OpenCloudOS-Kernel/drivers/gpu/drm/rcar-du/rcar_lvds.c

817 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* rcar_lvds.c -- R-Car LVDS Encoder
*
* Copyright (C) 2013-2018 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_panel.h>
#include "rcar_lvds_regs.h"
struct rcar_lvds;
/* Keep in sync with the LVDCR0.LVMD hardware register values. */
enum rcar_lvds_mode {
RCAR_LVDS_MODE_JEIDA = 0,
RCAR_LVDS_MODE_MIRROR = 1,
RCAR_LVDS_MODE_VESA = 4,
};
#define RCAR_LVDS_QUIRK_LANES BIT(0) /* LVDS lanes 1 and 3 inverted */
#define RCAR_LVDS_QUIRK_GEN3_LVEN BIT(1) /* LVEN bit needs to be set on R8A77970/R8A7799x */
#define RCAR_LVDS_QUIRK_PWD BIT(2) /* PWD bit available (all of Gen3 but E3) */
#define RCAR_LVDS_QUIRK_EXT_PLL BIT(3) /* Has extended PLL */
#define RCAR_LVDS_QUIRK_DUAL_LINK BIT(4) /* Supports dual-link operation */
struct rcar_lvds_device_info {
unsigned int gen;
unsigned int quirks;
void (*pll_setup)(struct rcar_lvds *lvds, unsigned int freq);
};
struct rcar_lvds {
struct device *dev;
const struct rcar_lvds_device_info *info;
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct drm_connector connector;
struct drm_panel *panel;
void __iomem *mmio;
struct {
struct clk *mod; /* CPG module clock */
struct clk *extal; /* External clock */
struct clk *dotclkin[2]; /* External DU clocks */
} clocks;
bool enabled;
struct drm_display_mode display_mode;
enum rcar_lvds_mode mode;
};
#define bridge_to_rcar_lvds(bridge) \
container_of(bridge, struct rcar_lvds, bridge)
#define connector_to_rcar_lvds(connector) \
container_of(connector, struct rcar_lvds, connector)
static void rcar_lvds_write(struct rcar_lvds *lvds, u32 reg, u32 data)
{
iowrite32(data, lvds->mmio + reg);
}
/* -----------------------------------------------------------------------------
* Connector & Panel
*/
static int rcar_lvds_connector_get_modes(struct drm_connector *connector)
{
struct rcar_lvds *lvds = connector_to_rcar_lvds(connector);
return drm_panel_get_modes(lvds->panel);
}
static int rcar_lvds_connector_atomic_check(struct drm_connector *connector,
struct drm_connector_state *state)
{
struct rcar_lvds *lvds = connector_to_rcar_lvds(connector);
const struct drm_display_mode *panel_mode;
struct drm_crtc_state *crtc_state;
if (!state->crtc)
return 0;
if (list_empty(&connector->modes)) {
dev_dbg(lvds->dev, "connector: empty modes list\n");
return -EINVAL;
}
panel_mode = list_first_entry(&connector->modes,
struct drm_display_mode, head);
/* We're not allowed to modify the resolution. */
crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
if (crtc_state->mode.hdisplay != panel_mode->hdisplay ||
crtc_state->mode.vdisplay != panel_mode->vdisplay)
return -EINVAL;
/* The flat panel mode is fixed, just copy it to the adjusted mode. */
drm_mode_copy(&crtc_state->adjusted_mode, panel_mode);
return 0;
}
static const struct drm_connector_helper_funcs rcar_lvds_conn_helper_funcs = {
.get_modes = rcar_lvds_connector_get_modes,
.atomic_check = rcar_lvds_connector_atomic_check,
};
static const struct drm_connector_funcs rcar_lvds_conn_funcs = {
.reset = drm_atomic_helper_connector_reset,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
/* -----------------------------------------------------------------------------
* PLL Setup
*/
static void rcar_lvds_pll_setup_gen2(struct rcar_lvds *lvds, unsigned int freq)
{
u32 val;
if (freq < 39000000)
val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_38M;
else if (freq < 61000000)
val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_60M;
else if (freq < 121000000)
val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_121M;
else
val = LVDPLLCR_PLLDLYCNT_150M;
rcar_lvds_write(lvds, LVDPLLCR, val);
}
static void rcar_lvds_pll_setup_gen3(struct rcar_lvds *lvds, unsigned int freq)
{
u32 val;
if (freq < 42000000)
val = LVDPLLCR_PLLDIVCNT_42M;
else if (freq < 85000000)
val = LVDPLLCR_PLLDIVCNT_85M;
else if (freq < 128000000)
val = LVDPLLCR_PLLDIVCNT_128M;
else
val = LVDPLLCR_PLLDIVCNT_148M;
rcar_lvds_write(lvds, LVDPLLCR, val);
}
struct pll_info {
unsigned long diff;
unsigned int pll_m;
unsigned int pll_n;
unsigned int pll_e;
unsigned int div;
u32 clksel;
};
static void rcar_lvds_d3_e3_pll_calc(struct rcar_lvds *lvds, struct clk *clk,
unsigned long target, struct pll_info *pll,
u32 clksel)
{
unsigned long output;
unsigned long fin;
unsigned int m_min;
unsigned int m_max;
unsigned int m;
int error;
if (!clk)
return;
/*
* The LVDS PLL is made of a pre-divider and a multiplier (strangely
* enough called M and N respectively), followed by a post-divider E.
