OpenCloudOS-Kernel/arch/x86/kernel/sev.c

2277 lines
56 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AMD Memory Encryption Support
*
* Copyright (C) 2019 SUSE
*
* Author: Joerg Roedel <jroedel@suse.de>
*/
#define pr_fmt(fmt) "SEV: " fmt
#include <linux/sched/debug.h> /* For show_regs() */
#include <linux/percpu-defs.h>
#include <linux/cc_platform.h>
#include <linux/printk.h>
#include <linux/mm_types.h>
#include <linux/set_memory.h>
#include <linux/memblock.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/cpumask.h>
#include <linux/efi.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/psp-sev.h>
#include <linux/dmi.h>
#include <uapi/linux/sev-guest.h>
#include <asm/init.h>
#include <asm/cpu_entry_area.h>
#include <asm/stacktrace.h>
#include <asm/sev.h>
#include <asm/insn-eval.h>
#include <asm/fpu/xcr.h>
#include <asm/processor.h>
#include <asm/processor-hygon.h>
#include <asm/realmode.h>
#include <asm/setup.h>
#include <asm/traps.h>
#include <asm/svm.h>
#include <asm/smp.h>
#include <asm/cpu.h>
#include <asm/apic.h>
#include <asm/cpuid.h>
#include <asm/cmdline.h>
#define DR7_RESET_VALUE 0x400
/* AP INIT values as documented in the APM2 section "Processor Initialization State" */
#define AP_INIT_CS_LIMIT 0xffff
#define AP_INIT_DS_LIMIT 0xffff
#define AP_INIT_LDTR_LIMIT 0xffff
#define AP_INIT_GDTR_LIMIT 0xffff
#define AP_INIT_IDTR_LIMIT 0xffff
#define AP_INIT_TR_LIMIT 0xffff
#define AP_INIT_RFLAGS_DEFAULT 0x2
#define AP_INIT_DR6_DEFAULT 0xffff0ff0
#define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL
#define AP_INIT_XCR0_DEFAULT 0x1
#define AP_INIT_X87_FTW_DEFAULT 0x5555
#define AP_INIT_X87_FCW_DEFAULT 0x0040
#define AP_INIT_CR0_DEFAULT 0x60000010
#define AP_INIT_MXCSR_DEFAULT 0x1f80
/* For early boot hypervisor communication in SEV-ES enabled guests */
static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
/*
* Needs to be in the .data section because we need it NULL before bss is
* cleared
*/
static struct ghcb *boot_ghcb __section(".data");
/* Bitmap of SEV features supported by the hypervisor */
static u64 sev_hv_features __ro_after_init;
/* #VC handler runtime per-CPU data */
struct sev_es_runtime_data {
struct ghcb ghcb_page;
/*
* Reserve one page per CPU as backup storage for the unencrypted GHCB.
* It is needed when an NMI happens while the #VC handler uses the real
* GHCB, and the NMI handler itself is causing another #VC exception. In
* that case the GHCB content of the first handler needs to be backed up
* and restored.
*/
struct ghcb backup_ghcb;
/*
* Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
* There is no need for it to be atomic, because nothing is written to
* the GHCB between the read and the write of ghcb_active. So it is safe
* to use it when a nested #VC exception happens before the write.
*
* This is necessary for example in the #VC->NMI->#VC case when the NMI
* happens while the first #VC handler uses the GHCB. When the NMI code
* raises a second #VC handler it might overwrite the contents of the
* GHCB written by the first handler. To avoid this the content of the
* GHCB is saved and restored when the GHCB is detected to be in use
* already.
*/
bool ghcb_active;
bool backup_ghcb_active;
/*
* Cached DR7 value - write it on DR7 writes and return it on reads.
* That value will never make it to the real hardware DR7 as debugging
* is currently unsupported in SEV-ES guests.
*/
unsigned long dr7;
};
struct ghcb_state {
struct ghcb *ghcb;
};
static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
struct sev_config {
__u64 debug : 1,
/*
* A flag used by __set_pages_state() that indicates when the
* per-CPU GHCB has been created and registered and thus can be
* used by the BSP instead of the early boot GHCB.
*
* For APs, the per-CPU GHCB is created before they are started
* and registered upon startup, so this flag can be used globally
* for the BSP and APs.
*/
ghcbs_initialized : 1,
__reserved : 62;
};
static struct sev_config sev_cfg __read_mostly;
static __always_inline bool on_vc_stack(struct pt_regs *regs)
{
unsigned long sp = regs->sp;
/* User-mode RSP is not trusted */
if (user_mode(regs))
return false;
/* SYSCALL gap still has user-mode RSP */
if (ip_within_syscall_gap(regs))
return false;
return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
}
/*
* This function handles the case when an NMI is raised in the #VC
* exception handler entry code, before the #VC handler has switched off
* its IST stack. In this case, the IST entry for #VC must be adjusted,
* so that any nested #VC exception will not overwrite the stack
* contents of the interrupted #VC handler.
*
* The IST entry is adjusted unconditionally so that it can be also be
* unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
* nested sev_es_ist_exit() call may adjust back the IST entry too
* early.
*
* The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
* on the NMI IST stack, as they are only called from NMI handling code
* right now.
*/
void noinstr __sev_es_ist_enter(struct pt_regs *regs)
{
unsigned long old_ist, new_ist;
/* Read old IST entry */
new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
/*
* If NMI happened while on the #VC IST stack, set the new IST
* value below regs->sp, so that the interrupted stack frame is
* not overwritten by subsequent #VC exceptions.
*/
if (on_vc_stack(regs))
new_ist = regs->sp;
/*
* Reserve additional 8 bytes and store old IST value so this
* adjustment can be unrolled in __sev_es_ist_exit().
*/
new_ist -= sizeof(old_ist);
*(unsigned long *)new_ist = old_ist;
/* Set new IST entry */
this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
}
void noinstr __sev_es_ist_exit(void)
{
unsigned long ist;
/* Read IST entry */
ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
return;
/* Read back old IST entry and write it to the TSS */
this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
}
/*
* Nothing shall interrupt this code path while holding the per-CPU
* GHCB. The backup GHCB is only for NMIs interrupting this path.
*
* Callers must disable local interrupts around it.
*/
static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
{
struct sev_es_runtime_data *data;
struct ghcb *ghcb;
WARN_ON(!irqs_disabled());
data = this_cpu_read(runtime_data);
ghcb = &data->ghcb_page;
if (unlikely(data->ghcb_active)) {
/* GHCB is already in use - save its contents */
if (unlikely(data->backup_ghcb_active)) {
/*
* Backup-GHCB is also already in use. There is no way
* to continue here so just kill the machine. To make
* panic() work, mark GHCBs inactive so that messages
* can be printed out.
