the fd, it will start again from
|
||
the beginning of the HPT, but will only return HPT entries that have
|
||
changed since they were last read.
|
||
|
||
Data read or written is structured as a header (8 bytes) followed by a
|
||
series of valid HPT entries (16 bytes) each. The header indicates how
|
||
many valid HPT entries there are and how many invalid entries follow
|
||
the valid entries. The invalid entries are not represented explicitly
|
||
in the stream. The header format is:
|
||
|
||
struct kvm_get_htab_header {
|
||
__u32 index;
|
||
__u16 n_valid;
|
||
__u16 n_invalid;
|
||
};
|
||
|
||
Writes to the fd create HPT entries starting at the index given in the
|
||
header; first `n_valid' valid entries with contents from the data
|
||
written, then `n_invalid' invalid entries, invalidating any previously
|
||
valid entries found.
|
||
|
||
4.79 KVM_CREATE_DEVICE
|
||
|
||
Capability: KVM_CAP_DEVICE_CTRL
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_create_device (in/out)
|
||
Returns: 0 on success, -1 on error
|
||
Errors:
|
||
ENODEV: The device type is unknown or unsupported
|
||
EEXIST: Device already created, and this type of device may not
|
||
be instantiated multiple times
|
||
|
||
Other error conditions may be defined by individual device types or
|
||
have their standard meanings.
|
||
|
||
Creates an emulated device in the kernel. The file descriptor returned
|
||
in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
|
||
|
||
If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
|
||
device type is supported (not necessarily whether it can be created
|
||
in the current vm).
|
||
|
||
Individual devices should not define flags. Attributes should be used
|
||
for specifying any behavior that is not implied by the device type
|
||
number.
|
||
|
||
struct kvm_create_device {
|
||
__u32 type; /* in: KVM_DEV_TYPE_xxx */
|
||
__u32 fd; /* out: device handle */
|
||
__u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
|
||
};
|
||
|
||
4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
|
||
|
||
Capability: KVM_CAP_DEVICE_CTRL
|
||
Type: device ioctl
|
||
Parameters: struct kvm_device_attr
|
||
Returns: 0 on success, -1 on error
|
||
Errors:
|
||
ENXIO: The group or attribute is unknown/unsupported for this device
|
||
EPERM: The attribute cannot (currently) be accessed this way
|
||
(e.g. read-only attribute, or attribute that only makes
|
||
sense when the device is in a different state)
|
||
|
||
Other error conditions may be defined by individual device types.
|
||
|
||
Gets/sets a specified piece of device configuration and/or state. The
|
||
semantics are device-specific. See individual device documentation in
|
||
the "devices" directory. As with ONE_REG, the size of the data
|
||
transferred is defined by the particular attribute.
|
||
|
||
struct kvm_device_attr {
|
||
__u32 flags; /* no flags currently defined */
|
||
__u32 group; /* device-defined */
|
||
__u64 attr; /* group-defined */
|
||
__u64 addr; /* userspace address of attr data */
|
||
};
|
||
|
||
4.81 KVM_HAS_DEVICE_ATTR
|
||
|
||
Capability: KVM_CAP_DEVICE_CTRL
|
||
Type: device ioctl
|
||
Parameters: struct kvm_device_attr
|
||
Returns: 0 on success, -1 on error
|
||
Errors:
|
||
ENXIO: The group or attribute is unknown/unsupported for this device
|
||
|
||
Tests whether a device supports a particular attribute. A successful
|
||
return indicates the attribute is implemented. It does not necessarily
|
||
indicate that the attribute can be read or written in the device's
|
||
current state. "addr" is ignored.
|
||
|
||
4.82 KVM_ARM_VCPU_INIT
|
||
|
||
Capability: basic
|
||
Architectures: arm, arm64
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_vcpu_init (in)
|
||
Returns: 0 on success; -1 on error
|
||
Errors:
|
||
EINVAL: the target is unknown, or the combination of features is invalid.
