OpenCloudOS-Kernel/drivers/iio/accel/sca3000.c

1570 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
*
* Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
*
* See industrialio/accels/sca3000.h for comments.
*/
#include <linux/interrupt.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/sysfs.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>
#include <linux/iio/buffer.h>
#include <linux/iio/kfifo_buf.h>
#define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
#define SCA3000_READ_REG(a) ((a) << 2)
#define SCA3000_REG_REVID_ADDR 0x00
#define SCA3000_REG_REVID_MAJOR_MASK GENMASK(8, 4)
#define SCA3000_REG_REVID_MINOR_MASK GENMASK(3, 0)
#define SCA3000_REG_STATUS_ADDR 0x02
#define SCA3000_LOCKED BIT(5)
#define SCA3000_EEPROM_CS_ERROR BIT(1)
#define SCA3000_SPI_FRAME_ERROR BIT(0)
/* All reads done using register decrement so no need to directly access LSBs */
#define SCA3000_REG_X_MSB_ADDR 0x05
#define SCA3000_REG_Y_MSB_ADDR 0x07
#define SCA3000_REG_Z_MSB_ADDR 0x09
#define SCA3000_REG_RING_OUT_ADDR 0x0f
/* Temp read untested - the e05 doesn't have the sensor */
#define SCA3000_REG_TEMP_MSB_ADDR 0x13
#define SCA3000_REG_MODE_ADDR 0x14
#define SCA3000_MODE_PROT_MASK 0x28
#define SCA3000_REG_MODE_RING_BUF_ENABLE BIT(7)
#define SCA3000_REG_MODE_RING_BUF_8BIT BIT(6)
/*
* Free fall detection triggers an interrupt if the acceleration
* is below a threshold for equivalent of 25cm drop
*/
#define SCA3000_REG_MODE_FREE_FALL_DETECT BIT(4)
#define SCA3000_REG_MODE_MEAS_MODE_NORMAL 0x00
#define SCA3000_REG_MODE_MEAS_MODE_OP_1 0x01
#define SCA3000_REG_MODE_MEAS_MODE_OP_2 0x02
/*
* In motion detection mode the accelerations are band pass filtered
* (approx 1 - 25Hz) and then a programmable threshold used to trigger
* and interrupt.
*/
#define SCA3000_REG_MODE_MEAS_MODE_MOT_DET 0x03
#define SCA3000_REG_MODE_MODE_MASK 0x03
#define SCA3000_REG_BUF_COUNT_ADDR 0x15
#define SCA3000_REG_INT_STATUS_ADDR 0x16
#define SCA3000_REG_INT_STATUS_THREE_QUARTERS BIT(7)
#define SCA3000_REG_INT_STATUS_HALF BIT(6)
#define SCA3000_INT_STATUS_FREE_FALL BIT(3)
#define SCA3000_INT_STATUS_Y_TRIGGER BIT(2)
#define SCA3000_INT_STATUS_X_TRIGGER BIT(1)
#define SCA3000_INT_STATUS_Z_TRIGGER BIT(0)
/* Used to allow access to multiplexed registers */
#define SCA3000_REG_CTRL_SEL_ADDR 0x18
/* Only available for SCA3000-D03 and SCA3000-D01 */
#define SCA3000_REG_CTRL_SEL_I2C_DISABLE 0x01
#define SCA3000_REG_CTRL_SEL_MD_CTRL 0x02
#define SCA3000_REG_CTRL_SEL_MD_Y_TH 0x03
#define SCA3000_REG_CTRL_SEL_MD_X_TH 0x04
#define SCA3000_REG_CTRL_SEL_MD_Z_TH 0x05
/*
* BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
* will not function
*/
#define SCA3000_REG_CTRL_SEL_OUT_CTRL 0x0B
#define SCA3000_REG_OUT_CTRL_PROT_MASK 0xE0
#define SCA3000_REG_OUT_CTRL_BUF_X_EN 0x10
#define SCA3000_REG_OUT_CTRL_BUF_Y_EN 0x08
#define SCA3000_REG_OUT_CTRL_BUF_Z_EN 0x04
#define SCA3000_REG_OUT_CTRL_BUF_DIV_MASK 0x03
#define SCA3000_REG_OUT_CTRL_BUF_DIV_4 0x02
#define SCA3000_REG_OUT_CTRL_BUF_DIV_2 0x01
/*
* Control which motion detector interrupts are on.
* For now only OR combinations are supported.
*/
#define SCA3000_MD_CTRL_PROT_MASK 0xC0
#define SCA3000_MD_CTRL_OR_Y BIT(0)
#define SCA3000_MD_CTRL_OR_X BIT(1)
#define SCA3000_MD_CTRL_OR_Z BIT(2)
/* Currently unsupported */
#define SCA3000_MD_CTRL_AND_Y BIT(3)
#define SCA3000_MD_CTRL_AND_X BIT(4)
#define SCA3000_MD_CTRL_AND_Z BIT(5)
/*
* Some control registers of complex access methods requiring this register to
* be used to remove a lock.