*/
data->ghcb_active = false;
data->backup_ghcb_active = false;
instrumentation_begin();
panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
instrumentation_end();
}
/* Mark backup_ghcb active before writing to it */
data->backup_ghcb_active = true;
state->ghcb = &data->backup_ghcb;
/* Backup GHCB content */
*state->ghcb = *ghcb;
} else {
state->ghcb = NULL;
data->ghcb_active = true;
}
return ghcb;
}
static inline u64 sev_es_rd_ghcb_msr(void)
{
return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
}
static __always_inline void sev_es_wr_ghcb_msr(u64 val)
{
u32 low, high;
low = (u32)(val);
high = (u32)(val >> 32);
native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
}
static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
unsigned char *buffer)
{
return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
}
static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
{
char buffer[MAX_INSN_SIZE];
int insn_bytes;
insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
if (insn_bytes == 0) {
/* Nothing could be copied */
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
ctxt->fi.cr2 = ctxt->regs->ip;
return ES_EXCEPTION;
} else if (insn_bytes == -EINVAL) {
/* Effective RIP could not be calculated */
ctxt->fi.vector = X86_TRAP_GP;
ctxt->fi.error_code = 0;
ctxt->fi.cr2 = 0;
return ES_EXCEPTION;
}
if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
return ES_DECODE_FAILED;
if (ctxt->insn.immediate.got)
return ES_OK;
else
return ES_DECODE_FAILED;
}
static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
{
char buffer[MAX_INSN_SIZE];
int res, ret;
res = vc_fetch_insn_kernel(ctxt, buffer);
if (res) {
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.error_code = X86_PF_INSTR;
ctxt->fi.cr2 = ctxt->regs->ip;
return ES_EXCEPTION;
}
ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
if (ret < 0)
return ES_DECODE_FAILED;
else
return ES_OK;
}
static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
{
if (user_mode(ctxt->regs))
return __vc_decode_user_insn(ctxt);
else
return __vc_decode_kern_insn(ctxt);
}
static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
char *dst, char *buf, size_t size)
{
unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
/*
* This function uses __put_user() independent of whether kernel or user
* memory is accessed. This works fine because __put_user() does no
* sanity checks of the pointer being accessed. All that it does is
* to report when the access failed.
*
* Also, this function runs in atomic context, so __put_user() is not
* allowed to sleep. The page-fault handler detects that it is running
* in atomic context and will not try to take mmap_sem and handle the
* fault, so additional pagefault_enable()/disable() calls are not
* needed.
*
* The access can't be done via copy_to_user() here because
* vc_write_mem() must not use string instructions to access unsafe
* memory. The reason is that MOVS is emulated by the #VC handler by
* splitting the move up into a read and a write and taking a nested #VC
* exception on whatever of them is the MMIO access. Using string
* instructions here would cause infinite nesting.
*/
switch (size) {
case 1: {
u8 d1;
u8 __user *target = (u8 __user *)dst;
memcpy(&d1, buf, 1);
if (__put_user(d1, target))
goto fault;
break;
}
case 2: {
u16 d2;
u16 __user *target = (u16 __user *)dst;
memcpy(&d2, buf, 2);
if (__put_user(d2, target))
goto fault;
break;
}
case 4: {
u32 d4;
u32 __user *target = (u32 __user *)dst;
memcpy(&d4, buf, 4);
if (__put_user(d4, target))
goto fault;
break;
}
case 8: {
u64 d8;
u64 __user *target = (u64 __user *)dst;
memcpy(&d8, buf, 8);
if (__put_user(d8, target))
goto fault;
break;
}
default:
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
return ES_UNSUPPORTED;
}
return ES_OK;
fault:
if (user_mode(ctxt->regs))
error_code |= X86_PF_USER;
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.error_code = error_code;
ctxt->fi.cr2 = (unsigned long)dst;
return ES_EXCEPTION;
}
static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
char *src, char *buf, size_t size)
{
unsigned long error_code = X86_PF_PROT;
/*
* This function uses __get_user() independent of whether kernel or user
* memory is accessed. This works fine because __get_user() does no
* sanity checks of the pointer being accessed. All that it does is
* to report when the access failed.
*
* Also, this function runs in atomic context, so __get_user() is not
* allowed to sleep. The page-fault handler detects that it is running
* in atomic context and will not try to take mmap_sem and handle the
* fault, so additional pagefault_enable()/disable() calls are not
* needed.
*
* The access can't be done via copy_from_user() here because
* vc_read_mem() must not use string instructions to access unsafe
* memory. The reason is that MOVS is emulated by the #VC handler by
* splitting the move up into a read and a write and taking a nested #VC
* exception on whatever of them is the MMIO access. Using string
* instructions here would cause infinite nesting.
*/
switch (size) {
case 1: {
u8 d1;
u8 __user *s = (u8 __user *)src;
if (__get_user(d1, s))
goto fault;
memcpy(buf, &d1, 1);
break;
}
case 2: {
u16 d2;
u16 __user *s = (u16 __user *)src;
if (__get_user(d2, s))
goto fault;
memcpy(buf, &d2, 2);
break;
}
case 4: {
u32 d4;
u32 __user *s = (u32 __user *)src;
if (__get_user(d4, s))
goto fault;
memcpy(buf, &d4, 4);
break;
}
case 8: {
u64 d8;
u64 __user *s = (u64 __user *)src;
if (__get_user(d8, s))
goto fault;
memcpy(buf, &d8, 8);
break;
}
default:
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
return ES_UNSUPPORTED;
}
return ES_OK;
fault:
if (user_mode(ctxt->regs))
error_code |= X86_PF_USER;
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.error_code = error_code;
ctxt->fi.cr2 = (unsigned long)src;
return ES_EXCEPTION;
}
static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
unsigned long vaddr, phys_addr_t *paddr)
{
unsigned long va = (unsigned long)vaddr;
unsigned int level;
phys_addr_t pa;
pgd_t *pgd;
pte_t *pte;
pgd = __va(read_cr3_pa());
pgd = &pgd[pgd_index(va)];
pte = lookup_address_in_pgd(pgd, va, &level);
if (!pte) {
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.cr2 = vaddr;
ctxt->fi.error_code = 0;
if (user_mode(ctxt->regs))
ctxt->fi.error_code |= X86_PF_USER;
return ES_EXCEPTION;
}
if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
/* Emulated MMIO to/from encrypted memory not supported */
return ES_UNSUPPORTED;
pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
pa |= va & ~page_level_mask(level);
*paddr = pa;
return ES_OK;
}
static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
{
BUG_ON(size > 4);
if (user_mode(ctxt->regs)) {
struct thread_struct *t = &current->thread;
struct io_bitmap *iobm = t->io_bitmap;
size_t idx;
if (!iobm)
goto fault;
for (idx = port; idx < port + size; ++idx) {
if (test_bit(idx, iobm->bitmap))
goto fault;
}
}
return ES_OK;
fault:
ctxt->fi.vector = X86_TRAP_GP;
ctxt->fi.error_code = 0;
return ES_EXCEPTION;
}
/* Include code shared with pre-decompression boot stage */
#include "sev-shared.c"
static noinstr void __sev_put_ghcb(struct ghcb_state *state)
{
struct sev_es_runtime_data *data;
struct ghcb *ghcb;
WARN_ON(!irqs_disabled());
data = this_cpu_read(runtime_data);
ghcb = &data->ghcb_page;
if (state->ghcb) {
/* Restore GHCB from Backup */
*ghcb = *state->ghcb;
data->backup_ghcb_active = false;
state->ghcb = NULL;
} else {
/*
* Invalidate the GHCB so a VMGEXIT instruction issued
* from userspace won't appear to be valid.
