OpenCloudOS-Kernel/drivers/usb/gadget/pxa27x_udc.c

2624 lines
66 KiB
C

/*
* Handles the Intel 27x USB Device Controller (UDC)
*
* Inspired by original driver by Frank Becker, David Brownell, and others.
* Copyright (C) 2008 Robert Jarzmik
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/prefetch.h>
#include <linux/byteorder/generic.h>
#include <linux/platform_data/pxa2xx_udc.h>
#include <linux/usb.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include "pxa27x_udc.h"
/*
* This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
* series processors.
*
* Such controller drivers work with a gadget driver. The gadget driver
* returns descriptors, implements configuration and data protocols used
* by the host to interact with this device, and allocates endpoints to
* the different protocol interfaces. The controller driver virtualizes
* usb hardware so that the gadget drivers will be more portable.
*
* This UDC hardware wants to implement a bit too much USB protocol. The
* biggest issues are: that the endpoints have to be set up before the
* controller can be enabled (minor, and not uncommon); and each endpoint
* can only have one configuration, interface and alternative interface
* number (major, and very unusual). Once set up, these cannot be changed
* without a controller reset.
*
* The workaround is to setup all combinations necessary for the gadgets which
* will work with this driver. This is done in pxa_udc structure, statically.
* See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
* (You could modify this if needed. Some drivers have a "fifo_mode" module
* parameter to facilitate such changes.)
*
* The combinations have been tested with these gadgets :
* - zero gadget
* - file storage gadget
* - ether gadget
*
* The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
* made of UDC's double buffering either. USB "On-The-Go" is not implemented.
*
* All the requests are handled the same way :
* - the drivers tries to handle the request directly to the IO
* - if the IO fifo is not big enough, the remaining is send/received in
* interrupt handling.
*/
#define DRIVER_VERSION "2008-04-18"
#define DRIVER_DESC "PXA 27x USB Device Controller driver"
static const char driver_name[] = "pxa27x_udc";
static struct pxa_udc *the_controller;
static void handle_ep(struct pxa_ep *ep);
/*
* Debug filesystem
*/
#ifdef CONFIG_USB_GADGET_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
static int state_dbg_show(struct seq_file *s, void *p)
{
struct pxa_udc *udc = s->private;
int pos = 0, ret;
u32 tmp;
ret = -ENODEV;
if (!udc->driver)
goto out;
/* basic device status */
pos += seq_printf(s, DRIVER_DESC "\n"
"%s version: %s\nGadget driver: %s\n",
driver_name, DRIVER_VERSION,
udc->driver ? udc->driver->driver.name : "(none)");
tmp = udc_readl(udc, UDCCR);
pos += seq_printf(s,
"udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), "
"con=%d,inter=%d,altinter=%d\n", tmp,
(tmp & UDCCR_OEN) ? " oen":"",
(tmp & UDCCR_AALTHNP) ? " aalthnp":"",
(tmp & UDCCR_AHNP) ? " rem" : "",
(tmp & UDCCR_BHNP) ? " rstir" : "",
(tmp & UDCCR_DWRE) ? " dwre" : "",
(tmp & UDCCR_SMAC) ? " smac" : "",
(tmp & UDCCR_EMCE) ? " emce" : "",
(tmp & UDCCR_UDR) ? " udr" : "",
(tmp & UDCCR_UDA) ? " uda" : "",
(tmp & UDCCR_UDE) ? " ude" : "",
(tmp & UDCCR_ACN) >> UDCCR_ACN_S,
(tmp & UDCCR_AIN) >> UDCCR_AIN_S,
(tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
/* registers for device and ep0 */
pos += seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
pos += seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
pos += seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
pos += seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, "
"reconfig=%lu\n",
udc->stats.irqs_reset, udc->stats.irqs_suspend,
udc->stats.irqs_resume, udc->stats.irqs_reconfig);
ret = 0;
out:
return ret;
}
static int queues_dbg_show(struct seq_file *s, void *p)
{
struct pxa_udc *udc = s->private;
struct pxa_ep *ep;
struct pxa27x_request *req;
int pos = 0, i, maxpkt, ret;
ret = -ENODEV;
if (!udc->driver)
goto out;
/* dump endpoint queues */
for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
ep = &udc->pxa_ep[i];
maxpkt = ep->fifo_size;
pos += seq_printf(s, "%-12s max_pkt=%d %s\n",
EPNAME(ep), maxpkt, "pio");
if (list_empty(&ep->queue)) {
pos += seq_printf(s, "\t(nothing queued)\n");
continue;
}
list_for_each_entry(req, &ep->queue, queue) {
pos += seq_printf(s, "\treq %p len %d/%d buf %p\n",
&req->req, req->req.actual,
req->req.length, req->req.buf);
}
}
ret = 0;
out:
return ret;
}
static int eps_dbg_show(struct seq_file *s, void *p)
{
struct pxa_udc *udc = s->private;
struct pxa_ep *ep;
int pos = 0, i, ret;
u32 tmp;
ret = -ENODEV;
if (!udc->driver)
goto out;
ep = &udc->pxa_ep[0];
tmp = udc_ep_readl(ep, UDCCSR);
pos += seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", tmp,
(tmp & UDCCSR0_SA) ? " sa" : "",
(tmp & UDCCSR0_RNE) ? " rne" : "",
(tmp & UDCCSR0_FST) ? " fst" : "",
(tmp & UDCCSR0_SST) ? " sst" : "",
(tmp & UDCCSR0_DME) ? " dme" : "",
(tmp & UDCCSR0_IPR) ? " ipr" : "",
(tmp & UDCCSR0_OPC) ? " opc" : "");
for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
ep = &udc->pxa_ep[i];
tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
pos += seq_printf(s, "%-12s: "
"IN %lu(%lu reqs), OUT %lu(%lu reqs), "
"irqs=%lu, udccr=0x%08x, udccsr=0x%03x, "
"udcbcr=%d\n",
EPNAME(ep),
ep->stats.in_bytes, ep->stats.in_ops,
ep->stats.out_bytes, ep->stats.out_ops,
ep->stats.irqs,
tmp, udc_ep_readl(ep, UDCCSR),
udc_ep_readl(ep, UDCBCR));
}
ret = 0;
out:
return ret;
}
static int eps_dbg_open(struct inode *inode, struct file *file)
{
return single_open(file, eps_dbg_show, inode->i_private);
}
static int queues_dbg_open(struct inode *inode, struct file *file)
{
return single_open(file, queues_dbg_show, inode->i_private);
}
static int state_dbg_open(struct inode *inode, struct file *file)
{
return single_open(file, state_dbg_show, inode->i_private);
}
static const struct file_operations state_dbg_fops = {
.owner = THIS_MODULE,
.open = state_dbg_open,
.llseek = seq_lseek,
.read = seq_read,
.release = single_release,
};
static const struct file_operations queues_dbg_fops = {
.owner = THIS_MODULE,
.open = queues_dbg_open,
.llseek = seq_lseek,
.read = seq_read,
.release = single_release,
};
static const struct file_operations eps_dbg_fops = {
.owner = THIS_MODULE,
.open = eps_dbg_open,
.llseek = seq_lseek,
.read = seq_read,
.release = single_release,
};
static void pxa_init_debugfs(struct pxa_udc *udc)
{
struct dentry *root, *state, *queues, *eps;
root = debugfs_create_dir(udc->gadget.name, NULL);
if (IS_ERR(root) || !root)
goto err_root;
state = debugfs_create_file("udcstate", 0400, root, udc,
&state_dbg_fops);
if (!state)
goto err_state;
queues = debugfs_create_file("queues", 0400, root, udc,
&queues_dbg_fops);
if (!queues)
goto err_queues;
eps = debugfs_create_file("epstate", 0400, root, udc,
&eps_dbg_fops);
if (!eps)
goto err_eps;
udc->debugfs_root = root;
udc->debugfs_state = state;
udc->debugfs_queues = queues;
udc->debugfs_eps = eps;
return;
err_eps:
debugfs_remove(eps);
err_queues:
debugfs_remove(queues);
err_state:
debugfs_remove(root);
err_root:
dev_err(udc->dev, "debugfs is not available\n");
}
static void pxa_cleanup_debugfs(struct pxa_udc *udc)
{
debugfs_remove(udc->debugfs_eps);
debugfs_remove(udc->debugfs_queues);
debugfs_remove(udc->debugfs_state);
debugfs_remove(udc->debugfs_root);
udc->debugfs_eps = NULL;
udc->debugfs_queues = NULL;
udc->debugfs_state = NULL;
udc->debugfs_root = NULL;
}
#else
static inline void pxa_init_debugfs(struct pxa_udc *udc)
{
}
static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
{
}
#endif
/**
* is_match_usb_pxa - check if usb_ep and pxa_ep match
* @udc_usb_ep: usb endpoint
* @ep: pxa endpoint
* @config: configuration required in pxa_ep
* @interface: interface required in pxa_ep
* @altsetting: altsetting required in pxa_ep
*
* Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
*/
static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
int config, int interface, int altsetting)
{
if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
return 0;
if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
return 0;
if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
return 0;
if ((ep->config != config) || (ep->interface != interface)
|| (ep->alternate != altsetting))
return 0;
return 1;
}
/**
* find_pxa_ep - find pxa_ep structure matching udc_usb_ep
* @udc: pxa udc
* @udc_usb_ep: udc_usb_ep structure
*
* Match udc_usb_ep and all pxa_ep available, to see if one matches.
