2472 lines
64 KiB
C
2472 lines
64 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2019 HiSilicon Limited. */
|
|
|
|
#include <crypto/aes.h>
|
|
#include <crypto/aead.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/authenc.h>
|
|
#include <crypto/des.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/des.h>
|
|
#include <crypto/sha1.h>
|
|
#include <crypto/sha2.h>
|
|
#include <crypto/skcipher.h>
|
|
#include <crypto/xts.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/idr.h>
|
|
|
|
#include "sec.h"
|
|
#include "sec_crypto.h"
|
|
|
|
#define SEC_PRIORITY 4001
|
|
#define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
|
|
#define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
|
|
#define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
|
|
#define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
|
|
#define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
|
|
|
|
/* SEC sqe(bd) bit operational relative MACRO */
|
|
#define SEC_DE_OFFSET 1
|
|
#define SEC_CIPHER_OFFSET 4
|
|
#define SEC_SCENE_OFFSET 3
|
|
#define SEC_DST_SGL_OFFSET 2
|
|
#define SEC_SRC_SGL_OFFSET 7
|
|
#define SEC_CKEY_OFFSET 9
|
|
#define SEC_CMODE_OFFSET 12
|
|
#define SEC_AKEY_OFFSET 5
|
|
#define SEC_AEAD_ALG_OFFSET 11
|
|
#define SEC_AUTH_OFFSET 6
|
|
|
|
#define SEC_DE_OFFSET_V3 9
|
|
#define SEC_SCENE_OFFSET_V3 5
|
|
#define SEC_CKEY_OFFSET_V3 13
|
|
#define SEC_CTR_CNT_OFFSET 25
|
|
#define SEC_CTR_CNT_ROLLOVER 2
|
|
#define SEC_SRC_SGL_OFFSET_V3 11
|
|
#define SEC_DST_SGL_OFFSET_V3 14
|
|
#define SEC_CALG_OFFSET_V3 4
|
|
#define SEC_AKEY_OFFSET_V3 9
|
|
#define SEC_MAC_OFFSET_V3 4
|
|
#define SEC_AUTH_ALG_OFFSET_V3 15
|
|
#define SEC_CIPHER_AUTH_V3 0xbf
|
|
#define SEC_AUTH_CIPHER_V3 0x40
|
|
#define SEC_FLAG_OFFSET 7
|
|
#define SEC_FLAG_MASK 0x0780
|
|
#define SEC_TYPE_MASK 0x0F
|
|
#define SEC_DONE_MASK 0x0001
|
|
#define SEC_ICV_MASK 0x000E
|
|
#define SEC_SQE_LEN_RATE_MASK 0x3
|
|
|
|
#define SEC_TOTAL_IV_SZ (SEC_IV_SIZE * QM_Q_DEPTH)
|
|
#define SEC_SGL_SGE_NR 128
|
|
#define SEC_CIPHER_AUTH 0xfe
|
|
#define SEC_AUTH_CIPHER 0x1
|
|
#define SEC_MAX_MAC_LEN 64
|
|
#define SEC_MAX_AAD_LEN 65535
|
|
#define SEC_MAX_CCM_AAD_LEN 65279
|
|
#define SEC_TOTAL_MAC_SZ (SEC_MAX_MAC_LEN * QM_Q_DEPTH)
|
|
|
|
#define SEC_PBUF_SZ 512
|
|
#define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
|
|
#define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
|
|
#define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
|
|
SEC_MAX_MAC_LEN * 2)
|
|
#define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
|
|
#define SEC_PBUF_PAGE_NUM (QM_Q_DEPTH / SEC_PBUF_NUM)
|
|
#define SEC_PBUF_LEFT_SZ (SEC_PBUF_PKG * (QM_Q_DEPTH - \
|
|
SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
|
|
#define SEC_TOTAL_PBUF_SZ (PAGE_SIZE * SEC_PBUF_PAGE_NUM + \
|
|
SEC_PBUF_LEFT_SZ)
|
|
|
|
#define SEC_SQE_LEN_RATE 4
|
|
#define SEC_SQE_CFLAG 2
|
|
#define SEC_SQE_AEAD_FLAG 3
|
|
#define SEC_SQE_DONE 0x1
|
|
#define SEC_ICV_ERR 0x2
|
|
#define MIN_MAC_LEN 4
|
|
#define MAC_LEN_MASK 0x1U
|
|
#define MAX_INPUT_DATA_LEN 0xFFFE00
|
|
#define BITS_MASK 0xFF
|
|
#define BYTE_BITS 0x8
|
|
#define SEC_XTS_NAME_SZ 0x3
|
|
#define IV_CM_CAL_NUM 2
|
|
#define IV_CL_MASK 0x7
|
|
#define IV_CL_MIN 2
|
|
#define IV_CL_MID 4
|
|
#define IV_CL_MAX 8
|
|
#define IV_FLAGS_OFFSET 0x6
|
|
#define IV_CM_OFFSET 0x3
|
|
#define IV_LAST_BYTE1 1
|
|
#define IV_LAST_BYTE2 2
|
|
#define IV_LAST_BYTE_MASK 0xFF
|
|
#define IV_CTR_INIT 0x1
|
|
#define IV_BYTE_OFFSET 0x8
|
|
|
|
/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
|
|
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
if (req->c_req.encrypt)
|
|
return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
|
|
ctx->hlf_q_num;
|
|
|
|
return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
|
|
ctx->hlf_q_num;
|
|
}
|
|
|
|
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
if (req->c_req.encrypt)
|
|
atomic_dec(&ctx->enc_qcyclic);
|
|
else
|
|
atomic_dec(&ctx->dec_qcyclic);
|
|
}
|
|
|
|
static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
int req_id;
|
|
|
|
mutex_lock(&qp_ctx->req_lock);
|
|
|
|
req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
|
|
0, QM_Q_DEPTH, GFP_ATOMIC);
|
|
mutex_unlock(&qp_ctx->req_lock);
|
|
if (unlikely(req_id < 0)) {
|
|
dev_err(req->ctx->dev, "alloc req id fail!\n");
|
|
return req_id;
|
|
}
|
|
|
|
req->qp_ctx = qp_ctx;
|
|
qp_ctx->req_list[req_id] = req;
|
|
|
|
return req_id;
|
|
}
|
|
|
|
static void sec_free_req_id(struct sec_req *req)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
int req_id = req->req_id;
|
|
|
|
if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
|
|
dev_err(req->ctx->dev, "free request id invalid!\n");
|
|
return;
|
|
}
|
|
|
|
qp_ctx->req_list[req_id] = NULL;
|
|
req->qp_ctx = NULL;
|
|
|
|
mutex_lock(&qp_ctx->req_lock);
|
|
idr_remove(&qp_ctx->req_idr, req_id);
|
|
mutex_unlock(&qp_ctx->req_lock);
|
|
}
|
|
|
|
static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
|
|
{
|
|
struct sec_sqe *bd = resp;
|
|
|
|
status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
|
|
status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
|
|
status->flag = (le16_to_cpu(bd->type2.done_flag) &
|
|
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
|
|
status->tag = le16_to_cpu(bd->type2.tag);
|
|
status->err_type = bd->type2.error_type;
|
|
|
|
return bd->type_cipher_auth & SEC_TYPE_MASK;
|
|
}
|
|
|
|
static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
|
|
{
|
|
struct sec_sqe3 *bd3 = resp;
|
|
|
|
status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
|
|
status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
|
|
status->flag = (le16_to_cpu(bd3->done_flag) &
|
|
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
|
|
status->tag = le64_to_cpu(bd3->tag);
|
|
status->err_type = bd3->error_type;
|
|
|
|
return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
|
|
}
|
|
|
|
static int sec_cb_status_check(struct sec_req *req,
|
|
struct bd_status *status)
|
|
{
|
|
struct sec_ctx *ctx = req->ctx;
|
|
|
|
if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
|
|
dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
|
|
req->err_type, status->done);
|
|
return -EIO;
|
|
}
|
|
|
|
if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
|
|
if (unlikely(status->flag != SEC_SQE_CFLAG)) {
|
|
dev_err_ratelimited(ctx->dev, "flag[%u]\n",
|
|
status->flag);
|
|
return -EIO;
|
|
}
|
|
} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
|
|
if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
|
|
status->icv == SEC_ICV_ERR)) {
|
|
dev_err_ratelimited(ctx->dev,
|
|
"flag[%u], icv[%u]\n",
|
|
status->flag, status->icv);
|
|
return -EBADMSG;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_req_cb(struct hisi_qp *qp, void *resp)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
|
|
struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
|
|
u8 type_supported = qp_ctx->ctx->type_supported;
|
|
struct bd_status status;
|
|
struct sec_ctx *ctx;
|
|
struct sec_req *req;
|
|
int err;
|
|
u8 type;
|
|
|
|
if (type_supported == SEC_BD_TYPE2) {
|
|
type = pre_parse_finished_bd(&status, resp);
|
|
req = qp_ctx->req_list[status.tag];
|
|
} else {
|
|
type = pre_parse_finished_bd3(&status, resp);
|
|
req = (void *)(uintptr_t)status.tag;
|
|
}
|
|
|
|
if (unlikely(type != type_supported)) {
|
|
atomic64_inc(&dfx->err_bd_cnt);
|
|
pr_err("err bd type [%u]\n", type);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(!req)) {
|
|
atomic64_inc(&dfx->invalid_req_cnt);
|
|
atomic_inc(&qp->qp_status.used);
|
|
return;
|
|
}
|
|
|
|
req->err_type = status.err_type;
|
|
ctx = req->ctx;
|
|
err = sec_cb_status_check(req, &status);
|
|
if (err)
|
|
atomic64_inc(&dfx->done_flag_cnt);
|
|
|
|
atomic64_inc(&dfx->recv_cnt);
|
|
|
|
ctx->req_op->buf_unmap(ctx, req);
|
|
|
|
ctx->req_op->callback(ctx, req, err);
|
|
}
|
|
|
|
static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
int ret;
|
|
|
|
if (ctx->fake_req_limit <=
|
|
atomic_read(&qp_ctx->qp->qp_status.used) &&
|
|
!(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