*/
vc_ghcb_invalidate(ghcb);
data->ghcb_active = false;
}
}
void noinstr __sev_es_nmi_complete(void)
{
struct ghcb_state state;
struct ghcb *ghcb;
ghcb = __sev_get_ghcb(&state);
vc_ghcb_invalidate(ghcb);
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
ghcb_set_sw_exit_info_1(ghcb, 0);
ghcb_set_sw_exit_info_2(ghcb, 0);
sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
VMGEXIT();
__sev_put_ghcb(&state);
}
static u64 __init get_secrets_page(void)
{
u64 pa_data = boot_params.cc_blob_address;
struct cc_blob_sev_info info;
void *map;
/*
* The CC blob contains the address of the secrets page, check if the
* blob is present.
*/
if (!pa_data)
return 0;
map = early_memremap(pa_data, sizeof(info));
if (!map) {
pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
return 0;
}
memcpy(&info, map, sizeof(info));
early_memunmap(map, sizeof(info));
/* smoke-test the secrets page passed */
if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
return 0;
return info.secrets_phys;
}
static u64 __init get_snp_jump_table_addr(void)
{
struct snp_secrets_page_layout *layout;
void __iomem *mem;
u64 pa, addr;
pa = get_secrets_page();
if (!pa)
return 0;
mem = ioremap_encrypted(pa, PAGE_SIZE);
if (!mem) {
pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
return 0;
}
layout = (__force struct snp_secrets_page_layout *)mem;
addr = layout->os_area.ap_jump_table_pa;
iounmap(mem);
return addr;
}
static u64 __init get_jump_table_addr(void)
{
struct ghcb_state state;
unsigned long flags;
struct ghcb *ghcb;
u64 ret = 0;
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return get_snp_jump_table_addr();
local_irq_save(flags);
ghcb = __sev_get_ghcb(&state);
vc_ghcb_invalidate(ghcb);
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
ghcb_set_sw_exit_info_2(ghcb, 0);
sev_es_wr_ghcb_msr(__pa(ghcb));
VMGEXIT();
if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
ghcb_sw_exit_info_2_is_valid(ghcb))
ret = ghcb->save.sw_exit_info_2;
__sev_put_ghcb(&state);
local_irq_restore(flags);
return ret;
}
static void __head
early_set_pages_state(unsigned long vaddr, unsigned long paddr,
unsigned long npages, enum psc_op op)
{
unsigned long paddr_end;
u64 val;
int ret;
vaddr = vaddr & PAGE_MASK;
paddr = paddr & PAGE_MASK;
paddr_end = paddr + (npages << PAGE_SHIFT);
while (paddr < paddr_end) {
if (op == SNP_PAGE_STATE_SHARED) {
/* Page validation must be rescinded before changing to shared */
ret = pvalidate(vaddr, RMP_PG_SIZE_4K, false);
if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
goto e_term;
}
/*
* Use the MSR protocol because this function can be called before
* the GHCB is established.
*/
sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
VMGEXIT();
val = sev_es_rd_ghcb_msr();
if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
"Wrong PSC response code: 0x%x\n",
(unsigned int)GHCB_RESP_CODE(val)))
goto e_term;
if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
"Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
paddr, GHCB_MSR_PSC_RESP_VAL(val)))
goto e_term;
if (op == SNP_PAGE_STATE_PRIVATE) {
/* Page validation must be performed after changing to private */
ret = pvalidate(vaddr, RMP_PG_SIZE_4K, true);
if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
goto e_term;
}
vaddr += PAGE_SIZE;
paddr += PAGE_SIZE;
}
return;
e_term:
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
}
void __head early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
unsigned long npages)
{
/*
* This can be invoked in early boot while running identity mapped, so
* use an open coded check for SNP instead of using cc_platform_has().
* This eliminates worries about jump tables or checking boot_cpu_data
* in the cc_platform_has() function.
*/
if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
return;
/*
* Ask the hypervisor to mark the memory pages as private in the RMP
* table.
*/
early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE);
}
void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
unsigned long npages)
{
/*
* This can be invoked in early boot while running identity mapped, so
* use an open coded check for SNP instead of using cc_platform_has().
* This eliminates worries about jump tables or checking boot_cpu_data
* in the cc_platform_has() function.