* This is necessary because of the strong pxa hardware restriction requiring
* that once pxa endpoints are initialized, their configuration is freezed, and
* no change can be made to their address, direction, or in which configuration,
* interface or altsetting they are active ... which differs from more usual
* models which have endpoints be roughly just addressable fifos, and leave
* configuration events up to gadget drivers (like all control messages).
*
* Note that there is still a blurred point here :
* - we rely on UDCCR register "active interface" and "active altsetting".
* This is a nonsense in regard of USB spec, where multiple interfaces are
* active at the same time.
* - if we knew for sure that the pxa can handle multiple interface at the
* same time, assuming Intel's Developer Guide is wrong, this function
* should be reviewed, and a cache of couples (iface, altsetting) should
* be kept in the pxa_udc structure. In this case this function would match
* against the cache of couples instead of the "last altsetting" set up.
*
* Returns the matched pxa_ep structure or NULL if none found
*/
static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
struct udc_usb_ep *udc_usb_ep)
{
int i;
struct pxa_ep *ep;
int cfg = udc->config;
int iface = udc->last_interface;
int alt = udc->last_alternate;
if (udc_usb_ep == &udc->udc_usb_ep[0])
return &udc->pxa_ep[0];
for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
ep = &udc->pxa_ep[i];
if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
return ep;
}
return NULL;
}
/**
* update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
* @udc: pxa udc
*
* Context: in_interrupt()
*
* Updates all pxa_ep fields in udc_usb_ep structures, if this field was
* previously set up (and is not NULL). The update is necessary is a
* configuration change or altsetting change was issued by the USB host.
*/
static void update_pxa_ep_matches(struct pxa_udc *udc)
{
int i;
struct udc_usb_ep *udc_usb_ep;
for (i = 1; i < NR_USB_ENDPOINTS; i++) {
udc_usb_ep = &udc->udc_usb_ep[i];
if (udc_usb_ep->pxa_ep)
udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
}
}
/**
* pio_irq_enable - Enables irq generation for one endpoint
* @ep: udc endpoint
*/
static void pio_irq_enable(struct pxa_ep *ep)
{
struct pxa_udc *udc = ep->dev;
int index = EPIDX(ep);
u32 udcicr0 = udc_readl(udc, UDCICR0);
u32 udcicr1 = udc_readl(udc, UDCICR1);
if (index < 16)
udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
else
udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
}
/**
* pio_irq_disable - Disables irq generation for one endpoint
* @ep: udc endpoint
*/
static void pio_irq_disable(struct pxa_ep *ep)
{
struct pxa_udc *udc = ep->dev;
int index = EPIDX(ep);
u32 udcicr0 = udc_readl(udc, UDCICR0);
u32 udcicr1 = udc_readl(udc, UDCICR1);
if (index < 16)
udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
else
udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
}
/**
* udc_set_mask_UDCCR - set bits in UDCCR
* @udc: udc device
* @mask: bits to set in UDCCR
*
* Sets bits in UDCCR, leaving DME and FST bits as they were.
*/
static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
{
u32 udccr = udc_readl(udc, UDCCR);
udc_writel(udc, UDCCR,
(udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
}
/**
* udc_clear_mask_UDCCR - clears bits in UDCCR
* @udc: udc device
* @mask: bit to clear in UDCCR
*
* Clears bits in UDCCR, leaving DME and FST bits as they were.
*/
static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
{
u32 udccr = udc_readl(udc, UDCCR);
udc_writel(udc, UDCCR,
(udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
}
/**
* ep_write_UDCCSR - set bits in UDCCSR
* @udc: udc device
* @mask: bits to set in UDCCR
*
* Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
*
* A specific case is applied to ep0 : the ACM bit is always set to 1, for
* SET_INTERFACE and SET_CONFIGURATION.
*/
static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
{
if (is_ep0(ep))
mask |= UDCCSR0_ACM;
udc_ep_writel(ep, UDCCSR, mask);
}
/**
* ep_count_bytes_remain - get how many bytes in udc endpoint
* @ep: udc endpoint
*
* Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
*/
static int ep_count_bytes_remain(struct pxa_ep *ep)
{
if (ep->dir_in)
return -EOPNOTSUPP;
return udc_ep_readl(ep, UDCBCR) & 0x3ff;
}
/**
* ep_is_empty - checks if ep has byte ready for reading
* @ep: udc endpoint
*
* If endpoint is the control endpoint, checks if there are bytes in the
* control endpoint fifo. If endpoint is a data endpoint, checks if bytes
* are ready for reading on OUT endpoint.
*
* Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
*/
static int ep_is_empty(struct pxa_ep *ep)
{
int ret;
if (!is_ep0(ep) && ep->dir_in)
return -EOPNOTSUPP;
if (is_ep0(ep))
ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
else
ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
return ret;
}
/**
* ep_is_full - checks if ep has place to write bytes
* @ep: udc endpoint
*
* If endpoint is not the control endpoint and is an IN endpoint, checks if
* there is place to write bytes into the endpoint.
*
* Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
*/
static int ep_is_full(struct pxa_ep *ep)
{
if (is_ep0(ep))
return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
if (!ep->dir_in)
return -EOPNOTSUPP;
return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
}
/**
* epout_has_pkt - checks if OUT endpoint fifo has a packet available
* @ep: pxa endpoint
*
* Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
*/
static int epout_has_pkt(struct pxa_ep *ep)
{
if (!is_ep0(ep) && ep->dir_in)
return -EOPNOTSUPP;
if (is_ep0(ep))
return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
}
/**
* set_ep0state - Set ep0 automata state
* @dev: udc device
* @state: state
*/
static void set_ep0state(struct pxa_udc *udc, int state)
{
struct pxa_ep *ep = &udc->pxa_ep[0];
char *old_stname = EP0_STNAME(udc);
udc->ep0state = state;
ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
udc_ep_readl(ep, UDCBCR));
}
/**
* ep0_idle - Put control endpoint into idle state
* @dev: udc device
*/
static void ep0_idle(struct pxa_udc *dev)
{
set_ep0state(dev, WAIT_FOR_SETUP);
}
/**
* inc_ep_stats_reqs - Update ep stats counts
* @ep: physical endpoint
* @req: usb request
* @is_in: ep direction (USB_DIR_IN or 0)
*
*/
static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
{
if (is_in)
ep->stats.in_ops++;
else
ep->stats.out_ops++;
}
/**
* inc_ep_stats_bytes - Update ep stats counts
* @ep: physical endpoint
* @count: bytes transferred on endpoint
* @is_in: ep direction (USB_DIR_IN or 0)
*/
static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
{
if (is_in)
ep->stats.in_bytes += count;
else
ep->stats.out_bytes += count;
}
/**
* pxa_ep_setup - Sets up an usb physical endpoint
* @ep: pxa27x physical endpoint
*
* Find the physical pxa27x ep, and setup its UDCCR
*/
static void pxa_ep_setup(struct pxa_ep *ep)
{
u32 new_udccr;
new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
| ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
| ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
| ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
| ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
| ((ep->dir_in) ? UDCCONR_ED : 0)
| ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
| UDCCONR_EE;
udc_ep_writel(ep, UDCCR, new_udccr);
}
/**
* pxa_eps_setup - Sets up all usb physical endpoints
* @dev: udc device
*
* Setup all pxa physical endpoints, except ep0
*/
static void pxa_eps_setup(struct pxa_udc *dev)
{
unsigned int i;
dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
for (i = 1; i < NR_PXA_ENDPOINTS; i++)
pxa_ep_setup(&dev->pxa_ep[i]);
}
/**
* pxa_ep_alloc_request - Allocate usb request
* @_ep: usb endpoint
* @gfp_flags:
*
* For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers
* must still pass correctly initialized endpoints, since other controller
* drivers may care about how it's currently set up (dma issues etc).
