OpenCloudOS-Kernel/drivers/infiniband/core/verbs.c

1577 lines
39 KiB
C

/*
* Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2004 Infinicon Corporation. All rights reserved.
* Copyright (c) 2004 Intel Corporation. All rights reserved.
* Copyright (c) 2004 Topspin Corporation. All rights reserved.
* Copyright (c) 2004 Voltaire Corporation. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <net/addrconf.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_addr.h>
#include "core_priv.h"
static const char * const ib_events[] = {
[IB_EVENT_CQ_ERR] = "CQ error",
[IB_EVENT_QP_FATAL] = "QP fatal error",
[IB_EVENT_QP_REQ_ERR] = "QP request error",
[IB_EVENT_QP_ACCESS_ERR] = "QP access error",
[IB_EVENT_COMM_EST] = "communication established",
[IB_EVENT_SQ_DRAINED] = "send queue drained",
[IB_EVENT_PATH_MIG] = "path migration successful",
[IB_EVENT_PATH_MIG_ERR] = "path migration error",
[IB_EVENT_DEVICE_FATAL] = "device fatal error",
[IB_EVENT_PORT_ACTIVE] = "port active",
[IB_EVENT_PORT_ERR] = "port error",
[IB_EVENT_LID_CHANGE] = "LID change",
[IB_EVENT_PKEY_CHANGE] = "P_key change",
[IB_EVENT_SM_CHANGE] = "SM change",
[IB_EVENT_SRQ_ERR] = "SRQ error",
[IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
[IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
[IB_EVENT_CLIENT_REREGISTER] = "client reregister",
[IB_EVENT_GID_CHANGE] = "GID changed",
};
const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
{
size_t index = event;
return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
ib_events[index] : "unrecognized event";
}
EXPORT_SYMBOL(ib_event_msg);
static const char * const wc_statuses[] = {
[IB_WC_SUCCESS] = "success",
[IB_WC_LOC_LEN_ERR] = "local length error",
[IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
[IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
[IB_WC_LOC_PROT_ERR] = "local protection error",
[IB_WC_WR_FLUSH_ERR] = "WR flushed",
[IB_WC_MW_BIND_ERR] = "memory management operation error",
[IB_WC_BAD_RESP_ERR] = "bad response error",
[IB_WC_LOC_ACCESS_ERR] = "local access error",
[IB_WC_REM_INV_REQ_ERR] = "invalid request error",
[IB_WC_REM_ACCESS_ERR] = "remote access error",
[IB_WC_REM_OP_ERR] = "remote operation error",
[IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
[IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
[IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
[IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
[IB_WC_REM_ABORT_ERR] = "operation aborted",
[IB_WC_INV_EECN_ERR] = "invalid EE context number",
[IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
[IB_WC_FATAL_ERR] = "fatal error",
[IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
[IB_WC_GENERAL_ERR] = "general error",
};
const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
{
size_t index = status;
return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
wc_statuses[index] : "unrecognized status";
}
EXPORT_SYMBOL(ib_wc_status_msg);
__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
{
switch (rate) {
case IB_RATE_2_5_GBPS: return 1;
case IB_RATE_5_GBPS: return 2;
case IB_RATE_10_GBPS: return 4;
case IB_RATE_20_GBPS: return 8;
case IB_RATE_30_GBPS: return 12;
case IB_RATE_40_GBPS: return 16;
case IB_RATE_60_GBPS: return 24;
case IB_RATE_80_GBPS: return 32;
case IB_RATE_120_GBPS: return 48;
default: return -1;
}
}
EXPORT_SYMBOL(ib_rate_to_mult);