*/
if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
return;
/* Ask hypervisor to mark the memory pages shared in the RMP table. */
early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED);
}
static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
unsigned long vaddr_end, int op)
{
struct ghcb_state state;
bool use_large_entry;
struct psc_hdr *hdr;
struct psc_entry *e;
unsigned long flags;
unsigned long pfn;
struct ghcb *ghcb;
int i;
hdr = &data->hdr;
e = data->entries;
memset(data, 0, sizeof(*data));
i = 0;
while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
hdr->end_entry = i;
if (is_vmalloc_addr((void *)vaddr)) {
pfn = vmalloc_to_pfn((void *)vaddr);
use_large_entry = false;
} else {
pfn = __pa(vaddr) >> PAGE_SHIFT;
use_large_entry = true;
}
e->gfn = pfn;
e->operation = op;
if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
(vaddr_end - vaddr) >= PMD_SIZE) {
e->pagesize = RMP_PG_SIZE_2M;
vaddr += PMD_SIZE;
} else {
e->pagesize = RMP_PG_SIZE_4K;
vaddr += PAGE_SIZE;
}
e++;
i++;
}
/* Page validation must be rescinded before changing to shared */
if (op == SNP_PAGE_STATE_SHARED)
pvalidate_pages(data);
local_irq_save(flags);
if (sev_cfg.ghcbs_initialized)
ghcb = __sev_get_ghcb(&state);
else
ghcb = boot_ghcb;
/* Invoke the hypervisor to perform the page state changes */
if (!ghcb || vmgexit_psc(ghcb, data))
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
if (sev_cfg.ghcbs_initialized)
__sev_put_ghcb(&state);
local_irq_restore(flags);
/* Page validation must be performed after changing to private */
if (op == SNP_PAGE_STATE_PRIVATE)
pvalidate_pages(data);
return vaddr;
}
static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
{
struct snp_psc_desc desc;
unsigned long vaddr_end;
/* Use the MSR protocol when a GHCB is not available. */
if (!boot_ghcb)
return early_set_pages_state(vaddr, __pa(vaddr), npages, op);
vaddr = vaddr & PAGE_MASK;
vaddr_end = vaddr + (npages << PAGE_SHIFT);
while (vaddr < vaddr_end)
vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
}
void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
{
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return;
set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
}
void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
{
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return;
set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
}
void snp_accept_memory(phys_addr_t start, phys_addr_t end)
{
unsigned long vaddr, npages;
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return;
vaddr = (unsigned long)__va(start);
npages = (end - start) >> PAGE_SHIFT;
set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
}
static int snp_set_vmsa(void *va, bool vmsa)
{
u64 attrs;
/*
* Running at VMPL0 allows the kernel to change the VMSA bit for a page
* using the RMPADJUST instruction. However, for the instruction to
* succeed it must target the permissions of a lesser privileged
* (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
* instruction in the AMD64 APM Volume 3).
*/
attrs = 1;
if (vmsa)
attrs |= RMPADJUST_VMSA_PAGE_BIT;
return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
}
#define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
#define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
#define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
#define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2)
#define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3)
static void *snp_alloc_vmsa_page(void)
{
struct page *p;
/*
* Allocate VMSA page to work around the SNP erratum where the CPU will
* incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
* collides with the RMP entry of VMSA page. The recommended workaround
* is to not use a large page.
*
* Allocate an 8k page which is also 8k-aligned.
*/
p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
if (!p)
return NULL;
split_page(p, 1);
/* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
__free_page(p);
return page_address(p + 1);
}
static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
{
int err;
err = snp_set_vmsa(vmsa, false);
if (err)
pr_err("clear VMSA page failed (%u), leaking page\n", err);
else
free_page((unsigned long)vmsa);
}
static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip)
{
struct sev_es_save_area *cur_vmsa, *vmsa;
struct ghcb_state state;
unsigned long flags;
struct ghcb *ghcb;
u8 sipi_vector;
int cpu, ret;
u64 cr4;
/*
* The hypervisor SNP feature support check has happened earlier, just check
* the AP_CREATION one here.
*/
if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
return -EOPNOTSUPP;
/*
* Verify the desired start IP against the known trampoline start IP
* to catch any future new trampolines that may be introduced that
* would require a new protected guest entry point.
*/
if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
"Unsupported SNP start_ip: %lx\n", start_ip))
return -EINVAL;
/* Override start_ip with known protected guest start IP */
start_ip = real_mode_header->sev_es_trampoline_start;
/* Find the logical CPU for the APIC ID */
for_each_present_cpu(cpu) {
if (arch_match_cpu_phys_id(cpu, apic_id))
break;
}
if (cpu >= nr_cpu_ids)
return -EINVAL;
cur_vmsa = per_cpu(sev_vmsa, cpu);
/*
* A new VMSA is created each time because there is no guarantee that
* the current VMSA is the kernels or that the vCPU is not running. If
* an attempt was done to use the current VMSA with a running vCPU, a
* #VMEXIT of that vCPU would wipe out all of the settings being done
* here.
*/
vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page();
if (!vmsa)
return -ENOMEM;
/* CR4 should maintain the MCE value */
cr4 = native_read_cr4() & X86_CR4_MCE;
/* Set the CS value based on the start_ip converted to a SIPI vector */
sipi_vector = (start_ip >> 12);
vmsa->cs.base = sipi_vector << 12;
vmsa->cs.limit = AP_INIT_CS_LIMIT;
vmsa->cs.attrib = INIT_CS_ATTRIBS;
vmsa->cs.selector = sipi_vector << 8;
/* Set the RIP value based on start_ip */
vmsa->rip = start_ip & 0xfff;
/* Set AP INIT defaults as documented in the APM */
vmsa->ds.limit = AP_INIT_DS_LIMIT;
vmsa->ds.attrib = INIT_DS_ATTRIBS;
vmsa->es = vmsa->ds;
vmsa->fs = vmsa->ds;
vmsa->gs = vmsa->ds;
vmsa->ss = vmsa->ds;
vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT;
vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT;
vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS;
vmsa->idtr.limit = AP_INIT_IDTR_LIMIT;
vmsa->tr.limit = AP_INIT_TR_LIMIT;
vmsa->tr.attrib = INIT_TR_ATTRIBS;
vmsa->cr4 = cr4;
vmsa->cr0 = AP_INIT_CR0_DEFAULT;
vmsa->dr7 = DR7_RESET_VALUE;
vmsa->dr6 = AP_INIT_DR6_DEFAULT;
vmsa->rflags = AP_INIT_RFLAGS_DEFAULT;
vmsa->g_pat = AP_INIT_GPAT_DEFAULT;
vmsa->xcr0 = AP_INIT_XCR0_DEFAULT;
vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT;
vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT;
vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT;
/* SVME must be set. */
vmsa->efer = EFER_SVME;
/*
* Set the SNP-specific fields for this VMSA:
* VMPL level
* SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
*/
vmsa->vmpl = 0;
vmsa->sev_features = sev_status >> 2;
/* Switch the page over to a VMSA page now that it is initialized */
ret = snp_set_vmsa(vmsa, true);
if (ret) {
pr_err("set VMSA page failed (%u)\n", ret);
free_page((unsigned long)vmsa);
return -EINVAL;
}
/* Issue VMGEXIT AP Creation NAE event */
local_irq_save(flags);
ghcb = __sev_get_ghcb(&state);
vc_ghcb_invalidate(ghcb);
ghcb_set_rax(ghcb, vmsa->sev_features);
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
sev_es_wr_ghcb_msr(__pa(ghcb));
VMGEXIT();
if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
lower_32_bits(ghcb->save.sw_exit_info_1)) {
pr_err("SNP AP Creation error\n");
ret = -EINVAL;
}
__sev_put_ghcb(&state);
local_irq_restore(flags);
/* Perform cleanup if there was an error */
if (ret) {
snp_cleanup_vmsa(vmsa);
vmsa = NULL;
}
/* Free up any previous VMSA page */
if (cur_vmsa)
snp_cleanup_vmsa(cur_vmsa);
/* Record the current VMSA page */
per_cpu(sev_vmsa, cpu) = vmsa;
return ret;
}
void __init snp_set_wakeup_secondary_cpu(void)
{
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return;
/*
* Always set this override if SNP is enabled. This makes it the
* required method to start APs under SNP. If the hypervisor does
* not support AP creation, then no APs will be started.