*/
static struct usb_request *
pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct pxa27x_request *req;
req = kzalloc(sizeof *req, gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
req->in_use = 0;
req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
return &req->req;
}
/**
* pxa_ep_free_request - Free usb request
* @_ep: usb endpoint
* @_req: usb request
*
* Wrapper around kfree to free _req
*/
static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct pxa27x_request *req;
req = container_of(_req, struct pxa27x_request, req);
WARN_ON(!list_empty(&req->queue));
kfree(req);
}
/**
* ep_add_request - add a request to the endpoint's queue
* @ep: usb endpoint
* @req: usb request
*
* Context: ep->lock held
*
* Queues the request in the endpoint's queue, and enables the interrupts
* on the endpoint.
*/
static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
{
if (unlikely(!req))
return;
ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
req->req.length, udc_ep_readl(ep, UDCCSR));
req->in_use = 1;
list_add_tail(&req->queue, &ep->queue);
pio_irq_enable(ep);
}
/**
* ep_del_request - removes a request from the endpoint's queue
* @ep: usb endpoint
* @req: usb request
*
* Context: ep->lock held
*
* Unqueue the request from the endpoint's queue. If there are no more requests
* on the endpoint, and if it's not the control endpoint, interrupts are
* disabled on the endpoint.
*/
static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
{
if (unlikely(!req))
return;
ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
req->req.length, udc_ep_readl(ep, UDCCSR));
list_del_init(&req->queue);
req->in_use = 0;
if (!is_ep0(ep) && list_empty(&ep->queue))
pio_irq_disable(ep);
}
/**
* req_done - Complete an usb request
* @ep: pxa physical endpoint
* @req: pxa request
* @status: usb request status sent to gadget API
* @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
*
* Context: ep->lock held if flags not NULL, else ep->lock released
*
* Retire a pxa27x usb request. Endpoint must be locked.
*/
static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
unsigned long *pflags)
{
unsigned long flags;
ep_del_request(ep, req);
if (likely(req->req.status == -EINPROGRESS))
req->req.status = status;
else
status = req->req.status;
if (status && status != -ESHUTDOWN)
ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
&req->req, status,
req->req.actual, req->req.length);
if (pflags)
spin_unlock_irqrestore(&ep->lock, *pflags);
local_irq_save(flags);
req->req.complete(&req->udc_usb_ep->usb_ep, &req->req);
local_irq_restore(flags);
if (pflags)
spin_lock_irqsave(&ep->lock, *pflags);
}
/**
* ep_end_out_req - Ends endpoint OUT request
* @ep: physical endpoint
* @req: pxa request
* @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
*
* Context: ep->lock held or released (see req_done())
*
* Ends endpoint OUT request (completes usb request).
*/
static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
unsigned long *pflags)
{
inc_ep_stats_reqs(ep, !USB_DIR_IN);
req_done(ep, req, 0, pflags);
}
/**
* ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
* @ep: physical endpoint
* @req: pxa request
* @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
*
* Context: ep->lock held or released (see req_done())
*
* Ends control endpoint OUT request (completes usb request), and puts
* control endpoint into idle state
*/
static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
unsigned long *pflags)
{
set_ep0state(ep->dev, OUT_STATUS_STAGE);
ep_end_out_req(ep, req, pflags);
ep0_idle(ep->dev);
}
/**
* ep_end_in_req - Ends endpoint IN request
* @ep: physical endpoint
* @req: pxa request
* @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
*
* Context: ep->lock held or released (see req_done())
*
* Ends endpoint IN request (completes usb request).
*/
static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
unsigned long *pflags)
{
inc_ep_stats_reqs(ep, USB_DIR_IN);
req_done(ep, req, 0, pflags);
}
/**
* ep0_end_in_req - Ends control endpoint IN request (ends data stage)
* @ep: physical endpoint
* @req: pxa request
* @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
*
* Context: ep->lock held or released (see req_done())
*
* Ends control endpoint IN request (completes usb request), and puts
* control endpoint into status state
*/
static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
unsigned long *pflags)
{
set_ep0state(ep->dev, IN_STATUS_STAGE);
ep_end_in_req(ep, req, pflags);
}
/**
* nuke - Dequeue all requests
* @ep: pxa endpoint
* @status: usb request status
*
* Context: ep->lock released
*
* Dequeues all requests on an endpoint. As a side effect, interrupts will be
* disabled on that endpoint (because no more requests).
*/
static void nuke(struct pxa_ep *ep, int status)
{
struct pxa27x_request *req;
unsigned long flags;
spin_lock_irqsave(&ep->lock, flags);
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct pxa27x_request, queue);
req_done(ep, req, status, &flags);
}
spin_unlock_irqrestore(&ep->lock, flags);
}
/**
* read_packet - transfer 1 packet from an OUT endpoint into request
* @ep: pxa physical endpoint
* @req: usb request
*
* Takes bytes from OUT endpoint and transfers them info the usb request.
* If there is less space in request than bytes received in OUT endpoint,
* bytes are left in the OUT endpoint.
*
* Returns how many bytes were actually transferred
*/
static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
{
u32 *buf;
int bytes_ep, bufferspace, count, i;
bytes_ep = ep_count_bytes_remain(ep);
bufferspace = req->req.length - req->req.actual;
buf = (u32 *)(req->req.buf + req->req.actual);
prefetchw(buf);
if (likely(!ep_is_empty(ep)))
count = min(bytes_ep, bufferspace);
else /* zlp */
count = 0;
for (i = count; i > 0; i -= 4)
*buf++ = udc_ep_readl(ep, UDCDR);
req->req.actual += count;
ep_write_UDCCSR(ep, UDCCSR_PC);
return count;
}
/**
* write_packet - transfer 1 packet from request into an IN endpoint
* @ep: pxa physical endpoint
* @req: usb request
* @max: max bytes that fit into endpoint
*
* Takes bytes from usb request, and transfers them into the physical
* endpoint. If there are no bytes to transfer, doesn't write anything
* to physical endpoint.
*
* Returns how many bytes were actually transferred.
*/
static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
unsigned int max)
{
int length, count, remain, i;
u32 *buf;
u8 *buf_8;
buf = (u32 *)(req->req.buf + req->req.actual);
prefetch(buf);
length = min(req->req.length - req->req.actual, max);
req->req.actual += length;
remain = length & 0x3;
count = length & ~(0x3);
for (i = count; i > 0 ; i -= 4)
udc_ep_writel(ep, UDCDR, *buf++);
buf_8 = (u8 *)buf;
for (i = remain; i > 0; i--)
udc_ep_writeb(ep, UDCDR, *buf_8++);
ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
udc_ep_readl(ep, UDCCSR));
return length;
}
/**
* read_fifo - Transfer packets from OUT endpoint into usb request
* @ep: pxa physical endpoint
* @req: usb request
*
* Context: callable when in_interrupt()
*
* Unload as many packets as possible from the fifo we use for usb OUT
* transfers and put them into the request. Caller should have made sure
* there's at least one packet ready.
* Doesn't complete the request, that's the caller's job
*
* Returns 1 if the request completed, 0 otherwise
*/
static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
{
int count, is_short, completed = 0;
while (epout_has_pkt(ep)) {
count = read_packet(ep, req);
inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
is_short = (count < ep->fifo_size);
ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
&req->req, req->req.actual, req->req.length);
/* completion */
if (is_short || req->req.actual == req->req.length) {
completed = 1;
break;
}
/* finished that packet. the next one may be waiting... */
}
return completed;
}
/**
* write_fifo - transfer packets from usb request into an IN endpoint
* @ep: pxa physical endpoint
* @req: pxa usb request
*
* Write to an IN endpoint fifo, as many packets as possible.
* irqs will use this to write the rest later.
* caller guarantees at least one packet buffer is ready (or a zlp).