|
|
return -EBUSY;
|
|
|
|
mutex_lock(&qp_ctx->req_lock);
|
|
ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
|
|
|
|
if (ctx->fake_req_limit <=
|
|
atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
|
|
list_add_tail(&req->backlog_head, &qp_ctx->backlog);
|
|
atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
|
|
atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
|
|
mutex_unlock(&qp_ctx->req_lock);
|
|
return -EBUSY;
|
|
}
|
|
mutex_unlock(&qp_ctx->req_lock);
|
|
|
|
if (unlikely(ret == -EBUSY))
|
|
return -ENOBUFS;
|
|
|
|
if (likely(!ret)) {
|
|
ret = -EINPROGRESS;
|
|
atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Get DMA memory resources */
|
|
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
int i;
|
|
|
|
res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
|
|
&res->c_ivin_dma, GFP_KERNEL);
|
|
if (!res->c_ivin)
|
|
return -ENOMEM;
|
|
|
|
for (i = 1; i < QM_Q_DEPTH; i++) {
|
|
res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
|
|
res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
if (res->c_ivin)
|
|
dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
|
|
res->c_ivin, res->c_ivin_dma);
|
|
}
|
|
|
|
static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
int i;
|
|
|
|
res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
|
|
&res->a_ivin_dma, GFP_KERNEL);
|
|
if (!res->a_ivin)
|
|
return -ENOMEM;
|
|
|
|
for (i = 1; i < QM_Q_DEPTH; i++) {
|
|
res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
|
|
res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
if (res->a_ivin)
|
|
dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
|
|
res->a_ivin, res->a_ivin_dma);
|
|
}
|
|
|
|
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
int i;
|
|
|
|
res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
|
|
&res->out_mac_dma, GFP_KERNEL);
|
|
if (!res->out_mac)
|
|
return -ENOMEM;
|
|
|
|
for (i = 1; i < QM_Q_DEPTH; i++) {
|
|
res[i].out_mac_dma = res->out_mac_dma +
|
|
i * (SEC_MAX_MAC_LEN << 1);
|
|
res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
if (res->out_mac)
|
|
dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
|
|
res->out_mac, res->out_mac_dma);
|
|
}
|
|
|
|
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
if (res->pbuf)
|
|
dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
|
|
res->pbuf, res->pbuf_dma);
|
|
}
|
|
|
|
/*
|
|
* To improve performance, pbuffer is used for
|
|
* small packets (< 512Bytes) as IOMMU translation using.
|
|
*/
|
|
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
int pbuf_page_offset;
|
|
int i, j, k;
|
|
|
|
res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
|
|
&res->pbuf_dma, GFP_KERNEL);
|
|
if (!res->pbuf)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* SEC_PBUF_PKG contains data pbuf, iv and
|
|
* out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
|
|
* Every PAGE contains six SEC_PBUF_PKG
|
|
* The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
|
|
* So we need SEC_PBUF_PAGE_NUM numbers of PAGE
|
|
* for the SEC_TOTAL_PBUF_SZ
|
|
*/
|
|
for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
|
|
pbuf_page_offset = PAGE_SIZE * i;
|
|
for (j = 0; j < SEC_PBUF_NUM; j++) {
|
|
k = i * SEC_PBUF_NUM + j;
|
|
if (k == QM_Q_DEPTH)
|
|
break;
|
|
res[k].pbuf = res->pbuf +
|
|
j * SEC_PBUF_PKG + pbuf_page_offset;
|
|
res[k].pbuf_dma = res->pbuf_dma +
|
|
j * SEC_PBUF_PKG + pbuf_page_offset;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
|
|
struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct sec_alg_res *res = qp_ctx->res;
|
|
struct device *dev = ctx->dev;
|
|
int ret;
|
|
|
|
ret = sec_alloc_civ_resource(dev, res);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ctx->alg_type == SEC_AEAD) {
|
|
ret = sec_alloc_aiv_resource(dev, res);
|
|
if (ret)
|
|
goto alloc_aiv_fail;
|
|
|
|
ret = sec_alloc_mac_resource(dev, res);
|
|
if (ret)
|
|
goto alloc_mac_fail;
|
|
}
|
|
if (ctx->pbuf_supported) {
|
|
ret = sec_alloc_pbuf_resource(dev, res);
|
|
if (ret) {
|
|
dev_err(dev, "fail to alloc pbuf dma resource!\n");
|
|
goto alloc_pbuf_fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
alloc_pbuf_fail:
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
sec_free_mac_resource(dev, qp_ctx->res);
|
|
alloc_mac_fail:
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
sec_free_aiv_resource(dev, res);
|
|
alloc_aiv_fail:
|
|
sec_free_civ_resource(dev, res);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_alg_resource_free(struct sec_ctx *ctx,
|
|
struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct device *dev = ctx->dev;
|
|
|
|
sec_free_civ_resource(dev, qp_ctx->res);
|
|
|
|
if (ctx->pbuf_supported)
|
|
sec_free_pbuf_resource(dev, qp_ctx->res);
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
sec_free_mac_resource(dev, qp_ctx->res);
|
|
}
|
|
|
|
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
|
|
int qp_ctx_id, int alg_type)
|
|
{
|
|
struct device *dev = ctx->dev;
|
|
struct sec_qp_ctx *qp_ctx;
|
|
struct hisi_qp *qp;
|
|
int ret = -ENOMEM;
|
|
|
|
qp_ctx = &ctx->qp_ctx[qp_ctx_id];
|
|
qp = ctx->qps[qp_ctx_id];
|
|
qp->req_type = 0;
|
|
qp->qp_ctx = qp_ctx;
|
|
qp_ctx->qp = qp;
|
|
qp_ctx->ctx = ctx;
|
|
|
|
qp->req_cb = sec_req_cb;
|
|
|
|
mutex_init(&qp_ctx->req_lock);
|
|
idr_init(&qp_ctx->req_idr);
|
|
INIT_LIST_HEAD(&qp_ctx->backlog);
|
|
|
|
qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
|
|
SEC_SGL_SGE_NR);
|
|
if (IS_ERR(qp_ctx->c_in_pool)) {
|
|
dev_err(dev, "fail to create sgl pool for input!\n");
|
|
goto err_destroy_idr;
|
|
}
|
|
|
|
qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
|
|
SEC_SGL_SGE_NR);
|
|
if (IS_ERR(qp_ctx->c_out_pool)) {
|
|
dev_err(dev, "fail to create sgl pool for output!\n");
|
|
goto err_free_c_in_pool;
|
|
}
|
|
|
|
ret = sec_alg_resource_alloc(ctx, qp_ctx);
|
|
if (ret)
|
|
goto err_free_c_out_pool;
|
|
|
|
ret = hisi_qm_start_qp(qp, 0);
|
|
if (ret < 0)
|
|
goto err_queue_free;
|
|
|
|
return 0;
|
|
|
|
err_queue_free:
|
|
sec_alg_resource_free(ctx, qp_ctx);
|
|
err_free_c_out_pool:
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
|
|
err_free_c_in_pool:
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
|
|
err_destroy_idr:
|
|
idr_destroy(&qp_ctx->req_idr);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_release_qp_ctx(struct sec_ctx *ctx,
|
|
struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct device *dev = ctx->dev;
|
|
|
|
hisi_qm_stop_qp(qp_ctx->qp);
|
|
sec_alg_resource_free(ctx, qp_ctx);
|
|
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
|
|
|
|
idr_destroy(&qp_ctx->req_idr);
|
|
}
|
|
|
|
static int sec_ctx_base_init(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_dev *sec;
|
|
int i, ret;
|
|
|
|
ctx->qps = sec_create_qps();
|
|
if (!ctx->qps) {
|
|
pr_err("Can not create sec qps!\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
|
|
ctx->sec = sec;
|
|
ctx->dev = &sec->qm.pdev->dev;
|
|
ctx->hlf_q_num = sec->ctx_q_num >> 1;
|
|
|
|
ctx->pbuf_supported = ctx->sec->iommu_used;
|
|
|
|
/* Half of queue depth is taken as fake requests limit in the queue. */
|
|
ctx->fake_req_limit = QM_Q_DEPTH >> 1;
|
|
ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
|
|
GFP_KERNEL);
|
|
if (!ctx->qp_ctx) {
|
|
ret = -ENOMEM;
|
|
goto err_destroy_qps;
|
|
}
|
|
|
|
for (i = 0; i < sec->ctx_q_num; i++) {
|
|
ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
|
|
if (ret)
|
|
goto err_sec_release_qp_ctx;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_sec_release_qp_ctx:
|
|
for (i = i - 1; i >= 0; i--)
|
|
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
|
|
kfree(ctx->qp_ctx);
|
|
err_destroy_qps:
|
|
sec_destroy_qps(ctx->qps, sec->ctx_q_num);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ctx->sec->ctx_q_num; i++)
|
|
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
|
|
|
|
sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
|
|
kfree(ctx->qp_ctx);
|
|
}
|
|
|
|
static int sec_cipher_init(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
|
|
c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
|
|
&c_ctx->c_key_dma, GFP_KERNEL);