|
||
ENOENT: a features bit specified is unknown.
|
||
|
||
This tells KVM what type of CPU to present to the guest, and what
|
||
optional features it should have. This will cause a reset of the cpu
|
||
registers to their initial values. If this is not called, KVM_RUN will
|
||
return ENOEXEC for that vcpu.
|
||
|
||
Note that because some registers reflect machine topology, all vcpus
|
||
should be created before this ioctl is invoked.
|
||
|
||
Possible features:
|
||
- KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
|
||
Depends on KVM_CAP_ARM_PSCI.
|
||
- KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
|
||
Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
|
||
|
||
|
||
4.83 KVM_ARM_PREFERRED_TARGET
|
||
|
||
Capability: basic
|
||
Architectures: arm, arm64
|
||
Type: vm ioctl
|
||
Parameters: struct struct kvm_vcpu_init (out)
|
||
Returns: 0 on success; -1 on error
|
||
Errors:
|
||
ENODEV: no preferred target available for the host
|
||
|
||
This queries KVM for preferred CPU target type which can be emulated
|
||
by KVM on underlying host.
|
||
|
||
The ioctl returns struct kvm_vcpu_init instance containing information
|
||
about preferred CPU target type and recommended features for it. The
|
||
kvm_vcpu_init->features bitmap returned will have feature bits set if
|
||
the preferred target recommends setting these features, but this is
|
||
not mandatory.
|
||
|
||
The information returned by this ioctl can be used to prepare an instance
|
||
of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
|
||
in VCPU matching underlying host.
|
||
|
||
|
||
4.84 KVM_GET_REG_LIST
|
||
|
||
Capability: basic
|
||
Architectures: arm, arm64
|
||
Type: vcpu ioctl
|
||
Parameters: struct kvm_reg_list (in/out)
|
||
Returns: 0 on success; -1 on error
|
||
Errors:
|
||
E2BIG: the reg index list is too big to fit in the array specified by
|
||
the user (the number required will be written into n).
|
||
|
||
struct kvm_reg_list {
|
||
__u64 n; /* number of registers in reg[] */
|
||
__u64 reg[0];
|
||
};
|
||
|
||
This ioctl returns the guest registers that are supported for the
|
||
KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
|
||
|
||
|
||
4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
|
||
|
||
Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
|
||
Architectures: arm, arm64
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_arm_device_address (in)
|
||
Returns: 0 on success, -1 on error
|
||
Errors:
|
||
ENODEV: The device id is unknown
|
||
ENXIO: Device not supported on current system
|
||
EEXIST: Address already set
|
||
E2BIG: Address outside guest physical address space
|
||
EBUSY: Address overlaps with other device range
|
||
|
||
struct kvm_arm_device_addr {
|
||
__u64 id;
|
||
__u64 addr;
|
||
};
|
||
|
||
Specify a device address in the guest's physical address space where guests
|
||
can access emulated or directly exposed devices, which the host kernel needs
|
||
to know about. The id field is an architecture specific identifier for a
|
||
specific device.
|
||
|
||
ARM/arm64 divides the id field into two parts, a device id and an
|
||
address type id specific to the individual device.
|
||
|
||
bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
|
||
field: | 0x00000000 | device id | addr type id |
|
||
|
||
ARM/arm64 currently only require this when using the in-kernel GIC
|
||
support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
|
||
as the device id. When setting the base address for the guest's
|
||
mapping of the VGIC virtual CPU and distributor interface, the ioctl
|
||
must be called after calling KVM_CREATE_IRQCHIP, but before calling
|
||
KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
|
||
base addresses will return -EEXIST.
|
||
|
||
Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
|
||
should be used instead.