*/
apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
}
int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
{
u16 startup_cs, startup_ip;
phys_addr_t jump_table_pa;
u64 jump_table_addr;
u16 __iomem *jump_table;
jump_table_addr = get_jump_table_addr();
/* On UP guests there is no jump table so this is not a failure */
if (!jump_table_addr)
return 0;
/* Check if AP Jump Table is page-aligned */
if (jump_table_addr & ~PAGE_MASK)
return -EINVAL;
jump_table_pa = jump_table_addr & PAGE_MASK;
startup_cs = (u16)(rmh->trampoline_start >> 4);
startup_ip = (u16)(rmh->sev_es_trampoline_start -
rmh->trampoline_start);
jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
if (!jump_table)
return -EIO;
writew(startup_ip, &jump_table[0]);
writew(startup_cs, &jump_table[1]);
iounmap(jump_table);
return 0;
}
/*
* This is needed by the OVMF UEFI firmware which will use whatever it finds in
* the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
* runtime GHCBs used by the kernel are also mapped in the EFI page-table.
*/
int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
{
struct sev_es_runtime_data *data;
unsigned long address, pflags;
int cpu;
u64 pfn;
if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
return 0;
pflags = _PAGE_NX | _PAGE_RW;
for_each_possible_cpu(cpu) {
data = per_cpu(runtime_data, cpu);
address = __pa(&data->ghcb_page);
pfn = address >> PAGE_SHIFT;
if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
return 1;
}
return 0;
}
static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
struct pt_regs *regs = ctxt->regs;
enum es_result ret;
u64 exit_info_1;
/* Is it a WRMSR? */
exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
ghcb_set_rcx(ghcb, regs->cx);
if (exit_info_1) {
ghcb_set_rax(ghcb, regs->ax);
ghcb_set_rdx(ghcb, regs->dx);
}
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
if ((ret == ES_OK) && (!exit_info_1)) {
regs->ax = ghcb->save.rax;
regs->dx = ghcb->save.rdx;
}
return ret;
}
static void snp_register_per_cpu_ghcb(void)
{
struct sev_es_runtime_data *data;
struct ghcb *ghcb;
data = this_cpu_read(runtime_data);
ghcb = &data->ghcb_page;
snp_register_ghcb_early(__pa(ghcb));
}
void setup_ghcb(void)
{
if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
return;
/*
* Check whether the runtime #VC exception handler is active. It uses
* the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
*
* If SNP is active, register the per-CPU GHCB page so that the runtime
* exception handler can use it.
*/
if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
snp_register_per_cpu_ghcb();
sev_cfg.ghcbs_initialized = true;
return;
}
/*
* Make sure the hypervisor talks a supported protocol.
* This gets called only in the BSP boot phase.
*/
if (!sev_es_negotiate_protocol())
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
/*
* Clear the boot_ghcb. The first exception comes in before the bss
* section is cleared.
*/
memset(&boot_ghcb_page, 0, PAGE_SIZE);
/* Alright - Make the boot-ghcb public */
boot_ghcb = &boot_ghcb_page;
/* SNP guest requires that GHCB GPA must be registered. */
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
snp_register_ghcb_early(__pa(&boot_ghcb_page));
}
#ifdef CONFIG_HOTPLUG_CPU
static void sev_es_ap_hlt_loop(void)
{
struct ghcb_state state;
struct ghcb *ghcb;
ghcb = __sev_get_ghcb(&state);
while (true) {
vc_ghcb_invalidate(ghcb);
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
ghcb_set_sw_exit_info_1(ghcb, 0);
ghcb_set_sw_exit_info_2(ghcb, 0);
sev_es_wr_ghcb_msr(__pa(ghcb));
VMGEXIT();
/* Wakeup signal? */
if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
ghcb->save.sw_exit_info_2)
break;
}
__sev_put_ghcb(&state);
}
/*
* Play_dead handler when running under SEV-ES. This is needed because
* the hypervisor can't deliver an SIPI request to restart the AP.
* Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
* hypervisor wakes it up again.
*/
static void sev_es_play_dead(void)
{
play_dead_common();
/* IRQs now disabled */
sev_es_ap_hlt_loop();
/*
* If we get here, the VCPU was woken up again. Jump to CPU
* startup code to get it back online.
*/
soft_restart_cpu();
}
#else /* CONFIG_HOTPLUG_CPU */
#define sev_es_play_dead native_play_dead
#endif /* CONFIG_HOTPLUG_CPU */
#ifdef CONFIG_SMP
static void __init sev_es_setup_play_dead(void)
{
smp_ops.play_dead = sev_es_play_dead;
}
#else
static inline void sev_es_setup_play_dead(void) { }
#endif
static void __init alloc_runtime_data(int cpu)
{
struct sev_es_runtime_data *data;
data = memblock_alloc(sizeof(*data), PAGE_SIZE);
if (!data)
panic("Can't allocate SEV-ES runtime data");
per_cpu(runtime_data, cpu) = data;
}
static void __init init_ghcb(int cpu)
{
struct sev_es_runtime_data *data;
int err;
data = per_cpu(runtime_data, cpu);
err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
sizeof(data->ghcb_page));
if (err)
panic("Can't map GHCBs unencrypted");
memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
data->ghcb_active = false;
data->backup_ghcb_active = false;
}
void __init sev_es_init_vc_handling(void)
{
int cpu;
BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
return;
if (!sev_es_check_cpu_features())
panic("SEV-ES CPU Features missing");
/*
* SNP is supported in v2 of the GHCB spec which mandates support for HV
* features.
