OpenCloudOS-Kernel/fs/xfs/xfs_buf_item_recover.c

996 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_trans_priv.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_log_recover.h"
#include "xfs_error.h"
#include "xfs_inode.h"
#include "xfs_dir2.h"
#include "xfs_quota.h"
/*
* This structure is used during recovery to record the buf log items which
* have been canceled and should not be replayed.
*/
struct xfs_buf_cancel {
xfs_daddr_t bc_blkno;
uint bc_len;
int bc_refcount;
struct list_head bc_list;
};
static struct xfs_buf_cancel *
xlog_find_buffer_cancelled(
struct xlog *log,
xfs_daddr_t blkno,
uint len)
{
struct list_head *bucket;
struct xfs_buf_cancel *bcp;
if (!log->l_buf_cancel_table)
return NULL;
bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
list_for_each_entry(bcp, bucket, bc_list) {
if (bcp->bc_blkno == blkno && bcp->bc_len == len)
return bcp;
}
return NULL;
}
static bool
xlog_add_buffer_cancelled(
struct xlog *log,
xfs_daddr_t blkno,
uint len)
{
struct xfs_buf_cancel *bcp;
/*
* If we find an existing cancel record, this indicates that the buffer
* was cancelled multiple times. To ensure that during pass 2 we keep
* the record in the table until we reach its last occurrence in the
* log, a reference count is kept to tell how many times we expect to
* see this record during the second pass.
*/
bcp = xlog_find_buffer_cancelled(log, blkno, len);
if (bcp) {
bcp->bc_refcount++;
return false;
}
bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
bcp->bc_blkno = blkno;
bcp->bc_len = len;
bcp->bc_refcount = 1;
list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno));
return true;
}
/*
* Check if there is and entry for blkno, len in the buffer cancel record table.
*/
bool
xlog_is_buffer_cancelled(
struct xlog *log,
xfs_daddr_t blkno,
uint len)
{
return xlog_find_buffer_cancelled(log, blkno, len) != NULL;
}
/*
* Check if there is and entry for blkno, len in the buffer cancel record table,
* and decremented the reference count on it if there is one.
*
* Remove the cancel record once the refcount hits zero, so that if the same
* buffer is re-used again after its last cancellation we actually replay the
* changes made at that point.
*/
static bool
xlog_put_buffer_cancelled(
struct xlog *log,
xfs_daddr_t blkno,
uint len)
{
struct xfs_buf_cancel *bcp;
bcp = xlog_find_buffer_cancelled(log, blkno, len);
if (!bcp) {
ASSERT(0);
return false;
}
if (--bcp->bc_refcount == 0) {
list_del(&bcp->bc_list);
kmem_free(bcp);
}
return true;
}
/* log buffer item recovery */
/*
* Sort buffer items for log recovery. Most buffer items should end up on the
* buffer list and are recovered first, with the following exceptions:
*
* 1. XFS_BLF_CANCEL buffers must be processed last because some log items
* might depend on the incor ecancellation record, and replaying a cancelled
* buffer item can remove the incore record.
*
* 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
* we replay di_next_unlinked only after flushing the inode 'free' state
* to the inode buffer.
*
* See xlog_recover_reorder_trans for more details.
*/
STATIC enum xlog_recover_reorder
xlog_recover_buf_reorder(
struct xlog_recover_item *item)
{
struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
if (buf_f->blf_flags & XFS_BLF_CANCEL)
return XLOG_REORDER_CANCEL_LIST;
if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
return XLOG_REORDER_INODE_BUFFER_LIST;
return XLOG_REORDER_BUFFER_LIST;
}
STATIC void
xlog_recover_buf_ra_pass2(
struct xlog *log,
struct xlog_recover_item *item)
{
struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL);
}
/*
* Build up the table of buf cancel records so that we don't replay cancelled
* data in the second pass.
*/
static int
xlog_recover_buf_commit_pass1(
struct xlog *log,
struct xlog_recover_item *item)
{
struct xfs_buf_log_format *bf = item->ri_buf[0].i_addr;
if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
xfs_err(log->l_mp, "bad buffer log item size (%d)",
item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
if (!(bf->blf_flags & XFS_BLF_CANCEL))
trace_xfs_log_recover_buf_not_cancel(log, bf);
else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len))
trace_xfs_log_recover_buf_cancel_add(log, bf);
else
trace_xfs_log_recover_buf_cancel_ref_inc(log, bf);
return 0;
}
/*
* Validate the recovered buffer is of the correct type and attach the
* appropriate buffer operations to them for writeback. Magic numbers are in a
* few places:
* the first 16 bits of the buffer (inode buffer, dquot buffer),
* the first 32 bits of the buffer (most blocks),
* inside a struct xfs_da_blkinfo at the start of the buffer.
