OpenCloudOS-Kernel/drivers/gpu/drm/bridge/synopsys/dw-hdmi.c

2643 lines
70 KiB
C

/*
* DesignWare High-Definition Multimedia Interface (HDMI) driver
*
* Copyright (C) 2013-2015 Mentor Graphics Inc.
* Copyright (C) 2011-2013 Freescale Semiconductor, Inc.
* Copyright (C) 2010, Guennadi Liakhovetski <g.liakhovetski@gmx.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/module.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/hdmi.h>
#include <linux/mutex.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#include <linux/spinlock.h>
#include <drm/drm_of.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_encoder_slave.h>
#include <drm/bridge/dw_hdmi.h>
#include <uapi/linux/media-bus-format.h>
#include <uapi/linux/videodev2.h>
#include "dw-hdmi.h"
#include "dw-hdmi-audio.h"
#include "dw-hdmi-cec.h"
#include <media/cec-notifier.h>
#define DDC_SEGMENT_ADDR 0x30
#define HDMI_EDID_LEN 512
enum hdmi_datamap {
RGB444_8B = 0x01,
RGB444_10B = 0x03,
RGB444_12B = 0x05,
RGB444_16B = 0x07,
YCbCr444_8B = 0x09,
YCbCr444_10B = 0x0B,
YCbCr444_12B = 0x0D,
YCbCr444_16B = 0x0F,
YCbCr422_8B = 0x16,
YCbCr422_10B = 0x14,
YCbCr422_12B = 0x12,
};
static const u16 csc_coeff_default[3][4] = {
{ 0x2000, 0x0000, 0x0000, 0x0000 },
{ 0x0000, 0x2000, 0x0000, 0x0000 },
{ 0x0000, 0x0000, 0x2000, 0x0000 }
};
static const u16 csc_coeff_rgb_out_eitu601[3][4] = {
{ 0x2000, 0x6926, 0x74fd, 0x010e },
{ 0x2000, 0x2cdd, 0x0000, 0x7e9a },
{ 0x2000, 0x0000, 0x38b4, 0x7e3b }
};
static const u16 csc_coeff_rgb_out_eitu709[3][4] = {
{ 0x2000, 0x7106, 0x7a02, 0x00a7 },
{ 0x2000, 0x3264, 0x0000, 0x7e6d },
{ 0x2000, 0x0000, 0x3b61, 0x7e25 }
};
static const u16 csc_coeff_rgb_in_eitu601[3][4] = {
{ 0x2591, 0x1322, 0x074b, 0x0000 },
{ 0x6535, 0x2000, 0x7acc, 0x0200 },
{ 0x6acd, 0x7534, 0x2000, 0x0200 }
};
static const u16 csc_coeff_rgb_in_eitu709[3][4] = {
{ 0x2dc5, 0x0d9b, 0x049e, 0x0000 },
{ 0x62f0, 0x2000, 0x7d11, 0x0200 },
{ 0x6756, 0x78ab, 0x2000, 0x0200 }
};
struct hdmi_vmode {
bool mdataenablepolarity;
unsigned int mpixelclock;
unsigned int mpixelrepetitioninput;
unsigned int mpixelrepetitionoutput;
};
struct hdmi_data_info {
unsigned int enc_in_bus_format;
unsigned int enc_out_bus_format;
unsigned int enc_in_encoding;
unsigned int enc_out_encoding;
unsigned int pix_repet_factor;
unsigned int hdcp_enable;
struct hdmi_vmode video_mode;
};
struct dw_hdmi_i2c {
struct i2c_adapter adap;
struct mutex lock; /* used to serialize data transfers */
struct completion cmp;
u8 stat;
u8 slave_reg;
bool is_regaddr;
bool is_segment;
};
struct dw_hdmi_phy_data {
enum dw_hdmi_phy_type type;
const char *name;
unsigned int gen;
bool has_svsret;
int (*configure)(struct dw_hdmi *hdmi,
const struct dw_hdmi_plat_data *pdata,
unsigned long mpixelclock);
};
struct dw_hdmi {
struct drm_connector connector;
struct drm_bridge bridge;
unsigned int version;
struct platform_device *audio;
struct platform_device *cec;
struct device *dev;
struct clk *isfr_clk;
struct clk *iahb_clk;
struct clk *cec_clk;
struct dw_hdmi_i2c *i2c;
struct hdmi_data_info hdmi_data;
const struct dw_hdmi_plat_data *plat_data;
int vic;
u8 edid[HDMI_EDID_LEN];
struct {
const struct dw_hdmi_phy_ops *ops;
const char *name;
void *data;
bool enabled;
} phy;
struct drm_display_mode previous_mode;
struct i2c_adapter *ddc;
void __iomem *regs;
bool sink_is_hdmi;
bool sink_has_audio;
struct mutex mutex; /* for state below and previous_mode */
enum drm_connector_force force; /* mutex-protected force state */
bool disabled; /* DRM has disabled our bridge */
bool bridge_is_on; /* indicates the bridge is on */
bool rxsense; /* rxsense state */
u8 phy_mask; /* desired phy int mask settings */
u8 mc_clkdis; /* clock disable register */
spinlock_t audio_lock;
struct mutex audio_mutex;
unsigned int sample_rate;
unsigned int audio_cts;
unsigned int audio_n;
bool audio_enable;
unsigned int reg_shift;
struct regmap *regm;
void (*enable_audio)(struct dw_hdmi *hdmi);
void (*disable_audio)(struct dw_hdmi *hdmi);
struct cec_notifier *cec_notifier;
};
#define HDMI_IH_PHY_STAT0_RX_SENSE \
(HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \
HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3)
#define HDMI_PHY_RX_SENSE \
(HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \
HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3)
static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset)
{
regmap_write(hdmi->regm, offset << hdmi->reg_shift, val);
}
static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset)
{
unsigned int val = 0;
regmap_read(hdmi->regm, offset << hdmi->reg_shift, &val);
return val;
}
static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg)
{
regmap_update_bits(hdmi->regm, reg << hdmi->reg_shift, mask, data);
}
static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg,
u8 shift, u8 mask)
{
hdmi_modb(hdmi, data << shift, mask, reg);
}
static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi)
{
/* Software reset */
hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ);
/* Set Standard Mode speed (determined to be 100KHz on iMX6) */
hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV);
/* Set done, not acknowledged and arbitration interrupt polarities */
hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT);
hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL,
HDMI_I2CM_CTLINT);
/* Clear DONE and ERROR interrupts */
hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
HDMI_IH_I2CM_STAT0);
/* Mute DONE and ERROR interrupts */
hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
HDMI_IH_MUTE_I2CM_STAT0);
}
static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi,
unsigned char *buf, unsigned int length)
{
struct dw_hdmi_i2c *i2c = hdmi->i2c;
int stat;
if (!i2c->is_regaddr) {
dev_dbg(hdmi->dev, "set read register address to 0\n");
i2c->slave_reg = 0x00;
i2c->is_regaddr = true;
}
while (length--) {
reinit_completion(&i2c->cmp);
hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
if (i2c->is_segment)
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT,
HDMI_I2CM_OPERATION);
else
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ,
HDMI_I2CM_OPERATION);
stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
if (!stat)
return -EAGAIN;
/* Check for error condition on the bus */
if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
return -EIO;
*buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI);
}
i2c->is_segment = false;
return 0;
}
static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi,
unsigned char *buf, unsigned int length)
{
struct dw_hdmi_i2c *i2c = hdmi->i2c;
int stat;
if (!i2c->is_regaddr) {
/* Use the first write byte as register address */
i2c->slave_reg = buf[0];
length--;
buf++;
i2c->is_regaddr = true;
}
while (length--) {
reinit_completion(&i2c->cmp);
hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO);
hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE,
HDMI_I2CM_OPERATION);
stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
if (!stat)
return -EAGAIN;
/* Check for error condition on the bus */
if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
return -EIO;
}
return 0;
}
static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{
struct dw_hdmi *hdmi = i2c_get_adapdata(adap);
struct dw_hdmi_i2c *i2c = hdmi->i2c;
u8 addr = msgs[0].addr;
int i, ret = 0;
dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr);
for (i = 0; i < num; i++) {
if (msgs[i].len == 0) {
dev_dbg(hdmi->dev,
