2287 lines
64 KiB
C
2287 lines
64 KiB
C
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* Definitions for the AF_INET socket handler.
|
|
*
|
|
* Version: @(#)sock.h 1.0.4 05/13/93
|
|
*
|
|
* Authors: Ross Biro
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
|
* Corey Minyard <wf-rch!minyard@relay.EU.net>
|
|
* Florian La Roche <flla@stud.uni-sb.de>
|
|
*
|
|
* Fixes:
|
|
* Alan Cox : Volatiles in skbuff pointers. See
|
|
* skbuff comments. May be overdone,
|
|
* better to prove they can be removed
|
|
* than the reverse.
|
|
* Alan Cox : Added a zapped field for tcp to note
|
|
* a socket is reset and must stay shut up
|
|
* Alan Cox : New fields for options
|
|
* Pauline Middelink : identd support
|
|
* Alan Cox : Eliminate low level recv/recvfrom
|
|
* David S. Miller : New socket lookup architecture.
|
|
* Steve Whitehouse: Default routines for sock_ops
|
|
* Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
|
|
* protinfo be just a void pointer, as the
|
|
* protocol specific parts were moved to
|
|
* respective headers and ipv4/v6, etc now
|
|
* use private slabcaches for its socks
|
|
* Pedro Hortas : New flags field for socket options
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#ifndef _SOCK_H
|
|
#define _SOCK_H
|
|
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/list_nulls.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/skbuff.h> /* struct sk_buff */
|
|
#include <linux/mm.h>
|
|
#include <linux/security.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/res_counter.h>
|
|
#include <linux/static_key.h>
|
|
#include <linux/aio.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/filter.h>
|
|
#include <linux/rculist_nulls.h>
|
|
#include <linux/poll.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <net/dst.h>
|
|
#include <net/checksum.h>
|
|
|
|
struct cgroup;
|
|
struct cgroup_subsys;
|
|
#ifdef CONFIG_NET
|
|
int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
|
|
void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
|
|
#else
|
|
static inline
|
|
int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline
|
|
void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
|
|
{
|
|
}
|
|
#endif
|
|
/*
|
|
* This structure really needs to be cleaned up.
|
|
* Most of it is for TCP, and not used by any of
|
|
* the other protocols.
|
|
*/
|
|
|
|
/* Define this to get the SOCK_DBG debugging facility. */
|
|
#define SOCK_DEBUGGING
|
|
#ifdef SOCK_DEBUGGING
|
|
#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
|
|
printk(KERN_DEBUG msg); } while (0)
|
|
#else
|
|
/* Validate arguments and do nothing */
|
|
static inline __printf(2, 3)
|
|
void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* This is the per-socket lock. The spinlock provides a synchronization
|
|
* between user contexts and software interrupt processing, whereas the
|
|
* mini-semaphore synchronizes multiple users amongst themselves.
|
|
*/
|
|
typedef struct {
|
|
spinlock_t slock;
|
|
int owned;
|
|
wait_queue_head_t wq;
|
|
/*
|
|
* We express the mutex-alike socket_lock semantics
|
|
* to the lock validator by explicitly managing
|
|
* the slock as a lock variant (in addition to
|
|
* the slock itself):
|
|
*/
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
struct lockdep_map dep_map;
|
|
#endif
|
|
} socket_lock_t;
|
|
|
|
struct sock;
|
|
struct proto;
|
|
struct net;
|
|
|
|
typedef __u32 __bitwise __portpair;
|
|
typedef __u64 __bitwise __addrpair;
|
|
|
|
/**
|
|
* struct sock_common - minimal network layer representation of sockets
|
|
* @skc_daddr: Foreign IPv4 addr
|
|
* @skc_rcv_saddr: Bound local IPv4 addr
|
|
* @skc_hash: hash value used with various protocol lookup tables
|
|
* @skc_u16hashes: two u16 hash values used by UDP lookup tables
|
|
* @skc_dport: placeholder for inet_dport/tw_dport
|
|
* @skc_num: placeholder for inet_num/tw_num
|
|
* @skc_family: network address family
|
|
* @skc_state: Connection state
|
|
* @skc_reuse: %SO_REUSEADDR setting
|
|
* @skc_reuseport: %SO_REUSEPORT setting
|
|
* @skc_bound_dev_if: bound device index if != 0
|
|
* @skc_bind_node: bind hash linkage for various protocol lookup tables
|
|
* @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
|
|
* @skc_prot: protocol handlers inside a network family
|
|
* @skc_net: reference to the network namespace of this socket
|
|
* @skc_node: main hash linkage for various protocol lookup tables
|
|
* @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
|
|
* @skc_tx_queue_mapping: tx queue number for this connection
|
|
* @skc_refcnt: reference count
|
|
*
|
|
* This is the minimal network layer representation of sockets, the header
|
|
* for struct sock and struct inet_timewait_sock.
|
|
*/
|
|
struct sock_common {
|
|
/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
|
|
* address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
|
|
*/
|
|
union {
|
|
__addrpair skc_addrpair;
|
|
struct {
|
|
__be32 skc_daddr;
|
|
__be32 skc_rcv_saddr;
|
|
};
|
|
};
|
|
union {
|
|
unsigned int skc_hash;
|
|
__u16 skc_u16hashes[2];
|
|
};
|
|
/* skc_dport && skc_num must be grouped as well */
|
|
union {
|
|
__portpair skc_portpair;
|
|
struct {
|
|
__be16 skc_dport;
|
|
__u16 skc_num;
|
|
};
|
|
};
|
|
|
|
unsigned short skc_family;
|
|
volatile unsigned char skc_state;
|
|
unsigned char skc_reuse:4;
|
|
unsigned char skc_reuseport:4;
|
|
int skc_bound_dev_if;
|
|
union {
|
|
struct hlist_node skc_bind_node;
|
|
struct hlist_nulls_node skc_portaddr_node;
|
|
};
|
|
struct proto *skc_prot;
|
|
#ifdef CONFIG_NET_NS
|
|
struct net *skc_net;
|
|
#endif
|
|
/*
|
|
* fields between dontcopy_begin/dontcopy_end
|
|
* are not copied in sock_copy()
|
|
*/
|
|
/* private: */
|
|
int skc_dontcopy_begin[0];
|
|
/* public: */
|
|
union {
|
|
struct hlist_node skc_node;
|
|
struct hlist_nulls_node skc_nulls_node;
|
|
};
|
|
int skc_tx_queue_mapping;
|
|
atomic_t skc_refcnt;
|
|
/* private: */
|
|
int skc_dontcopy_end[0];
|
|
/* public: */
|
|
};
|
|
|
|
struct cg_proto;
|
|
/**
|
|
* struct sock - network layer representation of sockets
|
|
* @__sk_common: shared layout with inet_timewait_sock
|
|
* @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
|
|
* @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
|
|
* @sk_lock: synchronizer
|
|
* @sk_rcvbuf: size of receive buffer in bytes
|
|
* @sk_wq: sock wait queue and async head
|
|
* @sk_rx_dst: receive input route used by early tcp demux
|
|
* @sk_dst_cache: destination cache
|
|
* @sk_dst_lock: destination cache lock
|
|
* @sk_policy: flow policy
|
|
* @sk_receive_queue: incoming packets
|
|
* @sk_wmem_alloc: transmit queue bytes committed
|
|
* @sk_write_queue: Packet sending queue
|
|
* @sk_async_wait_queue: DMA copied packets
|
|
* @sk_omem_alloc: "o" is "option" or "other"
|
|
* @sk_wmem_queued: persistent queue size
|
|
* @sk_forward_alloc: space allocated forward
|
|
* @sk_napi_id: id of the last napi context to receive data for sk
|
|
* @sk_ll_usec: usecs to busypoll when there is no data
|
|
* @sk_allocation: allocation mode
|
|
* @sk_sndbuf: size of send buffer in bytes
|
|
* @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
|
|
* %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
|
|
* @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
|
|
* @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
|
|
* @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
|
|
* @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
|
|
* @sk_gso_max_size: Maximum GSO segment size to build
|
|
* @sk_gso_max_segs: Maximum number of GSO segments
|
|
* @sk_lingertime: %SO_LINGER l_linger setting
|
|
* @sk_backlog: always used with the per-socket spinlock held
|
|
* @sk_callback_lock: used with the callbacks in the end of this struct
|
|
* @sk_error_queue: rarely used
|
|
* @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
|
|
* IPV6_ADDRFORM for instance)
|
|
* @sk_err: last error
|
|
* @sk_err_soft: errors that don't cause failure but are the cause of a
|
|
* persistent failure not just 'timed out'
|
|
* @sk_drops: raw/udp drops counter
|
|
* @sk_ack_backlog: current listen backlog
|
|
* @sk_max_ack_backlog: listen backlog set in listen()
|
|
* @sk_priority: %SO_PRIORITY setting
|
|
* @sk_cgrp_prioidx: socket group's priority map index
|
|
* @sk_type: socket type (%SOCK_STREAM, etc)
|
|
* @sk_protocol: which protocol this socket belongs in this network family
|
|
* @sk_peer_pid: &struct pid for this socket's peer
|
|
* @sk_peer_cred: %SO_PEERCRED setting
|
|
* @sk_rcvlowat: %SO_RCVLOWAT setting
|
|
* @sk_rcvtimeo: %SO_RCVTIMEO setting
|
|
* @sk_sndtimeo: %SO_SNDTIMEO setting
|
|
* @sk_rxhash: flow hash received from netif layer
|
|
* @sk_filter: socket filtering instructions
|
|
* @sk_protinfo: private area, net family specific, when not using slab
|
|
* @sk_timer: sock cleanup timer
|
|
* @sk_stamp: time stamp of last packet received
|
|
* @sk_socket: Identd and reporting IO signals
|
|
* @sk_user_data: RPC layer private data
|
|
* @sk_frag: cached page frag
|
|
* @sk_peek_off: current peek_offset value
|
|
* @sk_send_head: front of stuff to transmit
|
|
* @sk_security: used by security modules
|
|
* @sk_mark: generic packet mark
|
|
* @sk_classid: this socket's cgroup classid
|
|
* @sk_cgrp: this socket's cgroup-specific proto data
|
|
* @sk_write_pending: a write to stream socket waits to start
|
|
* @sk_state_change: callback to indicate change in the state of the sock
|
|
* @sk_data_ready: callback to indicate there is data to be processed
|
|
* @sk_write_space: callback to indicate there is bf sending space available
|
|
* @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
|
|
* @sk_backlog_rcv: callback to process the backlog
|
|
* @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
|
|
*/
|
|
struct sock {
|
|
/*
|
|
* Now struct inet_timewait_sock also uses sock_common, so please just
|
|
* don't add nothing before this first member (__sk_common) --acme
|
|
*/
|
|
struct sock_common __sk_common;
|
|
#define sk_node __sk_common.skc_node
|
|
#define sk_nulls_node __sk_common.skc_nulls_node
|
|
#define sk_refcnt __sk_common.skc_refcnt
|
|
#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
|
|
|
|
#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
|
|
#define sk_dontcopy_end __sk_common.skc_dontcopy_end
|
|
#define sk_hash __sk_common.skc_hash
|
|
#define sk_family __sk_common.skc_family
|
|
#define sk_state __sk_common.skc_state
|
|
#define sk_reuse __sk_common.skc_reuse
|
|
#define sk_reuseport __sk_common.skc_reuseport
|
|
#define sk_bound_dev_if __sk_common.skc_bound_dev_if
|
|
#define sk_bind_node __sk_common.skc_bind_node
|
|
#define sk_prot __sk_common.skc_prot
|
|
#define sk_net __sk_common.skc_net
|
|
socket_lock_t sk_lock;
|
|
struct sk_buff_head sk_receive_queue;
|
|
/*
|
|
* The backlog queue is special, it is always used with
|
|
* the per-socket spinlock held and requires low latency
|
|
* access. Therefore we special case it's implementation.