* Doesn't complete the request, that's the caller's job
*
* Returns 1 if request fully transferred, 0 if partial transfer
*/
static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
{
unsigned max;
int count, is_short, is_last = 0, completed = 0, totcount = 0;
u32 udccsr;
max = ep->fifo_size;
do {
is_short = 0;
udccsr = udc_ep_readl(ep, UDCCSR);
if (udccsr & UDCCSR_PC) {
ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
udccsr);
ep_write_UDCCSR(ep, UDCCSR_PC);
}
if (udccsr & UDCCSR_TRN) {
ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
udccsr);
ep_write_UDCCSR(ep, UDCCSR_TRN);
}
count = write_packet(ep, req, max);
inc_ep_stats_bytes(ep, count, USB_DIR_IN);
totcount += count;
/* last packet is usually short (or a zlp) */
if (unlikely(count < max)) {
is_last = 1;
is_short = 1;
} else {
if (likely(req->req.length > req->req.actual)
|| req->req.zero)
is_last = 0;
else
is_last = 1;
/* interrupt/iso maxpacket may not fill the fifo */
is_short = unlikely(max < ep->fifo_size);
}
if (is_short)
ep_write_UDCCSR(ep, UDCCSR_SP);
/* requests complete when all IN data is in the FIFO */
if (is_last) {
completed = 1;
break;
}
} while (!ep_is_full(ep));
ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
totcount, is_last ? "/L" : "", is_short ? "/S" : "",
req->req.length - req->req.actual, &req->req);
return completed;
}
/**
* read_ep0_fifo - Transfer packets from control endpoint into usb request
* @ep: control endpoint
* @req: pxa usb request
*
* Special ep0 version of the above read_fifo. Reads as many bytes from control
* endpoint as can be read, and stores them into usb request (limited by request
* maximum length).
*
* Returns 0 if usb request only partially filled, 1 if fully filled
*/
static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
{
int count, is_short, completed = 0;
while (epout_has_pkt(ep)) {
count = read_packet(ep, req);
ep_write_UDCCSR(ep, UDCCSR0_OPC);
inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
is_short = (count < ep->fifo_size);
ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
&req->req, req->req.actual, req->req.length);
if (is_short || req->req.actual >= req->req.length) {
completed = 1;
break;
}
}
return completed;
}
/**
* write_ep0_fifo - Send a request to control endpoint (ep0 in)
* @ep: control endpoint
* @req: request
*
* Context: callable when in_interrupt()
*
* Sends a request (or a part of the request) to the control endpoint (ep0 in).
* If the request doesn't fit, the remaining part will be sent from irq.
* The request is considered fully written only if either :
* - last write transferred all remaining bytes, but fifo was not fully filled
* - last write was a 0 length write
*
* Returns 1 if request fully written, 0 if request only partially sent
*/
static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
{
unsigned count;
int is_last, is_short;
count = write_packet(ep, req, EP0_FIFO_SIZE);
inc_ep_stats_bytes(ep, count, USB_DIR_IN);
is_short = (count < EP0_FIFO_SIZE);
is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
/* Sends either a short packet or a 0 length packet */
if (unlikely(is_short))
ep_write_UDCCSR(ep, UDCCSR0_IPR);
ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
count, is_short ? "/S" : "", is_last ? "/L" : "",
req->req.length - req->req.actual,
&req->req, udc_ep_readl(ep, UDCCSR));
return is_last;
}
/**
* pxa_ep_queue - Queue a request into an IN endpoint
* @_ep: usb endpoint
* @_req: usb request
* @gfp_flags: flags
*
* Context: normally called when !in_interrupt, but callable when in_interrupt()
* in the special case of ep0 setup :
* (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
*
* Returns 0 if succedeed, error otherwise
*/
static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
gfp_t gfp_flags)
{
struct udc_usb_ep *udc_usb_ep;
struct pxa_ep *ep;
struct pxa27x_request *req;
struct pxa_udc *dev;
unsigned long flags;
int rc = 0;
int is_first_req;
unsigned length;
int recursion_detected;
req = container_of(_req, struct pxa27x_request, req);
udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
if (unlikely(!_req || !_req->complete || !_req->buf))
return -EINVAL;
if (unlikely(!_ep))
return -EINVAL;
dev = udc_usb_ep->dev;
ep = udc_usb_ep->pxa_ep;
if (unlikely(!ep))
return -EINVAL;
dev = ep->dev;
if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
ep_dbg(ep, "bogus device state\n");
return -ESHUTDOWN;
}
/* iso is always one packet per request, that's the only way
* we can report per-packet status. that also helps with dma.
*/
if (unlikely(EPXFERTYPE_is_ISO(ep)
&& req->req.length > ep->fifo_size))
return -EMSGSIZE;
spin_lock_irqsave(&ep->lock, flags);
recursion_detected = ep->in_handle_ep;
is_first_req = list_empty(&ep->queue);
ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
_req, is_first_req ? "yes" : "no",
_req->length, _req->buf);
if (!ep->enabled) {
_req->status = -ESHUTDOWN;
rc = -ESHUTDOWN;
goto out_locked;
}
if (req->in_use) {
ep_err(ep, "refusing to queue req %p (already queued)\n", req);
goto out_locked;
}
length = _req->length;
_req->status = -EINPROGRESS;
_req->actual = 0;
ep_add_request(ep, req);
spin_unlock_irqrestore(&ep->lock, flags);
if (is_ep0(ep)) {
switch (dev->ep0state) {
case WAIT_ACK_SET_CONF_INTERF:
if (length == 0) {
ep_end_in_req(ep, req, NULL);
} else {
ep_err(ep, "got a request of %d bytes while"
"in state WAIT_ACK_SET_CONF_INTERF\n",
length);
ep_del_request(ep, req);
rc = -EL2HLT;
}
ep0_idle(ep->dev);
break;
case IN_DATA_STAGE:
if (!ep_is_full(ep))
if (write_ep0_fifo(ep, req))
ep0_end_in_req(ep, req, NULL);
break;
case OUT_DATA_STAGE:
if ((length == 0) || !epout_has_pkt(ep))
if (read_ep0_fifo(ep, req))
ep0_end_out_req(ep, req, NULL);
break;
default:
ep_err(ep, "odd state %s to send me a request\n",
EP0_STNAME(ep->dev));
ep_del_request(ep, req);
rc = -EL2HLT;
break;
}
} else {
if (!recursion_detected)
handle_ep(ep);
}
out:
return rc;
out_locked:
spin_unlock_irqrestore(&ep->lock, flags);
goto out;
}
/**
* pxa_ep_dequeue - Dequeue one request
* @_ep: usb endpoint
* @_req: usb request
*
* Return 0 if no error, -EINVAL or -ECONNRESET otherwise
*/
static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct pxa_ep *ep;
struct udc_usb_ep *udc_usb_ep;
struct pxa27x_request *req;
unsigned long flags;
int rc = -EINVAL;
if (!_ep)
return rc;
udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
ep = udc_usb_ep->pxa_ep;
if (!ep || is_ep0(ep))
return rc;
spin_lock_irqsave(&ep->lock, flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req) {
rc = 0;
break;
}
}
spin_unlock_irqrestore(&ep->lock, flags);
if (!rc)
req_done(ep, req, -ECONNRESET, NULL);
return rc;
}
/**
* pxa_ep_set_halt - Halts operations on one endpoint
* @_ep: usb endpoint
* @value:
*
* Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
*/
static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
{
struct pxa_ep *ep;
struct udc_usb_ep *udc_usb_ep;
unsigned long flags;
int rc;
if (!_ep)
return -EINVAL;
udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
ep = udc_usb_ep->pxa_ep;
if (!ep || is_ep0(ep))
return -EINVAL;
if (value == 0) {
/*
* This path (reset toggle+halt) is needed to implement
* SET_INTERFACE on normal hardware. but it can't be
* done from software on the PXA UDC, and the hardware
* forgets to do it as part of SET_INTERFACE automagic.
*/
ep_dbg(ep, "only host can clear halt\n");
return -EROFS;
}
spin_lock_irqsave(&ep->lock, flags);
rc = -EAGAIN;
if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue)))
goto out;
/* FST, FEF bits are the same for control and non control endpoints */
rc = 0;
ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
if (is_ep0(ep))
set_ep0state(ep->dev, STALL);
out:
spin_unlock_irqrestore(&ep->lock, flags);
return rc;
}
/**
* pxa_ep_fifo_status - Get how many bytes in physical endpoint
* @_ep: usb endpoint
*
* Returns number of bytes in OUT fifos. Broken for IN fifos.
*/
static int pxa_ep_fifo_status(struct usb_ep *_ep)
{
struct pxa_ep *ep;
struct udc_usb_ep *udc_usb_ep;
if (!_ep)
return -ENODEV;
udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
ep = udc_usb_ep->pxa_ep;
if (!ep || is_ep0(ep))
return -ENODEV;
if (ep->dir_in)
return -EOPNOTSUPP;
if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
return 0;
else
return ep_count_bytes_remain(ep) + 1;
}
/**
* pxa_ep_fifo_flush - Flushes one endpoint
* @_ep: usb endpoint
*
* Discards all data in one endpoint(IN or OUT), except control endpoint.