"unsupported transfer %d/%d, no data\n",
i + 1, num);
return -EOPNOTSUPP;
}
}
mutex_lock(&i2c->lock);
/* Unmute DONE and ERROR interrupts */
hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0);
/* Set slave device address taken from the first I2C message */
hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE);
/* Set slave device register address on transfer */
i2c->is_regaddr = false;
/* Set segment pointer for I2C extended read mode operation */
i2c->is_segment = false;
for (i = 0; i < num; i++) {
dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n",
i + 1, num, msgs[i].len, msgs[i].flags);
if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) {
i2c->is_segment = true;
hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR);
hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR);
} else {
if (msgs[i].flags & I2C_M_RD)
ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf,
msgs[i].len);
else
ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf,
msgs[i].len);
}
if (ret < 0)
break;
}
if (!ret)
ret = num;
/* Mute DONE and ERROR interrupts */
hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
HDMI_IH_MUTE_I2CM_STAT0);
mutex_unlock(&i2c->lock);
return ret;
}
static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm dw_hdmi_algorithm = {
.master_xfer = dw_hdmi_i2c_xfer,
.functionality = dw_hdmi_i2c_func,
};
static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi)
{
struct i2c_adapter *adap;
struct dw_hdmi_i2c *i2c;
int ret;
i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return ERR_PTR(-ENOMEM);
mutex_init(&i2c->lock);
init_completion(&i2c->cmp);
adap = &i2c->adap;
adap->class = I2C_CLASS_DDC;
adap->owner = THIS_MODULE;
adap->dev.parent = hdmi->dev;
adap->algo = &dw_hdmi_algorithm;
strlcpy(adap->name, "DesignWare HDMI", sizeof(adap->name));
i2c_set_adapdata(adap, hdmi);
ret = i2c_add_adapter(adap);
if (ret) {
dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
devm_kfree(hdmi->dev, i2c);
return ERR_PTR(ret);
}
hdmi->i2c = i2c;
dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name);
return adap;
}
static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts,
unsigned int n)
{
/* Must be set/cleared first */
hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
/* nshift factor = 0 */
hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3);
hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) |
HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2);
hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1);
hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3);
hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2);
hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1);
}
static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk)
{
unsigned int n = (128 * freq) / 1000;
unsigned int mult = 1;
while (freq > 48000) {
mult *= 2;
freq /= 2;
}
switch (freq) {
case 32000:
if (pixel_clk == 25175000)
n = 4576;
else if (pixel_clk == 27027000)
n = 4096;
else if (pixel_clk == 74176000 || pixel_clk == 148352000)
n = 11648;
else
n = 4096;
n *= mult;
break;
case 44100:
if (pixel_clk == 25175000)
n = 7007;
else if (pixel_clk == 74176000)
n = 17836;
else if (pixel_clk == 148352000)
n = 8918;
else
n = 6272;
n *= mult;
break;
case 48000:
if (pixel_clk == 25175000)
n = 6864;
else if (pixel_clk == 27027000)
n = 6144;
else if (pixel_clk == 74176000)
n = 11648;
else if (pixel_clk == 148352000)
n = 5824;
else
n = 6144;
n *= mult;
break;
default:
break;
}
return n;
}
static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi,
unsigned long pixel_clk, unsigned int sample_rate)
{
unsigned long ftdms = pixel_clk;
unsigned int n, cts;
u64 tmp;
n = hdmi_compute_n(sample_rate, pixel_clk);
/*
* Compute the CTS value from the N value. Note that CTS and N
* can be up to 20 bits in total, so we need 64-bit math. Also
* note that our TDMS clock is not fully accurate; it is accurate
* to kHz. This can introduce an unnecessary remainder in the
* calculation below, so we don't try to warn about that.
*/
tmp = (u64)ftdms * n;
do_div(tmp, 128 * sample_rate);
cts = tmp;
dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n",
__func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000,
n, cts);
spin_lock_irq(&hdmi->audio_lock);
hdmi->audio_n = n;
hdmi->audio_cts = cts;
hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0);
spin_unlock_irq(&hdmi->audio_lock);
}
static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi)
{
mutex_lock(&hdmi->audio_mutex);
hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate);
mutex_unlock(&hdmi->audio_mutex);
}
static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi)
{
mutex_lock(&hdmi->audio_mutex);
hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
hdmi->sample_rate);
mutex_unlock(&hdmi->audio_mutex);
}
void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate)
{
mutex_lock(&hdmi->audio_mutex);
hdmi->sample_rate = rate;
hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
hdmi->sample_rate);
mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate);
static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi, bool enable)
{
if (enable)
hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_AUDCLK_DISABLE;
else
hdmi->mc_clkdis |= HDMI_MC_CLKDIS_AUDCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
}
static void dw_hdmi_ahb_audio_enable(struct dw_hdmi *hdmi)
{
hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
}
static void dw_hdmi_ahb_audio_disable(struct dw_hdmi *hdmi)
{
hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0);
}
static void dw_hdmi_i2s_audio_enable(struct dw_hdmi *hdmi)
{
hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
hdmi_enable_audio_clk(hdmi, true);
}
static void dw_hdmi_i2s_audio_disable(struct dw_hdmi *hdmi)
{
hdmi_enable_audio_clk(hdmi, false);
}
void dw_hdmi_audio_enable(struct dw_hdmi *hdmi)
{
unsigned long flags;
spin_lock_irqsave(&hdmi->audio_lock, flags);
hdmi->audio_enable = true;
if (hdmi->enable_audio)
hdmi->enable_audio(hdmi);
spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable);
void dw_hdmi_audio_disable(struct dw_hdmi *hdmi)
{
unsigned long flags;
spin_lock_irqsave(&hdmi->audio_lock, flags);
hdmi->audio_enable = false;
if (hdmi->disable_audio)
hdmi->disable_audio(hdmi);
spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable);
static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_RGB101010_1X30:
case MEDIA_BUS_FMT_RGB121212_1X36:
case MEDIA_BUS_FMT_RGB161616_1X48:
return true;
default:
return false;
}
}
static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_YUV16_1X48:
return true;
default:
return false;
}
}
static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_UYVY10_1X20:
case MEDIA_BUS_FMT_UYVY12_1X24:
return true;
default:
return false;
}
}
static int hdmi_bus_fmt_color_depth(unsigned int bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
return 8;
case MEDIA_BUS_FMT_RGB101010_1X30:
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_UYVY10_1X20:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
return 10;
case MEDIA_BUS_FMT_RGB121212_1X36:
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_UYVY12_1X24:
case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
return 12;
case MEDIA_BUS_FMT_RGB161616_1X48:
case MEDIA_BUS_FMT_YUV16_1X48:
case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
return 16;
default:
return 0;
}
}
/*
* this submodule is responsible for the video data synchronization.