|
|
* Note : rmem_alloc is in this structure to fill a hole
|
|
* on 64bit arches, not because its logically part of
|
|
* backlog.
|
|
*/
|
|
struct {
|
|
atomic_t rmem_alloc;
|
|
int len;
|
|
struct sk_buff *head;
|
|
struct sk_buff *tail;
|
|
} sk_backlog;
|
|
#define sk_rmem_alloc sk_backlog.rmem_alloc
|
|
int sk_forward_alloc;
|
|
#ifdef CONFIG_RPS
|
|
__u32 sk_rxhash;
|
|
#endif
|
|
#ifdef CONFIG_NET_RX_BUSY_POLL
|
|
unsigned int sk_napi_id;
|
|
unsigned int sk_ll_usec;
|
|
#endif
|
|
atomic_t sk_drops;
|
|
int sk_rcvbuf;
|
|
|
|
struct sk_filter __rcu *sk_filter;
|
|
struct socket_wq __rcu *sk_wq;
|
|
|
|
#ifdef CONFIG_NET_DMA
|
|
struct sk_buff_head sk_async_wait_queue;
|
|
#endif
|
|
|
|
#ifdef CONFIG_XFRM
|
|
struct xfrm_policy *sk_policy[2];
|
|
#endif
|
|
unsigned long sk_flags;
|
|
struct dst_entry *sk_rx_dst;
|
|
struct dst_entry __rcu *sk_dst_cache;
|
|
spinlock_t sk_dst_lock;
|
|
atomic_t sk_wmem_alloc;
|
|
atomic_t sk_omem_alloc;
|
|
int sk_sndbuf;
|
|
struct sk_buff_head sk_write_queue;
|
|
kmemcheck_bitfield_begin(flags);
|
|
unsigned int sk_shutdown : 2,
|
|
sk_no_check : 2,
|
|
sk_userlocks : 4,
|
|
sk_protocol : 8,
|
|
sk_type : 16;
|
|
kmemcheck_bitfield_end(flags);
|
|
int sk_wmem_queued;
|
|
gfp_t sk_allocation;
|
|
netdev_features_t sk_route_caps;
|
|
netdev_features_t sk_route_nocaps;
|
|
int sk_gso_type;
|
|
unsigned int sk_gso_max_size;
|
|
u16 sk_gso_max_segs;
|
|
int sk_rcvlowat;
|
|
unsigned long sk_lingertime;
|
|
struct sk_buff_head sk_error_queue;
|
|
struct proto *sk_prot_creator;
|
|
rwlock_t sk_callback_lock;
|
|
int sk_err,
|
|
sk_err_soft;
|
|
unsigned short sk_ack_backlog;
|
|
unsigned short sk_max_ack_backlog;
|
|
__u32 sk_priority;
|
|
#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
|
|
__u32 sk_cgrp_prioidx;
|
|
#endif
|
|
struct pid *sk_peer_pid;
|
|
const struct cred *sk_peer_cred;
|
|
long sk_rcvtimeo;
|
|
long sk_sndtimeo;
|
|
void *sk_protinfo;
|
|
struct timer_list sk_timer;
|
|
ktime_t sk_stamp;
|
|
struct socket *sk_socket;
|
|
void *sk_user_data;
|
|
struct page_frag sk_frag;
|
|
struct sk_buff *sk_send_head;
|
|
__s32 sk_peek_off;
|
|
int sk_write_pending;
|
|
#ifdef CONFIG_SECURITY
|
|
void *sk_security;
|
|
#endif
|
|
__u32 sk_mark;
|
|
u32 sk_classid;
|
|
struct cg_proto *sk_cgrp;
|
|
void (*sk_state_change)(struct sock *sk);
|
|
void (*sk_data_ready)(struct sock *sk, int bytes);
|
|
void (*sk_write_space)(struct sock *sk);
|
|
void (*sk_error_report)(struct sock *sk);
|
|
int (*sk_backlog_rcv)(struct sock *sk,
|
|
struct sk_buff *skb);
|
|
void (*sk_destruct)(struct sock *sk);
|
|
};
|
|
|
|
/*
|
|
* SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
|
|
* or not whether his port will be reused by someone else. SK_FORCE_REUSE
|
|
* on a socket means that the socket will reuse everybody else's port
|
|
* without looking at the other's sk_reuse value.
|
|
*/
|
|
|
|
#define SK_NO_REUSE 0
|
|
#define SK_CAN_REUSE 1
|
|
#define SK_FORCE_REUSE 2
|
|
|
|
static inline int sk_peek_offset(struct sock *sk, int flags)
|
|
{
|
|
if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
|
|
return sk->sk_peek_off;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline void sk_peek_offset_bwd(struct sock *sk, int val)
|
|
{
|
|
if (sk->sk_peek_off >= 0) {
|
|
if (sk->sk_peek_off >= val)
|
|
sk->sk_peek_off -= val;
|
|
else
|
|
sk->sk_peek_off = 0;
|
|
}
|
|
}
|
|
|
|
static inline void sk_peek_offset_fwd(struct sock *sk, int val)
|
|
{
|
|
if (sk->sk_peek_off >= 0)
|
|
sk->sk_peek_off += val;
|
|
}
|
|
|
|
/*
|
|
* Hashed lists helper routines
|
|
*/
|
|
static inline struct sock *sk_entry(const struct hlist_node *node)
|
|
{
|
|
return hlist_entry(node, struct sock, sk_node);
|
|
}
|
|
|
|
static inline struct sock *__sk_head(const struct hlist_head *head)
|
|
{
|
|
return hlist_entry(head->first, struct sock, sk_node);
|
|
}
|
|
|
|
static inline struct sock *sk_head(const struct hlist_head *head)
|
|
{
|
|
return hlist_empty(head) ? NULL : __sk_head(head);
|
|
}
|
|
|
|
static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
|
|
{
|
|
return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
|
|
}
|
|
|
|
static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
|
|
{
|
|
return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
|
|
}
|
|
|
|
static inline struct sock *sk_next(const struct sock *sk)
|
|
{
|
|
return sk->sk_node.next ?
|
|
hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
|
|
}
|
|
|
|
static inline struct sock *sk_nulls_next(const struct sock *sk)
|
|
{
|
|
return (!is_a_nulls(sk->sk_nulls_node.next)) ?
|
|
hlist_nulls_entry(sk->sk_nulls_node.next,
|
|
struct sock, sk_nulls_node) :
|
|
NULL;
|
|
}
|
|
|
|
static inline bool sk_unhashed(const struct sock *sk)
|
|
{
|
|
return hlist_unhashed(&sk->sk_node);
|
|
}
|
|
|
|
static inline bool sk_hashed(const struct sock *sk)
|
|
{
|
|
return !sk_unhashed(sk);
|
|
}
|
|
|
|
static inline void sk_node_init(struct hlist_node *node)
|
|
{
|
|
node->pprev = NULL;
|
|
}
|
|
|
|
static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
|
|
{
|
|
node->pprev = NULL;
|
|
}
|
|
|
|
static inline void __sk_del_node(struct sock *sk)
|
|
{
|
|
__hlist_del(&sk->sk_node);
|
|
}
|
|
|
|
/* NB: equivalent to hlist_del_init_rcu */
|
|
static inline bool __sk_del_node_init(struct sock *sk)
|
|
{
|
|
if (sk_hashed(sk)) {
|
|
__sk_del_node(sk);
|
|
sk_node_init(&sk->sk_node);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Grab socket reference count. This operation is valid only
|
|
when sk is ALREADY grabbed f.e. it is found in hash table
|
|
or a list and the lookup is made under lock preventing hash table
|
|
modifications.