*
* ,-----. ,-----. ,-----. ,-----.
* Fin --> | 1/M | -Fpdf-> | PFD | --> | VCO | -Fvco-> | 1/E | --> Fout
* `-----' ,-> | | `-----' | `-----'
* | `-----' |
* | ,-----. |
* `-------- | 1/N | <-------'
* `-----'
*
* The clock output by the PLL is then further divided by a programmable
* divider DIV to achieve the desired target frequency. Finally, an
* optional fixed /7 divider is used to convert the bit clock to a pixel
* clock (as LVDS transmits 7 bits per lane per clock sample).
*
* ,-------. ,-----. |\
* Fout --> | 1/DIV | --> | 1/7 | --> | |
* `-------' | `-----' | | --> dot clock
* `------------> | |
* |/
*
* The /7 divider is optional when the LVDS PLL is used to generate a
* dot clock for the DU RGB output, without using the LVDS encoder. We
* don't support this configuration yet.
*
* The PLL allowed input frequency range is 12 MHz to 192 MHz.
*/
fin = clk_get_rate(clk);
if (fin < 12000000 || fin > 192000000)
return;
/*
* The comparison frequency range is 12 MHz to 24 MHz, which limits the
* allowed values for the pre-divider M (normal range 1-8).
*
* Fpfd = Fin / M
*/
m_min = max_t(unsigned int, 1, DIV_ROUND_UP(fin, 24000000));
m_max = min_t(unsigned int, 8, fin / 12000000);
for (m = m_min; m <= m_max; ++m) {
unsigned long fpfd;
unsigned int n_min;
unsigned int n_max;
unsigned int n;
/*
* The VCO operating range is 900 Mhz to 1800 MHz, which limits
* the allowed values for the multiplier N (normal range
* 60-120).
*
* Fvco = Fin * N / M
*/
fpfd = fin / m;
n_min = max_t(unsigned int, 60, DIV_ROUND_UP(900000000, fpfd));
n_max = min_t(unsigned int, 120, 1800000000 / fpfd);
for (n = n_min; n < n_max; ++n) {
unsigned long fvco;
unsigned int e_min;
unsigned int e;
/*
* The output frequency is limited to 1039.5 MHz,
* limiting again the allowed values for the
* post-divider E (normal value 1, 2 or 4).
*
* Fout = Fvco / E
*/
fvco = fpfd * n;
e_min = fvco > 1039500000 ? 1 : 0;
for (e = e_min; e < 3; ++e) {
unsigned long fout;
unsigned long diff;
unsigned int div;
/*
* Finally we have a programable divider after
* the PLL, followed by a an optional fixed /7
* divider.