*/
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
sev_hv_features = get_hv_features();
if (!(sev_hv_features & GHCB_HV_FT_SNP))
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
}
/* Initialize per-cpu GHCB pages */
for_each_possible_cpu(cpu) {
alloc_runtime_data(cpu);
init_ghcb(cpu);
}
sev_es_setup_play_dead();
/* Secondary CPUs use the runtime #VC handler */
initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
}
static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
{
int trapnr = ctxt->fi.vector;
if (trapnr == X86_TRAP_PF)
native_write_cr2(ctxt->fi.cr2);
ctxt->regs->orig_ax = ctxt->fi.error_code;
do_early_exception(ctxt->regs, trapnr);
}
static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
{
long *reg_array;
int offset;
reg_array = (long *)ctxt->regs;
offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
if (offset < 0)
return NULL;
offset /= sizeof(long);
return reg_array + offset;
}
static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
unsigned int bytes, bool read)
{
u64 exit_code, exit_info_1, exit_info_2;
unsigned long ghcb_pa = __pa(ghcb);
enum es_result res;
phys_addr_t paddr;
void __user *ref;
ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
if (ref == (void __user *)-1L)
return ES_UNSUPPORTED;
exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
if (res != ES_OK) {
if (res == ES_EXCEPTION && !read)
ctxt->fi.error_code |= X86_PF_WRITE;
return res;
}
exit_info_1 = paddr;
/* Can never be greater than 8 */
exit_info_2 = bytes;
ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
}
/*
* The MOVS instruction has two memory operands, which raises the
* problem that it is not known whether the access to the source or the
* destination caused the #VC exception (and hence whether an MMIO read
* or write operation needs to be emulated).
*
* Instead of playing games with walking page-tables and trying to guess
* whether the source or destination is an MMIO range, split the move
* into two operations, a read and a write with only one memory operand.
* This will cause a nested #VC exception on the MMIO address which can
* then be handled.
*
* This implementation has the benefit that it also supports MOVS where
* source _and_ destination are MMIO regions.
*
* It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
* rare operation. If it turns out to be a performance problem the split
* operations can be moved to memcpy_fromio() and memcpy_toio().
*/
static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
unsigned int bytes)
{
unsigned long ds_base, es_base;
unsigned char *src, *dst;
unsigned char buffer[8];
enum es_result ret;
bool rep;
int off;
ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
if (ds_base == -1L || es_base == -1L) {
ctxt->fi.vector = X86_TRAP_GP;
ctxt->fi.error_code = 0;
return ES_EXCEPTION;
}
src = ds_base + (unsigned char *)ctxt->regs->si;
dst = es_base + (unsigned char *)ctxt->regs->di;
ret = vc_read_mem(ctxt, src, buffer, bytes);
if (ret != ES_OK)
return ret;
ret = vc_write_mem(ctxt, dst, buffer, bytes);
if (ret != ES_OK)
return ret;
if (ctxt->regs->flags & X86_EFLAGS_DF)
off = -bytes;
else
off = bytes;
ctxt->regs->si += off;
ctxt->regs->di += off;
rep = insn_has_rep_prefix(&ctxt->insn);
if (rep)
ctxt->regs->cx -= 1;
if (!rep || ctxt->regs->cx == 0)
return ES_OK;
else
return ES_RETRY;
}
static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
struct insn *insn = &ctxt->insn;
enum insn_mmio_type mmio;
unsigned int bytes = 0;
enum es_result ret;
u8 sign_byte;
long *reg_data;
mmio = insn_decode_mmio(insn, &bytes);
if (mmio == INSN_MMIO_DECODE_FAILED)
return ES_DECODE_FAILED;
if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
if (!reg_data)
return ES_DECODE_FAILED;
}
if (user_mode(ctxt->regs))
return ES_UNSUPPORTED;
switch (mmio) {
case INSN_MMIO_WRITE:
memcpy(ghcb->shared_buffer, reg_data, bytes);
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
break;
case INSN_MMIO_WRITE_IMM:
memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
break;
case INSN_MMIO_READ:
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
if (ret)
break;
/* Zero-extend for 32-bit operation */
if (bytes == 4)
*reg_data = 0;
memcpy(reg_data, ghcb->shared_buffer, bytes);
break;
case INSN_MMIO_READ_ZERO_EXTEND:
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
if (ret)
break;
/* Zero extend based on operand size */
memset(reg_data, 0, insn->opnd_bytes);
memcpy(reg_data, ghcb->shared_buffer, bytes);
break;
case INSN_MMIO_READ_SIGN_EXTEND:
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
if (ret)
break;
if (bytes == 1) {
u8 *val = (u8 *)ghcb->shared_buffer;
sign_byte = (*val & 0x80) ? 0xff : 0x00;
} else {
u16 *val = (u16 *)ghcb->shared_buffer;
sign_byte = (*val & 0x8000) ? 0xff : 0x00;
}
/* Sign extend based on operand size */
memset(reg_data, sign_byte, insn->opnd_bytes);
memcpy(reg_data, ghcb->shared_buffer, bytes);
break;
case INSN_MMIO_MOVS:
ret = vc_handle_mmio_movs(ctxt, bytes);
break;
default:
ret = ES_UNSUPPORTED;
break;
}
return ret;
}
static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
long val, *reg = vc_insn_get_rm(ctxt);
enum es_result ret;
if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
return ES_VMM_ERROR;
if (!reg)
return ES_DECODE_FAILED;
val = *reg;
/* Upper 32 bits must be written as zeroes */
if (val >> 32) {
ctxt->fi.vector = X86_TRAP_GP;
ctxt->fi.error_code = 0;
return ES_EXCEPTION;
}
/* Clear out other reserved bits and set bit 10 */
val = (val & 0xffff23ffL) | BIT(10);
/* Early non-zero writes to DR7 are not supported */
if (!data && (val & ~DR7_RESET_VALUE))
return ES_UNSUPPORTED;
/* Using a value of 0 for ExitInfo1 means RAX holds the value */
ghcb_set_rax(ghcb, val);
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
if (ret != ES_OK)
return ret;
if (data)
data->dr7 = val;
return ES_OK;
}
static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
long *reg = vc_insn_get_rm(ctxt);
if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
return ES_VMM_ERROR;
if (!reg)
return ES_DECODE_FAILED;
if (data)
*reg = data->dr7;
else
*reg = DR7_RESET_VALUE;
return ES_OK;
}
static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
}
static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
enum es_result ret;
ghcb_set_rcx(ghcb, ctxt->regs->cx);
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
if (ret != ES_OK)
return ret;
if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
return ES_VMM_ERROR;
ctxt->regs->ax = ghcb->save.rax;
ctxt->regs->dx = ghcb->save.rdx;
return ES_OK;
}
static enum es_result vc_handle_monitor(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
/*
* Treat it as a NOP and do not leak a physical address to the
* hypervisor.