|
|
*/
|
|
|
|
static inline void sock_hold(struct sock *sk)
|
|
{
|
|
atomic_inc(&sk->sk_refcnt);
|
|
}
|
|
|
|
/* Ungrab socket in the context, which assumes that socket refcnt
|
|
cannot hit zero, f.e. it is true in context of any socketcall.
|
|
*/
|
|
static inline void __sock_put(struct sock *sk)
|
|
{
|
|
atomic_dec(&sk->sk_refcnt);
|
|
}
|
|
|
|
static inline bool sk_del_node_init(struct sock *sk)
|
|
{
|
|
bool rc = __sk_del_node_init(sk);
|
|
|
|
if (rc) {
|
|
/* paranoid for a while -acme */
|
|
WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
|
|
__sock_put(sk);
|
|
}
|
|
return rc;
|
|
}
|
|
#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
|
|
|
|
static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
|
|
{
|
|
if (sk_hashed(sk)) {
|
|
hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
|
|
{
|
|
bool rc = __sk_nulls_del_node_init_rcu(sk);
|
|
|
|
if (rc) {
|
|
/* paranoid for a while -acme */
|
|
WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
|
|
__sock_put(sk);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
|
|
{
|
|
hlist_add_head(&sk->sk_node, list);
|
|
}
|
|
|
|
static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
|
|
{
|
|
sock_hold(sk);
|
|
__sk_add_node(sk, list);
|
|
}
|
|
|
|
static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
|
|
{
|
|
sock_hold(sk);
|
|
hlist_add_head_rcu(&sk->sk_node, list);
|
|
}
|
|
|
|
static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
|
|
{
|
|
hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
|
|
}
|
|
|
|
static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
|
|
{
|
|
sock_hold(sk);
|
|
__sk_nulls_add_node_rcu(sk, list);
|
|
}
|
|
|
|
static inline void __sk_del_bind_node(struct sock *sk)
|
|
{
|
|
__hlist_del(&sk->sk_bind_node);
|
|
}
|
|
|
|
static inline void sk_add_bind_node(struct sock *sk,
|
|
struct hlist_head *list)
|
|
{
|
|
hlist_add_head(&sk->sk_bind_node, list);
|
|
}
|
|
|
|
#define sk_for_each(__sk, list) \
|
|
hlist_for_each_entry(__sk, list, sk_node)
|
|
#define sk_for_each_rcu(__sk, list) \
|
|
hlist_for_each_entry_rcu(__sk, list, sk_node)
|
|
#define sk_nulls_for_each(__sk, node, list) \
|
|
hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
|
|
#define sk_nulls_for_each_rcu(__sk, node, list) \
|
|
hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
|
|
#define sk_for_each_from(__sk) \
|
|
hlist_for_each_entry_from(__sk, sk_node)
|
|
#define sk_nulls_for_each_from(__sk, node) \
|
|
if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
|
|
hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
|
|
#define sk_for_each_safe(__sk, tmp, list) \
|
|
hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
|
|
#define sk_for_each_bound(__sk, list) \
|
|
hlist_for_each_entry(__sk, list, sk_bind_node)
|
|
|
|
static inline struct user_namespace *sk_user_ns(struct sock *sk)
|
|
{
|
|
/* Careful only use this in a context where these parameters
|
|
* can not change and must all be valid, such as recvmsg from
|
|
* userspace.
|
|
*/
|
|
return sk->sk_socket->file->f_cred->user_ns;
|
|
}
|
|
|
|
/* Sock flags */
|
|
enum sock_flags {
|
|
SOCK_DEAD,
|
|
SOCK_DONE,
|
|
SOCK_URGINLINE,
|
|
SOCK_KEEPOPEN,
|
|
SOCK_LINGER,
|
|
SOCK_DESTROY,
|
|
SOCK_BROADCAST,
|
|
SOCK_TIMESTAMP,
|
|
SOCK_ZAPPED,
|
|
SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
|
|
SOCK_DBG, /* %SO_DEBUG setting */
|
|
SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
|
|
SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
|
|
SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
|
|
SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
|
|
SOCK_MEMALLOC, /* VM depends on this socket for swapping */
|
|
SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
|
|
SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
|
|
SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
|
|
SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
|
|
SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
|
|
SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
|
|
SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
|
|
SOCK_FASYNC, /* fasync() active */
|
|
SOCK_RXQ_OVFL,
|
|
SOCK_ZEROCOPY, /* buffers from userspace */
|
|
SOCK_WIFI_STATUS, /* push wifi status to userspace */
|
|
SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
|
|
* Will use last 4 bytes of packet sent from
|
|
* user-space instead.
|
|
*/
|
|
SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
|
|
SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
|
|
};
|
|
|
|
static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
|
|
{
|
|
nsk->sk_flags = osk->sk_flags;
|
|
}
|
|
|
|
static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
|
|
{
|
|
__set_bit(flag, &sk->sk_flags);
|
|
}
|
|
|
|
static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
|
|
{
|
|
__clear_bit(flag, &sk->sk_flags);
|
|
}
|
|
|
|
static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
|
|
{
|
|
return test_bit(flag, &sk->sk_flags);
|
|
}
|
|
|
|
#ifdef CONFIG_NET
|
|
extern struct static_key memalloc_socks;
|
|
static inline int sk_memalloc_socks(void)
|
|
{
|
|
return static_key_false(&memalloc_socks);
|
|
}
|
|
#else
|
|
|
|
static inline int sk_memalloc_socks(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
|
|
{
|
|
return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
|
|
}
|
|
|
|
static inline void sk_acceptq_removed(struct sock *sk)
|
|
{
|
|
sk->sk_ack_backlog--;
|
|
}
|
|
|
|
static inline void sk_acceptq_added(struct sock *sk)
|
|
{
|
|
sk->sk_ack_backlog++;
|
|
}
|
|
|
|
static inline bool sk_acceptq_is_full(const struct sock *sk)
|
|
{
|
|
return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
|
|
}
|
|
|
|
/*
|
|
* Compute minimal free write space needed to queue new packets.
|
|
*/
|
|
static inline int sk_stream_min_wspace(const struct sock *sk)
|
|
{
|
|
return sk->sk_wmem_queued >> 1;
|
|
}
|
|
|
|
static inline int sk_stream_wspace(const struct sock *sk)
|
|
{
|
|
return sk->sk_sndbuf - sk->sk_wmem_queued;
|
|
}
|
|
|
|
extern void sk_stream_write_space(struct sock *sk);
|
|
|
|
/* OOB backlog add */
|
|
static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
/* dont let skb dst not refcounted, we are going to leave rcu lock */
|
|
skb_dst_force(skb);
|
|
|
|
if (!sk->sk_backlog.tail)
|
|
sk->sk_backlog.head = skb;
|
|
else
|
|
sk->sk_backlog.tail->next = skb;
|
|
|
|
sk->sk_backlog.tail = skb;
|
|
skb->next = NULL;
|
|
}
|
|
|
|
/*
|
|
* Take into account size of receive queue and backlog queue
|
|
* Do not take into account this skb truesize,
|
|
* to allow even a single big packet to come.
|
|
*/
|
|
static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
|
|
unsigned int limit)
|
|
{
|
|
unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
|
|
|
|
return qsize > limit;
|
|
}
|
|
|
|
/* The per-socket spinlock must be held here. */
|
|
static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
|
|
unsigned int limit)
|
|
{
|
|
if (sk_rcvqueues_full(sk, skb, limit))
|
|
return -ENOBUFS;
|
|
|
|
__sk_add_backlog(sk, skb);
|
|
sk->sk_backlog.len += skb->truesize;
|
|
return 0;
|
|
}
|
|
|
|
extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
|
|
|
|
static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
if (sk_memalloc_socks() && skb_pfmemalloc(skb))
|
|
return __sk_backlog_rcv(sk, skb);
|
|
|
|
return sk->sk_backlog_rcv(sk, skb);
|
|
}
|
|
|
|
static inline void sock_rps_record_flow(const struct sock *sk)
|
|
{
|
|
#ifdef CONFIG_RPS
|
|
struct rps_sock_flow_table *sock_flow_table;
|
|
|
|
rcu_read_lock();
|
|
sock_flow_table = rcu_dereference(rps_sock_flow_table);
|
|
rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
|
|
rcu_read_unlock();
|
|
#endif
|
|
}
|
|
|
|
static inline void sock_rps_reset_flow(const struct sock *sk)
|
|
{
|
|
#ifdef CONFIG_RPS
|
|
struct rps_sock_flow_table *sock_flow_table;
|
|
|
|
rcu_read_lock();
|
|
sock_flow_table = rcu_dereference(rps_sock_flow_table);
|
|
rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
|
|
rcu_read_unlock();
|
|
#endif
|
|
}
|
|
|
|
static inline void sock_rps_save_rxhash(struct sock *sk,
|
|
const struct sk_buff *skb)
|
|
{
|
|
#ifdef CONFIG_RPS
|
|
if (unlikely(sk->sk_rxhash != skb->rxhash)) {
|
|
sock_rps_reset_flow(sk);
|
|
sk->sk_rxhash = skb->rxhash;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void sock_rps_reset_rxhash(struct sock *sk)
|
|
{
|
|
#ifdef CONFIG_RPS
|
|
sock_rps_reset_flow(sk);
|
|
sk->sk_rxhash = 0;
|
|
#endif
|
|
}
|
|
|
|
#define sk_wait_event(__sk, __timeo, __condition) \
|
|
({ int __rc; \
|
|
release_sock(__sk); \
|
|
__rc = __condition; \
|
|
if (!__rc) { \
|
|
*(__timeo) = schedule_timeout(*(__timeo)); \
|
|
} \
|
|
lock_sock(__sk); \
|
|
__rc = __condition; \
|
|
__rc; \
|
|
})
|
|
|
|
extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
|
|
extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
|
|
extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
|
|
extern int sk_stream_error(struct sock *sk, int flags, int err);
|
|
extern void sk_stream_kill_queues(struct sock *sk);
|
|
extern void sk_set_memalloc(struct sock *sk);
|
|
extern void sk_clear_memalloc(struct sock *sk);
|
|
|
|
extern int sk_wait_data(struct sock *sk, long *timeo);
|
|
|
|
struct request_sock_ops;
|
|
struct timewait_sock_ops;
|
|
struct inet_hashinfo;
|
|
struct raw_hashinfo;
|
|
struct module;
|
|
|
|
/*
|
|
* caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
|
|
* un-modified. Special care is taken when initializing object to zero.