|
||
|
||
|
||
4.86 KVM_PPC_RTAS_DEFINE_TOKEN
|
||
|
||
Capability: KVM_CAP_PPC_RTAS
|
||
Architectures: ppc
|
||
Type: vm ioctl
|
||
Parameters: struct kvm_rtas_token_args
|
||
Returns: 0 on success, -1 on error
|
||
|
||
Defines a token value for a RTAS (Run Time Abstraction Services)
|
||
service in order to allow it to be handled in the kernel. The
|
||
argument struct gives the name of the service, which must be the name
|
||
of a service that has a kernel-side implementation. If the token
|
||
value is non-zero, it will be associated with that service, and
|
||
subsequent RTAS calls by the guest specifying that token will be
|
||
handled by the kernel. If the token value is 0, then any token
|
||
associated with the service will be forgotten, and subsequent RTAS
|
||
calls by the guest for that service will be passed to userspace to be
|
||
handled.
|
||
|
||
|
||
5. The kvm_run structure
|
||
------------------------
|
||
|
||
Application code obtains a pointer to the kvm_run structure by
|
||
mmap()ing a vcpu fd. From that point, application code can control
|
||
execution by changing fields in kvm_run prior to calling the KVM_RUN
|
||
ioctl, and obtain information about the reason KVM_RUN returned by
|
||
looking up structure members.
|
||
|
||
struct kvm_run {
|
||
/* in */
|
||
__u8 request_interrupt_window;
|
||
|
||
Request that KVM_RUN return when it becomes possible to inject external
|
||
interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
|
||
|
||
__u8 padding1[7];
|
||
|
||
/* out */
|
||
__u32 exit_reason;
|
||
|
||
When KVM_RUN has returned successfully (return value 0), this informs
|
||
application code why KVM_RUN has returned. Allowable values for this
|
||
field are detailed below.
|
||
|
||
__u8 ready_for_interrupt_injection;
|
||
|
||
If request_interrupt_window has been specified, this field indicates
|
||
an interrupt can be injected now with KVM_INTERRUPT.
|
||
|
||
__u8 if_flag;
|
||
|
||
The value of the current interrupt flag. Only valid if in-kernel
|
||
local APIC is not used.
|
||
|
||
__u8 padding2[2];
|
||
|
||
/* in (pre_kvm_run), out (post_kvm_run) */
|
||
__u64 cr8;
|
||
|
||
The value of the cr8 register. Only valid if in-kernel local APIC is
|
||
not used. Both input and output.
|
||
|
||
__u64 apic_base;
|
||
|
||
The value of the APIC BASE msr. Only valid if in-kernel local
|
||
APIC is not used. Both input and output.
|
||
|
||
union {
|
||
/* KVM_EXIT_UNKNOWN */
|
||
struct {
|
||
__u64 hardware_exit_reason;
|
||
} hw;
|
||
|
||
If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
|
||
reasons. Further architecture-specific information is available in
|
||
hardware_exit_reason.
|
||
|
||
/* KVM_EXIT_FAIL_ENTRY */
|
||
struct {
|
||
__u64 hardware_entry_failure_reason;
|
||
} fail_entry;
|
||
|
||
If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
|
||
to unknown reasons. Further architecture-specific information is
|
||
available in hardware_entry_failure_reason.
|
||
|
||
/* KVM_EXIT_EXCEPTION */
|
||
struct {
|
||
__u32 exception;
|
||
__u32 error_code;
|
||
} ex;
|
||
|
||
Unused.
|
||
|
||
/* KVM_EXIT_IO */
|
||
struct {
|
||
#define KVM_EXIT_IO_IN 0
|
||
#define KVM_EXIT_IO_OUT 1
|
||
__u8 direction;
|
||
__u8 size; /* bytes */
|
||
__u16 port;
|
||
__u32 count;
|
||
__u64 data_offset; /* relative to kvm_run start */
|
||
} io;
|
||
|
||
If exit_reason is KVM_EXIT_IO, then the vcpu has
|
||
executed a port I/O instruction which could not be satisfied by kvm.