*/
#define SCA3000_REG_UNLOCK_ADDR 0x1e
#define SCA3000_REG_INT_MASK_ADDR 0x21
#define SCA3000_REG_INT_MASK_PROT_MASK 0x1C
#define SCA3000_REG_INT_MASK_RING_THREE_QUARTER BIT(7)
#define SCA3000_REG_INT_MASK_RING_HALF BIT(6)
#define SCA3000_REG_INT_MASK_ALL_INTS 0x02
#define SCA3000_REG_INT_MASK_ACTIVE_HIGH 0x01
#define SCA3000_REG_INT_MASK_ACTIVE_LOW 0x00
/* Values of multiplexed registers (write to ctrl_data after select) */
#define SCA3000_REG_CTRL_DATA_ADDR 0x22
/*
* Measurement modes available on some sca3000 series chips. Code assumes others
* may become available in the future.
*
* Bypass - Bypass the low-pass filter in the signal channel so as to increase
* signal bandwidth.
*
* Narrow - Narrow low-pass filtering of the signal channel and half output
* data rate by decimation.
*
* Wide - Widen low-pass filtering of signal channel to increase bandwidth
*/
#define SCA3000_OP_MODE_BYPASS 0x01
#define SCA3000_OP_MODE_NARROW 0x02
#define SCA3000_OP_MODE_WIDE 0x04
#define SCA3000_MAX_TX 6
#define SCA3000_MAX_RX 2
/**
* struct sca3000_state - device instance state information
* @us: the associated spi device
* @info: chip variant information
* @last_timestamp: the timestamp of the last event
* @mo_det_use_count: reference counter for the motion detection unit
* @lock: lock used to protect elements of sca3000_state
* and the underlying device state.
* @tx: dma-able transmit buffer
* @rx: dma-able receive buffer
**/
struct sca3000_state {
struct spi_device *us;
const struct sca3000_chip_info *info;
s64 last_timestamp;
int mo_det_use_count;
struct mutex lock;
/* Can these share a cacheline ? */
u8 rx[384] ____cacheline_aligned;
u8 tx[6] ____cacheline_aligned;
};
/**
* struct sca3000_chip_info - model dependent parameters
* @scale: scale * 10^-6
* @temp_output: some devices have temperature sensors.
* @measurement_mode_freq: normal mode sampling frequency
* @measurement_mode_3db_freq: 3db cutoff frequency of the low pass filter for
* the normal measurement mode.
* @option_mode_1: first optional mode. Not all models have one
* @option_mode_1_freq: option mode 1 sampling frequency
* @option_mode_1_3db_freq: 3db cutoff frequency of the low pass filter for
* the first option mode.
* @option_mode_2: second optional mode. Not all chips have one
* @option_mode_2_freq: option mode 2 sampling frequency
* @option_mode_2_3db_freq: 3db cutoff frequency of the low pass filter for
* the second option mode.
* @mod_det_mult_xz: Bit wise multipliers to calculate the threshold
* for motion detection in the x and z axis.
* @mod_det_mult_y: Bit wise multipliers to calculate the threshold
* for motion detection in the y axis.
*
* This structure is used to hold information about the functionality of a given
* sca3000 variant.
**/
struct sca3000_chip_info {
unsigned int scale;
bool temp_output;
int measurement_mode_freq;
int measurement_mode_3db_freq;
int option_mode_1;
int option_mode_1_freq;
int option_mode_1_3db_freq;
int option_mode_2;
int option_mode_2_freq;
int option_mode_2_3db_freq;
int mot_det_mult_xz[6];
int mot_det_mult_y[7];
};
enum sca3000_variant {
d01,
e02,
e04,
e05,
};
/*
* Note where option modes are not defined, the chip simply does not
* support any.
* Other chips in the sca3000 series use i2c and are not included here.
*
* Some of these devices are only listed in the family data sheet and
* do not actually appear to be available.