*/
fout = fvco / (1 << e) / 7;
div = DIV_ROUND_CLOSEST(fout, target);
diff = abs(fout / div - target);
if (diff < pll->diff) {
pll->diff = diff;
pll->pll_m = m;
pll->pll_n = n;
pll->pll_e = e;
pll->div = div;
pll->clksel = clksel;
if (diff == 0)
goto done;
}
}
}
}
done:
output = fin * pll->pll_n / pll->pll_m / (1 << pll->pll_e)
/ 7 / pll->div;
error = (long)(output - target) * 10000 / (long)target;
dev_dbg(lvds->dev,
"%pC %lu Hz -> Fout %lu Hz (target %lu Hz, error %d.%02u%%), PLL M/N/E/DIV %u/%u/%u/%u\n",
clk, fin, output, target, error / 100,
error < 0 ? -error % 100 : error % 100,
pll->pll_m, pll->pll_n, pll->pll_e, pll->div);
}
static void rcar_lvds_pll_setup_d3_e3(struct rcar_lvds *lvds, unsigned int freq)
{
struct pll_info pll = { .diff = (unsigned long)-1 };
u32 lvdpllcr;
rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.dotclkin[0], freq, &pll,
LVDPLLCR_CKSEL_DU_DOTCLKIN(0));
rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.dotclkin[1], freq, &pll,
LVDPLLCR_CKSEL_DU_DOTCLKIN(1));
rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.extal, freq, &pll,
LVDPLLCR_CKSEL_EXTAL);
lvdpllcr = LVDPLLCR_PLLON | pll.clksel | LVDPLLCR_CLKOUT
| LVDPLLCR_PLLN(pll.pll_n - 1) | LVDPLLCR_PLLM(pll.pll_m - 1);
if (pll.pll_e > 0)
lvdpllcr |= LVDPLLCR_STP_CLKOUTE | LVDPLLCR_OUTCLKSEL
| LVDPLLCR_PLLE(pll.pll_e - 1);
rcar_lvds_write(lvds, LVDPLLCR, lvdpllcr);
if (pll.div > 1)
/*
* The DIVRESET bit is a misnomer, setting it to 1 deasserts the
* divisor reset.
*/
rcar_lvds_write(lvds, LVDDIV, LVDDIV_DIVSEL |
LVDDIV_DIVRESET | LVDDIV_DIV(pll.div - 1));
else
rcar_lvds_write(lvds, LVDDIV, 0);
}
/* -----------------------------------------------------------------------------
* Bridge
*/
static void rcar_lvds_enable(struct drm_bridge *bridge)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
const struct drm_display_mode *mode = &lvds->display_mode;
/*
* FIXME: We should really retrieve the CRTC through the state, but how
* do we get a state pointer?
*/
struct drm_crtc *crtc = lvds->bridge.encoder->crtc;
u32 lvdhcr;
u32 lvdcr0;
int ret;
WARN_ON(lvds->enabled);
ret = clk_prepare_enable(lvds->clocks.mod);
if (ret < 0)
return;
/*
* Hardcode the channels and control signals routing for now.
*
* HSYNC -> CTRL0
* VSYNC -> CTRL1
* DISP -> CTRL2
* 0 -> CTRL3
*/
rcar_lvds_write(lvds, LVDCTRCR, LVDCTRCR_CTR3SEL_ZERO |
LVDCTRCR_CTR2SEL_DISP | LVDCTRCR_CTR1SEL_VSYNC |
LVDCTRCR_CTR0SEL_HSYNC);
if (lvds->info->quirks & RCAR_LVDS_QUIRK_LANES)
lvdhcr = LVDCHCR_CHSEL_CH(0, 0) | LVDCHCR_CHSEL_CH(1, 3)
| LVDCHCR_CHSEL_CH(2, 2) | LVDCHCR_CHSEL_CH(3, 1);
else
lvdhcr = LVDCHCR_CHSEL_CH(0, 0) | LVDCHCR_CHSEL_CH(1, 1)
| LVDCHCR_CHSEL_CH(2, 2) | LVDCHCR_CHSEL_CH(3, 3);
rcar_lvds_write(lvds, LVDCHCR, lvdhcr);
if (lvds->info->quirks & RCAR_LVDS_QUIRK_DUAL_LINK) {
/* Disable dual-link mode. */
rcar_lvds_write(lvds, LVDSTRIPE, 0);
}
/* PLL clock configuration. */
lvds->info->pll_setup(lvds, mode->clock * 1000);
/* Set the LVDS mode and select the input. */
lvdcr0 = lvds->mode << LVDCR0_LVMD_SHIFT;
if (drm_crtc_index(crtc) == 2)
lvdcr0 |= LVDCR0_DUSEL;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
/* Turn all the channels on. */
rcar_lvds_write(lvds, LVDCR1,
LVDCR1_CHSTBY(3) | LVDCR1_CHSTBY(2) |
LVDCR1_CHSTBY(1) | LVDCR1_CHSTBY(0) | LVDCR1_CLKSTBY);
if (lvds->info->gen < 3) {
/* Enable LVDS operation and turn the bias circuitry on. */
lvdcr0 |= LVDCR0_BEN | LVDCR0_LVEN;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) {
/*
* Turn the PLL on (simple PLL only, extended PLL is fully
* controlled through LVDPLLCR).