__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
{
switch (mult) {
case 1: return IB_RATE_2_5_GBPS;
case 2: return IB_RATE_5_GBPS;
case 4: return IB_RATE_10_GBPS;
case 8: return IB_RATE_20_GBPS;
case 12: return IB_RATE_30_GBPS;
case 16: return IB_RATE_40_GBPS;
case 24: return IB_RATE_60_GBPS;
case 32: return IB_RATE_80_GBPS;
case 48: return IB_RATE_120_GBPS;
default: return IB_RATE_PORT_CURRENT;
}
}
EXPORT_SYMBOL(mult_to_ib_rate);
__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
{
switch (rate) {
case IB_RATE_2_5_GBPS: return 2500;
case IB_RATE_5_GBPS: return 5000;
case IB_RATE_10_GBPS: return 10000;
case IB_RATE_20_GBPS: return 20000;
case IB_RATE_30_GBPS: return 30000;
case IB_RATE_40_GBPS: return 40000;
case IB_RATE_60_GBPS: return 60000;
case IB_RATE_80_GBPS: return 80000;
case IB_RATE_120_GBPS: return 120000;
case IB_RATE_14_GBPS: return 14062;
case IB_RATE_56_GBPS: return 56250;
case IB_RATE_112_GBPS: return 112500;
case IB_RATE_168_GBPS: return 168750;
case IB_RATE_25_GBPS: return 25781;
case IB_RATE_100_GBPS: return 103125;
case IB_RATE_200_GBPS: return 206250;
case IB_RATE_300_GBPS: return 309375;
default: return -1;
}
}
EXPORT_SYMBOL(ib_rate_to_mbps);
__attribute_const__ enum rdma_transport_type
rdma_node_get_transport(enum rdma_node_type node_type)
{
switch (node_type) {
case RDMA_NODE_IB_CA:
case RDMA_NODE_IB_SWITCH:
case RDMA_NODE_IB_ROUTER:
return RDMA_TRANSPORT_IB;
case RDMA_NODE_RNIC:
return RDMA_TRANSPORT_IWARP;
case RDMA_NODE_USNIC:
return RDMA_TRANSPORT_USNIC;
case RDMA_NODE_USNIC_UDP:
return RDMA_TRANSPORT_USNIC_UDP;
default:
BUG();
return 0;
}
}
EXPORT_SYMBOL(rdma_node_get_transport);
enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
{
if (device->get_link_layer)
return device->get_link_layer(device, port_num);
switch (rdma_node_get_transport(device->node_type)) {
case RDMA_TRANSPORT_IB:
return IB_LINK_LAYER_INFINIBAND;
case RDMA_TRANSPORT_IWARP:
case RDMA_TRANSPORT_USNIC:
case RDMA_TRANSPORT_USNIC_UDP:
return IB_LINK_LAYER_ETHERNET;
default:
return IB_LINK_LAYER_UNSPECIFIED;
}
}
EXPORT_SYMBOL(rdma_port_get_link_layer);
/* Protection domains */
/**
* ib_alloc_pd - Allocates an unused protection domain.
* @device: The device on which to allocate the protection domain.
*
* A protection domain object provides an association between QPs, shared
* receive queues, address handles, memory regions, and memory windows.
*
* Every PD has a local_dma_lkey which can be used as the lkey value for local
* memory operations.
*/
struct ib_pd *ib_alloc_pd(struct ib_device *device)
{
struct ib_pd *pd;
pd = device->alloc_pd(device, NULL, NULL);
if (IS_ERR(pd))
return pd;
pd->device = device;
pd->uobject = NULL;
pd->local_mr = NULL;
atomic_set(&pd->usecnt, 0);
if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
pd->local_dma_lkey = device->local_dma_lkey;
else {
struct ib_mr *mr;
mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
if (IS_ERR(mr)) {
ib_dealloc_pd(pd);
return (struct ib_pd *)mr;
}
pd->local_mr = mr;
pd->local_dma_lkey = pd->local_mr->lkey;
}
return pd;
}
EXPORT_SYMBOL(ib_alloc_pd);
/**
* ib_dealloc_pd - Deallocates a protection domain.
* @pd: The protection domain to deallocate.
*
* It is an error to call this function while any resources in the pd still
* exist. The caller is responsible to synchronously destroy them and
* guarantee no new allocations will happen.