|
|
if (!c_ctx->c_key)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_cipher_uninit(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
|
|
memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
|
|
dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
|
|
c_ctx->c_key, c_ctx->c_key_dma);
|
|
}
|
|
|
|
static int sec_auth_init(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
|
|
a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
|
|
&a_ctx->a_key_dma, GFP_KERNEL);
|
|
if (!a_ctx->a_key)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_auth_uninit(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
|
|
memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
|
|
dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
|
|
a_ctx->a_key, a_ctx->a_key_dma);
|
|
}
|
|
|
|
static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
|
|
{
|
|
const char *alg = crypto_tfm_alg_name(&tfm->base);
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
|
|
c_ctx->fallback = false;
|
|
|
|
/* Currently, only XTS mode need fallback tfm when using 192bit key */
|
|
if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
|
|
return 0;
|
|
|
|
c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(c_ctx->fbtfm)) {
|
|
pr_err("failed to alloc xts mode fallback tfm!\n");
|
|
return PTR_ERR(c_ctx->fbtfm);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_skcipher_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
ctx->alg_type = SEC_SKCIPHER;
|
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
|
|
ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
|
|
if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
|
|
pr_err("get error skcipher iv size!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = sec_ctx_base_init(ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = sec_cipher_init(ctx);
|
|
if (ret)
|
|
goto err_cipher_init;
|
|
|
|
ret = sec_skcipher_fbtfm_init(tfm);
|
|
if (ret)
|
|
goto err_fbtfm_init;
|
|
|
|
return 0;
|
|
|
|
err_fbtfm_init:
|
|
sec_cipher_uninit(ctx);
|
|
err_cipher_init:
|
|
sec_ctx_base_uninit(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
if (ctx->c_ctx.fbtfm)
|
|
crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
|
|
|
|
sec_cipher_uninit(ctx);
|
|
sec_ctx_base_uninit(ctx);
|
|
}
|
|
|
|
static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
const u32 keylen,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
int ret;
|
|
|
|
ret = verify_skcipher_des3_key(tfm, key);
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (keylen) {
|
|
case SEC_DES3_2KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
|
|
break;
|
|
case SEC_DES3_3KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
|
|
const u32 keylen,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
if (c_mode == SEC_CMODE_XTS) {
|
|
switch (keylen) {
|
|
case SEC_XTS_MIN_KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_128BIT;
|
|
break;
|
|
case SEC_XTS_MID_KEY_SIZE:
|
|
c_ctx->fallback = true;
|
|
break;
|
|
case SEC_XTS_MAX_KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_256BIT;
|
|
break;
|
|
default:
|
|
pr_err("hisi_sec2: xts mode key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (c_ctx->c_alg == SEC_CALG_SM4 &&
|
|
keylen != AES_KEYSIZE_128) {
|
|
pr_err("hisi_sec2: sm4 key error!\n");
|
|
return -EINVAL;
|
|
} else {
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
c_ctx->c_key_len = SEC_CKEY_128BIT;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
c_ctx->c_key_len = SEC_CKEY_192BIT;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
c_ctx->c_key_len = SEC_CKEY_256BIT;
|
|
break;
|
|
default:
|
|
pr_err("hisi_sec2: aes key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
const u32 keylen, const enum sec_calg c_alg,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
struct device *dev = ctx->dev;
|
|
int ret;
|
|
|
|
if (c_mode == SEC_CMODE_XTS) {
|
|
ret = xts_verify_key(tfm, key, keylen);
|
|
if (ret) {
|
|
dev_err(dev, "xts mode key err!\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
c_ctx->c_alg = c_alg;
|
|
c_ctx->c_mode = c_mode;
|
|
|
|
switch (c_alg) {
|
|
case SEC_CALG_3DES:
|
|
ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
|
|
break;
|
|
case SEC_CALG_AES:
|
|
case SEC_CALG_SM4:
|
|
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ret) {
|
|
dev_err(dev, "set sec key err!\n");
|
|
return ret;
|
|
}
|
|
|
|
memcpy(c_ctx->c_key, key, keylen);
|
|
if (c_ctx->fallback && c_ctx->fbtfm) {
|
|
ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
|
|
if (ret) {
|
|
dev_err(dev, "failed to set fallback skcipher key!\n");
|
|
return ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
|
|
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
|
|
u32 keylen) \
|
|
{ \
|
|
return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
|
|
}
|
|
|
|
GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
|
|
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
|
|
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
|
|
GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
|
|
GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
|
|
GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
|
|
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
|
|
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
|
|
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
|
|
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
|
|
GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
|
|
GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
|
|
GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
|
|
|
|
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
|
|
struct scatterlist *src)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct aead_request *aead_req = a_req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
struct device *dev = ctx->dev;
|
|
int copy_size, pbuf_length;
|
|
int req_id = req->req_id;
|
|
struct crypto_aead *tfm;
|
|
size_t authsize;
|
|
u8 *mac_offset;
|
|
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
copy_size = aead_req->cryptlen + aead_req->assoclen;
|
|
else
|
|
copy_size = c_req->c_len;
|
|
|
|
pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
|
|
qp_ctx->res[req_id].pbuf, copy_size);
|
|
if (unlikely(pbuf_length != copy_size)) {
|
|
dev_err(dev, "copy src data to pbuf error!\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
|
|
tfm = crypto_aead_reqtfm(aead_req);
|
|
authsize = crypto_aead_authsize(tfm);
|
|
mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
|
|
memcpy(a_req->out_mac, mac_offset, authsize);
|
|
}
|
|
|
|
req->in_dma = qp_ctx->res[req_id].pbuf_dma;
|
|
c_req->c_out_dma = req->in_dma;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
|
|
struct scatterlist *dst)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
int copy_size, pbuf_length;
|
|
int req_id = req->req_id;
|
|
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
copy_size = c_req->c_len + aead_req->assoclen;
|
|
else
|
|
copy_size = c_req->c_len;
|
|
|
|
pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
|
|
qp_ctx->res[req_id].pbuf, copy_size);
|
|
if (unlikely(pbuf_length != copy_size))
|
|
dev_err(ctx->dev, "copy pbuf data to dst error!\n");
|
|
}
|
|
|
|
static int sec_aead_mac_init(struct sec_aead_req *req)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
u8 *mac_out = req->out_mac;
|
|
struct scatterlist *sgl = aead_req->src;
|
|
size_t copy_size;
|
|
off_t skip_size;
|
|
|
|
/* Copy input mac */
|
|
skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
|
|
copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
|
|
authsize, skip_size);
|
|
if (unlikely(copy_size != authsize))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
|
|
struct scatterlist *src, struct scatterlist *dst)
|
|
{
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
struct sec_alg_res *res = &qp_ctx->res[req->req_id];
|
|
struct device *dev = ctx->dev;
|
|
int ret;
|
|
|
|
if (req->use_pbuf) {
|
|
c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
|
|
c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
|
|
if (ctx->alg_type == SEC_AEAD) {