*/
static void pxa_ep_fifo_flush(struct usb_ep *_ep)
{
struct pxa_ep *ep;
struct udc_usb_ep *udc_usb_ep;
unsigned long flags;
if (!_ep)
return;
udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
ep = udc_usb_ep->pxa_ep;
if (!ep || is_ep0(ep))
return;
spin_lock_irqsave(&ep->lock, flags);
if (unlikely(!list_empty(&ep->queue)))
ep_dbg(ep, "called while queue list not empty\n");
ep_dbg(ep, "called\n");
/* for OUT, just read and discard the FIFO contents. */
if (!ep->dir_in) {
while (!ep_is_empty(ep))
udc_ep_readl(ep, UDCDR);
} else {
/* most IN status is the same, but ISO can't stall */
ep_write_UDCCSR(ep,
UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
| (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
}
spin_unlock_irqrestore(&ep->lock, flags);
}
/**
* pxa_ep_enable - Enables usb endpoint
* @_ep: usb endpoint
* @desc: usb endpoint descriptor
*
* Nothing much to do here, as ep configuration is done once and for all
* before udc is enabled. After udc enable, no physical endpoint configuration
* can be changed.
* Function makes sanity checks and flushes the endpoint.
*/
static int pxa_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct pxa_ep *ep;
struct udc_usb_ep *udc_usb_ep;
struct pxa_udc *udc;
if (!_ep || !desc)
return -EINVAL;
udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
if (udc_usb_ep->pxa_ep) {
ep = udc_usb_ep->pxa_ep;
ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
_ep->name);
} else {
ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
}
if (!ep || is_ep0(ep)) {
dev_err(udc_usb_ep->dev->dev,
"unable to match pxa_ep for ep %s\n",
_ep->name);
return -EINVAL;
}
if ((desc->bDescriptorType != USB_DT_ENDPOINT)
|| (ep->type != usb_endpoint_type(desc))) {
ep_err(ep, "type mismatch\n");
return -EINVAL;
}
if (ep->fifo_size < usb_endpoint_maxp(desc)) {
ep_err(ep, "bad maxpacket\n");
return -ERANGE;
}
udc_usb_ep->pxa_ep = ep;
udc = ep->dev;
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
ep_err(ep, "bogus device state\n");
return -ESHUTDOWN;
}
ep->enabled = 1;
/* flush fifo (mostly for OUT buffers) */
pxa_ep_fifo_flush(_ep);
ep_dbg(ep, "enabled\n");
return 0;
}
/**
* pxa_ep_disable - Disable usb endpoint
* @_ep: usb endpoint
*
* Same as for pxa_ep_enable, no physical endpoint configuration can be
* changed.
* Function flushes the endpoint and related requests.
*/
static int pxa_ep_disable(struct usb_ep *_ep)
{
struct pxa_ep *ep;
struct udc_usb_ep *udc_usb_ep;
if (!_ep)
return -EINVAL;
udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
ep = udc_usb_ep->pxa_ep;
if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
return -EINVAL;
ep->enabled = 0;
nuke(ep, -ESHUTDOWN);
pxa_ep_fifo_flush(_ep);
udc_usb_ep->pxa_ep = NULL;
ep_dbg(ep, "disabled\n");
return 0;
}
static struct usb_ep_ops pxa_ep_ops = {
.enable = pxa_ep_enable,
.disable = pxa_ep_disable,
.alloc_request = pxa_ep_alloc_request,
.free_request = pxa_ep_free_request,
.queue = pxa_ep_queue,
.dequeue = pxa_ep_dequeue,
.set_halt = pxa_ep_set_halt,
.fifo_status = pxa_ep_fifo_status,
.fifo_flush = pxa_ep_fifo_flush,
};
/**
* dplus_pullup - Connect or disconnect pullup resistor to D+ pin
* @udc: udc device
* @on: 0 if disconnect pullup resistor, 1 otherwise
* Context: any
*
* Handle D+ pullup resistor, make the device visible to the usb bus, and
* declare it as a full speed usb device
*/
static void dplus_pullup(struct pxa_udc *udc, int on)
{
if (on) {
if (gpio_is_valid(udc->mach->gpio_pullup))
gpio_set_value(udc->mach->gpio_pullup,
!udc->mach->gpio_pullup_inverted);
if (udc->mach->udc_command)
udc->mach->udc_command(PXA2XX_UDC_CMD_CONNECT);
} else {
if (gpio_is_valid(udc->mach->gpio_pullup))
gpio_set_value(udc->mach->gpio_pullup,
udc->mach->gpio_pullup_inverted);
if (udc->mach->udc_command)
udc->mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
}
udc->pullup_on = on;
}
/**
* pxa_udc_get_frame - Returns usb frame number
* @_gadget: usb gadget
*/
static int pxa_udc_get_frame(struct usb_gadget *_gadget)
{
struct pxa_udc *udc = to_gadget_udc(_gadget);
return (udc_readl(udc, UDCFNR) & 0x7ff);
}
/**
* pxa_udc_wakeup - Force udc device out of suspend
* @_gadget: usb gadget
*
* Returns 0 if successful, error code otherwise
*/
static int pxa_udc_wakeup(struct usb_gadget *_gadget)
{
struct pxa_udc *udc = to_gadget_udc(_gadget);
/* host may not have enabled remote wakeup */
if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
return -EHOSTUNREACH;
udc_set_mask_UDCCR(udc, UDCCR_UDR);
return 0;
}
static void udc_enable(struct pxa_udc *udc);
static void udc_disable(struct pxa_udc *udc);
/**
* should_enable_udc - Tells if UDC should be enabled
* @udc: udc device
* Context: any
*
* The UDC should be enabled if :
* - the pullup resistor is connected
* - and a gadget driver is bound
* - and vbus is sensed (or no vbus sense is available)
*
* Returns 1 if UDC should be enabled, 0 otherwise
*/
static int should_enable_udc(struct pxa_udc *udc)
{
int put_on;
put_on = ((udc->pullup_on) && (udc->driver));
put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
return put_on;
}
/**
* should_disable_udc - Tells if UDC should be disabled
* @udc: udc device
* Context: any
*
* The UDC should be disabled if :
* - the pullup resistor is not connected
* - or no gadget driver is bound
* - or no vbus is sensed (when vbus sesing is available)
*
* Returns 1 if UDC should be disabled
*/
static int should_disable_udc(struct pxa_udc *udc)
{
int put_off;
put_off = ((!udc->pullup_on) || (!udc->driver));
put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
return put_off;
}
/**
* pxa_udc_pullup - Offer manual D+ pullup control
* @_gadget: usb gadget using the control
* @is_active: 0 if disconnect, else connect D+ pullup resistor
* Context: !in_interrupt()
*
* Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
*/
static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
{
struct pxa_udc *udc = to_gadget_udc(_gadget);
if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command)
return -EOPNOTSUPP;
dplus_pullup(udc, is_active);
if (should_enable_udc(udc))
udc_enable(udc);
if (should_disable_udc(udc))
udc_disable(udc);
return 0;
}
static void udc_enable(struct pxa_udc *udc);
static void udc_disable(struct pxa_udc *udc);
/**
* pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
* @_gadget: usb gadget
* @is_active: 0 if should disable the udc, 1 if should enable
*
* Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
* udc, and deactivates D+ pullup resistor.
*
* Returns 0
*/
static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
{
struct pxa_udc *udc = to_gadget_udc(_gadget);
udc->vbus_sensed = is_active;
if (should_enable_udc(udc))
udc_enable(udc);
if (should_disable_udc(udc))
udc_disable(udc);
return 0;
}
/**
* pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
* @_gadget: usb gadget
* @mA: current drawn
*
* Context: !in_interrupt()
*
* Called after a configuration was chosen by a USB host, to inform how much
* current can be drawn by the device from VBus line.
*
* Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
*/
static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
{
struct pxa_udc *udc;
udc = to_gadget_udc(_gadget);
if (!IS_ERR_OR_NULL(udc->transceiver))
return usb_phy_set_power(udc->transceiver, mA);
return -EOPNOTSUPP;
}
static int pxa27x_udc_start(struct usb_gadget *g,
struct usb_gadget_driver *driver);
static int pxa27x_udc_stop(struct usb_gadget *g,
struct usb_gadget_driver *driver);
static const struct usb_gadget_ops pxa_udc_ops = {
.get_frame = pxa_udc_get_frame,
.wakeup = pxa_udc_wakeup,
.pullup = pxa_udc_pullup,
.vbus_session = pxa_udc_vbus_session,
.vbus_draw = pxa_udc_vbus_draw,
.udc_start = pxa27x_udc_start,
.udc_stop = pxa27x_udc_stop,
};
/**
* udc_disable - disable udc device controller
* @udc: udc device
* Context: any
*
* Disables the udc device : disables clocks, udc interrupts, control endpoint
* interrupts.