* for example, for RGB 4:4:4 input, the data map is defined as
* pin{47~40} <==> R[7:0]
* pin{31~24} <==> G[7:0]
* pin{15~8} <==> B[7:0]
*/
static void hdmi_video_sample(struct dw_hdmi *hdmi)
{
int color_format = 0;
u8 val;
switch (hdmi->hdmi_data.enc_in_bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
color_format = 0x01;
break;
case MEDIA_BUS_FMT_RGB101010_1X30:
color_format = 0x03;
break;
case MEDIA_BUS_FMT_RGB121212_1X36:
color_format = 0x05;
break;
case MEDIA_BUS_FMT_RGB161616_1X48:
color_format = 0x07;
break;
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
color_format = 0x09;
break;
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
color_format = 0x0B;
break;
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
color_format = 0x0D;
break;
case MEDIA_BUS_FMT_YUV16_1X48:
case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
color_format = 0x0F;
break;
case MEDIA_BUS_FMT_UYVY8_1X16:
color_format = 0x16;
break;
case MEDIA_BUS_FMT_UYVY10_1X20:
color_format = 0x14;
break;
case MEDIA_BUS_FMT_UYVY12_1X24:
color_format = 0x12;
break;
default:
return;
}
val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
hdmi_writeb(hdmi, val, HDMI_TX_INVID0);
/* Enable TX stuffing: When DE is inactive, fix the output data to 0 */
val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING);
hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0);
hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1);
hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0);
hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1);
hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0);
hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1);
}
static int is_color_space_conversion(struct dw_hdmi *hdmi)
{
return hdmi->hdmi_data.enc_in_bus_format != hdmi->hdmi_data.enc_out_bus_format;
}
static int is_color_space_decimation(struct dw_hdmi *hdmi)
{
if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
return 0;
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) ||
hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format))
return 1;
return 0;
}
static int is_color_space_interpolation(struct dw_hdmi *hdmi)
{
if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format))
return 0;
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
return 1;
return 0;
}
static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi)
{
const u16 (*csc_coeff)[3][4] = &csc_coeff_default;
unsigned i;
u32 csc_scale = 1;
if (is_color_space_conversion(hdmi)) {
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) {
if (hdmi->hdmi_data.enc_out_encoding ==
V4L2_YCBCR_ENC_601)
csc_coeff = &csc_coeff_rgb_out_eitu601;
else
csc_coeff = &csc_coeff_rgb_out_eitu709;
} else if (hdmi_bus_fmt_is_rgb(
hdmi->hdmi_data.enc_in_bus_format)) {
if (hdmi->hdmi_data.enc_out_encoding ==
V4L2_YCBCR_ENC_601)
csc_coeff = &csc_coeff_rgb_in_eitu601;
else
csc_coeff = &csc_coeff_rgb_in_eitu709;
csc_scale = 0;
}
}
/* The CSC registers are sequential, alternating MSB then LSB */
for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) {
u16 coeff_a = (*csc_coeff)[0][i];
u16 coeff_b = (*csc_coeff)[1][i];
u16 coeff_c = (*csc_coeff)[2][i];
hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2);
hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2);
hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2);
hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2);
hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2);
hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2);
}
hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
HDMI_CSC_SCALE);
}
static void hdmi_video_csc(struct dw_hdmi *hdmi)
{
int color_depth = 0;
int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
int decimation = 0;
/* YCC422 interpolation to 444 mode */
if (is_color_space_interpolation(hdmi))
interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1;
else if (is_color_space_decimation(hdmi))
decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3;
switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) {
case 8:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
break;
case 10:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP;
break;
case 12:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP;
break;
case 16:
color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP;
break;
default:
return;
}
/* Configure the CSC registers */
hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG);
hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK,
HDMI_CSC_SCALE);
dw_hdmi_update_csc_coeffs(hdmi);
}
/*
* HDMI video packetizer is used to packetize the data.
* for example, if input is YCC422 mode or repeater is used,
* data should be repacked this module can be bypassed.
*/
static void hdmi_video_packetize(struct dw_hdmi *hdmi)
{
unsigned int color_depth = 0;
unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit;
unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP;
struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data;
u8 val, vp_conf;
if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) {
switch (hdmi_bus_fmt_color_depth(
hdmi->hdmi_data.enc_out_bus_format)) {
case 8:
color_depth = 4;
output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
break;
case 10:
color_depth = 5;
break;
case 12:
color_depth = 6;
break;
case 16:
color_depth = 7;
break;
default:
output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
}
} else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) {
switch (hdmi_bus_fmt_color_depth(
hdmi->hdmi_data.enc_out_bus_format)) {
case 0:
case 8:
remap_size = HDMI_VP_REMAP_YCC422_16bit;
break;
case 10:
remap_size = HDMI_VP_REMAP_YCC422_20bit;
break;
case 12:
remap_size = HDMI_VP_REMAP_YCC422_24bit;
break;
default:
return;
}
output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422;
} else {
return;
}
/* set the packetizer registers */
val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
HDMI_VP_PR_CD_COLOR_DEPTH_MASK) |
((hdmi_data->pix_repet_factor <<
HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) &
HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK);
hdmi_writeb(hdmi, val, HDMI_VP_PR_CD);
hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE,
HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF);
/* Data from pixel repeater block */
if (hdmi_data->pix_repet_factor > 1) {
vp_conf = HDMI_VP_CONF_PR_EN_ENABLE |
HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER;
} else { /* data from packetizer block */
vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
}
hdmi_modb(hdmi, vp_conf,
HDMI_VP_CONF_PR_EN_MASK |
HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF);
hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET,
HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF);
hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP);
if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) {
vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
HDMI_VP_CONF_PP_EN_ENABLE |
HDMI_VP_CONF_YCC422_EN_DISABLE;
} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) {
vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
HDMI_VP_CONF_PP_EN_DISABLE |
HDMI_VP_CONF_YCC422_EN_ENABLE;
} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) {
vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
HDMI_VP_CONF_PP_EN_DISABLE |
HDMI_VP_CONF_YCC422_EN_DISABLE;
} else {
return;
}
hdmi_modb(hdmi, vp_conf,
HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK |
HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF);
hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE,
HDMI_VP_STUFF_PP_STUFFING_MASK |
HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF);
hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
HDMI_VP_CONF);
}
/* -----------------------------------------------------------------------------
* Synopsys PHY Handling
*/
static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi,
unsigned char bit)
{
hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET,
HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0);
}
static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec)
{
u32 val;
while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) {
if (msec-- == 0)
return false;
udelay(1000);
}
hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0);
return true;
}
void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data,
unsigned char addr)
{
hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0);
hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR);
hdmi_writeb(hdmi, (unsigned char)(data >> 8),
HDMI_PHY_I2CM_DATAO_1_ADDR);
hdmi_writeb(hdmi, (unsigned char)(data >> 0),
HDMI_PHY_I2CM_DATAO_0_ADDR);
hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE,
HDMI_PHY_I2CM_OPERATION_ADDR);
hdmi_phy_wait_i2c_done(hdmi, 1000);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_write);
static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable)
{
hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_PDZ_OFFSET,
HDMI_PHY_CONF0_PDZ_MASK);
}
static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_ENTMDS_OFFSET,
HDMI_PHY_CONF0_ENTMDS_MASK);
}
static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_SVSRET_OFFSET,
HDMI_PHY_CONF0_SVSRET_MASK);
}
void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET,
HDMI_PHY_CONF0_GEN2_PDDQ_MASK);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen2_pddq);
void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET,
HDMI_PHY_CONF0_GEN2_TXPWRON_MASK);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen2_txpwron);
static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_SELDATAENPOL_OFFSET,
HDMI_PHY_CONF0_SELDATAENPOL_MASK);
}
static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable)
{
hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
HDMI_PHY_CONF0_SELDIPIF_OFFSET,
HDMI_PHY_CONF0_SELDIPIF_MASK);
}
void dw_hdmi_phy_reset(struct dw_hdmi *hdmi)
{
/* PHY reset. The reset signal is active high on Gen2 PHYs. */
hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ);
hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_reset);
void dw_hdmi_phy_i2c_set_addr(struct dw_hdmi *hdmi, u8 address)
{
hdmi_phy_test_clear(hdmi, 1);
hdmi_writeb(hdmi, address, HDMI_PHY_I2CM_SLAVE_ADDR);
hdmi_phy_test_clear(hdmi, 0);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_set_addr);
static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi)
{
const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
unsigned int i;
u16 val;
if (phy->gen == 1) {
dw_hdmi_phy_enable_tmds(hdmi, 0);
dw_hdmi_phy_enable_powerdown(hdmi, true);
return;
}
dw_hdmi_phy_gen2_txpwron(hdmi, 0);
/*
* Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went
* to low power mode.