|
|
*/
|
|
static inline void sk_prot_clear_nulls(struct sock *sk, int size)
|
|
{
|
|
if (offsetof(struct sock, sk_node.next) != 0)
|
|
memset(sk, 0, offsetof(struct sock, sk_node.next));
|
|
memset(&sk->sk_node.pprev, 0,
|
|
size - offsetof(struct sock, sk_node.pprev));
|
|
}
|
|
|
|
/* Networking protocol blocks we attach to sockets.
|
|
* socket layer -> transport layer interface
|
|
* transport -> network interface is defined by struct inet_proto
|
|
*/
|
|
struct proto {
|
|
void (*close)(struct sock *sk,
|
|
long timeout);
|
|
int (*connect)(struct sock *sk,
|
|
struct sockaddr *uaddr,
|
|
int addr_len);
|
|
int (*disconnect)(struct sock *sk, int flags);
|
|
|
|
struct sock * (*accept)(struct sock *sk, int flags, int *err);
|
|
|
|
int (*ioctl)(struct sock *sk, int cmd,
|
|
unsigned long arg);
|
|
int (*init)(struct sock *sk);
|
|
void (*destroy)(struct sock *sk);
|
|
void (*shutdown)(struct sock *sk, int how);
|
|
int (*setsockopt)(struct sock *sk, int level,
|
|
int optname, char __user *optval,
|
|
unsigned int optlen);
|
|
int (*getsockopt)(struct sock *sk, int level,
|
|
int optname, char __user *optval,
|
|
int __user *option);
|
|
#ifdef CONFIG_COMPAT
|
|
int (*compat_setsockopt)(struct sock *sk,
|
|
int level,
|
|
int optname, char __user *optval,
|
|
unsigned int optlen);
|
|
int (*compat_getsockopt)(struct sock *sk,
|
|
int level,
|
|
int optname, char __user *optval,
|
|
int __user *option);
|
|
int (*compat_ioctl)(struct sock *sk,
|
|
unsigned int cmd, unsigned long arg);
|
|
#endif
|
|
int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
|
|
struct msghdr *msg, size_t len);
|
|
int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
|
|
struct msghdr *msg,
|
|
size_t len, int noblock, int flags,
|
|
int *addr_len);
|
|
int (*sendpage)(struct sock *sk, struct page *page,
|
|
int offset, size_t size, int flags);
|
|
int (*bind)(struct sock *sk,
|
|
struct sockaddr *uaddr, int addr_len);
|
|
|
|
int (*backlog_rcv) (struct sock *sk,
|
|
struct sk_buff *skb);
|
|
|
|
void (*release_cb)(struct sock *sk);
|
|
void (*mtu_reduced)(struct sock *sk);
|
|
|
|
/* Keeping track of sk's, looking them up, and port selection methods. */
|
|
void (*hash)(struct sock *sk);
|
|
void (*unhash)(struct sock *sk);
|
|
void (*rehash)(struct sock *sk);
|
|
int (*get_port)(struct sock *sk, unsigned short snum);
|
|
void (*clear_sk)(struct sock *sk, int size);
|
|
|
|
/* Keeping track of sockets in use */
|
|
#ifdef CONFIG_PROC_FS
|
|
unsigned int inuse_idx;
|
|
#endif
|
|
|
|
bool (*stream_memory_free)(const struct sock *sk);
|
|
/* Memory pressure */
|
|
void (*enter_memory_pressure)(struct sock *sk);
|
|
atomic_long_t *memory_allocated; /* Current allocated memory. */
|
|
struct percpu_counter *sockets_allocated; /* Current number of sockets. */
|
|
/*
|
|
* Pressure flag: try to collapse.
|
|
* Technical note: it is used by multiple contexts non atomically.
|
|
* All the __sk_mem_schedule() is of this nature: accounting
|
|
* is strict, actions are advisory and have some latency.
|
|
*/
|
|
int *memory_pressure;
|
|
long *sysctl_mem;
|
|
int *sysctl_wmem;
|
|
int *sysctl_rmem;
|
|
int max_header;
|
|
bool no_autobind;
|
|
|
|
struct kmem_cache *slab;
|
|
unsigned int obj_size;
|
|
int slab_flags;
|
|
|
|
struct percpu_counter *orphan_count;
|
|
|
|
struct request_sock_ops *rsk_prot;
|
|
struct timewait_sock_ops *twsk_prot;
|
|
|
|
union {
|
|
struct inet_hashinfo *hashinfo;
|
|
struct udp_table *udp_table;
|
|
struct raw_hashinfo *raw_hash;
|
|
} h;
|
|
|
|
struct module *owner;
|
|
|
|
char name[32];
|
|
|
|
struct list_head node;
|
|
#ifdef SOCK_REFCNT_DEBUG
|
|
atomic_t socks;
|
|
#endif
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
/*
|
|
* cgroup specific init/deinit functions. Called once for all
|
|
* protocols that implement it, from cgroups populate function.
|
|
* This function has to setup any files the protocol want to
|
|
* appear in the kmem cgroup filesystem.
|
|
*/
|
|
int (*init_cgroup)(struct mem_cgroup *memcg,
|
|
struct cgroup_subsys *ss);
|
|
void (*destroy_cgroup)(struct mem_cgroup *memcg);
|
|
struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Bits in struct cg_proto.flags
|
|
*/
|
|
enum cg_proto_flags {
|
|
/* Currently active and new sockets should be assigned to cgroups */
|
|
MEMCG_SOCK_ACTIVE,
|
|
/* It was ever activated; we must disarm static keys on destruction */
|
|
MEMCG_SOCK_ACTIVATED,
|
|
};
|
|
|
|
struct cg_proto {
|
|
void (*enter_memory_pressure)(struct sock *sk);
|
|
struct res_counter *memory_allocated; /* Current allocated memory. */
|
|
struct percpu_counter *sockets_allocated; /* Current number of sockets. */
|
|
int *memory_pressure;
|
|
long *sysctl_mem;
|
|
unsigned long flags;
|
|
/*
|
|
* memcg field is used to find which memcg we belong directly
|
|
* Each memcg struct can hold more than one cg_proto, so container_of
|
|
* won't really cut.
|
|
*
|
|
* The elegant solution would be having an inverse function to
|
|
* proto_cgroup in struct proto, but that means polluting the structure
|
|
* for everybody, instead of just for memcg users.
|
|
*/
|
|
struct mem_cgroup *memcg;
|
|
};
|
|
|
|
extern int proto_register(struct proto *prot, int alloc_slab);
|
|
extern void proto_unregister(struct proto *prot);
|
|
|
|
static inline bool memcg_proto_active(struct cg_proto *cg_proto)
|
|
{
|
|
return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
|
|
}
|
|
|
|
static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
|
|
{
|
|
return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
|
|
}
|
|
|
|
#ifdef SOCK_REFCNT_DEBUG
|
|
static inline void sk_refcnt_debug_inc(struct sock *sk)
|
|
{
|
|
atomic_inc(&sk->sk_prot->socks);
|
|
}
|
|
|
|
static inline void sk_refcnt_debug_dec(struct sock *sk)
|
|
{
|
|
atomic_dec(&sk->sk_prot->socks);
|
|
printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
|
|
sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
|
|
}
|
|
|
|
static inline void sk_refcnt_debug_release(const struct sock *sk)
|
|
{
|
|
if (atomic_read(&sk->sk_refcnt) != 1)
|
|
printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
|
|
sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
|
|
}
|
|
#else /* SOCK_REFCNT_DEBUG */
|
|
#define sk_refcnt_debug_inc(sk) do { } while (0)
|
|
#define sk_refcnt_debug_dec(sk) do { } while (0)
|
|
#define sk_refcnt_debug_release(sk) do { } while (0)
|
|
#endif /* SOCK_REFCNT_DEBUG */
|
|
|
|
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
|
|
extern struct static_key memcg_socket_limit_enabled;
|
|
static inline struct cg_proto *parent_cg_proto(struct proto *proto,
|
|
struct cg_proto *cg_proto)
|
|
{
|
|
return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
|
|
}
|
|
#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
|
|
#else
|
|
#define mem_cgroup_sockets_enabled 0
|
|
static inline struct cg_proto *parent_cg_proto(struct proto *proto,
|
|
struct cg_proto *cg_proto)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static inline bool sk_stream_memory_free(const struct sock *sk)
|
|
{
|
|
if (sk->sk_wmem_queued >= sk->sk_sndbuf)
|
|
return false;
|
|
|
|
return sk->sk_prot->stream_memory_free ?