*/
static void udc_disable(struct pxa_udc *udc)
{
if (!udc->enabled)
return;
udc_writel(udc, UDCICR0, 0);
udc_writel(udc, UDCICR1, 0);
udc_clear_mask_UDCCR(udc, UDCCR_UDE);
clk_disable(udc->clk);
ep0_idle(udc);
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->enabled = 0;
}
/**
* udc_init_data - Initialize udc device data structures
* @dev: udc device
*
* Initializes gadget endpoint list, endpoints locks. No action is taken
* on the hardware.
*/
static void udc_init_data(struct pxa_udc *dev)
{
int i;
struct pxa_ep *ep;
/* device/ep0 records init */
INIT_LIST_HEAD(&dev->gadget.ep_list);
INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
ep0_idle(dev);
/* PXA endpoints init */
for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
ep = &dev->pxa_ep[i];
ep->enabled = is_ep0(ep);
INIT_LIST_HEAD(&ep->queue);
spin_lock_init(&ep->lock);
}
/* USB endpoints init */
for (i = 1; i < NR_USB_ENDPOINTS; i++)
list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
&dev->gadget.ep_list);
}
/**
* udc_enable - Enables the udc device
* @dev: udc device
*
* Enables the udc device : enables clocks, udc interrupts, control endpoint
* interrupts, sets usb as UDC client and setups endpoints.
*/
static void udc_enable(struct pxa_udc *udc)
{
if (udc->enabled)
return;
udc_writel(udc, UDCICR0, 0);
udc_writel(udc, UDCICR1, 0);
udc_clear_mask_UDCCR(udc, UDCCR_UDE);
clk_enable(udc->clk);
ep0_idle(udc);
udc->gadget.speed = USB_SPEED_FULL;
memset(&udc->stats, 0, sizeof(udc->stats));
udc_set_mask_UDCCR(udc, UDCCR_UDE);
ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
udelay(2);
if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
dev_err(udc->dev, "Configuration errors, udc disabled\n");
/*
* Caller must be able to sleep in order to cope with startup transients
*/
msleep(100);
/* enable suspend/resume and reset irqs */
udc_writel(udc, UDCICR1,
UDCICR1_IECC | UDCICR1_IERU
| UDCICR1_IESU | UDCICR1_IERS);
/* enable ep0 irqs */
pio_irq_enable(&udc->pxa_ep[0]);
udc->enabled = 1;
}
/**
* pxa27x_start - Register gadget driver
* @driver: gadget driver
* @bind: bind function
*
* When a driver is successfully registered, it will receive control requests
* including set_configuration(), which enables non-control requests. Then
* usb traffic follows until a disconnect is reported. Then a host may connect
* again, or the driver might get unbound.
*
* Note that the udc is not automatically enabled. Check function
* should_enable_udc().
*
* Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
*/
static int pxa27x_udc_start(struct usb_gadget *g,
struct usb_gadget_driver *driver)
{
struct pxa_udc *udc = to_pxa(g);
int retval;
/* first hook up the driver ... */
udc->driver = driver;
dplus_pullup(udc, 1);
if (!IS_ERR_OR_NULL(udc->transceiver)) {
retval = otg_set_peripheral(udc->transceiver->otg,
&udc->gadget);
if (retval) {
dev_err(udc->dev, "can't bind to transceiver\n");
goto fail;
}
}
if (should_enable_udc(udc))
udc_enable(udc);
return 0;
fail:
udc->driver = NULL;
return retval;
}
/**
* stop_activity - Stops udc endpoints
* @udc: udc device
* @driver: gadget driver
*
* Disables all udc endpoints (even control endpoint), report disconnect to
* the gadget user.
*/
static void stop_activity(struct pxa_udc *udc, struct usb_gadget_driver *driver)
{
int i;
/* don't disconnect drivers more than once */
if (udc->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
udc->gadget.speed = USB_SPEED_UNKNOWN;
for (i = 0; i < NR_USB_ENDPOINTS; i++)
pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
}
/**
* pxa27x_udc_stop - Unregister the gadget driver
* @driver: gadget driver
*
* Returns 0 if no error, -ENODEV, -EINVAL otherwise
*/
static int pxa27x_udc_stop(struct usb_gadget *g,
struct usb_gadget_driver *driver)
{
struct pxa_udc *udc = to_pxa(g);
stop_activity(udc, driver);
udc_disable(udc);
dplus_pullup(udc, 0);
udc->driver = NULL;
if (!IS_ERR_OR_NULL(udc->transceiver))
return otg_set_peripheral(udc->transceiver->otg, NULL);
return 0;
}
/**
* handle_ep0_ctrl_req - handle control endpoint control request
* @udc: udc device
* @req: control request
*/
static void handle_ep0_ctrl_req(struct pxa_udc *udc,
struct pxa27x_request *req)
{
struct pxa_ep *ep = &udc->pxa_ep[0];
union {
struct usb_ctrlrequest r;
u32 word[2];
} u;
int i;
int have_extrabytes = 0;
unsigned long flags;
nuke(ep, -EPROTO);
spin_lock_irqsave(&ep->lock, flags);
/*
* In the PXA320 manual, in the section about Back-to-Back setup
* packets, it describes this situation. The solution is to set OPC to
* get rid of the status packet, and then continue with the setup
* packet. Generalize to pxa27x CPUs.
*/
if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
ep_write_UDCCSR(ep, UDCCSR0_OPC);
/* read SETUP packet */
for (i = 0; i < 2; i++) {
if (unlikely(ep_is_empty(ep)))
goto stall;
u.word[i] = udc_ep_readl(ep, UDCDR);
}
have_extrabytes = !ep_is_empty(ep);
while (!ep_is_empty(ep)) {
i = udc_ep_readl(ep, UDCDR);
ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
}
ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
u.r.bRequestType, u.r.bRequest,
le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
le16_to_cpu(u.r.wLength));
if (unlikely(have_extrabytes))
goto stall;
if (u.r.bRequestType & USB_DIR_IN)
set_ep0state(udc, IN_DATA_STAGE);
else
set_ep0state(udc, OUT_DATA_STAGE);
/* Tell UDC to enter Data Stage */
ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
spin_unlock_irqrestore(&ep->lock, flags);
i = udc->driver->setup(&udc->gadget, &u.r);
spin_lock_irqsave(&ep->lock, flags);
if (i < 0)
goto stall;
out:
spin_unlock_irqrestore(&ep->lock, flags);
return;
stall:
ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
udc_ep_readl(ep, UDCCSR), i);
ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
set_ep0state(udc, STALL);
goto out;
}
/**
* handle_ep0 - Handle control endpoint data transfers
* @udc: udc device
* @fifo_irq: 1 if triggered by fifo service type irq
* @opc_irq: 1 if triggered by output packet complete type irq
*
* Context : when in_interrupt() or with ep->lock held
*
* Tries to transfer all pending request data into the endpoint and/or
* transfer all pending data in the endpoint into usb requests.
* Handles states of ep0 automata.
*
* PXA27x hardware handles several standard usb control requests without
* driver notification. The requests fully handled by hardware are :
* SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
* GET_STATUS
* The requests handled by hardware, but with irq notification are :
* SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
* The remaining standard requests really handled by handle_ep0 are :
* GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
* Requests standardized outside of USB 2.0 chapter 9 are handled more
* uniformly, by gadget drivers.
*
* The control endpoint state machine is _not_ USB spec compliant, it's even
* hardly compliant with Intel PXA270 developers guide.
* The key points which inferred this state machine are :
* - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
* software.
* - on every OUT packet received, UDCCSR0_OPC is raised and held until
* cleared by software.
* - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
* before reading ep0.
* This is true only for PXA27x. This is not true anymore for PXA3xx family
* (check Back-to-Back setup packet in developers guide).
* - irq can be called on a "packet complete" event (opc_irq=1), while
* UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
* from experimentation).
* - as UDCCSR0_SA can be activated while in irq handling, and clearing
* UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
* => we never actually read the "status stage" packet of an IN data stage
* => this is not documented in Intel documentation
* - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
* STAGE. The driver add STATUS STAGE to send last zero length packet in
* OUT_STATUS_STAGE.