|
||
data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
|
||
where kvm expects application code to place the data for the next
|
||
KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
|
||
|
||
struct {
|
||
struct kvm_debug_exit_arch arch;
|
||
} debug;
|
||
|
||
Unused.
|
||
|
||
/* KVM_EXIT_MMIO */
|
||
struct {
|
||
__u64 phys_addr;
|
||
__u8 data[8];
|
||
__u32 len;
|
||
__u8 is_write;
|
||
} mmio;
|
||
|
||
If exit_reason is KVM_EXIT_MMIO, then the vcpu has
|
||
executed a memory-mapped I/O instruction which could not be satisfied
|
||
by kvm. The 'data' member contains the written data if 'is_write' is
|
||
true, and should be filled by application code otherwise.
|
||
|
||
NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR,
|
||
KVM_EXIT_PAPR and KVM_EXIT_EPR the corresponding
|
||
operations are complete (and guest state is consistent) only after userspace
|
||
has re-entered the kernel with KVM_RUN. The kernel side will first finish
|
||
incomplete operations and then check for pending signals. Userspace
|
||
can re-enter the guest with an unmasked signal pending to complete
|
||
pending operations.
|
||
|
||
/* KVM_EXIT_HYPERCALL */
|
||
struct {
|
||
__u64 nr;
|
||
__u64 args[6];
|
||
__u64 ret;
|
||
__u32 longmode;
|
||
__u32 pad;
|
||
} hypercall;
|
||
|
||
Unused. This was once used for 'hypercall to userspace'. To implement
|
||
such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
|
||
Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
|
||
|
||
/* KVM_EXIT_TPR_ACCESS */
|
||
struct {
|
||
__u64 rip;
|
||
__u32 is_write;
|
||
__u32 pad;
|
||
} tpr_access;
|
||
|
||
To be documented (KVM_TPR_ACCESS_REPORTING).
|
||
|
||
/* KVM_EXIT_S390_SIEIC */
|
||
struct {
|
||
__u8 icptcode;
|
||
__u64 mask; /* psw upper half */
|
||
__u64 addr; /* psw lower half */
|
||
__u16 ipa;
|
||
__u32 ipb;
|
||
} s390_sieic;
|
||
|
||
s390 specific.
|
||
|
||
/* KVM_EXIT_S390_RESET */
|
||
#define KVM_S390_RESET_POR 1
|
||
#define KVM_S390_RESET_CLEAR 2
|
||
#define KVM_S390_RESET_SUBSYSTEM 4
|
||
#define KVM_S390_RESET_CPU_INIT 8
|
||
#define KVM_S390_RESET_IPL 16
|
||
__u64 s390_reset_flags;
|
||
|
||
s390 specific.
|
||
|
||
/* KVM_EXIT_S390_UCONTROL */
|
||
struct {
|
||
__u64 trans_exc_code;
|
||
__u32 pgm_code;
|
||
} s390_ucontrol;
|
||
|
||
s390 specific. A page fault has occurred for a user controlled virtual
|
||
machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
|
||
resolved by the kernel.
|
||
The program code and the translation exception code that were placed
|
||
in the cpu's lowcore are presented here as defined by the z Architecture
|
||
Principles of Operation Book in the Chapter for Dynamic Address Translation
|
||
(DAT)
|
||
|
||
/* KVM_EXIT_DCR */
|
||
struct {
|
||
__u32 dcrn;
|
||
__u32 data;
|
||
__u8 is_write;
|
||
} dcr;
|
||
|
||
powerpc specific.
|
||
|
||
/* KVM_EXIT_OSI */
|
||
struct {
|
||
__u64 gprs[32];
|
||
} osi;
|
||
|
||
MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
|
||
hypercalls and exit with this exit struct that contains all the guest gprs.
|
||
|
||
If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
|
||
Userspace can now handle the hypercall and when it's done modify the gprs as
|
||
necessary. Upon guest entry all guest GPRs will then be replaced by the values
|
||
in this struct.