*/
for (i = 0; i < 5; ++i) {
val = hdmi_readb(hdmi, HDMI_PHY_STAT0);
if (!(val & HDMI_PHY_TX_PHY_LOCK))
break;
usleep_range(1000, 2000);
}
if (val & HDMI_PHY_TX_PHY_LOCK)
dev_warn(hdmi->dev, "PHY failed to power down\n");
else
dev_dbg(hdmi->dev, "PHY powered down in %u iterations\n", i);
dw_hdmi_phy_gen2_pddq(hdmi, 1);
}
static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi)
{
const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
unsigned int i;
u8 val;
if (phy->gen == 1) {
dw_hdmi_phy_enable_powerdown(hdmi, false);
/* Toggle TMDS enable. */
dw_hdmi_phy_enable_tmds(hdmi, 0);
dw_hdmi_phy_enable_tmds(hdmi, 1);
return 0;
}
dw_hdmi_phy_gen2_txpwron(hdmi, 1);
dw_hdmi_phy_gen2_pddq(hdmi, 0);
/* Wait for PHY PLL lock */
for (i = 0; i < 5; ++i) {
val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
if (val)
break;
usleep_range(1000, 2000);
}
if (!val) {
dev_err(hdmi->dev, "PHY PLL failed to lock\n");
return -ETIMEDOUT;
}
dev_dbg(hdmi->dev, "PHY PLL locked %u iterations\n", i);
return 0;
}
/*
* PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available
* information the DWC MHL PHY has the same register layout and is thus also
* supported by this function.
*/
static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi,
const struct dw_hdmi_plat_data *pdata,
unsigned long mpixelclock)
{
const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg;
const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr;
const struct dw_hdmi_phy_config *phy_config = pdata->phy_config;
/* PLL/MPLL Cfg - always match on final entry */
for (; mpll_config->mpixelclock != ~0UL; mpll_config++)
if (mpixelclock <= mpll_config->mpixelclock)
break;
for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++)
if (mpixelclock <= curr_ctrl->mpixelclock)
break;
for (; phy_config->mpixelclock != ~0UL; phy_config++)
if (mpixelclock <= phy_config->mpixelclock)
break;
if (mpll_config->mpixelclock == ~0UL ||
curr_ctrl->mpixelclock == ~0UL ||
phy_config->mpixelclock == ~0UL)
return -EINVAL;
dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].cpce,
HDMI_3D_TX_PHY_CPCE_CTRL);
dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].gmp,
HDMI_3D_TX_PHY_GMPCTRL);
dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[0],
HDMI_3D_TX_PHY_CURRCTRL);
dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL);
dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK,
HDMI_3D_TX_PHY_MSM_CTRL);
dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM);
dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr,
HDMI_3D_TX_PHY_CKSYMTXCTRL);
dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr,
HDMI_3D_TX_PHY_VLEVCTRL);
/* Override and disable clock termination. */
dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_CKCALCTRL_OVERRIDE,
HDMI_3D_TX_PHY_CKCALCTRL);
return 0;
}
static int hdmi_phy_configure(struct dw_hdmi *hdmi)
{
const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock;
int ret;
dw_hdmi_phy_power_off(hdmi);
/* Leave low power consumption mode by asserting SVSRET. */
if (phy->has_svsret)
dw_hdmi_phy_enable_svsret(hdmi, 1);
dw_hdmi_phy_reset(hdmi);
hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST);
dw_hdmi_phy_i2c_set_addr(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2);
/* Write to the PHY as configured by the platform */
if (pdata->configure_phy)
ret = pdata->configure_phy(hdmi, pdata, mpixelclock);
else
ret = phy->configure(hdmi, pdata, mpixelclock);
if (ret) {
dev_err(hdmi->dev, "PHY configuration failed (clock %lu)\n",
mpixelclock);
return ret;
}
return dw_hdmi_phy_power_on(hdmi);
}
static int dw_hdmi_phy_init(struct dw_hdmi *hdmi, void *data,
struct drm_display_mode *mode)
{
int i, ret;
/* HDMI Phy spec says to do the phy initialization sequence twice */
for (i = 0; i < 2; i++) {
dw_hdmi_phy_sel_data_en_pol(hdmi, 1);
dw_hdmi_phy_sel_interface_control(hdmi, 0);
ret = hdmi_phy_configure(hdmi);
if (ret)
return ret;
}
return 0;
}
static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi, void *data)
{
dw_hdmi_phy_power_off(hdmi);
}
enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi,
void *data)
{
return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ?
connector_status_connected : connector_status_disconnected;
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_read_hpd);
void dw_hdmi_phy_update_hpd(struct dw_hdmi *hdmi, void *data,
bool force, bool disabled, bool rxsense)
{
u8 old_mask = hdmi->phy_mask;
if (force || disabled || !rxsense)
hdmi->phy_mask |= HDMI_PHY_RX_SENSE;
else
hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE;
if (old_mask != hdmi->phy_mask)
hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_update_hpd);
void dw_hdmi_phy_setup_hpd(struct dw_hdmi *hdmi, void *data)
{
/*
* Configure the PHY RX SENSE and HPD interrupts polarities and clear
* any pending interrupt.
*/
hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0);
hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
HDMI_IH_PHY_STAT0);
/* Enable cable hot plug irq. */
hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);
/* Clear and unmute interrupts. */
hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
HDMI_IH_PHY_STAT0);
hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
HDMI_IH_MUTE_PHY_STAT0);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_setup_hpd);
static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = {
.init = dw_hdmi_phy_init,
.disable = dw_hdmi_phy_disable,
.read_hpd = dw_hdmi_phy_read_hpd,
.update_hpd = dw_hdmi_phy_update_hpd,
.setup_hpd = dw_hdmi_phy_setup_hpd,
};
/* -----------------------------------------------------------------------------
* HDMI TX Setup
*/
static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi)
{
u8 de;
if (hdmi->hdmi_data.video_mode.mdataenablepolarity)
de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH;
else
de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW;
/* disable rx detect */
hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE,
HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0);
hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG);
hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE,
HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1);
}
static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
{
struct hdmi_avi_infoframe frame;
u8 val;
/* Initialise info frame from DRM mode */
drm_hdmi_avi_infoframe_from_display_mode(&frame, mode, false);
if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
frame.colorspace = HDMI_COLORSPACE_YUV444;
else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
frame.colorspace = HDMI_COLORSPACE_YUV422;
else
frame.colorspace = HDMI_COLORSPACE_RGB;
/* Set up colorimetry */
switch (hdmi->hdmi_data.enc_out_encoding) {
case V4L2_YCBCR_ENC_601:
if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601)
frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
else
frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
frame.extended_colorimetry =
HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
break;
case V4L2_YCBCR_ENC_709:
if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709)
frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
else
frame.colorimetry = HDMI_COLORIMETRY_ITU_709;
frame.extended_colorimetry =
HDMI_EXTENDED_COLORIMETRY_XV_YCC_709;
break;
default: /* Carries no data */
frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
frame.extended_colorimetry =
HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
break;
}
frame.scan_mode = HDMI_SCAN_MODE_NONE;
/*
* The Designware IP uses a different byte format from standard
* AVI info frames, though generally the bits are in the correct
* bytes.
*/
/*
* AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6,
* scan info in bits 4,5 rather than 0,1 and active aspect present in
* bit 6 rather than 4.
*/
val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3);
if (frame.active_aspect & 15)
val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT;
if (frame.top_bar || frame.bottom_bar)
val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR;
if (frame.left_bar || frame.right_bar)
val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR;
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0);
/* AVI data byte 2 differences: none */
val = ((frame.colorimetry & 0x3) << 6) |
((frame.picture_aspect & 0x3) << 4) |
(frame.active_aspect & 0xf);
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1);
/* AVI data byte 3 differences: none */
val = ((frame.extended_colorimetry & 0x7) << 4) |
((frame.quantization_range & 0x3) << 2) |
(frame.nups & 0x3);
if (frame.itc)
val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID;
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2);
/* AVI data byte 4 differences: none */
val = frame.video_code & 0x7f;
hdmi_writeb(hdmi, val, HDMI_FC_AVIVID);
/* AVI Data Byte 5- set up input and output pixel repetition */
val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) <<
HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) &
HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) |
((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput <<
HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) &
HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK);
hdmi_writeb(hdmi, val, HDMI_FC_PRCONF);
/*
* AVI data byte 5 differences: content type in 0,1 rather than 4,5,
* ycc range in bits 2,3 rather than 6,7
*/
val = ((frame.ycc_quantization_range & 0x3) << 2) |
(frame.content_type & 0x3);
hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3);
/* AVI Data Bytes 6-13 */
hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0);
hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1);
hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0);
hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1);
hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0);
hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1);
hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0);
hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1);
}
static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi,
struct drm_display_mode *mode)
{
struct hdmi_vendor_infoframe frame;
u8 buffer[10];
ssize_t err;
err = drm_hdmi_vendor_infoframe_from_display_mode(&frame,
&hdmi->connector,
mode);
if (err < 0)
/*
* Going into that statement does not means vendor infoframe
* fails. It just informed us that vendor infoframe is not
* needed for the selected mode. Only 4k or stereoscopic 3D
* mode requires vendor infoframe. So just simply return.