* - special attention was needed for IN_STATUS_STAGE. If a packet complete
* event is detected, we terminate the status stage without ackowledging the
* packet (not to risk to loose a potential SETUP packet)
*/
static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
{
u32 udccsr0;
struct pxa_ep *ep = &udc->pxa_ep[0];
struct pxa27x_request *req = NULL;
int completed = 0;
if (!list_empty(&ep->queue))
req = list_entry(ep->queue.next, struct pxa27x_request, queue);
udccsr0 = udc_ep_readl(ep, UDCCSR);
ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
(fifo_irq << 1 | opc_irq));
if (udccsr0 & UDCCSR0_SST) {
ep_dbg(ep, "clearing stall status\n");
nuke(ep, -EPIPE);
ep_write_UDCCSR(ep, UDCCSR0_SST);
ep0_idle(udc);
}
if (udccsr0 & UDCCSR0_SA) {
nuke(ep, 0);
set_ep0state(udc, SETUP_STAGE);
}
switch (udc->ep0state) {
case WAIT_FOR_SETUP:
/*
* Hardware bug : beware, we cannot clear OPC, since we would
* miss a potential OPC irq for a setup packet.
* So, we only do ... nothing, and hope for a next irq with
* UDCCSR0_SA set.
*/
break;
case SETUP_STAGE:
udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
handle_ep0_ctrl_req(udc, req);
break;
case IN_DATA_STAGE: /* GET_DESCRIPTOR */
if (epout_has_pkt(ep))
ep_write_UDCCSR(ep, UDCCSR0_OPC);
if (req && !ep_is_full(ep))
completed = write_ep0_fifo(ep, req);
if (completed)
ep0_end_in_req(ep, req, NULL);
break;
case OUT_DATA_STAGE: /* SET_DESCRIPTOR */
if (epout_has_pkt(ep) && req)
completed = read_ep0_fifo(ep, req);
if (completed)
ep0_end_out_req(ep, req, NULL);
break;
case STALL:
ep_write_UDCCSR(ep, UDCCSR0_FST);
break;
case IN_STATUS_STAGE:
/*
* Hardware bug : beware, we cannot clear OPC, since we would
* miss a potential PC irq for a setup packet.
* So, we only put the ep0 into WAIT_FOR_SETUP state.
*/
if (opc_irq)
ep0_idle(udc);
break;
case OUT_STATUS_STAGE:
case WAIT_ACK_SET_CONF_INTERF:
ep_warn(ep, "should never get in %s state here!!!\n",
EP0_STNAME(ep->dev));
ep0_idle(udc);
break;
}
}
/**
* handle_ep - Handle endpoint data tranfers
* @ep: pxa physical endpoint
*
* Tries to transfer all pending request data into the endpoint and/or
* transfer all pending data in the endpoint into usb requests.
*
* Is always called when in_interrupt() and with ep->lock released.
*/
static void handle_ep(struct pxa_ep *ep)
{
struct pxa27x_request *req;
int completed;
u32 udccsr;
int is_in = ep->dir_in;
int loop = 0;
unsigned long flags;
spin_lock_irqsave(&ep->lock, flags);
if (ep->in_handle_ep)
goto recursion_detected;
ep->in_handle_ep = 1;
do {
completed = 0;
udccsr = udc_ep_readl(ep, UDCCSR);
if (likely(!list_empty(&ep->queue)))
req = list_entry(ep->queue.next,
struct pxa27x_request, queue);
else
req = NULL;
ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
req, udccsr, loop++);
if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
udc_ep_writel(ep, UDCCSR,
udccsr & (UDCCSR_SST | UDCCSR_TRN));
if (!req)
break;
if (unlikely(is_in)) {
if (likely(!ep_is_full(ep)))
completed = write_fifo(ep, req);
} else {
if (likely(epout_has_pkt(ep)))
completed = read_fifo(ep, req);
}
if (completed) {
if (is_in)
ep_end_in_req(ep, req, &flags);
else
ep_end_out_req(ep, req, &flags);
}
} while (completed);
ep->in_handle_ep = 0;
recursion_detected:
spin_unlock_irqrestore(&ep->lock, flags);
}
/**
* pxa27x_change_configuration - Handle SET_CONF usb request notification
* @udc: udc device
* @config: usb configuration
*
* Post the request to upper level.
* Don't use any pxa specific harware configuration capabilities
*/
static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
{
struct usb_ctrlrequest req ;
dev_dbg(udc->dev, "config=%d\n", config);
udc->config = config;
udc->last_interface = 0;
udc->last_alternate = 0;
req.bRequestType = 0;
req.bRequest = USB_REQ_SET_CONFIGURATION;
req.wValue = config;
req.wIndex = 0;
req.wLength = 0;
set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
udc->driver->setup(&udc->gadget, &req);
ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
}
/**
* pxa27x_change_interface - Handle SET_INTERF usb request notification
* @udc: udc device
* @iface: interface number
* @alt: alternate setting number
*
* Post the request to upper level.
* Don't use any pxa specific harware configuration capabilities
*/
static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
{
struct usb_ctrlrequest req;
dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
udc->last_interface = iface;
udc->last_alternate = alt;
req.bRequestType = USB_RECIP_INTERFACE;
req.bRequest = USB_REQ_SET_INTERFACE;
req.wValue = alt;
req.wIndex = iface;
req.wLength = 0;
set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
udc->driver->setup(&udc->gadget, &req);
ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
}
/*
* irq_handle_data - Handle data transfer
* @irq: irq IRQ number
* @udc: dev pxa_udc device structure
*
* Called from irq handler, transferts data to or from endpoint to queue
*/
static void irq_handle_data(int irq, struct pxa_udc *udc)
{
int i;
struct pxa_ep *ep;
u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
if (udcisr0 & UDCISR_INT_MASK) {
udc->pxa_ep[0].stats.irqs++;
udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
!!(udcisr0 & UDCICR_PKTCOMPL));
}
udcisr0 >>= 2;
for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
if (!(udcisr0 & UDCISR_INT_MASK))
continue;
udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
if (i < ARRAY_SIZE(udc->pxa_ep)) {
ep = &udc->pxa_ep[i];
ep->stats.irqs++;
handle_ep(ep);
}
}
for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
if (!(udcisr1 & UDCISR_INT_MASK))
continue;
WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
if (i < ARRAY_SIZE(udc->pxa_ep)) {
ep = &udc->pxa_ep[i];
ep->stats.irqs++;
handle_ep(ep);
}
}
}
/**
* irq_udc_suspend - Handle IRQ "UDC Suspend"
* @udc: udc device
*/
static void irq_udc_suspend(struct pxa_udc *udc)
{
udc_writel(udc, UDCISR1, UDCISR1_IRSU);
udc->stats.irqs_suspend++;
if (udc->gadget.speed != USB_SPEED_UNKNOWN
&& udc->driver && udc->driver->suspend)
udc->driver->suspend(&udc->gadget);
ep0_idle(udc);
}
/**
* irq_udc_resume - Handle IRQ "UDC Resume"
* @udc: udc device
*/
static void irq_udc_resume(struct pxa_udc *udc)
{
udc_writel(udc, UDCISR1, UDCISR1_IRRU);
udc->stats.irqs_resume++;
if (udc->gadget.speed != USB_SPEED_UNKNOWN
&& udc->driver && udc->driver->resume)
udc->driver->resume(&udc->gadget);
}
/**
* irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
* @udc: udc device
*/
static void irq_udc_reconfig(struct pxa_udc *udc)
{
unsigned config, interface, alternate, config_change;
u32 udccr = udc_readl(udc, UDCCR);
udc_writel(udc, UDCISR1, UDCISR1_IRCC);
udc->stats.irqs_reconfig++;
config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
config_change = (config != udc->config);
pxa27x_change_configuration(udc, config);
interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
pxa27x_change_interface(udc, interface, alternate);
if (config_change)
update_pxa_ep_matches(udc);
udc_set_mask_UDCCR(udc, UDCCR_SMAC);
}
/**
* irq_udc_reset - Handle IRQ "UDC Reset"
* @udc: udc device
*/
static void irq_udc_reset(struct pxa_udc *udc)
{
u32 udccr = udc_readl(udc, UDCCR);