*/
return ES_OK;
}
static enum es_result vc_handle_mwait(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
/* Treat the same as MONITOR/MONITORX */
return ES_OK;
}
static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
enum es_result ret;
ghcb_set_rax(ghcb, ctxt->regs->ax);
ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
if (x86_platform.hyper.sev_es_hcall_prepare)
x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
if (ret != ES_OK)
return ret;
if (!ghcb_rax_is_valid(ghcb))
return ES_VMM_ERROR;
ctxt->regs->ax = ghcb->save.rax;
/*
* Call sev_es_hcall_finish() after regs->ax is already set.
* This allows the hypervisor handler to overwrite it again if
* necessary.
*/
if (x86_platform.hyper.sev_es_hcall_finish &&
!x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
return ES_VMM_ERROR;
return ES_OK;
}
static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
/*
* Calling ecx_alignment_check() directly does not work, because it
* enables IRQs and the GHCB is active. Forward the exception and call
* it later from vc_forward_exception().
*/
ctxt->fi.vector = X86_TRAP_AC;
ctxt->fi.error_code = 0;
return ES_EXCEPTION;
}
static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
struct ghcb *ghcb,
unsigned long exit_code)
{
enum es_result result;
switch (exit_code) {
case SVM_EXIT_READ_DR7:
result = vc_handle_dr7_read(ghcb, ctxt);
break;
case SVM_EXIT_WRITE_DR7:
result = vc_handle_dr7_write(ghcb, ctxt);
break;
case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
result = vc_handle_trap_ac(ghcb, ctxt);
break;
case SVM_EXIT_RDTSC:
case SVM_EXIT_RDTSCP:
result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
break;
case SVM_EXIT_RDPMC:
result = vc_handle_rdpmc(ghcb, ctxt);
break;
case SVM_EXIT_INVD:
pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
result = ES_UNSUPPORTED;
break;
case SVM_EXIT_CPUID:
result = vc_handle_cpuid(ghcb, ctxt);
break;
case SVM_EXIT_IOIO:
result = vc_handle_ioio(ghcb, ctxt);
break;
case SVM_EXIT_MSR:
result = vc_handle_msr(ghcb, ctxt);
break;
case SVM_EXIT_VMMCALL:
result = vc_handle_vmmcall(ghcb, ctxt);
break;
case SVM_EXIT_WBINVD:
result = vc_handle_wbinvd(ghcb, ctxt);
break;
case SVM_EXIT_MONITOR:
result = vc_handle_monitor(ghcb, ctxt);
break;
case SVM_EXIT_MWAIT:
result = vc_handle_mwait(ghcb, ctxt);
break;
case SVM_EXIT_NPF:
result = vc_handle_mmio(ghcb, ctxt);
break;
default:
/*
* Unexpected #VC exception
*/
result = ES_UNSUPPORTED;
}
return result;
}
static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
{
long error_code = ctxt->fi.error_code;
int trapnr = ctxt->fi.vector;
ctxt->regs->orig_ax = ctxt->fi.error_code;
switch (trapnr) {
case X86_TRAP_GP:
exc_general_protection(ctxt->regs, error_code);
break;
case X86_TRAP_UD:
exc_invalid_op(ctxt->regs);
break;
case X86_TRAP_PF:
write_cr2(ctxt->fi.cr2);
exc_page_fault(ctxt->regs, error_code);
break;
case X86_TRAP_AC:
exc_alignment_check(ctxt->regs, error_code);
break;
default:
pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
BUG();
}
}
static __always_inline bool is_vc2_stack(unsigned long sp)
{
return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
}
static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
{
unsigned long sp, prev_sp;
sp = (unsigned long)regs;
prev_sp = regs->sp;
/*
* If the code was already executing on the VC2 stack when the #VC
* happened, let it proceed to the normal handling routine. This way the
* code executing on the VC2 stack can cause #VC exceptions to get handled.
*/
return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
}
static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
{
struct ghcb_state state;
struct es_em_ctxt ctxt;
enum es_result result;
struct ghcb *ghcb;
bool ret = true;
/*
* Make sure the codes between __sev_get_ghcb() and __sev_put_ghcb()
* keep in atomic context. If #VC comes from kernel mode, then the
* codes here are in atomic context. If #VC comes from user mode, then
* it's necessary to switch to atomic context manually.
*/
if (is_x86_vendor_hygon() && !in_nmi())
__preempt_count_add(HARDIRQ_OFFSET);
ghcb = __sev_get_ghcb(&state);
vc_ghcb_invalidate(ghcb);
result = vc_init_em_ctxt(&ctxt, regs, error_code);
if (result == ES_OK)
result = vc_handle_exitcode(&ctxt, ghcb, error_code);
__sev_put_ghcb(&state);
if (is_x86_vendor_hygon() && !in_nmi())
__preempt_count_sub(HARDIRQ_OFFSET);
/* Done - now check the result */
switch (result) {
case ES_OK:
vc_finish_insn(&ctxt);
break;
case ES_UNSUPPORTED:
pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
error_code, regs->ip);
ret = false;
break;
case ES_VMM_ERROR:
pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
error_code, regs->ip);
ret = false;
break;
case ES_DECODE_FAILED:
pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
error_code, regs->ip);
ret = false;
break;
case ES_EXCEPTION:
vc_forward_exception(&ctxt);
break;
case ES_RETRY:
/* Nothing to do */
break;
default:
pr_emerg("Unknown result in %s():%d\n", __func__, result);
/*
* Emulating the instruction which caused the #VC exception
* failed - can't continue so print debug information
*/
BUG();
}
return ret;
}
static __always_inline bool vc_is_db(unsigned long error_code)
{
return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
}
/*
* Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
* and will panic when an error happens.
*/
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
{
irqentry_state_t irq_state;
/*
* With the current implementation it is always possible to switch to a
* safe stack because #VC exceptions only happen at known places, like
* intercepted instructions or accesses to MMIO areas/IO ports. They can
* also happen with code instrumentation when the hypervisor intercepts
* #DB, but the critical paths are forbidden to be instrumented, so #DB
* exceptions currently also only happen in safe places.
*
* But keep this here in case the noinstr annotations are violated due
* to bug elsewhere.