*/
void ib_dealloc_pd(struct ib_pd *pd)
{
int ret;
if (pd->local_mr) {
ret = ib_dereg_mr(pd->local_mr);
WARN_ON(ret);
pd->local_mr = NULL;
}
/* uverbs manipulates usecnt with proper locking, while the kabi
requires the caller to guarantee we can't race here. */
WARN_ON(atomic_read(&pd->usecnt));
/* Making delalloc_pd a void return is a WIP, no driver should return
an error here. */
ret = pd->device->dealloc_pd(pd);
WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
}
EXPORT_SYMBOL(ib_dealloc_pd);
/* Address handles */
struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
{
struct ib_ah *ah;
ah = pd->device->create_ah(pd, ah_attr);
if (!IS_ERR(ah)) {
ah->device = pd->device;
ah->pd = pd;
ah->uobject = NULL;
atomic_inc(&pd->usecnt);
}
return ah;
}
EXPORT_SYMBOL(ib_create_ah);
struct find_gid_index_context {
u16 vlan_id;
};
static bool find_gid_index(const union ib_gid *gid,
const struct ib_gid_attr *gid_attr,
void *context)
{
struct find_gid_index_context *ctx =
(struct find_gid_index_context *)context;
if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
(is_vlan_dev(gid_attr->ndev) &&
vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
return false;
return true;
}
static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
u16 vlan_id, const union ib_gid *sgid,
u16 *gid_index)
{
struct find_gid_index_context context = {.vlan_id = vlan_id};
return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
&context, gid_index);
}
int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
const struct ib_wc *wc, const struct ib_grh *grh,
struct ib_ah_attr *ah_attr)
{
u32 flow_class;
u16 gid_index;
int ret;
memset(ah_attr, 0, sizeof *ah_attr);
if (rdma_cap_eth_ah(device, port_num)) {
u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
wc->vlan_id : 0xffff;
if (!(wc->wc_flags & IB_WC_GRH))
return -EPROTOTYPE;
if (!(wc->wc_flags & IB_WC_WITH_SMAC) ||
!(wc->wc_flags & IB_WC_WITH_VLAN)) {
ret = rdma_addr_find_dmac_by_grh(&grh->dgid, &grh->sgid,
ah_attr->dmac,
wc->wc_flags & IB_WC_WITH_VLAN ?
NULL : &vlan_id,
0);
if (ret)
return ret;
}
ret = get_sgid_index_from_eth(device, port_num, vlan_id,
&grh->dgid, &gid_index);
if (ret)
return ret;
if (wc->wc_flags & IB_WC_WITH_SMAC)
memcpy(ah_attr->dmac, wc->smac, ETH_ALEN);
}
ah_attr->dlid = wc->slid;
ah_attr->sl = wc->sl;
ah_attr->src_path_bits = wc->dlid_path_bits;
ah_attr->port_num = port_num;
if (wc->wc_flags & IB_WC_GRH) {
ah_attr->ah_flags = IB_AH_GRH;
ah_attr->grh.dgid = grh->sgid;
if (!rdma_cap_eth_ah(device, port_num)) {
ret = ib_find_cached_gid_by_port(device, &grh->dgid,
IB_GID_TYPE_IB,
port_num, NULL,
&gid_index);
if (ret)
return ret;
}
ah_attr->grh.sgid_index = (u8) gid_index;
flow_class = be32_to_cpu(grh->version_tclass_flow);
ah_attr->grh.flow_label = flow_class & 0xFFFFF;
ah_attr->grh.hop_limit = 0xFF;
ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
}
return 0;
}
EXPORT_SYMBOL(ib_init_ah_from_wc);
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
const struct ib_grh *grh, u8 port_num)
{
struct ib_ah_attr ah_attr;
int ret;
ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
if (ret)
return ERR_PTR(ret);
return ib_create_ah(pd, &ah_attr);
}
EXPORT_SYMBOL(ib_create_ah_from_wc);
int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
{
return ah->device->modify_ah ?
ah->device->modify_ah(ah, ah_attr) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_modify_ah);
int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
{
return ah->device->query_ah ?
ah->device->query_ah(ah, ah_attr) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_query_ah);
int ib_destroy_ah(struct ib_ah *ah)
{
struct ib_pd *pd;
int ret;
pd = ah->pd;
ret = ah->device->destroy_ah(ah);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_destroy_ah);
/* Shared receive queues */
struct ib_srq *ib_create_srq(struct ib_pd *pd,
struct ib_srq_init_attr *srq_init_attr)
{
struct ib_srq *srq;
if (!pd->device->create_srq)
return ERR_PTR(-ENOSYS);
srq = pd->device->create_srq(pd, srq_init_attr, NULL);
if (!IS_ERR(srq)) {
srq->device = pd->device;
srq->pd = pd;
srq->uobject = NULL;
srq->event_handler = srq_init_attr->event_handler;
srq->srq_context = srq_init_attr->srq_context;
srq->srq_type = srq_init_attr->srq_type;
if (srq->srq_type == IB_SRQT_XRC) {
srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
atomic_inc(&srq->ext.xrc.xrcd->usecnt);
atomic_inc(&srq->ext.xrc.cq->usecnt);
}
atomic_inc(&pd->usecnt);
atomic_set(&srq->usecnt, 0);
}
return srq;
}
EXPORT_SYMBOL(ib_create_srq);
int ib_modify_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask)
{
return srq->device->modify_srq ?
srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_modify_srq);
int ib_query_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr)
{
return srq->device->query_srq ?
srq->device->query_srq(srq, srq_attr) : -ENOSYS;
}
EXPORT_SYMBOL(ib_query_srq);
int ib_destroy_srq(struct ib_srq *srq)
{
struct ib_pd *pd;
enum ib_srq_type srq_type;
struct ib_xrcd *uninitialized_var(xrcd);
struct ib_cq *uninitialized_var(cq);
int ret;
if (atomic_read(&srq->usecnt))
return -EBUSY;
pd = srq->pd;
srq_type = srq->srq_type;
if (srq_type == IB_SRQT_XRC) {
xrcd = srq->ext.xrc.xrcd;
cq = srq->ext.xrc.cq;
}
ret = srq->device->destroy_srq(srq);
if (!ret) {
atomic_dec(&pd->usecnt);
if (srq_type == IB_SRQT_XRC) {
atomic_dec(&xrcd->usecnt);
atomic_dec(&cq->usecnt);
}
}
return ret;
}
EXPORT_SYMBOL(ib_destroy_srq);
/* Queue pairs */
static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
{
struct ib_qp *qp = context;
unsigned long flags;
spin_lock_irqsave(&qp->device->event_handler_lock, flags);
list_for_each_entry(event->element.qp, &qp->open_list, open_list)
if (event->element.qp->event_handler)
event->element.qp->event_handler(event, event->element.qp->qp_context);
spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
}
static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
{
mutex_lock(&xrcd->tgt_qp_mutex);
list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
mutex_unlock(&xrcd->tgt_qp_mutex);
}
static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
void (*event_handler)(struct ib_event *, void *),
void *qp_context)
{
struct ib_qp *qp;
unsigned long flags;
qp = kzalloc(sizeof *qp, GFP_KERNEL);
if (!qp)
return ERR_PTR(-ENOMEM);
qp->real_qp = real_qp;
atomic_inc(&real_qp->usecnt);
qp->device = real_qp->device;
qp->event_handler = event_handler;
qp->qp_context = qp_context;
qp->qp_num = real_qp->qp_num;
qp->qp_type = real_qp->qp_type;
spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
list_add(&qp->open_list, &real_qp->open_list);
spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
return qp;
}
struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
struct ib_qp_open_attr *qp_open_attr)
{
struct ib_qp *qp, *real_qp;
if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
return ERR_PTR(-EINVAL);
qp = ERR_PTR(-EINVAL);
mutex_lock(&xrcd->tgt_qp_mutex);
list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
if (real_qp->qp_num == qp_open_attr->qp_num) {
qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
qp_open_attr->qp_context);
break;
}
}
mutex_unlock(&xrcd->tgt_qp_mutex);
return qp;
}
EXPORT_SYMBOL(ib_open_qp);
struct ib_qp *ib_create_qp(struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr)
{
struct ib_qp *qp, *real_qp;
struct ib_device *device;
device = pd ? pd->device : qp_init_attr->xrcd->device;
qp = device->create_qp(pd, qp_init_attr, NULL);
if (!IS_ERR(qp)) {
qp->device = device;
qp->real_qp = qp;
qp->uobject = NULL;
qp->qp_type = qp_init_attr->qp_type;
atomic_set(&qp->usecnt, 0);
if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
qp->event_handler = __ib_shared_qp_event_handler;
qp->qp_context = qp;
qp->pd = NULL;
qp->send_cq = qp->recv_cq = NULL;
qp->srq = NULL;
qp->xrcd = qp_init_attr->xrcd;
atomic_inc(&qp_init_attr->xrcd->usecnt);
INIT_LIST_HEAD(&qp->open_list);
real_qp = qp;
qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
qp_init_attr->qp_context);
if (!IS_ERR(qp))
__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
else
real_qp->device->destroy_qp(real_qp);
} else {
qp->event_handler = qp_init_attr->event_handler;
qp->qp_context = qp_init_attr->qp_context;
if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
qp->recv_cq = NULL;
qp->srq = NULL;
} else {
qp->recv_cq = qp_init_attr->recv_cq;
atomic_inc(&qp_init_attr->recv_cq->usecnt);
qp->srq = qp_init_attr->srq;
if (qp->srq)
atomic_inc(&qp_init_attr->srq->usecnt);
}
qp->pd = pd;
qp->send_cq = qp_init_attr->send_cq;
qp->xrcd = NULL;
atomic_inc(&pd->usecnt);
atomic_inc(&qp_init_attr->send_cq->usecnt);
}
}
return qp;
}
EXPORT_SYMBOL(ib_create_qp);
static const struct {
int valid;
enum ib_qp_attr_mask req_param[IB_QPT_MAX];
enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
[IB_QPS_RESET] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_INIT] = {
.valid = 1,
.req_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_QKEY),