*/
static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
[d01] = {
.scale = 7357,
.temp_output = true,
.measurement_mode_freq = 250,
.measurement_mode_3db_freq = 45,
.option_mode_1 = SCA3000_OP_MODE_BYPASS,
.option_mode_1_freq = 250,
.option_mode_1_3db_freq = 70,
.mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
.mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
},
[e02] = {
.scale = 9810,
.measurement_mode_freq = 125,
.measurement_mode_3db_freq = 40,
.option_mode_1 = SCA3000_OP_MODE_NARROW,
.option_mode_1_freq = 63,
.option_mode_1_3db_freq = 11,
.mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
.mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
},
[e04] = {
.scale = 19620,
.measurement_mode_freq = 100,
.measurement_mode_3db_freq = 38,
.option_mode_1 = SCA3000_OP_MODE_NARROW,
.option_mode_1_freq = 50,
.option_mode_1_3db_freq = 9,
.option_mode_2 = SCA3000_OP_MODE_WIDE,
.option_mode_2_freq = 400,
.option_mode_2_3db_freq = 70,
.mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
.mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
},
[e05] = {
.scale = 61313,
.measurement_mode_freq = 200,
.measurement_mode_3db_freq = 60,
.option_mode_1 = SCA3000_OP_MODE_NARROW,
.option_mode_1_freq = 50,
.option_mode_1_3db_freq = 9,
.option_mode_2 = SCA3000_OP_MODE_WIDE,
.option_mode_2_freq = 400,
.option_mode_2_3db_freq = 75,
.mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
.mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
},
};
static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
{
st->tx[0] = SCA3000_WRITE_REG(address);
st->tx[1] = val;
return spi_write(st->us, st->tx, 2);
}
static int sca3000_read_data_short(struct sca3000_state *st,
u8 reg_address_high,
int len)
{
struct spi_transfer xfer[2] = {
{
.len = 1,
.tx_buf = st->tx,
}, {
.len = len,
.rx_buf = st->rx,
}
};
st->tx[0] = SCA3000_READ_REG(reg_address_high);
return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
}
/**
* sca3000_reg_lock_on() - test if the ctrl register lock is on
* @st: Driver specific device instance data.
*
* Lock must be held.
**/
static int sca3000_reg_lock_on(struct sca3000_state *st)
{
int ret;
ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
if (ret < 0)
return ret;
return !(st->rx[0] & SCA3000_LOCKED);
}
/**
* __sca3000_unlock_reg_lock() - unlock the control registers
* @st: Driver specific device instance data.
*
* Note the device does not appear to support doing this in a single transfer.
* This should only ever be used as part of ctrl reg read.
* Lock must be held before calling this
*/
static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
{
struct spi_transfer xfer[3] = {
{
.len = 2,
.cs_change = 1,
.tx_buf = st->tx,
}, {
.len = 2,
.cs_change = 1,
.tx_buf = st->tx + 2,
}, {
.len = 2,
.tx_buf = st->tx + 4,
},
};
st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
st->tx[1] = 0x00;
st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
st->tx[3] = 0x50;
st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
st->tx[5] = 0xA0;
return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
}
/**
* sca3000_write_ctrl_reg() write to a lock protect ctrl register
* @st: Driver specific device instance data.
* @sel: selects which registers we wish to write to
* @val: the value to be written
*
* Certain control registers are protected against overwriting by the lock
* register and use a shared write address. This function allows writing of
* these registers.
* Lock must be held.
*/
static int sca3000_write_ctrl_reg(struct sca3000_state *st,
u8 sel,
uint8_t val)
{
int ret;
ret = sca3000_reg_lock_on(st);
if (ret < 0)
goto error_ret;
if (ret) {
ret = __sca3000_unlock_reg_lock(st);
if (ret)
goto error_ret;
}
/* Set the control select register */
ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
if (ret)
goto error_ret;
/* Write the actual value into the register */
ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
error_ret:
return ret;
}
/**
* sca3000_read_ctrl_reg() read from lock protected control register.
* @st: Driver specific device instance data.
* @ctrl_reg: Which ctrl register do we want to read.
*
* Lock must be held.
*/
static int sca3000_read_ctrl_reg(struct sca3000_state *st,
u8 ctrl_reg)
{
int ret;
ret = sca3000_reg_lock_on(st);
if (ret < 0)
goto error_ret;
if (ret) {
ret = __sca3000_unlock_reg_lock(st);
if (ret)
goto error_ret;
}
/* Set the control select register */
ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
if (ret)
goto error_ret;
ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
if (ret)
goto error_ret;
return st->rx[0];
error_ret:
return ret;
}
/**
* sca3000_show_rev() - sysfs interface to read the chip revision number
* @indio_dev: Device instance specific generic IIO data.
* Driver specific device instance data can be obtained via
* via iio_priv(indio_dev)
*/
static int sca3000_print_rev(struct iio_dev *indio_dev)
{
int ret;
struct sca3000_state *st = iio_priv(indio_dev);
mutex_lock(&st->lock);
ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
if (ret < 0)
goto error_ret;
dev_info(&indio_dev->dev,
"sca3000 revision major=%lu, minor=%lu\n",
st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
error_ret:
mutex_unlock(&st->lock);
return ret;
}
static ssize_t
sca3000_show_available_3db_freqs(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct sca3000_state *st = iio_priv(indio_dev);
int len;
len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
if (st->info->option_mode_1)
len += sprintf(buf + len, " %d",
st->info->option_mode_1_3db_freq);
if (st->info->option_mode_2)
len += sprintf(buf + len, " %d",
st->info->option_mode_2_3db_freq);
len += sprintf(buf + len, "\n");
return len;
}
static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
S_IRUGO, sca3000_show_available_3db_freqs,
NULL, 0);
static const struct iio_event_spec sca3000_event = {
.type = IIO_EV_TYPE_MAG,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
};
/*
* Note the hack in the number of bits to pretend we have 2 more than
* we do in the fifo.