*/
return;
err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer));
if (err < 0) {
dev_err(hdmi->dev, "Failed to pack vendor infoframe: %zd\n",
err);
return;
}
hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
HDMI_FC_DATAUTO0_VSD_MASK);
/* Set the length of HDMI vendor specific InfoFrame payload */
hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE);
/* Set 24bit IEEE Registration Identifier */
hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0);
hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1);
hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2);
/* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */
hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0);
hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1);
if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2);
/* Packet frame interpolation */
hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1);
/* Auto packets per frame and line spacing */
hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2);
/* Configures the Frame Composer On RDRB mode */
hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
HDMI_FC_DATAUTO0_VSD_MASK);
}
static void hdmi_av_composer(struct dw_hdmi *hdmi,
const struct drm_display_mode *mode)
{
u8 inv_val;
struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode;
int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len;
unsigned int vdisplay;
vmode->mpixelclock = mode->clock * 1000;
dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock);
/* Set up HDMI_FC_INVIDCONF */
inv_val = (hdmi->hdmi_data.hdcp_enable ?
HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE :
HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE);
inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW;
inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW;
inv_val |= (vmode->mdataenablepolarity ?
HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);
if (hdmi->vic == 39)
inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH;
else
inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH :
HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
HDMI_FC_INVIDCONF_IN_I_P_INTERLACED :
HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
inv_val |= hdmi->sink_is_hdmi ?
HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE;
hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF);
vdisplay = mode->vdisplay;
vblank = mode->vtotal - mode->vdisplay;
v_de_vs = mode->vsync_start - mode->vdisplay;
vsync_len = mode->vsync_end - mode->vsync_start;
/*
* When we're setting an interlaced mode, we need
* to adjust the vertical timing to suit.
*/
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vdisplay /= 2;
vblank /= 2;
v_de_vs /= 2;
vsync_len /= 2;
}
/* Set up horizontal active pixel width */
hdmi_writeb(hdmi, mode->hdisplay >> 8, HDMI_FC_INHACTV1);
hdmi_writeb(hdmi, mode->hdisplay, HDMI_FC_INHACTV0);
/* Set up vertical active lines */
hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1);
hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0);
/* Set up horizontal blanking pixel region width */
hblank = mode->htotal - mode->hdisplay;
hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1);
hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0);
/* Set up vertical blanking pixel region width */
hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK);
/* Set up HSYNC active edge delay width (in pixel clks) */
h_de_hs = mode->hsync_start - mode->hdisplay;
hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1);
hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0);
/* Set up VSYNC active edge delay (in lines) */
hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY);
/* Set up HSYNC active pulse width (in pixel clks) */
hsync_len = mode->hsync_end - mode->hsync_start;
hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1);
hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0);
/* Set up VSYNC active edge delay (in lines) */
hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH);
}
/* HDMI Initialization Step B.4 */
static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi)
{
/* control period minimum duration */
hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR);
hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR);
hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC);
/* Set to fill TMDS data channels */
hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM);
hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM);
hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM);
/* Enable pixel clock and tmds data path */
hdmi->mc_clkdis |= HDMI_MC_CLKDIS_HDCPCLK_DISABLE |
HDMI_MC_CLKDIS_CSCCLK_DISABLE |
HDMI_MC_CLKDIS_AUDCLK_DISABLE |
HDMI_MC_CLKDIS_PREPCLK_DISABLE |
HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
/* Enable csc path */
if (is_color_space_conversion(hdmi)) {
hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
}
/* Enable color space conversion if needed */
if (is_color_space_conversion(hdmi))
hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH,
HDMI_MC_FLOWCTRL);
else
hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS,
HDMI_MC_FLOWCTRL);
}
/* Workaround to clear the overflow condition */
static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi)
{
unsigned int count;
unsigned int i;
u8 val;
/*
* Under some circumstances the Frame Composer arithmetic unit can miss
* an FC register write due to being busy processing the previous one.
* The issue can be worked around by issuing a TMDS software reset and
* then write one of the FC registers several times.
*
* The number of iterations matters and depends on the HDMI TX revision
* (and possibly on the platform). So far i.MX6Q (v1.30a), i.MX6DL
* (v1.31a) and multiple Allwinner SoCs (v1.32a) have been identified
* as needing the workaround, with 4 iterations for v1.30a and 1
* iteration for others.
* The Amlogic Meson GX SoCs (v2.01a) have been identified as needing
* the workaround with a single iteration.
*/
switch (hdmi->version) {
case 0x130a:
count = 4;
break;
case 0x131a:
case 0x132a:
case 0x201a:
count = 1;
break;
default:
return;
}
/* TMDS software reset */
hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ);
val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF);
for (i = 0; i < count; i++)
hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF);
}
static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi)
{
hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK,
HDMI_IH_MUTE_FC_STAT2);
}
static int dw_hdmi_setup(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
{
int ret;
hdmi_disable_overflow_interrupts(hdmi);
hdmi->vic = drm_match_cea_mode(mode);
if (!hdmi->vic) {
dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n");
} else {
dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic);
}
if ((hdmi->vic == 6) || (hdmi->vic == 7) ||
(hdmi->vic == 21) || (hdmi->vic == 22) ||
(hdmi->vic == 2) || (hdmi->vic == 3) ||
(hdmi->vic == 17) || (hdmi->vic == 18))
hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601;
else
hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709;
hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0;
hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0;
/* TOFIX: Get input format from plat data or fallback to RGB888 */
if (hdmi->plat_data->input_bus_format)
hdmi->hdmi_data.enc_in_bus_format =
hdmi->plat_data->input_bus_format;
else
hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_RGB888_1X24;
/* TOFIX: Get input encoding from plat data or fallback to none */
if (hdmi->plat_data->input_bus_encoding)
hdmi->hdmi_data.enc_in_encoding =
hdmi->plat_data->input_bus_encoding;
else
hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT;
/* TOFIX: Default to RGB888 output format */
hdmi->hdmi_data.enc_out_bus_format = MEDIA_BUS_FMT_RGB888_1X24;
hdmi->hdmi_data.pix_repet_factor = 0;
hdmi->hdmi_data.hdcp_enable = 0;
hdmi->hdmi_data.video_mode.mdataenablepolarity = true;
/* HDMI Initialization Step B.1 */
hdmi_av_composer(hdmi, mode);
/* HDMI Initializateion Step B.2 */
ret = hdmi->phy.ops->init(hdmi, hdmi->phy.data, &hdmi->previous_mode);
if (ret)
return ret;
hdmi->phy.enabled = true;
/* HDMI Initialization Step B.3 */
dw_hdmi_enable_video_path(hdmi);
if (hdmi->sink_has_audio) {
dev_dbg(hdmi->dev, "sink has audio support\n");
/* HDMI Initialization Step E - Configure audio */
hdmi_clk_regenerator_update_pixel_clock(hdmi);
hdmi_enable_audio_clk(hdmi, true);
}
/* not for DVI mode */
if (hdmi->sink_is_hdmi) {
dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__);
/* HDMI Initialization Step F - Configure AVI InfoFrame */
hdmi_config_AVI(hdmi, mode);
hdmi_config_vendor_specific_infoframe(hdmi, mode);
} else {
dev_dbg(hdmi->dev, "%s DVI mode\n", __func__);
}
hdmi_video_packetize(hdmi);
hdmi_video_csc(hdmi);
hdmi_video_sample(hdmi);
hdmi_tx_hdcp_config(hdmi);
dw_hdmi_clear_overflow(hdmi);
return 0;
}
static void dw_hdmi_setup_i2c(struct dw_hdmi *hdmi)
{
hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL,
HDMI_PHY_I2CM_INT_ADDR);
hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL |
HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL,
HDMI_PHY_I2CM_CTLINT_ADDR);
}
static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi)
{
u8 ih_mute;
/*
* Boot up defaults are:
* HDMI_IH_MUTE = 0x03 (disabled)
* HDMI_IH_MUTE_* = 0x00 (enabled)
*
* Disable top level interrupt bits in HDMI block
*/
ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) |
HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
HDMI_IH_MUTE_MUTE_ALL_INTERRUPT;
hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);
/* by default mask all interrupts */
hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK);
hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0);
hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1);
hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2);
hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0);
hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR);
hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR);
hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT);
hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT);
hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK);
hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK);
hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK);
hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT);
hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT);
/* Disable interrupts in the IH_MUTE_* registers */
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0);
hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0);
/* Enable top level interrupt bits in HDMI block */
ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
HDMI_IH_MUTE_MUTE_ALL_INTERRUPT);
hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);
}
static void dw_hdmi_poweron(struct dw_hdmi *hdmi)
{
hdmi->bridge_is_on = true;
dw_hdmi_setup(hdmi, &hdmi->previous_mode);
}
static void dw_hdmi_poweroff(struct dw_hdmi *hdmi)
{
if (hdmi->phy.enabled) {
hdmi->phy.ops->disable(hdmi, hdmi->phy.data);
hdmi->phy.enabled = false;
}
hdmi->bridge_is_on = false;
}
static void dw_hdmi_update_power(struct dw_hdmi *hdmi)
{
int force = hdmi->force;
if (hdmi->disabled) {
force = DRM_FORCE_OFF;
} else if (force == DRM_FORCE_UNSPECIFIED) {
if (hdmi->rxsense)
force = DRM_FORCE_ON;
else
force = DRM_FORCE_OFF;
}
if (force == DRM_FORCE_OFF) {
if (hdmi->bridge_is_on)
dw_hdmi_poweroff(hdmi);
} else {
if (!hdmi->bridge_is_on)
dw_hdmi_poweron(hdmi);
}
}
/*
* Adjust the detection of RXSENSE according to whether we have a forced
* connection mode enabled, or whether we have been disabled. There is
* no point processing RXSENSE interrupts if we have a forced connection
* state, or DRM has us disabled.