[IB_QPT_RAW_PACKET] = IB_QP_PORT,
[IB_QPT_UC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_RC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
},
},
[IB_QPS_INIT] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_INIT] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_RC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
},
[IB_QPS_RTR] = {
.valid = 1,
.req_param = {
[IB_QPT_UC] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN),
[IB_QPT_RC] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_MIN_RNR_TIMER),
[IB_QPT_XRC_INI] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN),
[IB_QPT_XRC_TGT] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_MIN_RNR_TIMER),
},
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_RC] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
},
},
},
[IB_QPS_RTR] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.req_param = {
[IB_QPT_UD] = IB_QP_SQ_PSN,
[IB_QPT_UC] = IB_QP_SQ_PSN,
[IB_QPT_RC] = (IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_SQ_PSN |
IB_QP_MAX_QP_RD_ATOMIC),
[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_SQ_PSN |
IB_QP_MAX_QP_RD_ATOMIC),
[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
IB_QP_SQ_PSN),
[IB_QPT_SMI] = IB_QP_SQ_PSN,
[IB_QPT_GSI] = IB_QP_SQ_PSN,
},
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
}
},
[IB_QPS_RTS] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE |
IB_QP_MIN_RNR_TIMER),
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE |
IB_QP_MIN_RNR_TIMER),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
},
[IB_QPS_SQD] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
}
},
},
[IB_QPS_SQD] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
},
[IB_QPS_SQD] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_AV |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_PORT |
IB_QP_AV |
IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_MAX_QP_RD_ATOMIC |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_INI] = (IB_QP_PORT |
IB_QP_AV |
IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_MAX_QP_RD_ATOMIC |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_PORT |
IB_QP_AV |
IB_QP_TIMEOUT |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
}
},
[IB_QPS_SQE] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
}
},
[IB_QPS_ERR] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 }
}
};
int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
enum ib_qp_type type, enum ib_qp_attr_mask mask,
enum rdma_link_layer ll)
{
enum ib_qp_attr_mask req_param, opt_param;
if (cur_state < 0 || cur_state > IB_QPS_ERR ||
next_state < 0 || next_state > IB_QPS_ERR)
return 0;
if (mask & IB_QP_CUR_STATE &&
cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
return 0;
if (!qp_state_table[cur_state][next_state].valid)
return 0;
req_param = qp_state_table[cur_state][next_state].req_param[type];
opt_param = qp_state_table[cur_state][next_state].opt_param[type];
if ((mask & req_param) != req_param)
return 0;
if (mask & ~(req_param | opt_param | IB_QP_STATE))
return 0;
return 1;
}
EXPORT_SYMBOL(ib_modify_qp_is_ok);
int ib_resolve_eth_dmac(struct ib_qp *qp,
struct ib_qp_attr *qp_attr, int *qp_attr_mask)
{
int ret = 0;
if (*qp_attr_mask & IB_QP_AV) {
if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
return -EINVAL;
if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
return 0;
if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
qp_attr->ah_attr.dmac);
} else {
union ib_gid sgid;
struct ib_gid_attr sgid_attr;
int ifindex;
ret = ib_query_gid(qp->device,
qp_attr->ah_attr.port_num,
qp_attr->ah_attr.grh.sgid_index,
&sgid, &sgid_attr);
if (ret || !sgid_attr.ndev) {
if (!ret)
ret = -ENXIO;
goto out;
}
ifindex = sgid_attr.ndev->ifindex;
ret = rdma_addr_find_dmac_by_grh(&sgid,
&qp_attr->ah_attr.grh.dgid,
qp_attr->ah_attr.dmac,
NULL, ifindex);
dev_put(sgid_attr.ndev);
}
}
out:
return ret;
}
EXPORT_SYMBOL(ib_resolve_eth_dmac);
int ib_modify_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask)
{
int ret;
ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
if (ret)
return ret;
return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
}
EXPORT_SYMBOL(ib_modify_qp);
int ib_query_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask,
struct ib_qp_init_attr *qp_init_attr)
{
return qp->device->query_qp ?
qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
-ENOSYS;
}
EXPORT_SYMBOL(ib_query_qp);
int ib_close_qp(struct ib_qp *qp)
{
struct ib_qp *real_qp;
unsigned long flags;
real_qp = qp->real_qp;
if (real_qp == qp)
return -EINVAL;
spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
list_del(&qp->open_list);
spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
atomic_dec(&real_qp->usecnt);
kfree(qp);
return 0;
}
EXPORT_SYMBOL(ib_close_qp);
static int __ib_destroy_shared_qp(struct ib_qp *qp)
{
struct ib_xrcd *xrcd;
struct ib_qp *real_qp;
int ret;
real_qp = qp->real_qp;
xrcd = real_qp->xrcd;
mutex_lock(&xrcd->tgt_qp_mutex);
ib_close_qp(qp);
if (atomic_read(&real_qp->usecnt) == 0)
list_del(&real_qp->xrcd_list);
else
real_qp = NULL;
mutex_unlock(&xrcd->tgt_qp_mutex);
if (real_qp) {
ret = ib_destroy_qp(real_qp);
if (!ret)
atomic_dec(&xrcd->usecnt);
else
__ib_insert_xrcd_qp(xrcd, real_qp);
}
return 0;
}
int ib_destroy_qp(struct ib_qp *qp)
{
struct ib_pd *pd;
struct ib_cq *scq, *rcq;
struct ib_srq *srq;
int ret;
if (atomic_read(&qp->usecnt))
return -EBUSY;
if (qp->real_qp != qp)
return __ib_destroy_shared_qp(qp);
pd = qp->pd;
scq = qp->send_cq;
rcq = qp->recv_cq;
srq = qp->srq;
ret = qp->device->destroy_qp(qp);
if (!ret) {
if (pd)
atomic_dec(&pd->usecnt);
if (scq)
atomic_dec(&scq->usecnt);
if (rcq)
atomic_dec(&rcq->usecnt);
if (srq)
atomic_dec(&srq->usecnt);
}
return ret;
}
EXPORT_SYMBOL(ib_destroy_qp);
/* Completion queues */
struct ib_cq *ib_create_cq(struct ib_device *device,
ib_comp_handler comp_handler,
void (*event_handler)(struct ib_event *, void *),
void *cq_context,
const struct ib_cq_init_attr *cq_attr)
{
struct ib_cq *cq;
cq = device->create_cq(device, cq_attr, NULL, NULL);
if (!IS_ERR(cq)) {
cq->device = device;
cq->uobject = NULL;
cq->comp_handler = comp_handler;
cq->event_handler = event_handler;
cq->cq_context = cq_context;
atomic_set(&cq->usecnt, 0);
}
return cq;
}
EXPORT_SYMBOL(ib_create_cq);
int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
{
return cq->device->modify_cq ?
cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
}
EXPORT_SYMBOL(ib_modify_cq);
int ib_destroy_cq(struct ib_cq *cq)
{
if (atomic_read(&cq->usecnt))
return -EBUSY;
return cq->device->destroy_cq(cq);
}
EXPORT_SYMBOL(ib_destroy_cq);
int ib_resize_cq(struct ib_cq *cq, int cqe)
{
return cq->device->resize_cq ?
cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
}
EXPORT_SYMBOL(ib_resize_cq);
/* Memory regions */
struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
{
struct ib_mr *mr;
int err;
err = ib_check_mr_access(mr_access_flags);
if (err)
return ERR_PTR(err);
mr = pd->device->get_dma_mr(pd, mr_access_flags);
if (!IS_ERR(mr)) {
mr->device = pd->device;
mr->pd = pd;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
atomic_set(&mr->usecnt, 0);
}
return mr;
}
EXPORT_SYMBOL(ib_get_dma_mr);
int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr)
{
return mr->device->query_mr ?
mr->device->query_mr(mr, mr_attr) : -ENOSYS;
}
EXPORT_SYMBOL(ib_query_mr);
int ib_dereg_mr(struct ib_mr *mr)
{
struct ib_pd *pd;
int ret;
if (atomic_read(&mr->usecnt))
return -EBUSY;
pd = mr->pd;
ret = mr->device->dereg_mr(mr);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_dereg_mr);
/**
* ib_alloc_mr() - Allocates a memory region
* @pd: protection domain associated with the region
* @mr_type: memory region type
* @max_num_sg: maximum sg entries available for registration.