*/
static void
xlog_recover_validate_buf_type(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct xfs_buf_log_format *buf_f,
xfs_lsn_t current_lsn)
{
struct xfs_da_blkinfo *info = bp->b_addr;
uint32_t magic32;
uint16_t magic16;
uint16_t magicda;
char *warnmsg = NULL;
/*
* We can only do post recovery validation on items on CRC enabled
* fielsystems as we need to know when the buffer was written to be able
* to determine if we should have replayed the item. If we replay old
* metadata over a newer buffer, then it will enter a temporarily
* inconsistent state resulting in verification failures. Hence for now
* just avoid the verification stage for non-crc filesystems
*/
if (!xfs_has_crc(mp))
return;
magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
magicda = be16_to_cpu(info->magic);
switch (xfs_blft_from_flags(buf_f)) {
case XFS_BLFT_BTREE_BUF:
switch (magic32) {
case XFS_ABTB_CRC_MAGIC:
case XFS_ABTB_MAGIC:
bp->b_ops = &xfs_bnobt_buf_ops;
break;
case XFS_ABTC_CRC_MAGIC:
case XFS_ABTC_MAGIC:
bp->b_ops = &xfs_cntbt_buf_ops;
break;
case XFS_IBT_CRC_MAGIC:
case XFS_IBT_MAGIC:
bp->b_ops = &xfs_inobt_buf_ops;
break;
case XFS_FIBT_CRC_MAGIC:
case XFS_FIBT_MAGIC:
bp->b_ops = &xfs_finobt_buf_ops;
break;
case XFS_BMAP_CRC_MAGIC:
case XFS_BMAP_MAGIC:
bp->b_ops = &xfs_bmbt_buf_ops;
break;
case XFS_RMAP_CRC_MAGIC:
bp->b_ops = &xfs_rmapbt_buf_ops;
break;
case XFS_REFC_CRC_MAGIC:
bp->b_ops = &xfs_refcountbt_buf_ops;
break;
default:
warnmsg = "Bad btree block magic!";
break;
}
break;
case XFS_BLFT_AGF_BUF:
if (magic32 != XFS_AGF_MAGIC) {
warnmsg = "Bad AGF block magic!";
break;
}
bp->b_ops = &xfs_agf_buf_ops;
break;
case XFS_BLFT_AGFL_BUF:
if (magic32 != XFS_AGFL_MAGIC) {
warnmsg = "Bad AGFL block magic!";
break;
}
bp->b_ops = &xfs_agfl_buf_ops;
break;
case XFS_BLFT_AGI_BUF:
if (magic32 != XFS_AGI_MAGIC) {
warnmsg = "Bad AGI block magic!";
break;
}
bp->b_ops = &xfs_agi_buf_ops;
break;
case XFS_BLFT_UDQUOT_BUF:
case XFS_BLFT_PDQUOT_BUF:
case XFS_BLFT_GDQUOT_BUF:
#ifdef CONFIG_XFS_QUOTA
if (magic16 != XFS_DQUOT_MAGIC) {
warnmsg = "Bad DQUOT block magic!";
break;
}
bp->b_ops = &xfs_dquot_buf_ops;
#else
xfs_alert(mp,
"Trying to recover dquots without QUOTA support built in!");
ASSERT(0);
#endif
break;
case XFS_BLFT_DINO_BUF:
if (magic16 != XFS_DINODE_MAGIC) {
warnmsg = "Bad INODE block magic!";
break;
}
bp->b_ops = &xfs_inode_buf_ops;
break;
case XFS_BLFT_SYMLINK_BUF:
if (magic32 != XFS_SYMLINK_MAGIC) {
warnmsg = "Bad symlink block magic!";
break;
}
bp->b_ops = &xfs_symlink_buf_ops;
break;
case XFS_BLFT_DIR_BLOCK_BUF:
if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
magic32 != XFS_DIR3_BLOCK_MAGIC) {
warnmsg = "Bad dir block magic!";
break;
}
bp->b_ops = &xfs_dir3_block_buf_ops;
break;
case XFS_BLFT_DIR_DATA_BUF:
if (magic32 != XFS_DIR2_DATA_MAGIC &&
magic32 != XFS_DIR3_DATA_MAGIC) {
warnmsg = "Bad dir data magic!";
break;
}
bp->b_ops = &xfs_dir3_data_buf_ops;
break;
case XFS_BLFT_DIR_FREE_BUF:
if (magic32 != XFS_DIR2_FREE_MAGIC &&
magic32 != XFS_DIR3_FREE_MAGIC) {
warnmsg = "Bad dir3 free magic!";
break;
}
bp->b_ops = &xfs_dir3_free_buf_ops;
break;
case XFS_BLFT_DIR_LEAF1_BUF:
if (magicda != XFS_DIR2_LEAF1_MAGIC &&
magicda != XFS_DIR3_LEAF1_MAGIC) {
warnmsg = "Bad dir leaf1 magic!";
break;
}
bp->b_ops = &xfs_dir3_leaf1_buf_ops;
break;
case XFS_BLFT_DIR_LEAFN_BUF:
if (magicda != XFS_DIR2_LEAFN_MAGIC &&
magicda != XFS_DIR3_LEAFN_MAGIC) {
warnmsg = "Bad dir leafn magic!";
break;
}
bp->b_ops = &xfs_dir3_leafn_buf_ops;
break;
case XFS_BLFT_DA_NODE_BUF:
if (magicda != XFS_DA_NODE_MAGIC &&
magicda != XFS_DA3_NODE_MAGIC) {
warnmsg = "Bad da node magic!";
break;
}
bp->b_ops = &xfs_da3_node_buf_ops;
break;
case XFS_BLFT_ATTR_LEAF_BUF:
if (magicda != XFS_ATTR_LEAF_MAGIC &&
magicda != XFS_ATTR3_LEAF_MAGIC) {
warnmsg = "Bad attr leaf magic!";
break;
}
bp->b_ops = &xfs_attr3_leaf_buf_ops;