|
|
a_req->a_ivin = res->a_ivin;
|
|
a_req->a_ivin_dma = res->a_ivin_dma;
|
|
a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
|
|
a_req->out_mac_dma = res->pbuf_dma +
|
|
SEC_PBUF_MAC_OFFSET;
|
|
}
|
|
ret = sec_cipher_pbuf_map(ctx, req, src);
|
|
|
|
return ret;
|
|
}
|
|
c_req->c_ivin = res->c_ivin;
|
|
c_req->c_ivin_dma = res->c_ivin_dma;
|
|
if (ctx->alg_type == SEC_AEAD) {
|
|
a_req->a_ivin = res->a_ivin;
|
|
a_req->a_ivin_dma = res->a_ivin_dma;
|
|
a_req->out_mac = res->out_mac;
|
|
a_req->out_mac_dma = res->out_mac_dma;
|
|
}
|
|
|
|
req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
|
|
qp_ctx->c_in_pool,
|
|
req->req_id,
|
|
&req->in_dma);
|
|
if (IS_ERR(req->in)) {
|
|
dev_err(dev, "fail to dma map input sgl buffers!\n");
|
|
return PTR_ERR(req->in);
|
|
}
|
|
|
|
if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
|
|
ret = sec_aead_mac_init(a_req);
|
|
if (unlikely(ret)) {
|
|
dev_err(dev, "fail to init mac data for ICV!\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (dst == src) {
|
|
c_req->c_out = req->in;
|
|
c_req->c_out_dma = req->in_dma;
|
|
} else {
|
|
c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
|
|
qp_ctx->c_out_pool,
|
|
req->req_id,
|
|
&c_req->c_out_dma);
|
|
|
|
if (IS_ERR(c_req->c_out)) {
|
|
dev_err(dev, "fail to dma map output sgl buffers!\n");
|
|
hisi_acc_sg_buf_unmap(dev, src, req->in);
|
|
return PTR_ERR(c_req->c_out);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
|
|
struct scatterlist *src, struct scatterlist *dst)
|
|
{
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct device *dev = ctx->dev;
|
|
|
|
if (req->use_pbuf) {
|
|
sec_cipher_pbuf_unmap(ctx, req, dst);
|
|
} else {
|
|
if (dst != src)
|
|
hisi_acc_sg_buf_unmap(dev, src, req->in);
|
|
|
|
hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
|
|
}
|
|
}
|
|
|
|
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct skcipher_request *sq = req->c_req.sk_req;
|
|
|
|
return sec_cipher_map(ctx, req, sq->src, sq->dst);
|
|
}
|
|
|
|
static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct skcipher_request *sq = req->c_req.sk_req;
|
|
|
|
sec_cipher_unmap(ctx, req, sq->src, sq->dst);
|
|
}
|
|
|
|
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
|
|
struct crypto_authenc_keys *keys)
|
|
{
|
|
switch (keys->enckeylen) {
|
|
case AES_KEYSIZE_128:
|
|
c_ctx->c_key_len = SEC_CKEY_128BIT;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
c_ctx->c_key_len = SEC_CKEY_192BIT;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
c_ctx->c_key_len = SEC_CKEY_256BIT;
|
|
break;
|
|
default:
|
|
pr_err("hisi_sec2: aead aes key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
|
|
struct crypto_authenc_keys *keys)
|
|
{
|
|
struct crypto_shash *hash_tfm = ctx->hash_tfm;
|
|
int blocksize, digestsize, ret;
|
|
|
|
if (!keys->authkeylen) {
|
|
pr_err("hisi_sec2: aead auth key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
blocksize = crypto_shash_blocksize(hash_tfm);
|
|
digestsize = crypto_shash_digestsize(hash_tfm);
|
|
if (keys->authkeylen > blocksize) {
|
|
ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
|
|
keys->authkeylen, ctx->a_key);
|
|
if (ret) {
|
|
pr_err("hisi_sec2: aead auth digest error!\n");
|
|
return -EINVAL;
|
|
}
|
|
ctx->a_key_len = digestsize;
|
|
} else {
|
|
memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
|
|
ctx->a_key_len = keys->authkeylen;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
|
|
struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
|
|
if (unlikely(a_ctx->fallback_aead_tfm))
|
|
return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
|
|
struct crypto_aead *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
|
|
crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
|
|
crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
|
|
return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
|
|
}
|
|
|
|
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
|
|
const u32 keylen, const enum sec_hash_alg a_alg,
|
|
const enum sec_calg c_alg,
|
|
const enum sec_mac_len mac_len,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
struct device *dev = ctx->dev;
|
|
struct crypto_authenc_keys keys;
|
|
int ret;
|
|
|
|
ctx->a_ctx.a_alg = a_alg;
|
|
ctx->c_ctx.c_alg = c_alg;
|
|
ctx->a_ctx.mac_len = mac_len;
|
|
c_ctx->c_mode = c_mode;
|
|
|
|
if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
|
|
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
|
|
if (ret) {
|
|
dev_err(dev, "set sec aes ccm cipher key err!\n");
|
|
return ret;
|
|
}
|
|
memcpy(c_ctx->c_key, key, keylen);
|
|
|
|
if (unlikely(a_ctx->fallback_aead_tfm)) {
|
|
ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (crypto_authenc_extractkeys(&keys, key, keylen))
|
|
goto bad_key;
|
|
|
|
ret = sec_aead_aes_set_key(c_ctx, &keys);
|
|
if (ret) {
|
|
dev_err(dev, "set sec cipher key err!\n");
|
|
goto bad_key;
|
|
}
|
|
|
|
ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
|
|
if (ret) {
|
|
dev_err(dev, "set sec auth key err!\n");
|
|
goto bad_key;
|
|
}
|
|
|
|
if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) ||
|
|
(ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
|
|
dev_err(dev, "MAC or AUTH key length error!\n");
|
|
goto bad_key;
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad_key:
|
|
memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
|
|
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
|
|
u32 keylen) \
|
|
{ \
|
|
return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
|
|
}
|
|
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
|
|
SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
|
|
SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
|
|
SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
|
|
SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
|
|
SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
|
|
SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
|
|
SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
|
|
|
|
static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct aead_request *aq = req->aead_req.aead_req;
|
|
|
|
return sec_cipher_map(ctx, req, aq->src, aq->dst);
|
|
}
|
|
|
|
static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct aead_request *aq = req->aead_req.aead_req;
|
|
|
|
sec_cipher_unmap(ctx, req, aq->src, aq->dst);
|
|
}
|
|
|
|
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = ctx->req_op->buf_map(ctx, req);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
ctx->req_op->do_transfer(ctx, req);
|
|
|
|
ret = ctx->req_op->bd_fill(ctx, req);
|
|
if (unlikely(ret))
|
|
goto unmap_req_buf;
|
|
|
|
return ret;
|
|
|
|
unmap_req_buf:
|
|
ctx->req_op->buf_unmap(ctx, req);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
ctx->req_op->buf_unmap(ctx, req);
|
|
}
|
|
|
|
static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct skcipher_request *sk_req = req->c_req.sk_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
|
|
memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
|
|
}
|
|
|
|
static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_sqe *sec_sqe = &req->sec_sqe;
|
|
u8 scene, sa_type, da_type;
|
|
u8 bd_type, cipher;
|
|
u8 de = 0;
|
|
|
|
memset(sec_sqe, 0, sizeof(struct sec_sqe));
|
|
|
|
sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
|
|
sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
|
|
sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
|
|
sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
|
|
|
|
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
|
|
SEC_CMODE_OFFSET);
|
|
sec_sqe->type2.c_alg = c_ctx->c_alg;
|
|
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
|
|
SEC_CKEY_OFFSET);
|
|
|
|
bd_type = SEC_BD_TYPE2;
|
|
if (c_req->encrypt)
|
|
cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
|
|
else
|
|
cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
|
|
sec_sqe->type_cipher_auth = bd_type | cipher;
|
|
|
|
/* Set destination and source address type */
|
|
if (req->use_pbuf) {
|
|
sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
|
|
da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