*/
lvdcr0 |= LVDCR0_PLLON;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
if (lvds->info->quirks & RCAR_LVDS_QUIRK_PWD) {
/* Set LVDS normal mode. */
lvdcr0 |= LVDCR0_PWD;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
if (lvds->info->quirks & RCAR_LVDS_QUIRK_GEN3_LVEN) {
/* Turn on the LVDS PHY. */
lvdcr0 |= LVDCR0_LVEN;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) {
/* Wait for the PLL startup delay (simple PLL only). */
usleep_range(100, 150);
}
/* Turn the output on. */
lvdcr0 |= LVDCR0_LVRES;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
if (lvds->panel) {
drm_panel_prepare(lvds->panel);
drm_panel_enable(lvds->panel);
}
lvds->enabled = true;
}
static void rcar_lvds_disable(struct drm_bridge *bridge)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
WARN_ON(!lvds->enabled);
if (lvds->panel) {
drm_panel_disable(lvds->panel);
drm_panel_unprepare(lvds->panel);
}
rcar_lvds_write(lvds, LVDCR0, 0);
rcar_lvds_write(lvds, LVDCR1, 0);
rcar_lvds_write(lvds, LVDPLLCR, 0);
clk_disable_unprepare(lvds->clocks.mod);
lvds->enabled = false;
}
static bool rcar_lvds_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
/*
* The internal LVDS encoder has a restricted clock frequency operating
* range (31MHz to 148.5MHz). Clamp the clock accordingly.
*/
adjusted_mode->clock = clamp(adjusted_mode->clock, 31000, 148500);
return true;
}
static void rcar_lvds_get_lvds_mode(struct rcar_lvds *lvds)
{
struct drm_display_info *info = &lvds->connector.display_info;
enum rcar_lvds_mode mode;
/*
* There is no API yet to retrieve LVDS mode from a bridge, only panels
* are supported.
*/
if (!lvds->panel)
return;
if (!info->num_bus_formats || !info->bus_formats) {
dev_err(lvds->dev, "no LVDS bus format reported\n");
return;
}
switch (info->bus_formats[0]) {
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
mode = RCAR_LVDS_MODE_JEIDA;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
mode = RCAR_LVDS_MODE_VESA;
break;
default:
dev_err(lvds->dev, "unsupported LVDS bus format 0x%04x\n",
info->bus_formats[0]);
return;
}
if (info->bus_flags & DRM_BUS_FLAG_DATA_LSB_TO_MSB)
mode |= RCAR_LVDS_MODE_MIRROR;
lvds->mode = mode;
}
static void rcar_lvds_mode_set(struct drm_bridge *bridge,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
WARN_ON(lvds->enabled);
lvds->display_mode = *adjusted_mode;
rcar_lvds_get_lvds_mode(lvds);
}
static int rcar_lvds_attach(struct drm_bridge *bridge)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
struct drm_connector *connector = &lvds->connector;
struct drm_encoder *encoder = bridge->encoder;
int ret;
/* If we have a next bridge just attach it. */
if (lvds->next_bridge)
return drm_bridge_attach(bridge->encoder, lvds->next_bridge,
bridge);
/* Otherwise we have a panel, create a connector. */
ret = drm_connector_init(bridge->dev, connector, &rcar_lvds_conn_funcs,
DRM_MODE_CONNECTOR_LVDS);
if (ret < 0)
return ret;
drm_connector_helper_add(connector, &rcar_lvds_conn_helper_funcs);
ret = drm_connector_attach_encoder(connector, encoder);
if (ret < 0)
return ret;
return drm_panel_attach(lvds->panel, connector);
}
static void rcar_lvds_detach(struct drm_bridge *bridge)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
if (lvds->panel)
drm_panel_detach(lvds->panel);
}
static const struct drm_bridge_funcs rcar_lvds_bridge_ops = {
.attach = rcar_lvds_attach,
.detach = rcar_lvds_detach,
.enable = rcar_lvds_enable,
.disable = rcar_lvds_disable,
.mode_fixup = rcar_lvds_mode_fixup,
.mode_set = rcar_lvds_mode_set,
};
/* -----------------------------------------------------------------------------
* Probe & Remove
*/
static int rcar_lvds_parse_dt(struct rcar_lvds *lvds)
{
struct device_node *local_output = NULL;
struct device_node *remote_input = NULL;
struct device_node *remote = NULL;
struct device_node *node;
bool is_bridge = false;
int ret = 0;
local_output = of_graph_get_endpoint_by_regs(lvds->dev->of_node, 1, 0);
if (!local_output) {
dev_dbg(lvds->dev, "unconnected port@1\n");
return -ENODEV;
}
/*
* Locate the connected entity and infer its type from the number of
* endpoints.