*/
#define SCA3000_CHAN(index, mod) \
{ \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = mod, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
.address = index, \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 13, \
.storagebits = 16, \
.shift = 3, \
.endianness = IIO_BE, \
}, \
.event_spec = &sca3000_event, \
.num_event_specs = 1, \
}
static const struct iio_event_spec sca3000_freefall_event_spec = {
.type = IIO_EV_TYPE_MAG,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_PERIOD),
};
static const struct iio_chan_spec sca3000_channels[] = {
SCA3000_CHAN(0, IIO_MOD_X),
SCA3000_CHAN(1, IIO_MOD_Y),
SCA3000_CHAN(2, IIO_MOD_Z),
{
.type = IIO_ACCEL,
.modified = 1,
.channel2 = IIO_MOD_X_AND_Y_AND_Z,
.scan_index = -1, /* Fake channel */
.event_spec = &sca3000_freefall_event_spec,
.num_event_specs = 1,
},
};
static const struct iio_chan_spec sca3000_channels_with_temp[] = {
SCA3000_CHAN(0, IIO_MOD_X),
SCA3000_CHAN(1, IIO_MOD_Y),
SCA3000_CHAN(2, IIO_MOD_Z),
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
/* No buffer support */
.scan_index = -1,
},
{
.type = IIO_ACCEL,
.modified = 1,
.channel2 = IIO_MOD_X_AND_Y_AND_Z,
.scan_index = -1, /* Fake channel */
.event_spec = &sca3000_freefall_event_spec,
.num_event_specs = 1,
},
};
static u8 sca3000_addresses[3][3] = {
[0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
SCA3000_MD_CTRL_OR_X},
[1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
SCA3000_MD_CTRL_OR_Y},
[2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
SCA3000_MD_CTRL_OR_Z},
};
/**
* __sca3000_get_base_freq() - obtain mode specific base frequency
* @st: Private driver specific device instance specific state.
* @info: chip type specific information.
* @base_freq: Base frequency for the current measurement mode.
*
* lock must be held
*/
static inline int __sca3000_get_base_freq(struct sca3000_state *st,
const struct sca3000_chip_info *info,
int *base_freq)
{
int ret;
ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
if (ret)
goto error_ret;
switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
*base_freq = info->measurement_mode_freq;
break;
case SCA3000_REG_MODE_MEAS_MODE_OP_1:
*base_freq = info->option_mode_1_freq;
break;
case SCA3000_REG_MODE_MEAS_MODE_OP_2:
*base_freq = info->option_mode_2_freq;
break;
default:
ret = -EINVAL;
}
error_ret:
return ret;
}
/**
* sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
* @st: Private driver specific device instance specific state.
* @val: The frequency read back.
*
* lock must be held
**/
static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
{
int ret;
ret = __sca3000_get_base_freq(st, st->info, val);
if (ret)
return ret;
ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
if (ret < 0)
return ret;
if (*val > 0) {
ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
switch (ret) {
case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
*val /= 2;
break;
case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
*val /= 4;
break;
}
}
return 0;
}
/**
* sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
* @st: Private driver specific device instance specific state.
* @val: The frequency desired.