*/
if (unlikely(vc_from_invalid_context(regs))) {
instrumentation_begin();
panic("Can't handle #VC exception from unsupported context\n");
instrumentation_end();
}
/*
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
*/
if (vc_is_db(error_code)) {
exc_debug(regs);
return;
}
irq_state = irqentry_nmi_enter(regs);
instrumentation_begin();
if (!vc_raw_handle_exception(regs, error_code)) {
/* Show some debug info */
show_regs(regs);
/* Ask hypervisor to sev_es_terminate */
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
/* If that fails and we get here - just panic */
panic("Returned from Terminate-Request to Hypervisor\n");
}
instrumentation_end();
irqentry_nmi_exit(regs, irq_state);
}
/*
* Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
* and will kill the current task with SIGBUS when an error happens.
*/
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
{
/*
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
*/
if (vc_is_db(error_code)) {
noist_exc_debug(regs);
return;
}
irqentry_enter_from_user_mode(regs);
instrumentation_begin();
if (!vc_raw_handle_exception(regs, error_code)) {
/*
* Do not kill the machine if user-space triggered the
* exception. Send SIGBUS instead and let user-space deal with
* it.
*/
force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
}
instrumentation_end();
irqentry_exit_to_user_mode(regs);
}
bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
{
unsigned long exit_code = regs->orig_ax;
struct es_em_ctxt ctxt;
enum es_result result;
vc_ghcb_invalidate(boot_ghcb);
result = vc_init_em_ctxt(&ctxt, regs, exit_code);
if (result == ES_OK)
result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
/* Done - now check the result */
switch (result) {
case ES_OK:
vc_finish_insn(&ctxt);
break;
case ES_UNSUPPORTED:
early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
exit_code, regs->ip);
goto fail;
case ES_VMM_ERROR:
early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
exit_code, regs->ip);
goto fail;
case ES_DECODE_FAILED:
early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
exit_code, regs->ip);
goto fail;
case ES_EXCEPTION:
vc_early_forward_exception(&ctxt);
break;
case ES_RETRY:
/* Nothing to do */
break;
default:
BUG();
}
return true;
fail:
show_regs(regs);
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
}
/*
* Initial set up of SNP relies on information provided by the
* Confidential Computing blob, which can be passed to the kernel
* in the following ways, depending on how it is booted:
*
* - when booted via the boot/decompress kernel:
* - via boot_params
*
* - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
* - via a setup_data entry, as defined by the Linux Boot Protocol
*
* Scan for the blob in that order.
*/
static __head struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
{
struct cc_blob_sev_info *cc_info;
/* Boot kernel would have passed the CC blob via boot_params. */
if (bp->cc_blob_address) {
cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
goto found_cc_info;
}
/*
* If kernel was booted directly, without the use of the
* boot/decompression kernel, the CC blob may have been passed via
* setup_data instead.
*/
cc_info = find_cc_blob_setup_data(bp);
if (!cc_info)
return NULL;
found_cc_info:
if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
snp_abort();
return cc_info;
}
bool __head snp_init(struct boot_params *bp)
{
struct cc_blob_sev_info *cc_info;
if (!bp)
return false;
cc_info = find_cc_blob(bp);
if (!cc_info)
return false;
setup_cpuid_table(cc_info);
/*
* The CC blob will be used later to access the secrets page. Cache
* it here like the boot kernel does.
*/
bp->cc_blob_address = (u32)(unsigned long)cc_info;
return true;
}
void __head __noreturn snp_abort(void)
{
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
}
/*
* SEV-SNP guests should only execute dmi_setup() if EFI_CONFIG_TABLES are
* enabled, as the alternative (fallback) logic for DMI probing in the legacy
* ROM region can cause a crash since this region is not pre-validated.
*/
void __init snp_dmi_setup(void)
{
if (efi_enabled(EFI_CONFIG_TABLES))
dmi_setup();
}
static void dump_cpuid_table(void)
{
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
int i = 0;
pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
}
}
/*
* It is useful from an auditing/testing perspective to provide an easy way
* for the guest owner to know that the CPUID table has been initialized as
* expected, but that initialization happens too early in boot to print any
* sort of indicator, and there's not really any other good place to do it,
* so do it here.
*/
static int __init report_cpuid_table(void)
{
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
if (!cpuid_table->count)
return 0;
pr_info("Using SNP CPUID table, %d entries present.\n",
cpuid_table->count);
if (sev_cfg.debug)
dump_cpuid_table();
return 0;
}
arch_initcall(report_cpuid_table);
static int __init init_sev_config(char *str)
{
char *s;
while ((s = strsep(&str, ","))) {
if (!strcmp(s, "debug")) {
sev_cfg.debug = true;
continue;
}
pr_info("SEV command-line option '%s' was not recognized\n", s);
}
return 1;
}
__setup("sev=", init_sev_config);
int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio)
{
struct ghcb_state state;
struct es_em_ctxt ctxt;
unsigned long flags;
struct ghcb *ghcb;
int ret;
rio->exitinfo2 = SEV_RET_NO_FW_CALL;
/*
* __sev_get_ghcb() needs to run with IRQs disabled because it is using
* a per-CPU GHCB.
*/
local_irq_save(flags);
ghcb = __sev_get_ghcb(&state);
if (!ghcb) {
ret = -EIO;
goto e_restore_irq;
}
vc_ghcb_invalidate(ghcb);
if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
ghcb_set_rax(ghcb, input->data_gpa);
ghcb_set_rbx(ghcb, input->data_npages);
}
ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
if (ret)
goto e_put;
rio->exitinfo2 = ghcb->save.sw_exit_info_2;
switch (rio->exitinfo2) {
case 0:
break;
case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
ret = -EAGAIN;
break;
case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
/* Number of expected pages are returned in RBX */
if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
input->data_npages = ghcb_get_rbx(ghcb);
ret = -ENOSPC;
break;
}
fallthrough;
default:
ret = -EIO;
break;
}
e_put:
__sev_put_ghcb(&state);
e_restore_irq:
local_irq_restore(flags);
return ret;
}
EXPORT_SYMBOL_GPL(snp_issue_guest_request);
static struct platform_device sev_guest_device = {
.name = "sev-guest",
.id = -1,
};
static int __init snp_init_platform_device(void)
{
struct sev_guest_platform_data data;
u64 gpa;
if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
return -ENODEV;
gpa = get_secrets_page();
if (!gpa)
return -ENODEV;
data.secrets_gpa = gpa;
if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
return -ENODEV;
if (platform_device_register(&sev_guest_device))
return -ENODEV;
pr_info("SNP guest platform device initialized.\n");
return 0;
}
device_initcall(snp_init_platform_device);