*
* We also disable rxsense interrupts when we think we're disconnected
* to avoid floating TDMS signals giving false rxsense interrupts.
*
* Note: we still need to listen for HPD interrupts even when DRM has us
* disabled so that we can detect a connect event.
*/
static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi)
{
if (hdmi->phy.ops->update_hpd)
hdmi->phy.ops->update_hpd(hdmi, hdmi->phy.data,
hdmi->force, hdmi->disabled,
hdmi->rxsense);
}
static enum drm_connector_status
dw_hdmi_connector_detect(struct drm_connector *connector, bool force)
{
struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
connector);
mutex_lock(&hdmi->mutex);
hdmi->force = DRM_FORCE_UNSPECIFIED;
dw_hdmi_update_power(hdmi);
dw_hdmi_update_phy_mask(hdmi);
mutex_unlock(&hdmi->mutex);
return hdmi->phy.ops->read_hpd(hdmi, hdmi->phy.data);
}
static int dw_hdmi_connector_get_modes(struct drm_connector *connector)
{
struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
connector);
struct edid *edid;
int ret = 0;
if (!hdmi->ddc)
return 0;
edid = drm_get_edid(connector, hdmi->ddc);
if (edid) {
dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n",
edid->width_cm, edid->height_cm);
hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid);
hdmi->sink_has_audio = drm_detect_monitor_audio(edid);
drm_connector_update_edid_property(connector, edid);
cec_notifier_set_phys_addr_from_edid(hdmi->cec_notifier, edid);
ret = drm_add_edid_modes(connector, edid);
kfree(edid);
} else {
dev_dbg(hdmi->dev, "failed to get edid\n");
}
return ret;
}
static void dw_hdmi_connector_force(struct drm_connector *connector)
{
struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
connector);
mutex_lock(&hdmi->mutex);
hdmi->force = connector->force;
dw_hdmi_update_power(hdmi);
dw_hdmi_update_phy_mask(hdmi);
mutex_unlock(&hdmi->mutex);
}
static const struct drm_connector_funcs dw_hdmi_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = dw_hdmi_connector_detect,
.destroy = drm_connector_cleanup,
.force = dw_hdmi_connector_force,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = {
.get_modes = dw_hdmi_connector_get_modes,
.best_encoder = drm_atomic_helper_best_encoder,
};
static int dw_hdmi_bridge_attach(struct drm_bridge *bridge)
{
struct dw_hdmi *hdmi = bridge->driver_private;
struct drm_encoder *encoder = bridge->encoder;
struct drm_connector *connector = &hdmi->connector;
connector->interlace_allowed = 1;
connector->polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs);
drm_connector_init(bridge->dev, connector, &dw_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
drm_connector_attach_encoder(connector, encoder);
return 0;
}
static enum drm_mode_status
dw_hdmi_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_mode *mode)
{
struct dw_hdmi *hdmi = bridge->driver_private;
struct drm_connector *connector = &hdmi->connector;
enum drm_mode_status mode_status = MODE_OK;
/* We don't support double-clocked modes */
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_BAD;
if (hdmi->plat_data->mode_valid)
mode_status = hdmi->plat_data->mode_valid(connector, mode);
return mode_status;
}
static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge,
struct drm_display_mode *orig_mode,
struct drm_display_mode *mode)
{
struct dw_hdmi *hdmi = bridge->driver_private;
mutex_lock(&hdmi->mutex);
/* Store the display mode for plugin/DKMS poweron events */
memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode));
mutex_unlock(&hdmi->mutex);
}
static void dw_hdmi_bridge_disable(struct drm_bridge *bridge)
{
struct dw_hdmi *hdmi = bridge->driver_private;
mutex_lock(&hdmi->mutex);
hdmi->disabled = true;
dw_hdmi_update_power(hdmi);
dw_hdmi_update_phy_mask(hdmi);
mutex_unlock(&hdmi->mutex);
}
static void dw_hdmi_bridge_enable(struct drm_bridge *bridge)
{
struct dw_hdmi *hdmi = bridge->driver_private;
mutex_lock(&hdmi->mutex);
hdmi->disabled = false;
dw_hdmi_update_power(hdmi);
dw_hdmi_update_phy_mask(hdmi);
mutex_unlock(&hdmi->mutex);
}
static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = {
.attach = dw_hdmi_bridge_attach,
.enable = dw_hdmi_bridge_enable,
.disable = dw_hdmi_bridge_disable,
.mode_set = dw_hdmi_bridge_mode_set,
.mode_valid = dw_hdmi_bridge_mode_valid,
};
static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi)
{
struct dw_hdmi_i2c *i2c = hdmi->i2c;
unsigned int stat;
stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0);
if (!stat)
return IRQ_NONE;
hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0);
i2c->stat = stat;
complete(&i2c->cmp);
return IRQ_HANDLED;
}
static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id)
{
struct dw_hdmi *hdmi = dev_id;
u8 intr_stat;
irqreturn_t ret = IRQ_NONE;
if (hdmi->i2c)
ret = dw_hdmi_i2c_irq(hdmi);
intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
if (intr_stat) {
hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);
return IRQ_WAKE_THREAD;
}
return ret;
}
void dw_hdmi_setup_rx_sense(struct dw_hdmi *hdmi, bool hpd, bool rx_sense)
{
mutex_lock(&hdmi->mutex);
if (!hdmi->force) {
/*
* If the RX sense status indicates we're disconnected,
* clear the software rxsense status.
*/
if (!rx_sense)
hdmi->rxsense = false;
/*
* Only set the software rxsense status when both
* rxsense and hpd indicates we're connected.
* This avoids what seems to be bad behaviour in
* at least iMX6S versions of the phy.