|
|
} else {
|
|
sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
|
|
da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
|
|
}
|
|
|
|
sec_sqe->sdm_addr_type |= da_type;
|
|
scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
|
|
if (req->in_dma != c_req->c_out_dma)
|
|
de = 0x1 << SEC_DE_OFFSET;
|
|
|
|
sec_sqe->sds_sa_type = (de | scene | sa_type);
|
|
|
|
sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
|
|
sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
u32 bd_param = 0;
|
|
u16 cipher;
|
|
|
|
memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
|
|
|
|
sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
|
|
sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
|
|
sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
|
|
sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
|
|
|
|
sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
|
|
c_ctx->c_mode;
|
|
sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
|
|
SEC_CKEY_OFFSET_V3);
|
|
|
|
if (c_req->encrypt)
|
|
cipher = SEC_CIPHER_ENC;
|
|
else
|
|
cipher = SEC_CIPHER_DEC;
|
|
sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
|
|
|
|
/* Set the CTR counter mode is 128bit rollover */
|
|
sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
|
|
SEC_CTR_CNT_OFFSET);
|
|
|
|
if (req->use_pbuf) {
|
|
bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
|
|
bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
|
|
} else {
|
|
bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
|
|
bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
|
|
}
|
|
|
|
bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
|
|
if (req->in_dma != c_req->c_out_dma)
|
|
bd_param |= 0x1 << SEC_DE_OFFSET_V3;
|
|
|
|
bd_param |= SEC_BD_TYPE3;
|
|
sec_sqe3->bd_param = cpu_to_le32(bd_param);
|
|
|
|
sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
|
|
sec_sqe3->tag = cpu_to_le64(req);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* increment counter (128-bit int) */
|
|
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
|
|
{
|
|
do {
|
|
--bits;
|
|
nums += counter[bits];
|
|
counter[bits] = nums & BITS_MASK;
|
|
nums >>= BYTE_BITS;
|
|
} while (bits && nums);
|
|
}
|
|
|
|
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct skcipher_request *sk_req = req->c_req.sk_req;
|
|
u32 iv_size = req->ctx->c_ctx.ivsize;
|
|
struct scatterlist *sgl;
|
|
unsigned int cryptlen;
|
|
size_t sz;
|
|
u8 *iv;
|
|
|
|
if (req->c_req.encrypt)
|
|
sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
|
|
else
|
|
sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
|
|
|
|
if (alg_type == SEC_SKCIPHER) {
|
|
iv = sk_req->iv;
|
|
cryptlen = sk_req->cryptlen;
|
|
} else {
|
|
iv = aead_req->iv;
|
|
cryptlen = aead_req->cryptlen;
|
|
}
|
|
|
|
if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
|
|
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
|
|
cryptlen - iv_size);
|
|
if (unlikely(sz != iv_size))
|
|
dev_err(req->ctx->dev, "copy output iv error!\n");
|
|
} else {
|
|
sz = cryptlen / iv_size;
|
|
if (cryptlen % iv_size)
|
|
sz += 1;
|
|
ctr_iv_inc(iv, iv_size, sz);
|
|
}
|
|
}
|
|
|
|
static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
|
|
struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct sec_req *backlog_req = NULL;
|
|
|
|
mutex_lock(&qp_ctx->req_lock);
|
|
if (ctx->fake_req_limit >=
|
|
atomic_read(&qp_ctx->qp->qp_status.used) &&
|
|
!list_empty(&qp_ctx->backlog)) {
|
|
backlog_req = list_first_entry(&qp_ctx->backlog,
|
|
typeof(*backlog_req), backlog_head);
|
|
list_del(&backlog_req->backlog_head);
|
|
}
|
|
mutex_unlock(&qp_ctx->req_lock);
|
|
|
|
return backlog_req;
|
|
}
|
|
|
|
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
|
|
int err)
|
|
{
|
|
struct skcipher_request *sk_req = req->c_req.sk_req;
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
struct skcipher_request *backlog_sk_req;
|
|
struct sec_req *backlog_req;
|
|
|
|
sec_free_req_id(req);
|
|
|
|
/* IV output at encrypto of CBC/CTR mode */
|
|
if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
|
|
ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
|
|
sec_update_iv(req, SEC_SKCIPHER);
|
|
|
|
while (1) {
|
|
backlog_req = sec_back_req_clear(ctx, qp_ctx);
|
|
if (!backlog_req)
|
|
break;
|
|
|
|
backlog_sk_req = backlog_req->c_req.sk_req;
|
|
backlog_sk_req->base.complete(&backlog_sk_req->base,
|
|
-EINPROGRESS);
|
|
atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
|
|
}
|
|
|
|
sk_req->base.complete(&sk_req->base, err);
|
|
}
|
|
|
|
static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
size_t authsize = ctx->a_ctx.mac_len;
|
|
u32 data_size = aead_req->cryptlen;
|
|
u8 flage = 0;
|
|
u8 cm, cl;
|
|
|
|
/* the specification has been checked in aead_iv_demension_check() */
|
|
cl = c_req->c_ivin[0] + 1;
|
|
c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
|
|
memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
|
|
c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
|
|
|
|
/* the last 3bit is L' */
|
|
flage |= c_req->c_ivin[0] & IV_CL_MASK;
|
|
|
|
/* the M' is bit3~bit5, the Flags is bit6 */
|
|
cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
|
|
flage |= cm << IV_CM_OFFSET;
|
|
if (aead_req->assoclen)
|
|
flage |= 0x01 << IV_FLAGS_OFFSET;
|
|
|
|
memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
|
|
a_req->a_ivin[0] = flage;
|
|
|
|
/*
|
|
* the last 32bit is counter's initial number,
|
|
* but the nonce uses the first 16bit
|
|
* the tail 16bit fill with the cipher length
|
|
*/
|
|
if (!c_req->encrypt)
|
|
data_size = aead_req->cryptlen - authsize;
|
|
|
|
a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
|
|
data_size & IV_LAST_BYTE_MASK;
|
|
data_size >>= IV_BYTE_OFFSET;
|
|
a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
|
|
data_size & IV_LAST_BYTE_MASK;
|
|
}
|
|
|
|
static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
|
|
memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
|
|
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
|
|
/*
|
|
* CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
|
|
* the counter must set to 0x01
|
|
*/
|
|
ctx->a_ctx.mac_len = authsize;
|
|
/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
|
|
set_aead_auth_iv(ctx, req);
|
|
}
|
|
|
|
/* GCM 12Byte Cipher_IV == Auth_IV */
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
|
|
ctx->a_ctx.mac_len = authsize;
|
|
memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
|
|
}
|
|
}
|
|
|
|
static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
|
|
struct sec_req *req, struct sec_sqe *sec_sqe)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct aead_request *aq = a_req->aead_req;
|
|
|
|
/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
|
|
sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
|
|
|
|
/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
|
|
sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
|
|
sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
|
|
sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
|
|
|
|
if (dir)
|
|
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
|
|
else
|
|
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
|
|
|
|
sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
|
|
sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
|
|
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
|
|
|
|
sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
|
|
}
|
|
|
|
static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
|
|
struct sec_req *req, struct sec_sqe3 *sqe3)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct aead_request *aq = a_req->aead_req;
|
|
|
|
/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
|
|
sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
|
|
|
|
/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
|
|
sqe3->a_key_addr = sqe3->c_key_addr;
|
|
sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
|
|
sqe3->auth_mac_key |= SEC_NO_AUTH;
|
|
|
|
if (dir)
|
|
sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
|
|
else
|
|
sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
