OpenCloudOS-Kernel/drivers/connector/cn_proc.c

412 lines
12 KiB
C

/*
* cn_proc.c - process events connector
*
* Copyright (C) Matt Helsley, IBM Corp. 2005
* Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net>
* Original copyright notice follows:
* Copyright (C) 2005 BULL SA.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/init.h>
#include <linux/connector.h>
#include <linux/gfp.h>
#include <linux/ptrace.h>
#include <linux/atomic.h>
#include <linux/pid_namespace.h>
#include <linux/cn_proc.h>
/*
* Size of a cn_msg followed by a proc_event structure. Since the
* sizeof struct cn_msg is a multiple of 4 bytes, but not 8 bytes, we
* add one 4-byte word to the size here, and then start the actual
* cn_msg structure 4 bytes into the stack buffer. The result is that
* the immediately following proc_event structure is aligned to 8 bytes.
*/
#define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event) + 4)
/* See comment above; we test our assumption about sizeof struct cn_msg here. */
static inline struct cn_msg *buffer_to_cn_msg(__u8 *buffer)
{
BUILD_BUG_ON(sizeof(struct cn_msg) != 20);
return (struct cn_msg *)(buffer + 4);
}
static atomic_t proc_event_num_listeners = ATOMIC_INIT(0);
static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC };
/* proc_event_counts is used as the sequence number of the netlink message */
static DEFINE_PER_CPU(__u32, proc_event_counts) = { 0 };
static inline void get_seq(__u32 *ts, int *cpu)
{
preempt_disable();
*ts = __this_cpu_inc_return(proc_event_counts) - 1;
*cpu = smp_processor_id();
preempt_enable();
}
void proc_fork_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
struct timespec ts;
struct task_struct *parent;
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
get_seq(&msg->seq, &ev->cpu);
ktime_get_ts(&ts); /* get high res monotonic timestamp */
ev->timestamp_ns = timespec_to_ns(&ts);
ev->what = PROC_EVENT_FORK;
rcu_read_lock();
parent = rcu_dereference(task->real_parent);
ev->event_data.fork.parent_pid = parent->pid;
ev->event_data.fork.parent_tgid = parent->tgid;
rcu_read_unlock();
ev->event_data.fork.child_pid = task->pid;
ev->event_data.fork.child_tgid = task->tgid;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
/* If cn_netlink_send() failed, the data is not sent */
cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
}
void proc_exec_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
struct timespec ts;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
get_seq(&msg->seq, &ev->cpu);
ktime_get_ts(&ts); /* get high res monotonic timestamp */
ev->timestamp_ns = timespec_to_ns(&ts);
ev->what = PROC_EVENT_EXEC;
ev->event_data.exec.process_pid = task->pid;
ev->event_data.exec.process_tgid = task->tgid;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
}
void proc_id_connector(struct task_struct *task, int which_id)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
struct timespec ts;
const struct cred *cred;
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
ev->what = which_id;
ev->event_data.id.process_pid = task->pid;
ev->event_data.id.process_tgid = task->tgid;
rcu_read_lock();
cred = __task_cred(task);
if (which_id == PROC_EVENT_UID) {
ev->event_data.id.r.ruid = from_kuid_munged(&init_user_ns, cred->uid);
ev->event_data.id.e.euid = from_kuid_munged(&init_user_ns, cred->euid);
} else if (which_id == PROC_EVENT_GID) {
ev->event_data.id.r.rgid = from_kgid_munged(&init_user_ns, cred->gid);
ev->event_data.id.e.egid = from_kgid_munged(&init_user_ns, cred->egid);
} else {
rcu_read_unlock();
return;
}
rcu_read_unlock();
get_seq(&msg->seq, &ev->cpu);
ktime_get_ts(&ts); /* get high res monotonic timestamp */
ev->timestamp_ns = timespec_to_ns(&ts);
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
}
void proc_sid_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
struct timespec ts;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
get_seq(&msg->seq, &ev->cpu);
ktime_get_ts(&ts); /* get high res monotonic timestamp */
ev->timestamp_ns = timespec_to_ns(&ts);
ev->what = PROC_EVENT_SID;
ev->event_data.sid.process_pid = task->pid;
ev->event_data.sid.process_tgid = task->tgid;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
}
void proc_ptrace_connector(struct task_struct *task, int ptrace_id)
{
struct cn_msg *msg;
struct proc_event *ev;
struct timespec ts;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