struct pxa_ep *ep = &udc->pxa_ep[0];
dev_info(udc->dev, "USB reset\n");
udc_writel(udc, UDCISR1, UDCISR1_IRRS);
udc->stats.irqs_reset++;
if ((udccr & UDCCR_UDA) == 0) {
dev_dbg(udc->dev, "USB reset start\n");
stop_activity(udc, udc->driver);
}
udc->gadget.speed = USB_SPEED_FULL;
memset(&udc->stats, 0, sizeof udc->stats);
nuke(ep, -EPROTO);
ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
ep0_idle(udc);
}
/**
* pxa_udc_irq - Main irq handler
* @irq: irq number
* @_dev: udc device
*
* Handles all udc interrupts
*/
static irqreturn_t pxa_udc_irq(int irq, void *_dev)
{
struct pxa_udc *udc = _dev;
u32 udcisr0 = udc_readl(udc, UDCISR0);
u32 udcisr1 = udc_readl(udc, UDCISR1);
u32 udccr = udc_readl(udc, UDCCR);
u32 udcisr1_spec;
dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
"UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
udcisr1_spec = udcisr1 & 0xf8000000;
if (unlikely(udcisr1_spec & UDCISR1_IRSU))
irq_udc_suspend(udc);
if (unlikely(udcisr1_spec & UDCISR1_IRRU))
irq_udc_resume(udc);
if (unlikely(udcisr1_spec & UDCISR1_IRCC))
irq_udc_reconfig(udc);
if (unlikely(udcisr1_spec & UDCISR1_IRRS))
irq_udc_reset(udc);
if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
irq_handle_data(irq, udc);
return IRQ_HANDLED;
}
static struct pxa_udc memory = {
.gadget = {
.ops = &pxa_udc_ops,
.ep0 = &memory.udc_usb_ep[0].usb_ep,
.name = driver_name,
.dev = {
.init_name = "gadget",
},
},
.udc_usb_ep = {
USB_EP_CTRL,
USB_EP_OUT_BULK(1),
USB_EP_IN_BULK(2),
USB_EP_IN_ISO(3),
USB_EP_OUT_ISO(4),
USB_EP_IN_INT(5),
},
.pxa_ep = {
PXA_EP_CTRL,
/* Endpoints for gadget zero */
PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
PXA_EP_IN_BULK(2, 2, 3, 0, 0),
/* Endpoints for ether gadget, file storage gadget */
PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
PXA_EP_IN_BULK(4, 2, 1, 0, 0),
PXA_EP_IN_ISO(5, 3, 1, 0, 0),
PXA_EP_OUT_ISO(6, 4, 1, 0, 0),
PXA_EP_IN_INT(7, 5, 1, 0, 0),
/* Endpoints for RNDIS, serial */
PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
PXA_EP_IN_BULK(9, 2, 2, 0, 0),
PXA_EP_IN_INT(10, 5, 2, 0, 0),
/*
* All the following endpoints are only for completion. They
* won't never work, as multiple interfaces are really broken on
* the pxa.
*/
PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
PXA_EP_IN_BULK(12, 2, 2, 1, 0),
/* Endpoint for CDC Ether */
PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
PXA_EP_IN_BULK(14, 2, 1, 1, 1),
}
};
/**
* pxa_udc_probe - probes the udc device
* @_dev: platform device
*
* Perform basic init : allocates udc clock, creates sysfs files, requests
* irq.
*/
static int pxa_udc_probe(struct platform_device *pdev)
{
struct resource *regs;
struct pxa_udc *udc = &memory;
int retval = 0, gpio;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!regs)
return -ENXIO;
udc->irq = platform_get_irq(pdev, 0);
if (udc->irq < 0)
return udc->irq;
udc->dev = &pdev->dev;
udc->mach = pdev->dev.platform_data;
udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
gpio = udc->mach->gpio_pullup;
if (gpio_is_valid(gpio)) {
retval = gpio_request(gpio, "USB D+ pullup");
if (retval == 0)
gpio_direction_output(gpio,
udc->mach->gpio_pullup_inverted);
}
if (retval) {
dev_err(&pdev->dev, "Couldn't request gpio %d : %d\n",
gpio, retval);
return retval;
}
udc->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(udc->clk)) {
retval = PTR_ERR(udc->clk);
goto err_clk;
}
retval = -ENOMEM;
udc->regs = ioremap(regs->start, resource_size(regs));
if (!udc->regs) {
dev_err(&pdev->dev, "Unable to map UDC I/O memory\n");
goto err_map;
}
udc->vbus_sensed = 0;
the_controller = udc;
platform_set_drvdata(pdev, udc);
udc_init_data(udc);
pxa_eps_setup(udc);
/* irq setup after old hardware state is cleaned up */
retval = request_irq(udc->irq, pxa_udc_irq,
IRQF_SHARED, driver_name, udc);
if (retval != 0) {
dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
driver_name, udc->irq, retval);
goto err_irq;
}
retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
if (retval)
goto err_add_udc;
pxa_init_debugfs(udc);
return 0;
err_add_udc:
free_irq(udc->irq, udc);
err_irq:
iounmap(udc->regs);
err_map:
clk_put(udc->clk);
udc->clk = NULL;
err_clk:
return retval;
}
/**
* pxa_udc_remove - removes the udc device driver
* @_dev: platform device
*/
static int pxa_udc_remove(struct platform_device *_dev)
{
struct pxa_udc *udc = platform_get_drvdata(_dev);
int gpio = udc->mach->gpio_pullup;
usb_del_gadget_udc(&udc->gadget);
usb_gadget_unregister_driver(udc->driver);
free_irq(udc->irq, udc);
pxa_cleanup_debugfs(udc);
if (gpio_is_valid(gpio))
gpio_free(gpio);
usb_put_phy(udc->transceiver);
udc->transceiver = NULL;
the_controller = NULL;
clk_put(udc->clk);
iounmap(udc->regs);
return 0;
}
static void pxa_udc_shutdown(struct platform_device *_dev)
{
struct pxa_udc *udc = platform_get_drvdata(_dev);
if (udc_readl(udc, UDCCR) & UDCCR_UDE)
udc_disable(udc);
}
#ifdef CONFIG_PXA27x
extern void pxa27x_clear_otgph(void);
#else
#define pxa27x_clear_otgph() do {} while (0)
#endif
#ifdef CONFIG_PM
/**
* pxa_udc_suspend - Suspend udc device
* @_dev: platform device
* @state: suspend state
*
* Suspends udc : saves configuration registers (UDCCR*), then disables the udc
* device.
*/
static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
{
int i;
struct pxa_udc *udc = platform_get_drvdata(_dev);
struct pxa_ep *ep;
ep = &udc->pxa_ep[0];
udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
ep = &udc->pxa_ep[i];
ep->udccsr_value = udc_ep_readl(ep, UDCCSR);
ep->udccr_value = udc_ep_readl(ep, UDCCR);
ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n",
ep->udccsr_value, ep->udccr_value);
}
udc_disable(udc);
udc->pullup_resume = udc->pullup_on;
dplus_pullup(udc, 0);
return 0;
}
/**
* pxa_udc_resume - Resume udc device
* @_dev: platform device
*
* Resumes udc : restores configuration registers (UDCCR*), then enables the udc
* device.
*/
static int pxa_udc_resume(struct platform_device *_dev)
{
int i;
struct pxa_udc *udc = platform_get_drvdata(_dev);
struct pxa_ep *ep;
ep = &udc->pxa_ep[0];
udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
ep = &udc->pxa_ep[i];
udc_ep_writel(ep, UDCCSR, ep->udccsr_value);
udc_ep_writel(ep, UDCCR, ep->udccr_value);
ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n",
ep->udccsr_value, ep->udccr_value);
}
dplus_pullup(udc, udc->pullup_resume);
if (should_enable_udc(udc))
udc_enable(udc);
/*
* We do not handle OTG yet.
*
* OTGPH bit is set when sleep mode is entered.
* it indicates that OTG pad is retaining its state.
* Upon exit from sleep mode and before clearing OTGPH,
* Software must configure the USB OTG pad, UDC, and UHC
* to the state they were in before entering sleep mode.
*/
pxa27x_clear_otgph();
return 0;
}
#endif
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:pxa27x-udc");
static struct platform_driver udc_driver = {
.driver = {
.name = "pxa27x-udc",
.owner = THIS_MODULE,
},
.probe = pxa_udc_probe,
.remove = pxa_udc_remove,
.shutdown = pxa_udc_shutdown,
#ifdef CONFIG_PM
.suspend = pxa_udc_suspend,
.resume = pxa_udc_resume
#endif
};
module_platform_driver(udc_driver);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("Robert Jarzmik");
MODULE_LICENSE("GPL");