|
|
|
|
sqe3->a_len_key = cpu_to_le32(aq->assoclen);
|
|
sqe3->auth_src_offset = cpu_to_le16(0x0);
|
|
sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
|
|
sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
|
|
}
|
|
|
|
static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
|
|
struct sec_req *req, struct sec_sqe *sec_sqe)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct aead_request *aq = a_req->aead_req;
|
|
|
|
sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
|
|
|
|
sec_sqe->type2.mac_key_alg =
|
|
cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
|
|
|
|
sec_sqe->type2.mac_key_alg |=
|
|
cpu_to_le32((u32)((ctx->a_key_len) /
|
|
SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
|
|
|
|
sec_sqe->type2.mac_key_alg |=
|
|
cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
|
|
|
|
if (dir) {
|
|
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
|
|
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
|
|
} else {
|
|
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
|
|
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
|
|
}
|
|
sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
|
|
|
|
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
|
|
|
|
sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
|
|
}
|
|
|
|
static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
|
|
struct sec_sqe *sec_sqe = &req->sec_sqe;
|
|
int ret;
|
|
|
|
ret = sec_skcipher_bd_fill(ctx, req);
|
|
if (unlikely(ret)) {
|
|
dev_err(ctx->dev, "skcipher bd fill is error!\n");
|
|
return ret;
|
|
}
|
|
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
|
|
ctx->c_ctx.c_mode == SEC_CMODE_GCM)
|
|
sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
|
|
else
|
|
sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
|
|
struct sec_req *req, struct sec_sqe3 *sqe3)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct aead_request *aq = a_req->aead_req;
|
|
|
|
sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
|
|
|
|
sqe3->auth_mac_key |=
|
|
cpu_to_le32((u32)(ctx->mac_len /
|
|
SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
|
|
|
|
sqe3->auth_mac_key |=
|
|
cpu_to_le32((u32)(ctx->a_key_len /
|
|
SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
|
|
|
|
sqe3->auth_mac_key |=
|
|
cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
|
|
|
|
if (dir) {
|
|
sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
|
|
sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
|
|
} else {
|
|
sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
|
|
sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
|
|
}
|
|
sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
|
|
|
|
sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
|
|
|
|
sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
|
|
}
|
|
|
|
static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
|
|
struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
|
|
int ret;
|
|
|
|
ret = sec_skcipher_bd_fill_v3(ctx, req);
|
|
if (unlikely(ret)) {
|
|
dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
|
|
return ret;
|
|
}
|
|
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
|
|
ctx->c_ctx.c_mode == SEC_CMODE_GCM)
|
|
sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
|
|
req, sec_sqe3);
|
|
else
|
|
sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
|
|
req, sec_sqe3);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
|
|
{
|
|
struct aead_request *a_req = req->aead_req.aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
|
|
struct sec_aead_req *aead_req = &req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
struct aead_request *backlog_aead_req;
|
|
struct sec_req *backlog_req;
|
|
size_t sz;
|
|
|
|
if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
|
|
sec_update_iv(req, SEC_AEAD);
|
|
|
|
/* Copy output mac */
|
|
if (!err && c_req->encrypt) {
|
|
struct scatterlist *sgl = a_req->dst;
|
|
|
|
sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
|
|
aead_req->out_mac,
|
|
authsize, a_req->cryptlen +
|
|
a_req->assoclen);
|
|
|
|
if (unlikely(sz != authsize)) {
|
|
dev_err(c->dev, "copy out mac err!\n");
|
|
err = -EINVAL;
|
|
}
|
|
}
|
|
|
|
sec_free_req_id(req);
|
|
|
|
while (1) {
|
|
backlog_req = sec_back_req_clear(c, qp_ctx);
|
|
if (!backlog_req)
|
|
break;
|
|
|
|
backlog_aead_req = backlog_req->aead_req.aead_req;
|
|
backlog_aead_req->base.complete(&backlog_aead_req->base,
|
|
-EINPROGRESS);
|
|
atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
|
|
}
|
|
|
|
a_req->base.complete(&a_req->base, err);
|
|
}
|
|
|
|
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
sec_free_req_id(req);
|
|
sec_free_queue_id(ctx, req);
|
|
}
|
|
|
|
static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx;
|
|
int queue_id;
|
|
|
|
/* To load balance */
|
|
queue_id = sec_alloc_queue_id(ctx, req);
|
|
qp_ctx = &ctx->qp_ctx[queue_id];
|
|
|
|
req->req_id = sec_alloc_req_id(req, qp_ctx);
|
|
if (unlikely(req->req_id < 0)) {
|
|
sec_free_queue_id(ctx, req);
|
|
return req->req_id;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
int ret;
|
|
|
|
ret = sec_request_init(ctx, req);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
ret = sec_request_transfer(ctx, req);
|
|
if (unlikely(ret))
|
|
goto err_uninit_req;
|
|
|
|
/* Output IV as decrypto */
|
|
if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
|
|
ctx->c_ctx.c_mode == SEC_CMODE_CTR))
|
|
sec_update_iv(req, ctx->alg_type);
|
|
|
|
ret = ctx->req_op->bd_send(ctx, req);
|
|
if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
|
|
(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
|
|
dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
|
|
goto err_send_req;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err_send_req:
|
|
/* As failing, restore the IV from user */
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
|
|
if (ctx->alg_type == SEC_SKCIPHER)
|
|
memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
|
|
ctx->c_ctx.ivsize);
|
|
else
|
|
memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
|
|
ctx->c_ctx.ivsize);
|
|
}
|
|
|
|
sec_request_untransfer(ctx, req);
|
|
err_uninit_req:
|
|
sec_request_uninit(ctx, req);
|
|
return ret;
|
|
}
|
|
|
|
static const struct sec_req_op sec_skcipher_req_ops = {
|
|
.buf_map = sec_skcipher_sgl_map,
|
|
.buf_unmap = sec_skcipher_sgl_unmap,
|
|
.do_transfer = sec_skcipher_copy_iv,
|
|
.bd_fill = sec_skcipher_bd_fill,
|
|
.bd_send = sec_bd_send,
|
|
.callback = sec_skcipher_callback,
|
|
.process = sec_process,
|
|
};
|
|
|
|
static const struct sec_req_op sec_aead_req_ops = {
|
|
.buf_map = sec_aead_sgl_map,
|
|
.buf_unmap = sec_aead_sgl_unmap,
|
|
.do_transfer = sec_aead_set_iv,
|
|
.bd_fill = sec_aead_bd_fill,
|
|
.bd_send = sec_bd_send,
|
|
.callback = sec_aead_callback,
|
|
.process = sec_process,
|
|
};
|
|
|
|
static const struct sec_req_op sec_skcipher_req_ops_v3 = {
|
|
.buf_map = sec_skcipher_sgl_map,
|
|
.buf_unmap = sec_skcipher_sgl_unmap,
|
|
.do_transfer = sec_skcipher_copy_iv,
|
|
.bd_fill = sec_skcipher_bd_fill_v3,
|
|
.bd_send = sec_bd_send,
|
|
.callback = sec_skcipher_callback,
|
|
.process = sec_process,
|
|
};
|
|
|
|
static const struct sec_req_op sec_aead_req_ops_v3 = {
|
|
.buf_map = sec_aead_sgl_map,
|
|
.buf_unmap = sec_aead_sgl_unmap,
|
|
.do_transfer = sec_aead_set_iv,
|
|
.bd_fill = sec_aead_bd_fill_v3,
|
|
.bd_send = sec_bd_send,
|
|
.callback = sec_aead_callback,
|
|
.process = sec_process,
|
|
};
|
|
|
|
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
ret = sec_skcipher_init(tfm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ctx->sec->qm.ver < QM_HW_V3) {
|
|
ctx->type_supported = SEC_BD_TYPE2;
|
|
ctx->req_op = &sec_skcipher_req_ops;
|
|
} else {
|
|
ctx->type_supported = SEC_BD_TYPE3;
|
|
ctx->req_op = &sec_skcipher_req_ops_v3;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
sec_skcipher_uninit(tfm);
|
|
}
|
|
|
|
static int sec_aead_init(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
int ret;
|
|
|
|
crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
|
|
ctx->alg_type = SEC_AEAD;
|
|
ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
|
|
if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
|
|
ctx->c_ctx.ivsize > SEC_IV_SIZE) {
|
|
pr_err("get error aead iv size!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = sec_ctx_base_init(ctx);
|
|
if (ret)
|
|
return ret;
|
|
if (ctx->sec->qm.ver < QM_HW_V3) {
|
|
ctx->type_supported = SEC_BD_TYPE2;
|
|
ctx->req_op = &sec_aead_req_ops;
|
|
} else {
|
|
ctx->type_supported = SEC_BD_TYPE3;
|
|
ctx->req_op = &sec_aead_req_ops_v3;
|
|
}
|
|
|
|
ret = sec_auth_init(ctx);
|
|
if (ret)
|
|
goto err_auth_init;
|
|
|
|
ret = sec_cipher_init(ctx);
|
|
if (ret)
|
|
goto err_cipher_init;
|
|
|
|
return ret;
|
|
|
|
err_cipher_init:
|
|
sec_auth_uninit(ctx);
|
|
err_auth_init:
|
|
sec_ctx_base_uninit(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_aead_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
sec_cipher_uninit(ctx);
|
|
sec_auth_uninit(ctx);
|
|
sec_ctx_base_uninit(ctx);
|
|
}
|
|
|
|
static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
|
|
int ret;
|
|
|
|
ret = sec_aead_init(tfm);
|
|
if (ret) {
|
|
pr_err("hisi_sec2: aead init error!\n");
|
|
return ret;
|
|
}
|
|
|
|
auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
|
|
if (IS_ERR(auth_ctx->hash_tfm)) {
|
|
dev_err(ctx->dev, "aead alloc shash error!\n");
|
|
sec_aead_exit(tfm);
|
|
return PTR_ERR(auth_ctx->hash_tfm);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_aead_ctx_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
crypto_free_shash(ctx->a_ctx.hash_tfm);
|
|
sec_aead_exit(tfm);
|
|
}
|
|
|
|
static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
struct aead_alg *alg = crypto_aead_alg(tfm);
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
const char *aead_name = alg->base.cra_name;
|
|
int ret;
|
|
|
|
ret = sec_aead_init(tfm);
|
|
if (ret) {
|
|
dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
|
|
return ret;
|
|
}
|
|
|
|
a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK |
|
|
CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(a_ctx->fallback_aead_tfm)) {
|
|
dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
|
|
sec_aead_exit(tfm);
|
|
return PTR_ERR(a_ctx->fallback_aead_tfm);
|
|
}
|
|
a_ctx->fallback = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
|
|
sec_aead_exit(tfm);
|
|
}
|
|
|
|
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
return sec_aead_ctx_init(tfm, "sha1");
|
|
}
|
|
|
|
static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
return sec_aead_ctx_init(tfm, "sha256");
|
|
}
|
|
|
|
static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
return sec_aead_ctx_init(tfm, "sha512");
|
|
}
|
|
|
|
|
|
static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx,
|
|
struct sec_req *sreq)
|
|
{
|
|
u32 cryptlen = sreq->c_req.sk_req->cryptlen;
|
|
struct device *dev = ctx->dev;
|
|
u8 c_mode = ctx->c_ctx.c_mode;
|
|
int ret = 0;
|
|
|
|
switch (c_mode) {
|
|
case SEC_CMODE_XTS:
|
|
if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
|
|
dev_err(dev, "skcipher XTS mode input length error!\n");
|
|
ret = -EINVAL;
|
|
}
|
|
break;
|
|
case SEC_CMODE_ECB:
|
|
case SEC_CMODE_CBC:
|
|
if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
|
|
dev_err(dev, "skcipher AES input length error!\n");
|
|
ret = -EINVAL;
|
|
}
|
|
break;
|
|
case SEC_CMODE_CFB:
|
|
case SEC_CMODE_OFB:
|
|
case SEC_CMODE_CTR:
|
|
if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
|
|
dev_err(dev, "skcipher HW version error!\n");
|
|
ret = -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
|
|
{
|
|
struct skcipher_request *sk_req = sreq->c_req.sk_req;
|
|
struct device *dev = ctx->dev;
|
|
u8 c_alg = ctx->c_ctx.c_alg;
|
|
|
|
if (unlikely(!sk_req->src || !sk_req->dst ||
|
|
sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
|
|
dev_err(dev, "skcipher input param error!\n");
|
|
return -EINVAL;
|
|
}
|
|
sreq->c_req.c_len = sk_req->cryptlen;
|
|
|
|
if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
|
|
sreq->use_pbuf = true;
|
|
else
|
|
sreq->use_pbuf = false;
|
|
|
|
if (c_alg == SEC_CALG_3DES) {
|
|
if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
|
|
dev_err(dev, "skcipher 3des input length error!\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
|
|
return sec_skcipher_cryptlen_ckeck(ctx, sreq);
|
|
}
|
|
|
|
dev_err(dev, "skcipher algorithm error!\n");
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
|
|
struct skcipher_request *sreq, bool encrypt)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
|
|
struct device *dev = ctx->dev;
|
|
int ret;
|
|
|
|
if (!c_ctx->fbtfm) {
|
|
dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
|
|
|
|
/* software need sync mode to do crypto */
|
|
skcipher_request_set_callback(subreq, sreq->base.flags,
|
|
NULL, NULL);
|
|
skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
|
|
sreq->cryptlen, sreq->iv);
|
|
if (encrypt)
|
|
ret = crypto_skcipher_encrypt(subreq);
|
|
else
|
|
ret = crypto_skcipher_decrypt(subreq);
|
|
|
|
skcipher_request_zero(subreq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
|
|
struct sec_req *req = skcipher_request_ctx(sk_req);
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
if (!sk_req->cryptlen) {
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
req->flag = sk_req->base.flags;
|
|
req->c_req.sk_req = sk_req;
|
|
req->c_req.encrypt = encrypt;
|
|
req->ctx = ctx;
|
|
|
|
ret = sec_skcipher_param_check(ctx, req);
|
|
if (unlikely(ret))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(ctx->c_ctx.fallback))
|
|
return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
|
|
|
|
return ctx->req_op->process(ctx, req);
|
|
}
|
|
|
|
static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
|
|
{
|
|
return sec_skcipher_crypto(sk_req, true);
|
|
}
|
|
|
|
static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
|
|
{
|
|
return sec_skcipher_crypto(sk_req, false);
|
|
}
|
|
|
|
#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
|
|
sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
|
|
{\
|
|
.base = {\
|
|
.cra_name = sec_cra_name,\
|
|
.cra_driver_name = "hisi_sec_"sec_cra_name,\
|
|
.cra_priority = SEC_PRIORITY,\
|
|
.cra_flags = CRYPTO_ALG_ASYNC |\
|
|
CRYPTO_ALG_ALLOCATES_MEMORY |\
|
|
CRYPTO_ALG_NEED_FALLBACK,\
|
|
.cra_blocksize = blk_size,\
|
|
.cra_ctxsize = sizeof(struct sec_ctx),\
|
|
.cra_module = THIS_MODULE,\
|
|
},\
|
|
.init = ctx_init,\
|
|
.exit = ctx_exit,\
|
|
.setkey = sec_set_key,\
|
|
.decrypt = sec_skcipher_decrypt,\
|
|
.encrypt = sec_skcipher_encrypt,\
|
|
.min_keysize = sec_min_key_size,\
|
|
.max_keysize = sec_max_key_size,\
|
|
.ivsize = iv_size,\
|
|
},
|
|
|
|
#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
|
|
max_key_size, blk_size, iv_size) \
|
|
SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
|
|
sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
|
|
|
|
static struct skcipher_alg sec_skciphers[] = {
|
|
SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
|
|
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
|
|
AES_BLOCK_SIZE, 0)
|
|
|
|
SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
|
|
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
|
|
SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
|
|
SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
|
|
DES3_EDE_BLOCK_SIZE, 0)
|
|
|
|
SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
|
|
SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
|
|
DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
|
|
SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
|
|
AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
|
|
};
|
|
|
|
static struct skcipher_alg sec_skciphers_v3[] = {
|
|
SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb,
|
|
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
|
|
SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb,
|
|
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
|
|
SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,
|
|
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
|
|
SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb,
|
|
AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
|
|
SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb,
|
|
AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
|
|
SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
|
|
|
|
SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr,
|
|
AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
|
|
SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
|
|
};
|
|
|
|
static int aead_iv_demension_check(struct aead_request *aead_req)
|
|
{
|
|
u8 cl;
|
|
|
|
cl = aead_req->iv[0] + 1;
|
|
if (cl < IV_CL_MIN || cl > IV_CL_MAX)
|
|
return -EINVAL;
|
|
|
|
if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
|
|
return -EOVERFLOW;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
|
|
{
|
|
struct aead_request *req = sreq->aead_req.aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
u8 c_mode = ctx->c_ctx.c_mode;
|
|
struct device *dev = ctx->dev;
|
|
int ret;
|
|
|
|
if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
|
|
req->assoclen > SEC_MAX_AAD_LEN)) {
|
|
dev_err(dev, "aead input spec error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
|
|
(c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
|
|
authsize & MAC_LEN_MASK)))) {
|
|
dev_err(dev, "aead input mac length error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (c_mode == SEC_CMODE_CCM) {
|
|
if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
|
|
dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
|
|
return -EINVAL;
|
|
}
|
|
ret = aead_iv_demension_check(req);
|
|
if (ret) {
|
|
dev_err(dev, "aead input iv param error!\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (sreq->c_req.encrypt)
|
|
sreq->c_req.c_len = req->cryptlen;
|
|
else
|
|
sreq->c_req.c_len = req->cryptlen - authsize;
|
|
if (c_mode == SEC_CMODE_CBC) {
|
|
if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
|
|
dev_err(dev, "aead crypto length error!\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
|
|
{
|
|
struct aead_request *req = sreq->aead_req.aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
struct device *dev = ctx->dev;
|
|
u8 c_alg = ctx->c_ctx.c_alg;
|
|
|
|
if (unlikely(!req->src || !req->dst)) {
|
|
dev_err(dev, "aead input param error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ctx->sec->qm.ver == QM_HW_V2) {
|
|
if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
|
|
req->cryptlen <= authsize))) {
|
|
ctx->a_ctx.fallback = true;
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Support AES or SM4 */
|
|
if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
|
|
dev_err(dev, "aead crypto alg error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (unlikely(sec_aead_spec_check(ctx, sreq)))
|
|
return -EINVAL;
|
|
|
|
if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
|
|
SEC_PBUF_SZ)
|
|
sreq->use_pbuf = true;
|
|
else
|
|
sreq->use_pbuf = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_soft_crypto(struct sec_ctx *ctx,
|
|
struct aead_request *aead_req,
|
|
bool encrypt)
|
|
{
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
struct device *dev = ctx->dev;
|
|
struct aead_request *subreq;
|
|
int ret;
|
|
|
|
/* Kunpeng920 aead mode not support input 0 size */
|
|
if (!a_ctx->fallback_aead_tfm) {
|
|
dev_err(dev, "aead fallback tfm is NULL!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
|
|
if (!subreq)
|
|
return -ENOMEM;
|
|
|
|
aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
|
|
aead_request_set_callback(subreq, aead_req->base.flags,
|
|
aead_req->base.complete, aead_req->base.data);
|
|
aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
|
|
aead_req->cryptlen, aead_req->iv);
|
|
aead_request_set_ad(subreq, aead_req->assoclen);
|
|
|
|
if (encrypt)
|
|
ret = crypto_aead_encrypt(subreq);
|
|
else
|
|
ret = crypto_aead_decrypt(subreq);
|
|
aead_request_free(subreq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
|
|
struct sec_req *req = aead_request_ctx(a_req);
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
int ret;
|
|
|
|
req->flag = a_req->base.flags;
|
|
req->aead_req.aead_req = a_req;
|
|
req->c_req.encrypt = encrypt;
|
|
req->ctx = ctx;
|
|
|
|
ret = sec_aead_param_check(ctx, req);
|
|
if (unlikely(ret)) {
|
|
if (ctx->a_ctx.fallback)
|
|
return sec_aead_soft_crypto(ctx, a_req, encrypt);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ctx->req_op->process(ctx, req);
|
|
}
|
|
|
|
static int sec_aead_encrypt(struct aead_request *a_req)
|
|
{
|
|
return sec_aead_crypto(a_req, true);
|
|
}
|
|
|
|
static int sec_aead_decrypt(struct aead_request *a_req)
|
|
{
|
|
return sec_aead_crypto(a_req, false);
|
|
}
|
|
|
|
#define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
|
|
ctx_exit, blk_size, iv_size, max_authsize)\
|
|
{\
|
|
.base = {\
|
|
.cra_name = sec_cra_name,\
|
|
.cra_driver_name = "hisi_sec_"sec_cra_name,\
|
|
.cra_priority = SEC_PRIORITY,\
|
|
.cra_flags = CRYPTO_ALG_ASYNC |\
|
|
CRYPTO_ALG_ALLOCATES_MEMORY |\
|
|
CRYPTO_ALG_NEED_FALLBACK,\
|
|
.cra_blocksize = blk_size,\
|
|
.cra_ctxsize = sizeof(struct sec_ctx),\
|
|
.cra_module = THIS_MODULE,\
|
|
},\
|
|
.init = ctx_init,\
|
|
.exit = ctx_exit,\
|
|
.setkey = sec_set_key,\
|
|
.setauthsize = sec_aead_setauthsize,\
|
|
.decrypt = sec_aead_decrypt,\
|
|
.encrypt = sec_aead_encrypt,\
|
|
.ivsize = iv_size,\
|
|
.maxauthsize = max_authsize,\
|
|
}
|
|
|
|
static struct aead_alg sec_aeads[] = {
|
|
SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
|
|
sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
|
|
sec_aead_ctx_exit, AES_BLOCK_SIZE,
|
|
AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
|
|
|
|
SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
|
|
sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
|
|
sec_aead_ctx_exit, AES_BLOCK_SIZE,
|
|
AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
|
|
|
|
SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
|
|
sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
|
|
sec_aead_ctx_exit, AES_BLOCK_SIZE,
|
|
AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
|
|
|
|
SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
|
|
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE),
|
|
|
|
SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
|
|
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
|
|
SEC_AIV_SIZE, AES_BLOCK_SIZE)
|
|
};
|
|
|
|
static struct aead_alg sec_aeads_v3[] = {
|
|
SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
|
|
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
|
|
AES_BLOCK_SIZE, AES_BLOCK_SIZE),
|
|
|
|
SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
|
|
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
|
|
SEC_AIV_SIZE, AES_BLOCK_SIZE)
|
|
};
|
|
|
|
int sec_register_to_crypto(struct hisi_qm *qm)
|
|
{
|
|
int ret;
|
|
|
|
/* To avoid repeat register */
|
|
ret = crypto_register_skciphers(sec_skciphers,
|
|
ARRAY_SIZE(sec_skciphers));
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (qm->ver > QM_HW_V2) {
|
|
ret = crypto_register_skciphers(sec_skciphers_v3,
|
|
ARRAY_SIZE(sec_skciphers_v3));
|
|
if (ret)
|
|
goto reg_skcipher_fail;
|
|
}
|
|
|
|
ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
|
|
if (ret)
|
|
goto reg_aead_fail;
|
|
if (qm->ver > QM_HW_V2) {
|
|
ret = crypto_register_aeads(sec_aeads_v3, ARRAY_SIZE(sec_aeads_v3));
|
|
if (ret)
|
|
goto reg_aead_v3_fail;
|
|
}
|
|
return ret;
|
|
|
|
reg_aead_v3_fail:
|
|
crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
|
|
reg_aead_fail:
|
|
if (qm->ver > QM_HW_V2)
|
|
crypto_unregister_skciphers(sec_skciphers_v3,
|
|
ARRAY_SIZE(sec_skciphers_v3));
|
|
reg_skcipher_fail:
|
|
crypto_unregister_skciphers(sec_skciphers,
|
|
ARRAY_SIZE(sec_skciphers));
|
|
return ret;
|
|
}
|
|
|
|
void sec_unregister_from_crypto(struct hisi_qm *qm)
|
|
{
|
|
if (qm->ver > QM_HW_V2)
|
|
crypto_unregister_aeads(sec_aeads_v3,
|
|
ARRAY_SIZE(sec_aeads_v3));
|
|
crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
|
|
|
|
if (qm->ver > QM_HW_V2)
|
|
crypto_unregister_skciphers(sec_skciphers_v3,
|
|
ARRAY_SIZE(sec_skciphers_v3));
|
|
crypto_unregister_skciphers(sec_skciphers,
|
|
ARRAY_SIZE(sec_skciphers));
|
|
}
|