*/
remote = of_graph_get_remote_port_parent(local_output);
if (!remote) {
dev_dbg(lvds->dev, "unconnected endpoint %pOF\n", local_output);
ret = -ENODEV;
goto done;
}
if (!of_device_is_available(remote)) {
dev_dbg(lvds->dev, "connected entity %pOF is disabled\n",
remote);
ret = -ENODEV;
goto done;
}
remote_input = of_graph_get_remote_endpoint(local_output);
for_each_endpoint_of_node(remote, node) {
if (node != remote_input) {
/*
* We've found one endpoint other than the input, this
* must be a bridge.
*/
is_bridge = true;
of_node_put(node);
break;
}
}
if (is_bridge) {
lvds->next_bridge = of_drm_find_bridge(remote);
if (!lvds->next_bridge)
ret = -EPROBE_DEFER;
} else {
lvds->panel = of_drm_find_panel(remote);
if (IS_ERR(lvds->panel))
ret = PTR_ERR(lvds->panel);
}
done:
of_node_put(local_output);
of_node_put(remote_input);
of_node_put(remote);
return ret;
}
static struct clk *rcar_lvds_get_clock(struct rcar_lvds *lvds, const char *name,
bool optional)
{
struct clk *clk;
clk = devm_clk_get(lvds->dev, name);
if (!IS_ERR(clk))
return clk;
if (PTR_ERR(clk) == -ENOENT && optional)
return NULL;
if (PTR_ERR(clk) != -EPROBE_DEFER)
dev_err(lvds->dev, "failed to get %s clock\n",
name ? name : "module");
return clk;
}
static int rcar_lvds_get_clocks(struct rcar_lvds *lvds)
{
lvds->clocks.mod = rcar_lvds_get_clock(lvds, NULL, false);
if (IS_ERR(lvds->clocks.mod))
return PTR_ERR(lvds->clocks.mod);
/*
* LVDS encoders without an extended PLL have no external clock inputs.