|
|
sk->sk_prot->stream_memory_free(sk) : true;
|
|
}
|
|
|
|
static inline bool sk_stream_is_writeable(const struct sock *sk)
|
|
{
|
|
return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
|
|
sk_stream_memory_free(sk);
|
|
}
|
|
|
|
|
|
static inline bool sk_has_memory_pressure(const struct sock *sk)
|
|
{
|
|
return sk->sk_prot->memory_pressure != NULL;
|
|
}
|
|
|
|
static inline bool sk_under_memory_pressure(const struct sock *sk)
|
|
{
|
|
if (!sk->sk_prot->memory_pressure)
|
|
return false;
|
|
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
|
|
return !!*sk->sk_cgrp->memory_pressure;
|
|
|
|
return !!*sk->sk_prot->memory_pressure;
|
|
}
|
|
|
|
static inline void sk_leave_memory_pressure(struct sock *sk)
|
|
{
|
|
int *memory_pressure = sk->sk_prot->memory_pressure;
|
|
|
|
if (!memory_pressure)
|
|
return;
|
|
|
|
if (*memory_pressure)
|
|
*memory_pressure = 0;
|
|
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
|
|
struct cg_proto *cg_proto = sk->sk_cgrp;
|
|
struct proto *prot = sk->sk_prot;
|
|
|
|
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
|
|
if (*cg_proto->memory_pressure)
|
|
*cg_proto->memory_pressure = 0;
|
|
}
|
|
|
|
}
|
|
|
|
static inline void sk_enter_memory_pressure(struct sock *sk)
|
|
{
|
|
if (!sk->sk_prot->enter_memory_pressure)
|
|
return;
|
|
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
|
|
struct cg_proto *cg_proto = sk->sk_cgrp;
|
|
struct proto *prot = sk->sk_prot;
|
|
|
|
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
|
|
cg_proto->enter_memory_pressure(sk);
|
|
}
|
|
|
|
sk->sk_prot->enter_memory_pressure(sk);
|
|
}
|
|
|
|
static inline long sk_prot_mem_limits(const struct sock *sk, int index)
|
|
{
|
|
long *prot = sk->sk_prot->sysctl_mem;
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
|
|
prot = sk->sk_cgrp->sysctl_mem;
|
|
return prot[index];
|
|
}
|
|
|
|
static inline void memcg_memory_allocated_add(struct cg_proto *prot,
|
|
unsigned long amt,
|
|
int *parent_status)
|
|
{
|
|
struct res_counter *fail;
|
|
int ret;
|
|
|
|
ret = res_counter_charge_nofail(prot->memory_allocated,
|
|
amt << PAGE_SHIFT, &fail);
|
|
if (ret < 0)
|
|
*parent_status = OVER_LIMIT;
|
|
}
|
|
|
|
static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
|
|
unsigned long amt)
|
|
{
|
|
res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
|
|
}
|
|
|
|
static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
|
|
{
|
|
u64 ret;
|
|
ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
|
|
return ret >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline long
|
|
sk_memory_allocated(const struct sock *sk)
|
|
{
|
|
struct proto *prot = sk->sk_prot;
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
|
|
return memcg_memory_allocated_read(sk->sk_cgrp);
|
|
|
|
return atomic_long_read(prot->memory_allocated);
|
|
}
|
|
|
|
static inline long
|
|
sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
|
|
{
|
|
struct proto *prot = sk->sk_prot;
|
|
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
|
|
memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
|
|
/* update the root cgroup regardless */
|
|
atomic_long_add_return(amt, prot->memory_allocated);
|
|
return memcg_memory_allocated_read(sk->sk_cgrp);
|
|
}
|
|
|
|
return atomic_long_add_return(amt, prot->memory_allocated);
|
|
}
|
|
|
|
static inline void
|
|
sk_memory_allocated_sub(struct sock *sk, int amt)
|
|
{
|
|
struct proto *prot = sk->sk_prot;
|
|
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
|
|
memcg_memory_allocated_sub(sk->sk_cgrp, amt);
|
|
|
|
atomic_long_sub(amt, prot->memory_allocated);
|
|
}
|
|
|
|
static inline void sk_sockets_allocated_dec(struct sock *sk)
|
|
{
|
|
struct proto *prot = sk->sk_prot;
|
|
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
|
|
struct cg_proto *cg_proto = sk->sk_cgrp;
|
|
|
|
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
|
|
percpu_counter_dec(cg_proto->sockets_allocated);
|
|
}
|
|
|
|
percpu_counter_dec(prot->sockets_allocated);
|
|
}
|
|
|
|
static inline void sk_sockets_allocated_inc(struct sock *sk)
|
|
{
|
|
struct proto *prot = sk->sk_prot;
|
|
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
|
|
struct cg_proto *cg_proto = sk->sk_cgrp;
|
|
|
|
for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
|
|
percpu_counter_inc(cg_proto->sockets_allocated);
|
|
}
|
|
|
|
percpu_counter_inc(prot->sockets_allocated);
|
|
}
|
|
|
|
static inline int
|
|
sk_sockets_allocated_read_positive(struct sock *sk)
|
|
{
|
|
struct proto *prot = sk->sk_prot;
|
|
|
|
if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
|
|
return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
|
|
|
|
return percpu_counter_read_positive(prot->sockets_allocated);
|
|
}
|
|
|
|
static inline int
|
|
proto_sockets_allocated_sum_positive(struct proto *prot)
|
|
{
|
|
return percpu_counter_sum_positive(prot->sockets_allocated);
|
|
}
|
|
|
|
static inline long
|
|
proto_memory_allocated(struct proto *prot)
|
|
{
|
|
return atomic_long_read(prot->memory_allocated);
|
|
}
|
|
|
|
static inline bool
|
|
proto_memory_pressure(struct proto *prot)
|
|
{
|
|
if (!prot->memory_pressure)
|
|
return false;
|
|
return !!*prot->memory_pressure;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/* Called with local bh disabled */
|
|
extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
|
|
extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
|
|
#else
|
|
static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
|
|
int inc)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
|
|
/* With per-bucket locks this operation is not-atomic, so that
|
|
* this version is not worse.
|
|
*/
|
|
static inline void __sk_prot_rehash(struct sock *sk)
|
|
{
|
|
sk->sk_prot->unhash(sk);
|
|
sk->sk_prot->hash(sk);
|
|
}
|
|
|
|
void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
|
|
|
|
/* About 10 seconds */
|
|
#define SOCK_DESTROY_TIME (10*HZ)
|
|
|
|
/* Sockets 0-1023 can't be bound to unless you are superuser */
|
|
#define PROT_SOCK 1024
|
|
|
|
#define SHUTDOWN_MASK 3
|
|
#define RCV_SHUTDOWN 1
|
|
#define SEND_SHUTDOWN 2
|
|
|
|
#define SOCK_SNDBUF_LOCK 1
|
|
#define SOCK_RCVBUF_LOCK 2
|
|
#define SOCK_BINDADDR_LOCK 4
|
|
#define SOCK_BINDPORT_LOCK 8
|
|
|
|
/* sock_iocb: used to kick off async processing of socket ios */
|
|
struct sock_iocb {
|
|
struct list_head list;
|
|
|
|
int flags;
|
|
int size;
|
|
struct socket *sock;
|
|
struct sock *sk;
|
|
struct scm_cookie *scm;
|
|
struct msghdr *msg, async_msg;
|
|
struct kiocb *kiocb;
|
|
};
|
|
|
|
static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
|
|
{
|
|
return (struct sock_iocb *)iocb->private;
|
|
}
|
|
|
|
static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
|
|
{
|
|
return si->kiocb;
|
|
}
|
|
|
|
struct socket_alloc {
|
|
struct socket socket;
|
|
struct inode vfs_inode;
|
|
};
|
|
|
|
static inline struct socket *SOCKET_I(struct inode *inode)
|
|
{
|
|
return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
|
|
}
|
|
|
|
static inline struct inode *SOCK_INODE(struct socket *socket)
|
|
{
|
|
return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
|
|
}
|
|
|
|
/*
|
|
* Functions for memory accounting
|
|
*/
|
|
extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
|
|
extern void __sk_mem_reclaim(struct sock *sk);
|
|
|
|
#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
|
|
#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
|
|
#define SK_MEM_SEND 0
|
|
#define SK_MEM_RECV 1
|
|
|
|
static inline int sk_mem_pages(int amt)
|
|
{
|
|
return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
|
|
}
|
|
|
|
static inline bool sk_has_account(struct sock *sk)
|
|
{
|
|
/* return true if protocol supports memory accounting */
|
|
return !!sk->sk_prot->memory_allocated;
|
|
}
|
|
|
|
static inline bool sk_wmem_schedule(struct sock *sk, int size)
|
|
{
|
|
if (!sk_has_account(sk))
|
|
return true;
|
|
return size <= sk->sk_forward_alloc ||
|
|
__sk_mem_schedule(sk, size, SK_MEM_SEND);
|
|
}
|
|
|
|
static inline bool
|
|
sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
|
|
{
|
|
if (!sk_has_account(sk))
|
|
return true;
|
|
return size<= sk->sk_forward_alloc ||
|
|
__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
|
|
skb_pfmemalloc(skb);
|
|
}
|
|
|
|
static inline void sk_mem_reclaim(struct sock *sk)
|
|
{
|
|
if (!sk_has_account(sk))
|
|
return;
|
|
if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
|
|
__sk_mem_reclaim(sk);
|
|
}
|
|
|
|
static inline void sk_mem_reclaim_partial(struct sock *sk)
|
|
{
|
|
if (!sk_has_account(sk))
|
|
return;
|
|
if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
|
|
__sk_mem_reclaim(sk);
|
|
}
|
|
|
|
static inline void sk_mem_charge(struct sock *sk, int size)
|
|
{
|
|
if (!sk_has_account(sk))
|
|
return;
|
|
sk->sk_forward_alloc -= size;
|
|
}
|
|
|
|
static inline void sk_mem_uncharge(struct sock *sk, int size)
|
|
{
|
|
if (!sk_has_account(sk))
|
|
return;
|
|
sk->sk_forward_alloc += size;
|
|
}
|
|
|
|
static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
|
|
sk->sk_wmem_queued -= skb->truesize;
|
|
sk_mem_uncharge(sk, skb->truesize);
|
|
__kfree_skb(skb);
|
|
}
|
|
|
|
/* Used by processes to "lock" a socket state, so that
|
|
* interrupts and bottom half handlers won't change it
|
|
* from under us. It essentially blocks any incoming
|
|
* packets, so that we won't get any new data or any
|
|
* packets that change the state of the socket.
