293 lines
7.8 KiB
C
293 lines
7.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Transitional page tables for kexec and hibernate
|
|
*
|
|
* This file derived from: arch/arm64/kernel/hibernate.c
|
|
*
|
|
* Copyright (c) 2021, Microsoft Corporation.
|
|
* Pasha Tatashin <pasha.tatashin@soleen.com>
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Transitional tables are used during system transferring from one world to
|
|
* another: such as during hibernate restore, and kexec reboots. During these
|
|
* phases one cannot rely on page table not being overwritten. This is because
|
|
* hibernate and kexec can overwrite the current page tables during transition.
|
|
*/
|
|
|
|
#include <asm/trans_pgd.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/kfence.h>
|
|
|
|
static void *trans_alloc(struct trans_pgd_info *info)
|
|
{
|
|
return info->trans_alloc_page(info->trans_alloc_arg);
|
|
}
|
|
|
|
static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
|
|
{
|
|
pte_t pte = READ_ONCE(*src_ptep);
|
|
|
|
if (pte_valid(pte)) {
|
|
/*
|
|
* Resume will overwrite areas that may be marked
|
|
* read only (code, rodata). Clear the RDONLY bit from
|
|
* the temporary mappings we use during restore.
|
|
*/
|
|
set_pte(dst_ptep, pte_mkwrite_novma(pte));
|
|
} else if ((debug_pagealloc_enabled() ||
|
|
is_kfence_address((void *)addr)) && !pte_none(pte)) {
|
|
/*
|
|
* debug_pagealloc will removed the PTE_VALID bit if
|
|
* the page isn't in use by the resume kernel. It may have
|
|
* been in use by the original kernel, in which case we need
|
|
* to put it back in our copy to do the restore.
|
|
*
|
|
* Before marking this entry valid, check the pfn should
|
|
* be mapped.
|
|
*/
|
|
BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
|
|
set_pte(dst_ptep, pte_mkpresent(pte_mkwrite_novma(pte)));
|
|
}
|
|
}
|
|
|
|
static int copy_pte(struct trans_pgd_info *info, pmd_t *dst_pmdp,
|
|
pmd_t *src_pmdp, unsigned long start, unsigned long end)
|
|
{
|
|
pte_t *src_ptep;
|
|
pte_t *dst_ptep;
|
|
unsigned long addr = start;
|
|
|
|
dst_ptep = trans_alloc(info);
|
|
if (!dst_ptep)
|
|
return -ENOMEM;
|
|
pmd_populate_kernel(NULL, dst_pmdp, dst_ptep);
|
|
dst_ptep = pte_offset_kernel(dst_pmdp, start);
|
|
|
|
src_ptep = pte_offset_kernel(src_pmdp, start);
|
|
do {
|
|
_copy_pte(dst_ptep, src_ptep, addr);
|
|
} while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_pmd(struct trans_pgd_info *info, pud_t *dst_pudp,
|
|
pud_t *src_pudp, unsigned long start, unsigned long end)
|
|
{
|
|
pmd_t *src_pmdp;
|
|
pmd_t *dst_pmdp;
|
|
unsigned long next;
|
|
unsigned long addr = start;
|
|
|
|
if (pud_none(READ_ONCE(*dst_pudp))) {
|
|
dst_pmdp = trans_alloc(info);
|
|
if (!dst_pmdp)
|
|
return -ENOMEM;
|
|
pud_populate(NULL, dst_pudp, dst_pmdp);
|
|
}
|
|
dst_pmdp = pmd_offset(dst_pudp, start);
|
|
|
|
src_pmdp = pmd_offset(src_pudp, start);
|
|
do {
|
|
pmd_t pmd = READ_ONCE(*src_pmdp);
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none(pmd))
|
|
continue;
|
|
if (pmd_table(pmd)) {
|
|
if (copy_pte(info, dst_pmdp, src_pmdp, addr, next))
|
|
return -ENOMEM;
|
|
} else {
|
|
set_pmd(dst_pmdp,
|
|
__pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
|
|
}
|
|
} while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_pud(struct trans_pgd_info *info, p4d_t *dst_p4dp,
|
|
p4d_t *src_p4dp, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
pud_t *dst_pudp;
|
|
pud_t *src_pudp;
|
|
unsigned long next;
|
|
unsigned long addr = start;
|
|
|
|
if (p4d_none(READ_ONCE(*dst_p4dp))) {
|
|
dst_pudp = trans_alloc(info);
|
|
if (!dst_pudp)
|
|
return -ENOMEM;
|
|
p4d_populate(NULL, dst_p4dp, dst_pudp);
|
|
}
|
|
dst_pudp = pud_offset(dst_p4dp, start);
|
|
|
|
src_pudp = pud_offset(src_p4dp, start);
|
|
do {
|
|
pud_t pud = READ_ONCE(*src_pudp);
|
|
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none(pud))
|
|
continue;
|
|
if (pud_table(pud)) {
|
|
if (copy_pmd(info, dst_pudp, src_pudp, addr, next))
|
|
return -ENOMEM;
|
|
} else {
|
|
set_pud(dst_pudp,
|
|
__pud(pud_val(pud) & ~PUD_SECT_RDONLY));
|
|
}
|
|
} while (dst_pudp++, src_pudp++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_p4d(struct trans_pgd_info *info, pgd_t *dst_pgdp,
|
|
pgd_t *src_pgdp, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
p4d_t *dst_p4dp;
|
|
p4d_t *src_p4dp;
|
|
unsigned long next;
|
|
unsigned long addr = start;
|
|
|
|
dst_p4dp = p4d_offset(dst_pgdp, start);
|
|
src_p4dp = p4d_offset(src_pgdp, start);
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
if (p4d_none(READ_ONCE(*src_p4dp)))
|
|
continue;
|
|
if (copy_pud(info, dst_p4dp, src_p4dp, addr, next))
|
|
return -ENOMEM;
|
|
} while (dst_p4dp++, src_p4dp++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_page_tables(struct trans_pgd_info *info, pgd_t *dst_pgdp,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
unsigned long addr = start;
|
|
pgd_t *src_pgdp = pgd_offset_k(start);
|
|
|
|
dst_pgdp = pgd_offset_pgd(dst_pgdp, start);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none(READ_ONCE(*src_pgdp)))
|
|
continue;
|
|
if (copy_p4d(info, dst_pgdp, src_pgdp, addr, next))
|
|
return -ENOMEM;
|
|
} while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create trans_pgd and copy linear map.