|
||
|
||
/* KVM_EXIT_PAPR_HCALL */
|
||
struct {
|
||
__u64 nr;
|
||
__u64 ret;
|
||
__u64 args[9];
|
||
} papr_hcall;
|
||
|
||
This is used on 64-bit PowerPC when emulating a pSeries partition,
|
||
e.g. with the 'pseries' machine type in qemu. It occurs when the
|
||
guest does a hypercall using the 'sc 1' instruction. The 'nr' field
|
||
contains the hypercall number (from the guest R3), and 'args' contains
|
||
the arguments (from the guest R4 - R12). Userspace should put the
|
||
return code in 'ret' and any extra returned values in args[].
|
||
The possible hypercalls are defined in the Power Architecture Platform
|
||
Requirements (PAPR) document available from www.power.org (free
|
||
developer registration required to access it).
|
||
|
||
/* KVM_EXIT_S390_TSCH */
|
||
struct {
|
||
__u16 subchannel_id;
|
||
__u16 subchannel_nr;
|
||
__u32 io_int_parm;
|
||
__u32 io_int_word;
|
||
__u32 ipb;
|
||
__u8 dequeued;
|
||
} s390_tsch;
|
||
|
||
s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
|
||
and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
|
||
interrupt for the target subchannel has been dequeued and subchannel_id,
|
||
subchannel_nr, io_int_parm and io_int_word contain the parameters for that
|
||
interrupt. ipb is needed for instruction parameter decoding.
|
||
|
||
/* KVM_EXIT_EPR */
|
||
struct {
|
||
__u32 epr;
|
||
} epr;
|
||
|
||
On FSL BookE PowerPC chips, the interrupt controller has a fast patch
|
||
interrupt acknowledge path to the core. When the core successfully
|
||
delivers an interrupt, it automatically populates the EPR register with
|
||
the interrupt vector number and acknowledges the interrupt inside
|
||
the interrupt controller.
|
||
|
||
In case the interrupt controller lives in user space, we need to do
|
||
the interrupt acknowledge cycle through it to fetch the next to be
|
||
delivered interrupt vector using this exit.
|
||
|
||
It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
|
||
external interrupt has just been delivered into the guest. User space
|
||
should put the acknowledged interrupt vector into the 'epr' field.
|
||
|
||
/* Fix the size of the union. */
|
||
char padding[256];
|
||
};
|
||
|
||
/*
|
||
* shared registers between kvm and userspace.
|
||
* kvm_valid_regs specifies the register classes set by the host
|
||
* kvm_dirty_regs specified the register classes dirtied by userspace
|
||
* struct kvm_sync_regs is architecture specific, as well as the
|
||
* bits for kvm_valid_regs and kvm_dirty_regs
|
||
*/
|
||
__u64 kvm_valid_regs;
|
||
__u64 kvm_dirty_regs;
|
||
union {
|
||
struct kvm_sync_regs regs;
|
||
char padding[1024];
|
||
} s;
|
||
|
||
If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
|
||
certain guest registers without having to call SET/GET_*REGS. Thus we can
|
||
avoid some system call overhead if userspace has to handle the exit.
|
||
Userspace can query the validity of the structure by checking
|
||
kvm_valid_regs for specific bits. These bits are architecture specific
|
||
and usually define the validity of a groups of registers. (e.g. one bit
|
||
for general purpose registers)
|
||
|
||
};
|
||
|
||
|
||
4.81 KVM_GET_EMULATED_CPUID
|
||
|
||
Capability: KVM_CAP_EXT_EMUL_CPUID
|
||
Architectures: x86
|
||
Type: system ioctl
|
||
Parameters: struct kvm_cpuid2 (in/out)
|
||
Returns: 0 on success, -1 on error
|
||
|
||
struct kvm_cpuid2 {
|
||
__u32 nent;
|
||
__u32 flags;
|
||
struct kvm_cpuid_entry2 entries[0];
|
||
};
|
||
|
||
The member 'flags' is used for passing flags from userspace.