*
* lock must be held
*/
static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
{
int ret, base_freq, ctrlval;
ret = __sca3000_get_base_freq(st, st->info, &base_freq);
if (ret)
return ret;
ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
if (ret < 0)
return ret;
ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
if (val == base_freq / 2)
ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
if (val == base_freq / 4)
ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
else if (val != base_freq)
return -EINVAL;
return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
ctrlval);
}
static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
{
int ret;
ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
if (ret)
return ret;
/* mask bottom 2 bits - only ones that are relevant */
st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
switch (st->rx[0]) {
case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
*val = st->info->measurement_mode_3db_freq;
return IIO_VAL_INT;
case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
return -EBUSY;
case SCA3000_REG_MODE_MEAS_MODE_OP_1:
*val = st->info->option_mode_1_3db_freq;
return IIO_VAL_INT;
case SCA3000_REG_MODE_MEAS_MODE_OP_2:
*val = st->info->option_mode_2_3db_freq;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
{
int ret;
int mode;
if (val == st->info->measurement_mode_3db_freq)
mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
else if (st->info->option_mode_1 &&
(val == st->info->option_mode_1_3db_freq))
mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
else if (st->info->option_mode_2 &&
(val == st->info->option_mode_2_3db_freq))
mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
else
return -EINVAL;
ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
if (ret)
return ret;
st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
}
static int sca3000_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct sca3000_state *st = iio_priv(indio_dev);
int ret;
u8 address;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&st->lock);
if (chan->type == IIO_ACCEL) {
if (st->mo_det_use_count) {
mutex_unlock(&st->lock);
return -EBUSY;
}
address = sca3000_addresses[chan->address][0];
ret = sca3000_read_data_short(st, address, 2);
if (ret < 0) {
mutex_unlock(&st->lock);
return ret;
}
*val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
*val = ((*val) << (sizeof(*val) * 8 - 13)) >>
(sizeof(*val) * 8 - 13);
} else {
/* get the temperature when available */
ret = sca3000_read_data_short(st,
SCA3000_REG_TEMP_MSB_ADDR,
2);
if (ret < 0) {
mutex_unlock(&st->lock);
return ret;
}
*val = ((st->rx[0] & 0x3F) << 3) |
((st->rx[1] & 0xE0) >> 5);
}
mutex_unlock(&st->lock);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
if (chan->type == IIO_ACCEL)
*val2 = st->info->scale;
else /* temperature */
*val2 = 555556;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_OFFSET:
*val = -214;
*val2 = 600000;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&st->lock);
ret = sca3000_read_raw_samp_freq(st, val);
mutex_unlock(&st->lock);
return ret ? ret : IIO_VAL_INT;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
mutex_lock(&st->lock);
ret = sca3000_read_3db_freq(st, val);
mutex_unlock(&st->lock);
return ret;
default:
return -EINVAL;
}
}
static int sca3000_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct sca3000_state *st = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (val2)
return -EINVAL;
mutex_lock(&st->lock);
ret = sca3000_write_raw_samp_freq(st, val);
mutex_unlock(&st->lock);
return ret;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
if (val2)
return -EINVAL;
mutex_lock(&st->lock);
ret = sca3000_write_3db_freq(st, val);
mutex_unlock(&st->lock);
return ret;
default:
return -EINVAL;
}
return ret;
}
/**
* sca3000_read_av_freq() - sysfs function to get available frequencies
* @dev: Device structure for this device.
* @attr: Description of the attribute.
* @buf: Incoming string
*
* The later modes are only relevant to the ring buffer - and depend on current
* mode. Note that data sheet gives rather wide tolerances for these so integer
* division will give good enough answer and not all chips have them specified
* at all.
**/
static ssize_t sca3000_read_av_freq(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct sca3000_state *st = iio_priv(indio_dev);
int len = 0, ret, val;
mutex_lock(&st->lock);
ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
val = st->rx[0];
mutex_unlock(&st->lock);
if (ret)
goto error_ret;
switch (val & SCA3000_REG_MODE_MODE_MASK) {
case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
len += sprintf(buf + len, "%d %d %d\n",
st->info->measurement_mode_freq,
st->info->measurement_mode_freq / 2,
st->info->measurement_mode_freq / 4);
break;
case SCA3000_REG_MODE_MEAS_MODE_OP_1:
len += sprintf(buf + len, "%d %d %d\n",
st->info->option_mode_1_freq,
st->info->option_mode_1_freq / 2,
st->info->option_mode_1_freq / 4);
break;
case SCA3000_REG_MODE_MEAS_MODE_OP_2:
len += sprintf(buf + len, "%d %d %d\n",
st->info->option_mode_2_freq,
st->info->option_mode_2_freq / 2,
st->info->option_mode_2_freq / 4);
break;
}
return len;
error_ret:
return ret;
}
/*
* Should only really be registered if ring buffer support is compiled in.
* Does no harm however and doing it right would add a fair bit of complexity
*/
static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
/**
* sca3000_read_event_value() - query of a threshold or period
**/
static int sca3000_read_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct sca3000_state *st = iio_priv(indio_dev);
long ret;
int i;
switch (info) {
case IIO_EV_INFO_VALUE:
mutex_lock(&st->lock);
ret = sca3000_read_ctrl_reg(st,
sca3000_addresses[chan->address][1]);
mutex_unlock(&st->lock);
if (ret < 0)
return ret;
*val = 0;
if (chan->channel2 == IIO_MOD_Y)
for_each_set_bit(i, &ret,
ARRAY_SIZE(st->info->mot_det_mult_y))
*val += st->info->mot_det_mult_y[i];
else
for_each_set_bit(i, &ret,
ARRAY_SIZE(st->info->mot_det_mult_xz))
*val += st->info->mot_det_mult_xz[i];
return IIO_VAL_INT;
case IIO_EV_INFO_PERIOD:
*val = 0;
*val2 = 226000;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
/**
* sca3000_write_value() - control of threshold and period
* @indio_dev: Device instance specific IIO information.