*/
if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL))
return 0;
lvds->clocks.extal = rcar_lvds_get_clock(lvds, "extal", true);
if (IS_ERR(lvds->clocks.extal))
return PTR_ERR(lvds->clocks.extal);
lvds->clocks.dotclkin[0] = rcar_lvds_get_clock(lvds, "dclkin.0", true);
if (IS_ERR(lvds->clocks.dotclkin[0]))
return PTR_ERR(lvds->clocks.dotclkin[0]);
lvds->clocks.dotclkin[1] = rcar_lvds_get_clock(lvds, "dclkin.1", true);
if (IS_ERR(lvds->clocks.dotclkin[1]))
return PTR_ERR(lvds->clocks.dotclkin[1]);
/* At least one input to the PLL must be available. */
if (!lvds->clocks.extal && !lvds->clocks.dotclkin[0] &&
!lvds->clocks.dotclkin[1]) {
dev_err(lvds->dev,
"no input clock (extal, dclkin.0 or dclkin.1)\n");
return -EINVAL;
}
return 0;
}
static int rcar_lvds_probe(struct platform_device *pdev)
{
struct rcar_lvds *lvds;
struct resource *mem;
int ret;
lvds = devm_kzalloc(&pdev->dev, sizeof(*lvds), GFP_KERNEL);
if (lvds == NULL)
return -ENOMEM;
platform_set_drvdata(pdev, lvds);
lvds->dev = &pdev->dev;
lvds->info = of_device_get_match_data(&pdev->dev);
lvds->enabled = false;
ret = rcar_lvds_parse_dt(lvds);
if (ret < 0)
return ret;
lvds->bridge.driver_private = lvds;
lvds->bridge.funcs = &rcar_lvds_bridge_ops;
lvds->bridge.of_node = pdev->dev.of_node;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
lvds->mmio = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(lvds->mmio))
return PTR_ERR(lvds->mmio);
ret = rcar_lvds_get_clocks(lvds);
if (ret < 0)
return ret;
drm_bridge_add(&lvds->bridge);
return 0;
}
static int rcar_lvds_remove(struct platform_device *pdev)
{
struct rcar_lvds *lvds = platform_get_drvdata(pdev);
drm_bridge_remove(&lvds->bridge);
return 0;
}
static const struct rcar_lvds_device_info rcar_lvds_gen2_info = {
.gen = 2,
.pll_setup = rcar_lvds_pll_setup_gen2,
};
static const struct rcar_lvds_device_info rcar_lvds_r8a7790_info = {
.gen = 2,
.quirks = RCAR_LVDS_QUIRK_LANES,
.pll_setup = rcar_lvds_pll_setup_gen2,
};
static const struct rcar_lvds_device_info rcar_lvds_gen3_info = {
.gen = 3,
.quirks = RCAR_LVDS_QUIRK_PWD,
.pll_setup = rcar_lvds_pll_setup_gen3,
};
static const struct rcar_lvds_device_info rcar_lvds_r8a77970_info = {
.gen = 3,
.quirks = RCAR_LVDS_QUIRK_PWD | RCAR_LVDS_QUIRK_GEN3_LVEN,
.pll_setup = rcar_lvds_pll_setup_gen2,
};
static const struct rcar_lvds_device_info rcar_lvds_r8a77990_info = {
.gen = 3,
.quirks = RCAR_LVDS_QUIRK_GEN3_LVEN | RCAR_LVDS_QUIRK_EXT_PLL
| RCAR_LVDS_QUIRK_DUAL_LINK,
.pll_setup = rcar_lvds_pll_setup_d3_e3,
};
static const struct rcar_lvds_device_info rcar_lvds_r8a77995_info = {
.gen = 3,
.quirks = RCAR_LVDS_QUIRK_GEN3_LVEN | RCAR_LVDS_QUIRK_PWD
| RCAR_LVDS_QUIRK_EXT_PLL | RCAR_LVDS_QUIRK_DUAL_LINK,
.pll_setup = rcar_lvds_pll_setup_d3_e3,
};
static const struct of_device_id rcar_lvds_of_table[] = {
{ .compatible = "renesas,r8a7743-lvds", .data = &rcar_lvds_gen2_info },
{ .compatible = "renesas,r8a7790-lvds", .data = &rcar_lvds_r8a7790_info },
{ .compatible = "renesas,r8a7791-lvds", .data = &rcar_lvds_gen2_info },
{ .compatible = "renesas,r8a7793-lvds", .data = &rcar_lvds_gen2_info },
{ .compatible = "renesas,r8a7795-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a7796-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a77965-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a77970-lvds", .data = &rcar_lvds_r8a77970_info },
{ .compatible = "renesas,r8a77980-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a77990-lvds", .data = &rcar_lvds_r8a77990_info },
{ .compatible = "renesas,r8a77995-lvds", .data = &rcar_lvds_r8a77995_info },
{ }
};
MODULE_DEVICE_TABLE(of, rcar_lvds_of_table);
static struct platform_driver rcar_lvds_platform_driver = {
.probe = rcar_lvds_probe,
.remove = rcar_lvds_remove,
.driver = {
.name = "rcar-lvds",
.of_match_table = rcar_lvds_of_table,
},
};
module_platform_driver(rcar_lvds_platform_driver);
MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
MODULE_DESCRIPTION("Renesas R-Car LVDS Encoder Driver");
MODULE_LICENSE("GPL");