|
||
|
||
#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
|
||
#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
|
||
#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
|
||
|
||
struct kvm_cpuid_entry2 {
|
||
__u32 function;
|
||
__u32 index;
|
||
__u32 flags;
|
||
__u32 eax;
|
||
__u32 ebx;
|
||
__u32 ecx;
|
||
__u32 edx;
|
||
__u32 padding[3];
|
||
};
|
||
|
||
This ioctl returns x86 cpuid features which are emulated by
|
||
kvm.Userspace can use the information returned by this ioctl to query
|
||
which features are emulated by kvm instead of being present natively.
|
||
|
||
Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
|
||
structure with the 'nent' field indicating the number of entries in
|
||
the variable-size array 'entries'. If the number of entries is too low
|
||
to describe the cpu capabilities, an error (E2BIG) is returned. If the
|
||
number is too high, the 'nent' field is adjusted and an error (ENOMEM)
|
||
is returned. If the number is just right, the 'nent' field is adjusted
|
||
to the number of valid entries in the 'entries' array, which is then
|
||
filled.
|
||
|
||
The entries returned are the set CPUID bits of the respective features
|
||
which kvm emulates, as returned by the CPUID instruction, with unknown
|
||
or unsupported feature bits cleared.
|
||
|
||
Features like x2apic, for example, may not be present in the host cpu
|
||
but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
|
||
emulated efficiently and thus not included here.
|
||
|
||
The fields in each entry are defined as follows:
|
||
|
||
function: the eax value used to obtain the entry
|
||
index: the ecx value used to obtain the entry (for entries that are
|
||
affected by ecx)
|
||
flags: an OR of zero or more of the following:
|
||
KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
|
||
if the index field is valid
|
||
KVM_CPUID_FLAG_STATEFUL_FUNC:
|
||
if cpuid for this function returns different values for successive
|
||
invocations; there will be several entries with the same function,
|
||
all with this flag set
|
||
KVM_CPUID_FLAG_STATE_READ_NEXT:
|
||
for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
|
||
the first entry to be read by a cpu
|
||
eax, ebx, ecx, edx: the values returned by the cpuid instruction for
|
||
this function/index combination
|
||
|
||
|
||
6. Capabilities that can be enabled
|
||
-----------------------------------
|
||
|
||
There are certain capabilities that change the behavior of the virtual CPU when
|
||
enabled. To enable them, please see section 4.37. Below you can find a list of
|
||
capabilities and what their effect on the vCPU is when enabling them.
|
||
|
||
The following information is provided along with the description:
|
||
|
||
Architectures: which instruction set architectures provide this ioctl.
|
||
x86 includes both i386 and x86_64.
|
||
|
||
Parameters: what parameters are accepted by the capability.
|
||
|
||
Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
|
||
are not detailed, but errors with specific meanings are.
|
||
|
||
|
||
6.1 KVM_CAP_PPC_OSI
|
||
|
||
Architectures: ppc
|
||
Parameters: none
|
||
Returns: 0 on success; -1 on error
|
||
|
||
This capability enables interception of OSI hypercalls that otherwise would
|
||
be treated as normal system calls to be injected into the guest. OSI hypercalls
|
||
were invented by Mac-on-Linux to have a standardized communication mechanism
|
||
between the guest and the host.
|
||
|
||
When this capability is enabled, KVM_EXIT_OSI can occur.
|
||
|
||
|
||
6.2 KVM_CAP_PPC_PAPR
|
||
|
||
Architectures: ppc
|
||
Parameters: none
|
||
Returns: 0 on success; -1 on error
|
||
|
||
This capability enables interception of PAPR hypercalls. PAPR hypercalls are
|
||
done using the hypercall instruction "sc 1".