* @chan: Description of the channel for which the event is being
* configured.
* @type: The type of event being configured, here magnitude rising
* as everything else is read only.
* @dir: Direction of the event (here rising)
* @info: What information about the event are we configuring.
* Here the threshold only.
* @val: Integer part of the value being written..
* @val2: Non integer part of the value being written. Here always 0.
*/
static int sca3000_write_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct sca3000_state *st = iio_priv(indio_dev);
int ret;
int i;
u8 nonlinear = 0;
if (chan->channel2 == IIO_MOD_Y) {
i = ARRAY_SIZE(st->info->mot_det_mult_y);
while (i > 0)
if (val >= st->info->mot_det_mult_y[--i]) {
nonlinear |= (1 << i);
val -= st->info->mot_det_mult_y[i];
}
} else {
i = ARRAY_SIZE(st->info->mot_det_mult_xz);
while (i > 0)
if (val >= st->info->mot_det_mult_xz[--i]) {
nonlinear |= (1 << i);
val -= st->info->mot_det_mult_xz[i];
}
}
mutex_lock(&st->lock);
ret = sca3000_write_ctrl_reg(st,
sca3000_addresses[chan->address][1],
nonlinear);
mutex_unlock(&st->lock);
return ret;
}
static struct attribute *sca3000_attributes[] = {
&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group sca3000_attribute_group = {
.attrs = sca3000_attributes,
};
static int sca3000_read_data(struct sca3000_state *st,
u8 reg_address_high,
u8 *rx,
int len)
{
int ret;
struct spi_transfer xfer[2] = {
{
.len = 1,
.tx_buf = st->tx,
}, {
.len = len,
.rx_buf = rx,
}
};
st->tx[0] = SCA3000_READ_REG(reg_address_high);
ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
if (ret) {
dev_err(&st->us->dev, "problem reading register\n");
return ret;
}
return 0;
}
/**
* sca3000_ring_int_process() - ring specific interrupt handling.
* @val: Value of the interrupt status register.
* @indio_dev: Device instance specific IIO device structure.
*/
static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
{
struct sca3000_state *st = iio_priv(indio_dev);
int ret, i, num_available;
mutex_lock(&st->lock);
if (val & SCA3000_REG_INT_STATUS_HALF) {
ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1);
if (ret)
goto error_ret;
num_available = st->rx[0];
/*
* num_available is the total number of samples available
* i.e. number of time points * number of channels.
*/
ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
num_available * 2);
if (ret)
goto error_ret;
for (i = 0; i < num_available / 3; i++) {
/*
* Dirty hack to cover for 11 bit in fifo, 13 bit
* direct reading.
*
* In theory the bottom two bits are undefined.
* In reality they appear to always be 0.
*/
iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
}
}
error_ret:
mutex_unlock(&st->lock);
}
/**
* sca3000_event_handler() - handling ring and non ring events
* @irq: The irq being handled.
* @private: struct iio_device pointer for the device.
*
* Ring related interrupt handler. Depending on event, push to
* the ring buffer event chrdev or the event one.
*
* This function is complicated by the fact that the devices can signify ring
* and non ring events via the same interrupt line and they can only
* be distinguished via a read of the relevant status register.
*/
static irqreturn_t sca3000_event_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct sca3000_state *st = iio_priv(indio_dev);
int ret, val;
s64 last_timestamp = iio_get_time_ns(indio_dev);
/*
* Could lead if badly timed to an extra read of status reg,
* but ensures no interrupt is missed.
*/
mutex_lock(&st->lock);
ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
val = st->rx[0];
mutex_unlock(&st->lock);
if (ret)
goto done;
sca3000_ring_int_process(val, indio_dev);
if (val & SCA3000_INT_STATUS_FREE_FALL)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_X_AND_Y_AND_Z,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_FALLING),
last_timestamp);
if (val & SCA3000_INT_STATUS_Y_TRIGGER)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_Y,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_RISING),
last_timestamp);
if (val & SCA3000_INT_STATUS_X_TRIGGER)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_X,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_RISING),
last_timestamp);
if (val & SCA3000_INT_STATUS_Z_TRIGGER)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_Z,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_RISING),
last_timestamp);
done:
return IRQ_HANDLED;
}
/**
* sca3000_read_event_config() what events are enabled
**/
static int sca3000_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct sca3000_state *st = iio_priv(indio_dev);
int ret;
/* read current value of mode register */
mutex_lock(&st->lock);
ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
if (ret)
goto error_ret;
switch (chan->channel2) {
case IIO_MOD_X_AND_Y_AND_Z:
ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
break;
case IIO_MOD_X:
case IIO_MOD_Y:
case IIO_MOD_Z:
/*
* Motion detection mode cannot run at the same time as
* acceleration data being read.