|
|
* info: contains allocator and its argument
|
|
* dst_pgdp: new page table that is created, and to which map is copied.
|
|
* start: Start of the interval (inclusive).
|
|
* end: End of the interval (exclusive).
|
|
*
|
|
* Returns 0 on success, and -ENOMEM on failure.
|
|
*/
|
|
int trans_pgd_create_copy(struct trans_pgd_info *info, pgd_t **dst_pgdp,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
int rc;
|
|
pgd_t *trans_pgd = trans_alloc(info);
|
|
|
|
if (!trans_pgd) {
|
|
pr_err("Failed to allocate memory for temporary page tables.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rc = copy_page_tables(info, trans_pgd, start, end);
|
|
if (!rc)
|
|
*dst_pgdp = trans_pgd;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* The page we want to idmap may be outside the range covered by VA_BITS that
|
|
* can be built using the kernel's p?d_populate() helpers. As a one off, for a
|
|
* single page, we build these page tables bottom up and just assume that will
|
|
* need the maximum T0SZ.
|
|
*
|
|
* Returns 0 on success, and -ENOMEM on failure.
|
|
* On success trans_ttbr0 contains page table with idmapped page, t0sz is set to
|
|
* maximum T0SZ for this page.
|
|
*/
|
|
int trans_pgd_idmap_page(struct trans_pgd_info *info, phys_addr_t *trans_ttbr0,
|
|
unsigned long *t0sz, void *page)
|
|
{
|
|
phys_addr_t dst_addr = virt_to_phys(page);
|
|
unsigned long pfn = __phys_to_pfn(dst_addr);
|
|
int max_msb = (dst_addr & GENMASK(52, 48)) ? 51 : 47;
|
|
int bits_mapped = PAGE_SHIFT - 4;
|
|
unsigned long level_mask, prev_level_entry, *levels[4];
|
|
int this_level, index, level_lsb, level_msb;
|
|
|
|
dst_addr &= PAGE_MASK;
|
|
prev_level_entry = pte_val(pfn_pte(pfn, PAGE_KERNEL_ROX));
|
|
|
|
for (this_level = 3; this_level >= 0; this_level--) {
|
|
levels[this_level] = trans_alloc(info);
|
|
if (!levels[this_level])
|
|
return -ENOMEM;
|
|
|
|
level_lsb = ARM64_HW_PGTABLE_LEVEL_SHIFT(this_level);
|
|
level_msb = min(level_lsb + bits_mapped, max_msb);
|
|
level_mask = GENMASK_ULL(level_msb, level_lsb);
|
|
|
|
index = (dst_addr & level_mask) >> level_lsb;
|
|
*(levels[this_level] + index) = prev_level_entry;
|
|
|
|
pfn = virt_to_pfn(levels[this_level]);
|
|
prev_level_entry = pte_val(pfn_pte(pfn,
|
|
__pgprot(PMD_TYPE_TABLE)));
|
|
|
|
if (level_msb == max_msb)
|
|
break;
|
|
}
|
|
|
|
*trans_ttbr0 = phys_to_ttbr(__pfn_to_phys(pfn));
|
|
*t0sz = TCR_T0SZ(max_msb + 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create a copy of the vector table so we can call HVC_SET_VECTORS or
|
|
* HVC_SOFT_RESTART from contexts where the table may be overwritten.
|
|
*/
|
|
int trans_pgd_copy_el2_vectors(struct trans_pgd_info *info,
|
|
phys_addr_t *el2_vectors)
|
|
{
|
|
void *hyp_stub = trans_alloc(info);
|
|
|
|
if (!hyp_stub)
|
|
return -ENOMEM;
|
|
*el2_vectors = virt_to_phys(hyp_stub);
|
|
memcpy(hyp_stub, &trans_pgd_stub_vectors, ARM64_VECTOR_TABLE_LEN);
|
|
caches_clean_inval_pou((unsigned long)hyp_stub,
|
|
(unsigned long)hyp_stub +
|
|
ARM64_VECTOR_TABLE_LEN);
|
|
dcache_clean_inval_poc((unsigned long)hyp_stub,
|
|
(unsigned long)hyp_stub +
|
|
ARM64_VECTOR_TABLE_LEN);
|
|
|
|
return 0;
|
|
}
|