|
||
|
||
It also sets the guest privilege level to "supervisor" mode. Usually the guest
|
||
runs in "hypervisor" privilege mode with a few missing features.
|
||
|
||
In addition to the above, it changes the semantics of SDR1. In this mode, the
|
||
HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
|
||
HTAB invisible to the guest.
|
||
|
||
When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
|
||
|
||
|
||
6.3 KVM_CAP_SW_TLB
|
||
|
||
Architectures: ppc
|
||
Parameters: args[0] is the address of a struct kvm_config_tlb
|
||
Returns: 0 on success; -1 on error
|
||
|
||
struct kvm_config_tlb {
|
||
__u64 params;
|
||
__u64 array;
|
||
__u32 mmu_type;
|
||
__u32 array_len;
|
||
};
|
||
|
||
Configures the virtual CPU's TLB array, establishing a shared memory area
|
||
between userspace and KVM. The "params" and "array" fields are userspace
|
||
addresses of mmu-type-specific data structures. The "array_len" field is an
|
||
safety mechanism, and should be set to the size in bytes of the memory that
|
||
userspace has reserved for the array. It must be at least the size dictated
|
||
by "mmu_type" and "params".
|
||
|
||
While KVM_RUN is active, the shared region is under control of KVM. Its
|
||
contents are undefined, and any modification by userspace results in
|
||
boundedly undefined behavior.
|
||
|
||
On return from KVM_RUN, the shared region will reflect the current state of
|
||
the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
|
||
to tell KVM which entries have been changed, prior to calling KVM_RUN again
|
||
on this vcpu.
|
||
|
||
For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
|
||
- The "params" field is of type "struct kvm_book3e_206_tlb_params".
|
||
- The "array" field points to an array of type "struct
|
||
kvm_book3e_206_tlb_entry".
|
||
- The array consists of all entries in the first TLB, followed by all
|
||
entries in the second TLB.
|
||
- Within a TLB, entries are ordered first by increasing set number. Within a
|
||
set, entries are ordered by way (increasing ESEL).
|
||
- The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
|
||
where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
|
||
- The tsize field of mas1 shall be set to 4K on TLB0, even though the
|
||
hardware ignores this value for TLB0.
|
||
|
||
6.4 KVM_CAP_S390_CSS_SUPPORT
|
||
|
||
Architectures: s390
|
||
Parameters: none
|
||
Returns: 0 on success; -1 on error
|
||
|
||
This capability enables support for handling of channel I/O instructions.
|
||
|
||
TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
|
||
handled in-kernel, while the other I/O instructions are passed to userspace.
|
||
|
||
When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
|
||
SUBCHANNEL intercepts.
|
||
|
||
6.5 KVM_CAP_PPC_EPR
|
||
|
||
Architectures: ppc
|
||
Parameters: args[0] defines whether the proxy facility is active
|
||
Returns: 0 on success; -1 on error
|
||
|
||
This capability enables or disables the delivery of interrupts through the
|
||
external proxy facility.
|
||
|
||
When enabled (args[0] != 0), every time the guest gets an external interrupt
|
||
delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
|
||
to receive the topmost interrupt vector.
|
||
|
||
When disabled (args[0] == 0), behavior is as if this facility is unsupported.
|
||
|
||
When this capability is enabled, KVM_EXIT_EPR can occur.
|
||
|
||
6.6 KVM_CAP_IRQ_MPIC
|
||
|
||
Architectures: ppc
|
||
Parameters: args[0] is the MPIC device fd
|
||
args[1] is the MPIC CPU number for this vcpu
|
||
|
||
This capability connects the vcpu to an in-kernel MPIC device.
|
||
|
||
6.7 KVM_CAP_IRQ_XICS
|
||
|
||
Architectures: ppc
|
||
Parameters: args[0] is the XICS device fd
|
||
args[1] is the XICS CPU number (server ID) for this vcpu
|
||
|
||
This capability connects the vcpu to an in-kernel XICS device.
|