*/
if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
!= SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
ret = 0;
} else {
ret = sca3000_read_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_MD_CTRL);
if (ret < 0)
goto error_ret;
/* only supporting logical or's for now */
ret = !!(ret & sca3000_addresses[chan->address][2]);
}
break;
default:
ret = -EINVAL;
}
error_ret:
mutex_unlock(&st->lock);
return ret;
}
static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
{
struct sca3000_state *st = iio_priv(indio_dev);
int ret;
/* read current value of mode register */
ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
if (ret)
return ret;
/* if off and should be on */
if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
/* if on and should be off */
else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
else
return 0;
}
static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
int state)
{
struct sca3000_state *st = iio_priv(indio_dev);
int ret, ctrlval;
/*
* First read the motion detector config to find out if
* this axis is on
*/
ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
if (ret < 0)
return ret;
ctrlval = ret;
/* if off and should be on */
if (state && !(ctrlval & sca3000_addresses[axis][2])) {
ret = sca3000_write_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_MD_CTRL,
ctrlval |
sca3000_addresses[axis][2]);
if (ret)
return ret;
st->mo_det_use_count++;
} else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
ret = sca3000_write_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_MD_CTRL,
ctrlval &
~(sca3000_addresses[axis][2]));
if (ret)
return ret;
st->mo_det_use_count--;
}
/* read current value of mode register */
ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
if (ret)
return ret;
/* if off and should be on */
if ((st->mo_det_use_count) &&
((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
!= SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
(st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
| SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
/* if on and should be off */
else if (!(st->mo_det_use_count) &&
((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
== SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
else
return 0;
}
/**
* sca3000_write_event_config() - simple on off control for motion detector
* @indio_dev: IIO device instance specific structure. Data specific to this
* particular driver may be accessed via iio_priv(indio_dev).
* @chan: Description of the channel whose event we are configuring.
* @type: The type of event.
* @dir: The direction of the event.
* @state: Desired state of event being configured.
*
* This is a per axis control, but enabling any will result in the
* motion detector unit being enabled.
* N.B. enabling motion detector stops normal data acquisition.
* There is a complexity in knowing which mode to return to when
* this mode is disabled. Currently normal mode is assumed.
**/
static int sca3000_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
int state)
{
struct sca3000_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
switch (chan->channel2) {
case IIO_MOD_X_AND_Y_AND_Z:
ret = sca3000_freefall_set_state(indio_dev, state);
break;
case IIO_MOD_X:
case IIO_MOD_Y:
case IIO_MOD_Z:
ret = sca3000_motion_detect_set_state(indio_dev,
chan->address,
state);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&st->lock);
return ret;
}
static int sca3000_configure_ring(struct iio_dev *indio_dev)
{
struct iio_buffer *buffer;
buffer = devm_iio_kfifo_allocate(&indio_dev->dev);
if (!buffer)
return -ENOMEM;
iio_device_attach_buffer(indio_dev, buffer);
indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
return 0;
}
static inline
int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
{
struct sca3000_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
if (ret)
goto error_ret;
if (state) {
dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
ret = sca3000_write_reg(st,
SCA3000_REG_MODE_ADDR,
(st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
} else
ret = sca3000_write_reg(st,
SCA3000_REG_MODE_ADDR,
(st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
error_ret:
mutex_unlock(&st->lock);
return ret;
}
/**
* sca3000_hw_ring_preenable() - hw ring buffer preenable function
* @indio_dev: structure representing the IIO device. Device instance
* specific state can be accessed via iio_priv(indio_dev).
*
* Very simple enable function as the chip will allows normal reads
* during ring buffer operation so as long as it is indeed running
* before we notify the core, the precise ordering does not matter.
*/
static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
{
int ret;
struct sca3000_state *st = iio_priv(indio_dev);
mutex_lock(&st->lock);
/* Enable the 50% full interrupt */
ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
if (ret)
goto error_unlock;
ret = sca3000_write_reg(st,
SCA3000_REG_INT_MASK_ADDR,
st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
if (ret)
goto error_unlock;
mutex_unlock(&st->lock);
return __sca3000_hw_ring_state_set(indio_dev, 1);
error_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
{
int ret;
struct sca3000_state *st = iio_priv(indio_dev);
ret = __sca3000_hw_ring_state_set(indio_dev, 0);
if (ret)
return ret;
/* Disable the 50% full interrupt */
mutex_lock(&st->lock);
ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
if (ret)
goto unlock;
ret = sca3000_write_reg(st,
SCA3000_REG_INT_MASK_ADDR,
st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
unlock:
mutex_unlock(&st->lock);
return ret;
}
static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
.preenable = &sca3000_hw_ring_preenable,
.postdisable = &sca3000_hw_ring_postdisable,
};
/**
* sca3000_clean_setup() - get the device into a predictable state
* @st: Device instance specific private data structure
*
* Devices use flash memory to store many of the register values
* and hence can come up in somewhat unpredictable states.