|
|
*
|
|
* While locked, BH processing will add new packets to
|
|
* the backlog queue. This queue is processed by the
|
|
* owner of the socket lock right before it is released.
|
|
*
|
|
* Since ~2.3.5 it is also exclusive sleep lock serializing
|
|
* accesses from user process context.
|
|
*/
|
|
#define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
|
|
|
|
/*
|
|
* Macro so as to not evaluate some arguments when
|
|
* lockdep is not enabled.
|
|
*
|
|
* Mark both the sk_lock and the sk_lock.slock as a
|
|
* per-address-family lock class.
|
|
*/
|
|
#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
|
|
do { \
|
|
sk->sk_lock.owned = 0; \
|
|
init_waitqueue_head(&sk->sk_lock.wq); \
|
|
spin_lock_init(&(sk)->sk_lock.slock); \
|
|
debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
|
|
sizeof((sk)->sk_lock)); \
|
|
lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
|
|
(skey), (sname)); \
|
|
lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
|
|
} while (0)
|
|
|
|
extern void lock_sock_nested(struct sock *sk, int subclass);
|
|
|
|
static inline void lock_sock(struct sock *sk)
|
|
{
|
|
lock_sock_nested(sk, 0);
|
|
}
|
|
|
|
extern void release_sock(struct sock *sk);
|
|
|
|
/* BH context may only use the following locking interface. */
|
|
#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
|
|
#define bh_lock_sock_nested(__sk) \
|
|
spin_lock_nested(&((__sk)->sk_lock.slock), \
|
|
SINGLE_DEPTH_NESTING)
|
|
#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
|
|
|
|
extern bool lock_sock_fast(struct sock *sk);
|
|
/**
|
|
* unlock_sock_fast - complement of lock_sock_fast
|
|
* @sk: socket
|
|
* @slow: slow mode
|
|
*
|
|
* fast unlock socket for user context.
|
|
* If slow mode is on, we call regular release_sock()
|
|
*/
|
|
static inline void unlock_sock_fast(struct sock *sk, bool slow)
|
|
{
|
|
if (slow)
|
|
release_sock(sk);
|
|
else
|
|
spin_unlock_bh(&sk->sk_lock.slock);
|
|
}
|
|
|
|
|
|
extern struct sock *sk_alloc(struct net *net, int family,
|
|
gfp_t priority,
|
|
struct proto *prot);
|
|
extern void sk_free(struct sock *sk);
|
|
extern void sk_release_kernel(struct sock *sk);
|
|
extern struct sock *sk_clone_lock(const struct sock *sk,
|
|
const gfp_t priority);
|
|
|
|
extern struct sk_buff *sock_wmalloc(struct sock *sk,
|
|
unsigned long size, int force,
|
|
gfp_t priority);
|
|
extern struct sk_buff *sock_rmalloc(struct sock *sk,
|
|
unsigned long size, int force,
|
|
gfp_t priority);
|
|
extern void sock_wfree(struct sk_buff *skb);
|
|
extern void skb_orphan_partial(struct sk_buff *skb);
|
|
extern void sock_rfree(struct sk_buff *skb);
|
|
extern void sock_edemux(struct sk_buff *skb);
|
|
|
|
extern int sock_setsockopt(struct socket *sock, int level,
|
|
int op, char __user *optval,
|
|
unsigned int optlen);
|
|
|
|
extern int sock_getsockopt(struct socket *sock, int level,
|
|
int op, char __user *optval,
|
|
int __user *optlen);
|
|
extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
|
|
unsigned long size,
|
|
int noblock,
|
|
int *errcode);
|
|
extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
|
|
unsigned long header_len,
|
|
unsigned long data_len,
|
|
int noblock,
|
|
int *errcode,
|
|
int max_page_order);
|
|
extern void *sock_kmalloc(struct sock *sk, int size,
|
|
gfp_t priority);
|
|
extern void sock_kfree_s(struct sock *sk, void *mem, int size);
|
|
extern void sk_send_sigurg(struct sock *sk);
|
|
|
|
/*
|
|
* Functions to fill in entries in struct proto_ops when a protocol
|
|
* does not implement a particular function.
|
|
*/
|
|
extern int sock_no_bind(struct socket *,
|
|
struct sockaddr *, int);
|
|
extern int sock_no_connect(struct socket *,
|
|
struct sockaddr *, int, int);
|
|
extern int sock_no_socketpair(struct socket *,
|
|
struct socket *);
|
|
extern int sock_no_accept(struct socket *,
|
|
struct socket *, int);
|
|
extern int sock_no_getname(struct socket *,
|
|
struct sockaddr *, int *, int);
|
|
extern unsigned int sock_no_poll(struct file *, struct socket *,
|
|
struct poll_table_struct *);
|
|
extern int sock_no_ioctl(struct socket *, unsigned int,
|
|
unsigned long);
|
|
extern int sock_no_listen(struct socket *, int);
|
|
extern int sock_no_shutdown(struct socket *, int);
|
|
extern int sock_no_getsockopt(struct socket *, int , int,
|
|
char __user *, int __user *);
|
|
extern int sock_no_setsockopt(struct socket *, int, int,
|
|
char __user *, unsigned int);
|
|
extern int sock_no_sendmsg(struct kiocb *, struct socket *,
|
|
struct msghdr *, size_t);
|
|
extern int sock_no_recvmsg(struct kiocb *, struct socket *,
|
|
struct msghdr *, size_t, int);
|
|
extern int sock_no_mmap(struct file *file,
|
|
struct socket *sock,
|
|
struct vm_area_struct *vma);
|
|
extern ssize_t sock_no_sendpage(struct socket *sock,
|
|
struct page *page,
|
|
int offset, size_t size,
|
|
int flags);
|
|
|
|
/*
|
|
* Functions to fill in entries in struct proto_ops when a protocol
|
|
* uses the inet style.
|
|
*/
|
|
extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, int __user *optlen);
|
|
extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
|
|
struct msghdr *msg, size_t size, int flags);
|
|
extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, unsigned int optlen);
|
|
extern int compat_sock_common_getsockopt(struct socket *sock, int level,
|
|
int optname, char __user *optval, int __user *optlen);
|
|
extern int compat_sock_common_setsockopt(struct socket *sock, int level,
|
|
int optname, char __user *optval, unsigned int optlen);
|
|
|
|
extern void sk_common_release(struct sock *sk);
|
|
|
|
/*
|
|
* Default socket callbacks and setup code
|
|
*/
|
|
|
|
/* Initialise core socket variables */
|
|
extern void sock_init_data(struct socket *sock, struct sock *sk);
|
|
|
|
extern void sk_filter_release_rcu(struct rcu_head *rcu);
|
|
|
|
/**
|
|
* sk_filter_release - release a socket filter
|
|
* @fp: filter to remove
|
|
*
|
|
* Remove a filter from a socket and release its resources.
|
|
*/
|
|
|
|
static inline void sk_filter_release(struct sk_filter *fp)
|
|
{
|
|
if (atomic_dec_and_test(&fp->refcnt))
|
|
call_rcu(&fp->rcu, sk_filter_release_rcu);
|
|
}
|
|
|
|
static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
|
|
{
|
|
unsigned int size = sk_filter_len(fp);
|
|
|
|
atomic_sub(size, &sk->sk_omem_alloc);
|
|
sk_filter_release(fp);
|
|
}
|
|
|
|
static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
|
|
{
|
|
atomic_inc(&fp->refcnt);
|
|
atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
|
|
}
|
|
|
|
/*
|
|
* Socket reference counting postulates.
|
|
*
|
|
* * Each user of socket SHOULD hold a reference count.
|
|
* * Each access point to socket (an hash table bucket, reference from a list,
|
|
* running timer, skb in flight MUST hold a reference count.
|
|
* * When reference count hits 0, it means it will never increase back.
|
|
* * When reference count hits 0, it means that no references from
|
|
* outside exist to this socket and current process on current CPU
|
|
* is last user and may/should destroy this socket.
|
|
* * sk_free is called from any context: process, BH, IRQ. When
|
|
* it is called, socket has no references from outside -> sk_free
|
|
* may release descendant resources allocated by the socket, but
|
|
* to the time when it is called, socket is NOT referenced by any
|
|
* hash tables, lists etc.
|
|
* * Packets, delivered from outside (from network or from another process)
|
|
* and enqueued on receive/error queues SHOULD NOT grab reference count,
|
|
* when they sit in queue. Otherwise, packets will leak to hole, when
|
|
* socket is looked up by one cpu and unhasing is made by another CPU.
|
|
* It is true for udp/raw, netlink (leak to receive and error queues), tcp
|
|
* (leak to backlog). Packet socket does all the processing inside
|
|
* BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
|
|
* use separate SMP lock, so that they are prone too.