get_seq(&msg->seq, &ev->cpu);
ktime_get_ts(&ts); /* get high res monotonic timestamp */
ev->timestamp_ns = timespec_to_ns(&ts);
ev->what = PROC_EVENT_PTRACE;
ev->event_data.ptrace.process_pid = task->pid;
ev->event_data.ptrace.process_tgid = task->tgid;
if (ptrace_id == PTRACE_ATTACH) {
ev->event_data.ptrace.tracer_pid = current->pid;
ev->event_data.ptrace.tracer_tgid = current->tgid;
} else if (ptrace_id == PTRACE_DETACH) {
ev->event_data.ptrace.tracer_pid = 0;
ev->event_data.ptrace.tracer_tgid = 0;
} else
return;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
}
void proc_comm_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
struct timespec ts;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
get_seq(&msg->seq, &ev->cpu);
ktime_get_ts(&ts); /* get high res monotonic timestamp */
ev->timestamp_ns = timespec_to_ns(&ts);
ev->what = PROC_EVENT_COMM;
ev->event_data.comm.process_pid = task->pid;
ev->event_data.comm.process_tgid = task->tgid;
get_task_comm(ev->event_data.comm.comm, task);
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
}
void proc_coredump_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
struct timespec ts;
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
get_seq(&msg->seq, &ev->cpu);
ktime_get_ts(&ts); /* get high res monotonic timestamp */
ev->timestamp_ns = timespec_to_ns(&ts);
ev->what = PROC_EVENT_COREDUMP;
ev->event_data.coredump.process_pid = task->pid;
ev->event_data.coredump.process_tgid = task->tgid;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
}
void proc_exit_connector(struct task_struct *task)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
struct timespec ts;
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
get_seq(&msg->seq, &ev->cpu);
ktime_get_ts(&ts); /* get high res monotonic timestamp */
ev->timestamp_ns = timespec_to_ns(&ts);
ev->what = PROC_EVENT_EXIT;
ev->event_data.exit.process_pid = task->pid;
ev->event_data.exit.process_tgid = task->tgid;
ev->event_data.exit.exit_code = task->exit_code;
ev->event_data.exit.exit_signal = task->exit_signal;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = 0; /* not used */
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
}
/*
* Send an acknowledgement message to userspace
*
* Use 0 for success, EFOO otherwise.
* Note: this is the negative of conventional kernel error
* values because it's not being returned via syscall return
* mechanisms.
*/
static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack)
{
struct cn_msg *msg;
struct proc_event *ev;
__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
struct timespec ts;
if (atomic_read(&proc_event_num_listeners) < 1)
return;
msg = buffer_to_cn_msg(buffer);
ev = (struct proc_event *)msg->data;
memset(&ev->event_data, 0, sizeof(ev->event_data));
msg->seq = rcvd_seq;
ktime_get_ts(&ts); /* get high res monotonic timestamp */
ev->timestamp_ns = timespec_to_ns(&ts);
ev->cpu = -1;
ev->what = PROC_EVENT_NONE;
ev->event_data.ack.err = err;
memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
msg->ack = rcvd_ack + 1;
msg->len = sizeof(*ev);
msg->flags = 0; /* not used */
cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
}
/**
* cn_proc_mcast_ctl
* @data: message sent from userspace via the connector
*/
static void cn_proc_mcast_ctl(struct cn_msg *msg,
struct netlink_skb_parms *nsp)
{
enum proc_cn_mcast_op *mc_op = NULL;
int err = 0;
if (msg->len != sizeof(*mc_op))
return;
/*
* Events are reported with respect to the initial pid
* and user namespaces so ignore requestors from
* other namespaces.
*/
if ((current_user_ns() != &init_user_ns) ||
(task_active_pid_ns(current) != &init_pid_ns))
return;
/* Can only change if privileged. */
if (!capable(CAP_NET_ADMIN)) {
err = EPERM;
goto out;
}
mc_op = (enum proc_cn_mcast_op *)msg->data;
switch (*mc_op) {
case PROC_CN_MCAST_LISTEN:
atomic_inc(&proc_event_num_listeners);
break;
case PROC_CN_MCAST_IGNORE:
atomic_dec(&proc_event_num_listeners);
break;
default:
err = EINVAL;
break;
}
out:
cn_proc_ack(err, msg->seq, msg->ack);
}
/*
* cn_proc_init - initialization entry point
*
* Adds the connector callback to the connector driver.
*/
static int __init cn_proc_init(void)
{
int err = cn_add_callback(&cn_proc_event_id,
"cn_proc",
&cn_proc_mcast_ctl);
if (err) {
pr_warn("cn_proc failed to register\n");
return err;
}
return 0;
}
module_init(cn_proc_init);