* Hence reset everything on driver load.
*/
static int sca3000_clean_setup(struct sca3000_state *st)
{
int ret;
mutex_lock(&st->lock);
/* Ensure all interrupts have been acknowledged */
ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
if (ret)
goto error_ret;
/* Turn off all motion detection channels */
ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
if (ret < 0)
goto error_ret;
ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
ret & SCA3000_MD_CTRL_PROT_MASK);
if (ret)
goto error_ret;
/* Disable ring buffer */
ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
if (ret < 0)
goto error_ret;
ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
(ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
| SCA3000_REG_OUT_CTRL_BUF_X_EN
| SCA3000_REG_OUT_CTRL_BUF_Y_EN
| SCA3000_REG_OUT_CTRL_BUF_Z_EN
| SCA3000_REG_OUT_CTRL_BUF_DIV_4);
if (ret)
goto error_ret;
/* Enable interrupts, relevant to mode and set up as active low */
ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
if (ret)
goto error_ret;
ret = sca3000_write_reg(st,
SCA3000_REG_INT_MASK_ADDR,
(ret & SCA3000_REG_INT_MASK_PROT_MASK)
| SCA3000_REG_INT_MASK_ACTIVE_LOW);
if (ret)
goto error_ret;
/*
* Select normal measurement mode, free fall off, ring off
* Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
* as that occurs in one of the example on the datasheet
*/
ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
if (ret)
goto error_ret;
ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
(st->rx[0] & SCA3000_MODE_PROT_MASK));
error_ret:
mutex_unlock(&st->lock);
return ret;
}
static const struct iio_info sca3000_info = {
.attrs = &sca3000_attribute_group,
.read_raw = &sca3000_read_raw,
.write_raw = &sca3000_write_raw,
.read_event_value = &sca3000_read_event_value,
.write_event_value = &sca3000_write_event_value,
.read_event_config = &sca3000_read_event_config,
.write_event_config = &sca3000_write_event_config,
};
static int sca3000_probe(struct spi_device *spi)
{
int ret;
struct sca3000_state *st;
struct iio_dev *indio_dev;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
spi_set_drvdata(spi, indio_dev);
st->us = spi;
mutex_init(&st->lock);
st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
->driver_data];
indio_dev->dev.parent = &spi->dev;
indio_dev->name = spi_get_device_id(spi)->name;
indio_dev->info = &sca3000_info;
if (st->info->temp_output) {
indio_dev->channels = sca3000_channels_with_temp;
indio_dev->num_channels =
ARRAY_SIZE(sca3000_channels_with_temp);
} else {
indio_dev->channels = sca3000_channels;
indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
}
indio_dev->modes = INDIO_DIRECT_MODE;
ret = sca3000_configure_ring(indio_dev);
if (ret)
return ret;
if (spi->irq) {
ret = request_threaded_irq(spi->irq,
NULL,
&sca3000_event_handler,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"sca3000",
indio_dev);
if (ret)
return ret;
}
indio_dev->setup_ops = &sca3000_ring_setup_ops;
ret = sca3000_clean_setup(st);
if (ret)
goto error_free_irq;
ret = sca3000_print_rev(indio_dev);
if (ret)
goto error_free_irq;
return iio_device_register(indio_dev);
error_free_irq:
if (spi->irq)
free_irq(spi->irq, indio_dev);
return ret;
}
static int sca3000_stop_all_interrupts(struct sca3000_state *st)
{
int ret;
mutex_lock(&st->lock);
ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
if (ret)
goto error_ret;
ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
(st->rx[0] &
~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
SCA3000_REG_INT_MASK_RING_HALF |
SCA3000_REG_INT_MASK_ALL_INTS)));
error_ret:
mutex_unlock(&st->lock);
return ret;
}
static int sca3000_remove(struct spi_device *spi)
{
struct iio_dev *indio_dev = spi_get_drvdata(spi);
struct sca3000_state *st = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
/* Must ensure no interrupts can be generated after this! */
sca3000_stop_all_interrupts(st);
if (spi->irq)
free_irq(spi->irq, indio_dev);
return 0;
}
static const struct spi_device_id sca3000_id[] = {
{"sca3000_d01", d01},
{"sca3000_e02", e02},
{"sca3000_e04", e04},
{"sca3000_e05", e05},
{}
};
MODULE_DEVICE_TABLE(spi, sca3000_id);
static struct spi_driver sca3000_driver = {
.driver = {
.name = "sca3000",
},
.probe = sca3000_probe,
.remove = sca3000_remove,
.id_table = sca3000_id,
};
module_spi_driver(sca3000_driver);
MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
MODULE_LICENSE("GPL v2");