*/
if (hpd)
hdmi->rxsense = true;
dw_hdmi_update_power(hdmi);
dw_hdmi_update_phy_mask(hdmi);
}
mutex_unlock(&hdmi->mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_setup_rx_sense);
static irqreturn_t dw_hdmi_irq(int irq, void *dev_id)
{
struct dw_hdmi *hdmi = dev_id;
u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat;
intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0);
phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0);
phy_pol_mask = 0;
if (intr_stat & HDMI_IH_PHY_STAT0_HPD)
phy_pol_mask |= HDMI_PHY_HPD;
if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0)
phy_pol_mask |= HDMI_PHY_RX_SENSE0;
if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1)
phy_pol_mask |= HDMI_PHY_RX_SENSE1;
if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2)
phy_pol_mask |= HDMI_PHY_RX_SENSE2;
if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3)
phy_pol_mask |= HDMI_PHY_RX_SENSE3;
if (phy_pol_mask)
hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0);
/*
* RX sense tells us whether the TDMS transmitters are detecting
* load - in other words, there's something listening on the
* other end of the link. Use this to decide whether we should
* power on the phy as HPD may be toggled by the sink to merely
* ask the source to re-read the EDID.
*/
if (intr_stat &
(HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD)) {
dw_hdmi_setup_rx_sense(hdmi,
phy_stat & HDMI_PHY_HPD,
phy_stat & HDMI_PHY_RX_SENSE);
if ((phy_stat & (HDMI_PHY_RX_SENSE | HDMI_PHY_HPD)) == 0)
cec_notifier_set_phys_addr(hdmi->cec_notifier,
CEC_PHYS_ADDR_INVALID);
}
if (intr_stat & HDMI_IH_PHY_STAT0_HPD) {
dev_dbg(hdmi->dev, "EVENT=%s\n",
phy_int_pol & HDMI_PHY_HPD ? "plugin" : "plugout");
if (hdmi->bridge.dev)
drm_helper_hpd_irq_event(hdmi->bridge.dev);
}
hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0);
hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
HDMI_IH_MUTE_PHY_STAT0);
return IRQ_HANDLED;
}
static const struct dw_hdmi_phy_data dw_hdmi_phys[] = {
{
.type = DW_HDMI_PHY_DWC_HDMI_TX_PHY,
.name = "DWC HDMI TX PHY",
.gen = 1,
}, {
.type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC,
.name = "DWC MHL PHY + HEAC PHY",
.gen = 2,
.has_svsret = true,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_MHL_PHY,
.name = "DWC MHL PHY",
.gen = 2,
.has_svsret = true,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC,
.name = "DWC HDMI 3D TX PHY + HEAC PHY",
.gen = 2,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY,
.name = "DWC HDMI 3D TX PHY",
.gen = 2,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY,
.name = "DWC HDMI 2.0 TX PHY",
.gen = 2,
.has_svsret = true,
.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
}, {
.type = DW_HDMI_PHY_VENDOR_PHY,
.name = "Vendor PHY",
}
};
static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi)
{
unsigned int i;
u8 phy_type;
phy_type = hdmi_readb(hdmi, HDMI_CONFIG2_ID);
if (phy_type == DW_HDMI_PHY_VENDOR_PHY) {
/* Vendor PHYs require support from the glue layer. */
if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) {
dev_err(hdmi->dev,
"Vendor HDMI PHY not supported by glue layer\n");
return -ENODEV;
}
hdmi->phy.ops = hdmi->plat_data->phy_ops;
hdmi->phy.data = hdmi->plat_data->phy_data;
hdmi->phy.name = hdmi->plat_data->phy_name;
return 0;
}
/* Synopsys PHYs are handled internally. */
for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) {
if (dw_hdmi_phys[i].type == phy_type) {
hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops;
hdmi->phy.name = dw_hdmi_phys[i].name;
hdmi->phy.data = (void *)&dw_hdmi_phys[i];
if (!dw_hdmi_phys[i].configure &&
!hdmi->plat_data->configure_phy) {
dev_err(hdmi->dev, "%s requires platform support\n",
hdmi->phy.name);
return -ENODEV;
}
return 0;
}
}
dev_err(hdmi->dev, "Unsupported HDMI PHY type (%02x)\n", phy_type);
return -ENODEV;
}
static void dw_hdmi_cec_enable(struct dw_hdmi *hdmi)
{
mutex_lock(&hdmi->mutex);
hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CECCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
mutex_unlock(&hdmi->mutex);
}
static void dw_hdmi_cec_disable(struct dw_hdmi *hdmi)
{
mutex_lock(&hdmi->mutex);
hdmi->mc_clkdis |= HDMI_MC_CLKDIS_CECCLK_DISABLE;
hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
mutex_unlock(&hdmi->mutex);
}
static const struct dw_hdmi_cec_ops dw_hdmi_cec_ops = {
.write = hdmi_writeb,
.read = hdmi_readb,
.enable = dw_hdmi_cec_enable,
.disable = dw_hdmi_cec_disable,
};
static const struct regmap_config hdmi_regmap_8bit_config = {
.reg_bits = 32,
.val_bits = 8,
.reg_stride = 1,
.max_register = HDMI_I2CM_FS_SCL_LCNT_0_ADDR,
};
static const struct regmap_config hdmi_regmap_32bit_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = HDMI_I2CM_FS_SCL_LCNT_0_ADDR << 2,
};
static struct dw_hdmi *
__dw_hdmi_probe(struct platform_device *pdev,
const struct dw_hdmi_plat_data *plat_data)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct platform_device_info pdevinfo;
struct device_node *ddc_node;
struct dw_hdmi_cec_data cec;
struct dw_hdmi *hdmi;
struct resource *iores = NULL;
int irq;
int ret;
u32 val = 1;
u8 prod_id0;
u8 prod_id1;
u8 config0;
u8 config3;
hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
if (!hdmi)
return ERR_PTR(-ENOMEM);
hdmi->plat_data = plat_data;
hdmi->dev = dev;
hdmi->sample_rate = 48000;
hdmi->disabled = true;
hdmi->rxsense = true;
hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE);
hdmi->mc_clkdis = 0x7f;
mutex_init(&hdmi->mutex);
mutex_init(&hdmi->audio_mutex);
spin_lock_init(&hdmi->audio_lock);
ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0);
if (ddc_node) {
hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node);
of_node_put(ddc_node);
if (!hdmi->ddc) {
dev_dbg(hdmi->dev, "failed to read ddc node\n");
return ERR_PTR(-EPROBE_DEFER);
}
} else {
dev_dbg(hdmi->dev, "no ddc property found\n");
}
if (!plat_data->regm) {
const struct regmap_config *reg_config;
of_property_read_u32(np, "reg-io-width", &val);
switch (val) {
case 4:
reg_config = &hdmi_regmap_32bit_config;
hdmi->reg_shift = 2;
break;
case 1:
reg_config = &hdmi_regmap_8bit_config;
break;
default:
dev_err(dev, "reg-io-width must be 1 or 4\n");
return ERR_PTR(-EINVAL);
}
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
hdmi->regs = devm_ioremap_resource(dev, iores);
if (IS_ERR(hdmi->regs)) {
ret = PTR_ERR(hdmi->regs);
goto err_res;
}
hdmi->regm = devm_regmap_init_mmio(dev, hdmi->regs, reg_config);
if (IS_ERR(hdmi->regm)) {
dev_err(dev, "Failed to configure regmap\n");
ret = PTR_ERR(hdmi->regm);
goto err_res;
}
} else {
hdmi->regm = plat_data->regm;
}
hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr");
if (IS_ERR(hdmi->isfr_clk)) {
ret = PTR_ERR(hdmi->isfr_clk);
dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret);
goto err_res;
}
ret = clk_prepare_enable(hdmi->isfr_clk);
if (ret) {
dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret);
goto err_res;
}
hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb");
if (IS_ERR(hdmi->iahb_clk)) {
ret = PTR_ERR(hdmi->iahb_clk);
dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret);
goto err_isfr;
}
ret = clk_prepare_enable(hdmi->iahb_clk);
if (ret) {
dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret);
goto err_isfr;
}
hdmi->cec_clk = devm_clk_get(hdmi->dev, "cec");
if (PTR_ERR(hdmi->cec_clk) == -ENOENT) {
hdmi->cec_clk = NULL;
} else if (IS_ERR(hdmi->cec_clk)) {
ret = PTR_ERR(hdmi->cec_clk);
if (ret != -EPROBE_DEFER)
dev_err(hdmi->dev, "Cannot get HDMI cec clock: %d\n",
ret);
hdmi->cec_clk = NULL;
goto err_iahb;
} else {
ret = clk_prepare_enable(hdmi->cec_clk);
if (ret) {
dev_err(hdmi->dev, "Cannot enable HDMI cec clock: %d\n",
ret);
goto err_iahb;
}
}
/* Product and revision IDs */
hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8)
| (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0);
prod_id0 = hdmi_readb(hdmi, HDMI_PRODUCT_ID0);
prod_id1 = hdmi_readb(hdmi, HDMI_PRODUCT_ID1);
if (prod_id0 != HDMI_PRODUCT_ID0_HDMI_TX ||
(prod_id1 & ~HDMI_PRODUCT_ID1_HDCP) != HDMI_PRODUCT_ID1_HDMI_TX) {
dev_err(dev, "Unsupported HDMI controller (%04x:%02x:%02x)\n",
hdmi->version, prod_id0, prod_id1);
ret = -ENODEV;
goto err_iahb;
}
ret = dw_hdmi_detect_phy(hdmi);
if (ret < 0)
goto err_iahb;
dev_info(dev, "Detected HDMI TX controller v%x.%03x %s HDCP (%s)\n",
hdmi->version >> 12, hdmi->version & 0xfff,
prod_id1 & HDMI_PRODUCT_ID1_HDCP ? "with" : "without",
hdmi->phy.name);
initialize_hdmi_ih_mutes(hdmi);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto err_iahb;
}
ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq,
dw_hdmi_irq, IRQF_SHARED,
dev_name(dev), hdmi);
if (ret)
goto err_iahb;
hdmi->cec_notifier = cec_notifier_get(dev);
if (!hdmi->cec_notifier) {
ret = -ENOMEM;
goto err_iahb;
}
/*
* To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator
* N and cts values before enabling phy
*/
hdmi_init_clk_regenerator(hdmi);
/* If DDC bus is not specified, try to register HDMI I2C bus */
if (!hdmi->ddc) {
hdmi->ddc = dw_hdmi_i2c_adapter(hdmi);
if (IS_ERR(hdmi->ddc))
hdmi->ddc = NULL;
}
hdmi->bridge.driver_private = hdmi;
hdmi->bridge.funcs = &dw_hdmi_bridge_funcs;
#ifdef CONFIG_OF
hdmi->bridge.of_node = pdev->dev.of_node;
#endif
dw_hdmi_setup_i2c(hdmi);
if (hdmi->phy.ops->setup_hpd)
hdmi->phy.ops->setup_hpd(hdmi, hdmi->phy.data);
memset(&pdevinfo, 0, sizeof(pdevinfo));
pdevinfo.parent = dev;
pdevinfo.id = PLATFORM_DEVID_AUTO;
config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID);
config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID);
if (iores && config3 & HDMI_CONFIG3_AHBAUDDMA) {
struct dw_hdmi_audio_data audio;
audio.phys = iores->start;
audio.base = hdmi->regs;
audio.irq = irq;
audio.hdmi = hdmi;
audio.eld = hdmi->connector.eld;
hdmi->enable_audio = dw_hdmi_ahb_audio_enable;
hdmi->disable_audio = dw_hdmi_ahb_audio_disable;
pdevinfo.name = "dw-hdmi-ahb-audio";
pdevinfo.data = &audio;
pdevinfo.size_data = sizeof(audio);
pdevinfo.dma_mask = DMA_BIT_MASK(32);
hdmi->audio = platform_device_register_full(&pdevinfo);
} else if (config0 & HDMI_CONFIG0_I2S) {
struct dw_hdmi_i2s_audio_data audio;
audio.hdmi = hdmi;
audio.write = hdmi_writeb;
audio.read = hdmi_readb;
hdmi->enable_audio = dw_hdmi_i2s_audio_enable;
hdmi->disable_audio = dw_hdmi_i2s_audio_disable;
pdevinfo.name = "dw-hdmi-i2s-audio";
pdevinfo.data = &audio;
pdevinfo.size_data = sizeof(audio);
pdevinfo.dma_mask = DMA_BIT_MASK(32);
hdmi->audio = platform_device_register_full(&pdevinfo);
}
if (config0 & HDMI_CONFIG0_CEC) {
cec.hdmi = hdmi;
cec.ops = &dw_hdmi_cec_ops;
cec.irq = irq;
pdevinfo.name = "dw-hdmi-cec";
pdevinfo.data = &cec;
pdevinfo.size_data = sizeof(cec);
pdevinfo.dma_mask = 0;
hdmi->cec = platform_device_register_full(&pdevinfo);
}
/* Reset HDMI DDC I2C master controller and mute I2CM interrupts */
if (hdmi->i2c)
dw_hdmi_i2c_init(hdmi);
return hdmi;
err_iahb:
if (hdmi->i2c) {
i2c_del_adapter(&hdmi->i2c->adap);
hdmi->ddc = NULL;
}
if (hdmi->cec_notifier)
cec_notifier_put(hdmi->cec_notifier);
clk_disable_unprepare(hdmi->iahb_clk);
if (hdmi->cec_clk)
clk_disable_unprepare(hdmi->cec_clk);
err_isfr:
clk_disable_unprepare(hdmi->isfr_clk);
err_res:
i2c_put_adapter(hdmi->ddc);
return ERR_PTR(ret);
}
static void __dw_hdmi_remove(struct dw_hdmi *hdmi)
{
if (hdmi->audio && !IS_ERR(hdmi->audio))
platform_device_unregister(hdmi->audio);
if (!IS_ERR(hdmi->cec))
platform_device_unregister(hdmi->cec);
/* Disable all interrupts */
hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);
if (hdmi->cec_notifier)
cec_notifier_put(hdmi->cec_notifier);
clk_disable_unprepare(hdmi->iahb_clk);
clk_disable_unprepare(hdmi->isfr_clk);
if (hdmi->cec_clk)
clk_disable_unprepare(hdmi->cec_clk);
if (hdmi->i2c)
i2c_del_adapter(&hdmi->i2c->adap);
else
i2c_put_adapter(hdmi->ddc);
}
/* -----------------------------------------------------------------------------
* Probe/remove API, used from platforms based on the DRM bridge API.
*/
struct dw_hdmi *dw_hdmi_probe(struct platform_device *pdev,
const struct dw_hdmi_plat_data *plat_data)
{
struct dw_hdmi *hdmi;
hdmi = __dw_hdmi_probe(pdev, plat_data);
if (IS_ERR(hdmi))
return hdmi;
drm_bridge_add(&hdmi->bridge);
return hdmi;
}
EXPORT_SYMBOL_GPL(dw_hdmi_probe);
void dw_hdmi_remove(struct dw_hdmi *hdmi)
{
drm_bridge_remove(&hdmi->bridge);
__dw_hdmi_remove(hdmi);
}
EXPORT_SYMBOL_GPL(dw_hdmi_remove);
/* -----------------------------------------------------------------------------
* Bind/unbind API, used from platforms based on the component framework.
*/
struct dw_hdmi *dw_hdmi_bind(struct platform_device *pdev,
struct drm_encoder *encoder,
const struct dw_hdmi_plat_data *plat_data)
{
struct dw_hdmi *hdmi;
int ret;
hdmi = __dw_hdmi_probe(pdev, plat_data);
if (IS_ERR(hdmi))
return hdmi;
ret = drm_bridge_attach(encoder, &hdmi->bridge, NULL);
if (ret) {
dw_hdmi_remove(hdmi);
DRM_ERROR("Failed to initialize bridge with drm\n");
return ERR_PTR(ret);
}
return hdmi;
}
EXPORT_SYMBOL_GPL(dw_hdmi_bind);
void dw_hdmi_unbind(struct dw_hdmi *hdmi)
{
__dw_hdmi_remove(hdmi);
}
EXPORT_SYMBOL_GPL(dw_hdmi_unbind);
MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
MODULE_AUTHOR("Andy Yan <andy.yan@rock-chips.com>");
MODULE_AUTHOR("Yakir Yang <ykk@rock-chips.com>");
MODULE_AUTHOR("Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com>");
MODULE_DESCRIPTION("DW HDMI transmitter driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dw-hdmi");