*
* Notes:
* Memory registeration page/sg lists must not exceed max_num_sg.
* For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
* max_num_sg * used_page_size.
*
*/
struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
enum ib_mr_type mr_type,
u32 max_num_sg)
{
struct ib_mr *mr;
if (!pd->device->alloc_mr)
return ERR_PTR(-ENOSYS);
mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
if (!IS_ERR(mr)) {
mr->device = pd->device;
mr->pd = pd;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
atomic_set(&mr->usecnt, 0);
}
return mr;
}
EXPORT_SYMBOL(ib_alloc_mr);
/* Memory windows */
struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type)
{
struct ib_mw *mw;
if (!pd->device->alloc_mw)
return ERR_PTR(-ENOSYS);
mw = pd->device->alloc_mw(pd, type);
if (!IS_ERR(mw)) {
mw->device = pd->device;
mw->pd = pd;
mw->uobject = NULL;
mw->type = type;
atomic_inc(&pd->usecnt);
}
return mw;
}
EXPORT_SYMBOL(ib_alloc_mw);
int ib_dealloc_mw(struct ib_mw *mw)
{
struct ib_pd *pd;
int ret;
pd = mw->pd;
ret = mw->device->dealloc_mw(mw);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_dealloc_mw);
/* "Fast" memory regions */
struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
int mr_access_flags,
struct ib_fmr_attr *fmr_attr)
{
struct ib_fmr *fmr;
if (!pd->device->alloc_fmr)
return ERR_PTR(-ENOSYS);
fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
if (!IS_ERR(fmr)) {
fmr->device = pd->device;
fmr->pd = pd;
atomic_inc(&pd->usecnt);
}
return fmr;
}
EXPORT_SYMBOL(ib_alloc_fmr);
int ib_unmap_fmr(struct list_head *fmr_list)
{
struct ib_fmr *fmr;
if (list_empty(fmr_list))
return 0;
fmr = list_entry(fmr_list->next, struct ib_fmr, list);
return fmr->device->unmap_fmr(fmr_list);
}
EXPORT_SYMBOL(ib_unmap_fmr);
int ib_dealloc_fmr(struct ib_fmr *fmr)
{
struct ib_pd *pd;
int ret;
pd = fmr->pd;
ret = fmr->device->dealloc_fmr(fmr);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_dealloc_fmr);
/* Multicast groups */
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
{
int ret;
if (!qp->device->attach_mcast)
return -ENOSYS;
if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
return -EINVAL;
ret = qp->device->attach_mcast(qp, gid, lid);
if (!ret)
atomic_inc(&qp->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_attach_mcast);
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
{
int ret;
if (!qp->device->detach_mcast)
return -ENOSYS;
if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
return -EINVAL;
ret = qp->device->detach_mcast(qp, gid, lid);
if (!ret)
atomic_dec(&qp->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_detach_mcast);
struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
{
struct ib_xrcd *xrcd;
if (!device->alloc_xrcd)
return ERR_PTR(-ENOSYS);
xrcd = device->alloc_xrcd(device, NULL, NULL);
if (!IS_ERR(xrcd)) {
xrcd->device = device;
xrcd->inode = NULL;
atomic_set(&xrcd->usecnt, 0);
mutex_init(&xrcd->tgt_qp_mutex);
INIT_LIST_HEAD(&xrcd->tgt_qp_list);
}
return xrcd;
}
EXPORT_SYMBOL(ib_alloc_xrcd);
int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
{
struct ib_qp *qp;
int ret;
if (atomic_read(&xrcd->usecnt))
return -EBUSY;
while (!list_empty(&xrcd->tgt_qp_list)) {
qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
ret = ib_destroy_qp(qp);
if (ret)
return ret;
}
return xrcd->device->dealloc_xrcd(xrcd);
}
EXPORT_SYMBOL(ib_dealloc_xrcd);
struct ib_flow *ib_create_flow(struct ib_qp *qp,
struct ib_flow_attr *flow_attr,
int domain)
{
struct ib_flow *flow_id;
if (!qp->device->create_flow)
return ERR_PTR(-ENOSYS);
flow_id = qp->device->create_flow(qp, flow_attr, domain);
if (!IS_ERR(flow_id))
atomic_inc(&qp->usecnt);
return flow_id;
}
EXPORT_SYMBOL(ib_create_flow);
int ib_destroy_flow(struct ib_flow *flow_id)
{
int err;
struct ib_qp *qp = flow_id->qp;
err = qp->device->destroy_flow(flow_id);
if (!err)
atomic_dec(&qp->usecnt);
return err;
}
EXPORT_SYMBOL(ib_destroy_flow);
int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
struct ib_mr_status *mr_status)
{
return mr->device->check_mr_status ?
mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
}
EXPORT_SYMBOL(ib_check_mr_status);
/**
* ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
* and set it the memory region.
* @mr: memory region
* @sg: dma mapped scatterlist
* @sg_nents: number of entries in sg
* @page_size: page vector desired page size
*
* Constraints:
* - The first sg element is allowed to have an offset.
* - Each sg element must be aligned to page_size (or physically
* contiguous to the previous element). In case an sg element has a
* non contiguous offset, the mapping prefix will not include it.
* - The last sg element is allowed to have length less than page_size.
* - If sg_nents total byte length exceeds the mr max_num_sge * page_size
* then only max_num_sg entries will be mapped.
*
* Returns the number of sg elements that were mapped to the memory region.
*
* After this completes successfully, the memory region
* is ready for registration.
*/
int ib_map_mr_sg(struct ib_mr *mr,
struct scatterlist *sg,
int sg_nents,
unsigned int page_size)
{
if (unlikely(!mr->device->map_mr_sg))
return -ENOSYS;
mr->page_size = page_size;
return mr->device->map_mr_sg(mr, sg, sg_nents);
}
EXPORT_SYMBOL(ib_map_mr_sg);
/**
* ib_sg_to_pages() - Convert the largest prefix of a sg list
* to a page vector
* @mr: memory region
* @sgl: dma mapped scatterlist
* @sg_nents: number of entries in sg
* @set_page: driver page assignment function pointer
*
* Core service helper for drivers to convert the largest
* prefix of given sg list to a page vector. The sg list
* prefix converted is the prefix that meet the requirements
* of ib_map_mr_sg.
*
* Returns the number of sg elements that were assigned to
* a page vector.
*/
int ib_sg_to_pages(struct ib_mr *mr,
struct scatterlist *sgl,
int sg_nents,
int (*set_page)(struct ib_mr *, u64))
{
struct scatterlist *sg;
u64 last_end_dma_addr = 0, last_page_addr = 0;
unsigned int last_page_off = 0;
u64 page_mask = ~((u64)mr->page_size - 1);
int i, ret;
mr->iova = sg_dma_address(&sgl[0]);
mr->length = 0;
for_each_sg(sgl, sg, sg_nents, i) {
u64 dma_addr = sg_dma_address(sg);
unsigned int dma_len = sg_dma_len(sg);
u64 end_dma_addr = dma_addr + dma_len;
u64 page_addr = dma_addr & page_mask;
/*
* For the second and later elements, check whether either the
* end of element i-1 or the start of element i is not aligned
* on a page boundary.
*/
if (i && (last_page_off != 0 || page_addr != dma_addr)) {
/* Stop mapping if there is a gap. */
if (last_end_dma_addr != dma_addr)
break;
/*
* Coalesce this element with the last. If it is small
* enough just update mr->length. Otherwise start
* mapping from the next page.
*/
goto next_page;
}
do {
ret = set_page(mr, page_addr);
if (unlikely(ret < 0))
return i ? : ret;
next_page:
page_addr += mr->page_size;
} while (page_addr < end_dma_addr);
mr->length += dma_len;
last_end_dma_addr = end_dma_addr;
last_page_addr = end_dma_addr & page_mask;
last_page_off = end_dma_addr & ~page_mask;
}
return i;
}
EXPORT_SYMBOL(ib_sg_to_pages);