|
|
*/
|
|
|
|
/* Ungrab socket and destroy it, if it was the last reference. */
|
|
static inline void sock_put(struct sock *sk)
|
|
{
|
|
if (atomic_dec_and_test(&sk->sk_refcnt))
|
|
sk_free(sk);
|
|
}
|
|
|
|
extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
|
|
const int nested);
|
|
|
|
static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
|
|
{
|
|
sk->sk_tx_queue_mapping = tx_queue;
|
|
}
|
|
|
|
static inline void sk_tx_queue_clear(struct sock *sk)
|
|
{
|
|
sk->sk_tx_queue_mapping = -1;
|
|
}
|
|
|
|
static inline int sk_tx_queue_get(const struct sock *sk)
|
|
{
|
|
return sk ? sk->sk_tx_queue_mapping : -1;
|
|
}
|
|
|
|
static inline void sk_set_socket(struct sock *sk, struct socket *sock)
|
|
{
|
|
sk_tx_queue_clear(sk);
|
|
sk->sk_socket = sock;
|
|
}
|
|
|
|
static inline wait_queue_head_t *sk_sleep(struct sock *sk)
|
|
{
|
|
BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
|
|
return &rcu_dereference_raw(sk->sk_wq)->wait;
|
|
}
|
|
/* Detach socket from process context.
|
|
* Announce socket dead, detach it from wait queue and inode.
|
|
* Note that parent inode held reference count on this struct sock,
|
|
* we do not release it in this function, because protocol
|
|
* probably wants some additional cleanups or even continuing
|
|
* to work with this socket (TCP).
|
|
*/
|
|
static inline void sock_orphan(struct sock *sk)
|
|
{
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sock_set_flag(sk, SOCK_DEAD);
|
|
sk_set_socket(sk, NULL);
|
|
sk->sk_wq = NULL;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
|
|
static inline void sock_graft(struct sock *sk, struct socket *parent)
|
|
{
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sk->sk_wq = parent->wq;
|
|
parent->sk = sk;
|
|
sk_set_socket(sk, parent);
|
|
security_sock_graft(sk, parent);
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
|
|
extern kuid_t sock_i_uid(struct sock *sk);
|
|
extern unsigned long sock_i_ino(struct sock *sk);
|
|
|
|
static inline struct dst_entry *
|
|
__sk_dst_get(struct sock *sk)
|
|
{
|
|
return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
|
|
lockdep_is_held(&sk->sk_lock.slock));
|
|
}
|
|
|
|
static inline struct dst_entry *
|
|
sk_dst_get(struct sock *sk)
|
|
{
|
|
struct dst_entry *dst;
|
|
|
|
rcu_read_lock();
|
|
dst = rcu_dereference(sk->sk_dst_cache);
|
|
if (dst)
|
|
dst_hold(dst);
|
|
rcu_read_unlock();
|
|
return dst;
|
|
}
|
|
|
|
extern void sk_reset_txq(struct sock *sk);
|
|
|
|
static inline void dst_negative_advice(struct sock *sk)
|
|
{
|
|
struct dst_entry *ndst, *dst = __sk_dst_get(sk);
|
|
|
|
if (dst && dst->ops->negative_advice) {
|
|
ndst = dst->ops->negative_advice(dst);
|
|
|
|
if (ndst != dst) {
|
|
rcu_assign_pointer(sk->sk_dst_cache, ndst);
|
|
sk_reset_txq(sk);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
__sk_dst_set(struct sock *sk, struct dst_entry *dst)
|
|
{
|
|
struct dst_entry *old_dst;
|
|
|
|
sk_tx_queue_clear(sk);
|
|
/*
|
|
* This can be called while sk is owned by the caller only,
|
|
* with no state that can be checked in a rcu_dereference_check() cond
|
|
*/
|
|
old_dst = rcu_dereference_raw(sk->sk_dst_cache);
|
|
rcu_assign_pointer(sk->sk_dst_cache, dst);
|
|
dst_release(old_dst);
|
|
}
|
|
|
|
static inline void
|
|
sk_dst_set(struct sock *sk, struct dst_entry *dst)
|
|
{
|
|
spin_lock(&sk->sk_dst_lock);
|
|
__sk_dst_set(sk, dst);
|
|
spin_unlock(&sk->sk_dst_lock);
|
|
}
|
|
|
|
static inline void
|
|
__sk_dst_reset(struct sock *sk)
|
|
{
|
|
__sk_dst_set(sk, NULL);
|
|
}
|
|
|
|
static inline void
|
|
sk_dst_reset(struct sock *sk)
|
|
{
|
|
spin_lock(&sk->sk_dst_lock);
|
|
__sk_dst_reset(sk);
|
|
spin_unlock(&sk->sk_dst_lock);
|
|
}
|
|
|
|
extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
|
|
|
|
extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
|
|
|
|
static inline bool sk_can_gso(const struct sock *sk)
|
|
{
|
|
return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
|
|
}
|
|
|
|
extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
|
|
|
|
static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
|
|
{
|
|
sk->sk_route_nocaps |= flags;
|
|
sk->sk_route_caps &= ~flags;
|
|
}
|
|
|
|
static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
|
|
char __user *from, char *to,
|
|
int copy, int offset)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_NONE) {
|
|
int err = 0;
|
|
__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
|
|
if (err)
|
|
return err;
|
|
skb->csum = csum_block_add(skb->csum, csum, offset);
|
|
} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
|
|
if (!access_ok(VERIFY_READ, from, copy) ||
|
|
__copy_from_user_nocache(to, from, copy))
|
|
return -EFAULT;
|
|
} else if (copy_from_user(to, from, copy))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
|
|
char __user *from, int copy)
|
|
{
|
|
int err, offset = skb->len;
|
|
|
|
err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
|
|
copy, offset);
|
|
if (err)
|
|
__skb_trim(skb, offset);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
|
|
struct sk_buff *skb,
|
|
struct page *page,
|
|
int off, int copy)
|
|
{
|
|
int err;
|
|
|
|
err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
|
|
copy, skb->len);
|
|
if (err)
|
|
return err;
|
|
|
|
skb->len += copy;
|
|
skb->data_len += copy;
|
|
skb->truesize += copy;
|
|
sk->sk_wmem_queued += copy;
|
|
sk_mem_charge(sk, copy);
|
|
return 0;
|
|
}
|
|
|
|
static inline int skb_copy_to_page(struct sock *sk, char __user *from,
|
|
struct sk_buff *skb, struct page *page,
|
|
int off, int copy)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_NONE) {
|
|
int err = 0;
|
|
__wsum csum = csum_and_copy_from_user(from,
|
|
page_address(page) + off,
|
|
copy, 0, &err);
|
|
if (err)
|
|
return err;
|
|
skb->csum = csum_block_add(skb->csum, csum, skb->len);
|
|
} else if (copy_from_user(page_address(page) + off, from, copy))
|
|
return -EFAULT;
|
|
|
|
skb->len += copy;
|
|
skb->data_len += copy;
|
|
skb->truesize += copy;
|
|
sk->sk_wmem_queued += copy;
|
|
sk_mem_charge(sk, copy);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sk_wmem_alloc_get - returns write allocations
|
|
* @sk: socket
|
|
*
|
|
* Returns sk_wmem_alloc minus initial offset of one
|
|
*/
|
|
static inline int sk_wmem_alloc_get(const struct sock *sk)
|
|
{
|
|
return atomic_read(&sk->sk_wmem_alloc) - 1;
|
|
}
|
|
|
|
/**
|
|
* sk_rmem_alloc_get - returns read allocations
|
|
* @sk: socket
|
|
*
|
|
* Returns sk_rmem_alloc
|
|
*/
|
|
static inline int sk_rmem_alloc_get(const struct sock *sk)
|
|
{
|
|
return atomic_read(&sk->sk_rmem_alloc);
|
|
}
|
|
|
|
/**
|
|
* sk_has_allocations - check if allocations are outstanding
|
|
* @sk: socket
|
|
*
|
|
* Returns true if socket has write or read allocations
|
|
*/
|
|
static inline bool sk_has_allocations(const struct sock *sk)
|
|
{
|
|
return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
|
|
}
|
|
|
|
/**
|
|
* wq_has_sleeper - check if there are any waiting processes
|
|
* @wq: struct socket_wq
|
|
*
|
|
* Returns true if socket_wq has waiting processes
|
|
*
|
|
* The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
|
|
* barrier call. They were added due to the race found within the tcp code.
|
|
*
|
|
* Consider following tcp code paths:
|
|
*
|
|
* CPU1 CPU2
|
|
*
|
|
* sys_select receive packet
|
|
* ... ...
|
|
* __add_wait_queue update tp->rcv_nxt
|
|
* ... ...
|
|
* tp->rcv_nxt check sock_def_readable
|
|
* ... {
|
|
* schedule rcu_read_lock();
|
|
* wq = rcu_dereference(sk->sk_wq);
|
|
* if (wq && waitqueue_active(&wq->wait))
|
|
* wake_up_interruptible(&wq->wait)
|
|
* ...
|
|
* }
|
|
*
|
|
* The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
|
|
* in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
|
|
* could then endup calling schedule and sleep forever if there are no more
|
|
* data on the socket.
|
|
*
|
|
*/
|
|
static inline bool wq_has_sleeper(struct socket_wq *wq)
|
|
{
|
|
/* We need to be sure we are in sync with the
|
|
* add_wait_queue modifications to the wait queue.
|
|
*
|
|
* This memory barrier is paired in the sock_poll_wait.
|
|
*/
|
|
smp_mb();
|
|
return wq && waitqueue_active(&wq->wait);
|
|
}
|
|
|
|
/**
|
|
* sock_poll_wait - place memory barrier behind the poll_wait call.
|
|
* @filp: file
|
|
* @wait_address: socket wait queue
|
|
* @p: poll_table
|
|
*
|
|
* See the comments in the wq_has_sleeper function.
|
|
*/
|
|
static inline void sock_poll_wait(struct file *filp,
|
|
wait_queue_head_t *wait_address, poll_table *p)
|
|
{
|
|
if (!poll_does_not_wait(p) && wait_address) {
|
|
poll_wait(filp, wait_address, p);
|
|
/* We need to be sure we are in sync with the
|
|
* socket flags modification.
|
|
*
|
|
* This memory barrier is paired in the wq_has_sleeper.
|
|
*/
|
|
smp_mb();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Queue a received datagram if it will fit. Stream and sequenced
|
|
* protocols can't normally use this as they need to fit buffers in
|
|
* and play with them.
|
|
*
|
|
* Inlined as it's very short and called for pretty much every
|
|
* packet ever received.
|
|
*/
|
|
|
|
static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
|
|
{
|
|
skb_orphan(skb);
|
|
skb->sk = sk;
|
|
skb->destructor = sock_wfree;
|
|
/*
|
|
* We used to take a refcount on sk, but following operation
|
|
* is enough to guarantee sk_free() wont free this sock until
|
|
* all in-flight packets are completed
|
|
*/
|
|
atomic_add(skb->truesize, &sk->sk_wmem_alloc);
|
|
}
|
|
|
|
static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
|
|
{
|
|
skb_orphan(skb);
|
|
skb->sk = sk;
|
|
skb->destructor = sock_rfree;
|
|
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
|
|
sk_mem_charge(sk, skb->truesize);
|
|
}
|
|
|
|
extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
|
|
unsigned long expires);
|
|
|
|
extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
|
|
|
|
extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
|
|
|
|
extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
|
|
|
|
/*
|
|
* Recover an error report and clear atomically
|
|
*/
|
|
|
|
static inline int sock_error(struct sock *sk)
|
|
{
|
|
int err;
|
|
if (likely(!sk->sk_err))
|
|
return 0;
|
|
err = xchg(&sk->sk_err, 0);
|
|
return -err;
|
|
}
|
|
|
|
static inline unsigned long sock_wspace(struct sock *sk)
|
|
{
|
|
int amt = 0;
|
|
|
|
if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
|
|
amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
|
|
if (amt < 0)
|
|
amt = 0;
|
|
}
|
|
return amt;
|
|
}
|
|
|
|
static inline void sk_wake_async(struct sock *sk, int how, int band)
|
|
{
|
|
if (sock_flag(sk, SOCK_FASYNC))
|
|
sock_wake_async(sk->sk_socket, how, band);
|
|
}
|
|
|
|
/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
|
|
* need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
|
|
* Note: for send buffers, TCP works better if we can build two skbs at
|
|
* minimum.
|
|
*/
|
|
#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
|
|
|
|
#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
|
|
#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
|
|
|
|
static inline void sk_stream_moderate_sndbuf(struct sock *sk)
|
|
{
|
|
if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
|
|
sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
|
|
sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
|
|
}
|
|
}
|
|
|
|
struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
|
|
|
|
/**
|
|
* sk_page_frag - return an appropriate page_frag
|
|
* @sk: socket
|
|
*
|
|
* If socket allocation mode allows current thread to sleep, it means its
|
|
* safe to use the per task page_frag instead of the per socket one.
|
|
*/
|
|
static inline struct page_frag *sk_page_frag(struct sock *sk)
|
|
{
|
|
if (sk->sk_allocation & __GFP_WAIT)
|
|
return ¤t->task_frag;
|
|
|
|
return &sk->sk_frag;
|
|
}
|
|
|
|
extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
|
|
|
|
/*
|
|
* Default write policy as shown to user space via poll/select/SIGIO
|
|
*/
|
|
static inline bool sock_writeable(const struct sock *sk)
|
|
{
|
|
return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
|
|
}
|
|
|
|
static inline gfp_t gfp_any(void)
|
|
{
|
|
return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
|
|
}
|
|
|
|
static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
|
|
{
|
|
return noblock ? 0 : sk->sk_rcvtimeo;
|
|
}
|
|
|
|
static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
|
|
{
|
|
return noblock ? 0 : sk->sk_sndtimeo;
|
|
}
|
|
|
|
static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
|
|
{
|
|
return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
|
|
}
|
|
|
|
/* Alas, with timeout socket operations are not restartable.
|
|
* Compare this to poll().
|
|
*/
|
|
static inline int sock_intr_errno(long timeo)
|
|
{
|
|
return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
|
|
}
|
|
|
|
extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
|
|
struct sk_buff *skb);
|
|
extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
|
|
struct sk_buff *skb);
|
|
|
|
static inline void
|
|
sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
ktime_t kt = skb->tstamp;
|
|
struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
|
|
|
|
/*
|
|
* generate control messages if
|
|
* - receive time stamping in software requested (SOCK_RCVTSTAMP
|
|
* or SOCK_TIMESTAMPING_RX_SOFTWARE)
|
|
* - software time stamp available and wanted
|
|
* (SOCK_TIMESTAMPING_SOFTWARE)
|
|
* - hardware time stamps available and wanted
|
|
* (SOCK_TIMESTAMPING_SYS_HARDWARE or
|
|
* SOCK_TIMESTAMPING_RAW_HARDWARE)
|
|
*/
|
|
if (sock_flag(sk, SOCK_RCVTSTAMP) ||
|
|
sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
|
|
(kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
|
|
(hwtstamps->hwtstamp.tv64 &&
|
|
sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
|
|
(hwtstamps->syststamp.tv64 &&
|
|
sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
|
|
__sock_recv_timestamp(msg, sk, skb);
|
|
else
|
|
sk->sk_stamp = kt;
|
|
|
|
if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
|
|
__sock_recv_wifi_status(msg, sk, skb);
|
|
}
|
|
|
|
extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
|
|
struct sk_buff *skb);
|
|
|
|
static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
|
|
struct sk_buff *skb)
|
|
{
|
|
#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
|
|
(1UL << SOCK_RCVTSTAMP) | \
|
|
(1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
|
|
(1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
|
|
(1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
|
|
(1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
|
|
|
|
if (sk->sk_flags & FLAGS_TS_OR_DROPS)
|
|
__sock_recv_ts_and_drops(msg, sk, skb);
|
|
else
|
|
sk->sk_stamp = skb->tstamp;
|
|
}
|
|
|
|
/**
|
|
* sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
|
|
* @sk: socket sending this packet
|
|
* @tx_flags: filled with instructions for time stamping
|
|
*
|
|
* Currently only depends on SOCK_TIMESTAMPING* flags.
|
|
*/
|
|
extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
|
|
|
|
/**
|
|
* sk_eat_skb - Release a skb if it is no longer needed
|
|
* @sk: socket to eat this skb from
|
|
* @skb: socket buffer to eat
|
|
* @copied_early: flag indicating whether DMA operations copied this data early
|
|
*
|
|
* This routine must be called with interrupts disabled or with the socket
|
|
* locked so that the sk_buff queue operation is ok.
|
|
*/
|
|
#ifdef CONFIG_NET_DMA
|
|
static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
|
|
{
|
|
__skb_unlink(skb, &sk->sk_receive_queue);
|
|
if (!copied_early)
|
|
__kfree_skb(skb);
|
|
else
|
|
__skb_queue_tail(&sk->sk_async_wait_queue, skb);
|
|
}
|
|
#else
|
|
static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
|
|
{
|
|
__skb_unlink(skb, &sk->sk_receive_queue);
|
|
__kfree_skb(skb);
|
|
}
|
|
#endif
|
|
|
|
static inline
|
|
struct net *sock_net(const struct sock *sk)
|
|
{
|
|
return read_pnet(&sk->sk_net);
|
|
}
|
|
|
|
static inline
|
|
void sock_net_set(struct sock *sk, struct net *net)
|
|
{
|
|
write_pnet(&sk->sk_net, net);
|
|
}
|
|
|
|
/*
|
|
* Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
|
|
* They should not hold a reference to a namespace in order to allow
|
|
* to stop it.
|
|
* Sockets after sk_change_net should be released using sk_release_kernel
|
|
*/
|
|
static inline void sk_change_net(struct sock *sk, struct net *net)
|
|
{
|
|
put_net(sock_net(sk));
|
|
sock_net_set(sk, hold_net(net));
|
|
}
|
|
|
|
static inline struct sock *skb_steal_sock(struct sk_buff *skb)
|
|
{
|
|
if (skb->sk) {
|
|
struct sock *sk = skb->sk;
|
|
|
|
skb->destructor = NULL;
|
|
skb->sk = NULL;
|
|
return sk;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
extern void sock_enable_timestamp(struct sock *sk, int flag);
|
|
extern int sock_get_timestamp(struct sock *, struct timeval __user *);
|
|
extern int sock_get_timestampns(struct sock *, struct timespec __user *);
|
|
extern int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
|
|
int level, int type);
|
|
|
|
/*
|
|
* Enable debug/info messages
|
|
*/
|
|
extern int net_msg_warn;
|
|
#define NETDEBUG(fmt, args...) \
|
|
do { if (net_msg_warn) printk(fmt,##args); } while (0)
|
|
|
|
#define LIMIT_NETDEBUG(fmt, args...) \
|
|
do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
|
|
|
|
extern __u32 sysctl_wmem_max;
|
|
extern __u32 sysctl_rmem_max;
|
|
|
|
extern int sysctl_optmem_max;
|
|
|
|
extern __u32 sysctl_wmem_default;
|
|
extern __u32 sysctl_rmem_default;
|
|
|
|
#endif /* _SOCK_H */
|