break;
case XFS_BLFT_ATTR_RMT_BUF:
if (magic32 != XFS_ATTR3_RMT_MAGIC) {
warnmsg = "Bad attr remote magic!";
break;
}
bp->b_ops = &xfs_attr3_rmt_buf_ops;
break;
case XFS_BLFT_SB_BUF:
if (magic32 != XFS_SB_MAGIC) {
warnmsg = "Bad SB block magic!";
break;
}
bp->b_ops = &xfs_sb_buf_ops;
break;
#ifdef CONFIG_XFS_RT
case XFS_BLFT_RTBITMAP_BUF:
case XFS_BLFT_RTSUMMARY_BUF:
/* no magic numbers for verification of RT buffers */
bp->b_ops = &xfs_rtbuf_ops;
break;
#endif /* CONFIG_XFS_RT */
default:
xfs_warn(mp, "Unknown buffer type %d!",
xfs_blft_from_flags(buf_f));
break;
}
/*
* Nothing else to do in the case of a NULL current LSN as this means
* the buffer is more recent than the change in the log and will be
* skipped.
*/
if (current_lsn == NULLCOMMITLSN)
return;
if (warnmsg) {
xfs_warn(mp, warnmsg);
ASSERT(0);
}
/*
* We must update the metadata LSN of the buffer as it is written out to
* ensure that older transactions never replay over this one and corrupt
* the buffer. This can occur if log recovery is interrupted at some
* point after the current transaction completes, at which point a
* subsequent mount starts recovery from the beginning.
*
* Write verifiers update the metadata LSN from log items attached to
* the buffer. Therefore, initialize a bli purely to carry the LSN to
* the verifier.
*/
if (bp->b_ops) {
struct xfs_buf_log_item *bip;
bp->b_flags |= _XBF_LOGRECOVERY;
xfs_buf_item_init(bp, mp);
bip = bp->b_log_item;
bip->bli_item.li_lsn = current_lsn;
}
}
/*
* Perform a 'normal' buffer recovery. Each logged region of the
* buffer should be copied over the corresponding region in the
* given buffer. The bitmap in the buf log format structure indicates
* where to place the logged data.
*/
STATIC void
xlog_recover_do_reg_buffer(
struct xfs_mount *mp,
struct xlog_recover_item *item,
struct xfs_buf *bp,
struct xfs_buf_log_format *buf_f,
xfs_lsn_t current_lsn)
{
int i;
int bit;
int nbits;
xfs_failaddr_t fa;
const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot);
trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
bit = 0;
i = 1; /* 0 is the buf format structure */
while (1) {
bit = xfs_next_bit(buf_f->blf_data_map,
buf_f->blf_map_size, bit);
if (bit == -1)
break;
nbits = xfs_contig_bits(buf_f->blf_data_map,
buf_f->blf_map_size, bit);
ASSERT(nbits > 0);
ASSERT(item->ri_buf[i].i_addr != NULL);
ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
ASSERT(BBTOB(bp->b_length) >=
((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
/*
* The dirty regions logged in the buffer, even though
* contiguous, may span multiple chunks. This is because the
* dirty region may span a physical page boundary in a buffer
* and hence be split into two separate vectors for writing into
* the log. Hence we need to trim nbits back to the length of
* the current region being copied out of the log.
*/
if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
/*
* Do a sanity check if this is a dquot buffer. Just checking
* the first dquot in the buffer should do. XXXThis is
* probably a good thing to do for other buf types also.
*/
fa = NULL;
if (buf_f->blf_flags &
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
if (item->ri_buf[i].i_addr == NULL) {
xfs_alert(mp,
"XFS: NULL dquot in %s.", __func__);
goto next;
}
if (item->ri_buf[i].i_len < size_disk_dquot) {
xfs_alert(mp,
"XFS: dquot too small (%d) in %s.",
item->ri_buf[i].i_len, __func__);
goto next;
}
fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1);
if (fa) {
xfs_alert(mp,
"dquot corrupt at %pS trying to replay into block 0x%llx",
fa, xfs_buf_daddr(bp));
goto next;
}
}
memcpy(xfs_buf_offset(bp,
(uint)bit << XFS_BLF_SHIFT), /* dest */
item->ri_buf[i].i_addr, /* source */
nbits<<XFS_BLF_SHIFT); /* length */
next:
i++;
bit += nbits;
}
/* Shouldn't be any more regions */
ASSERT(i == item->ri_total);
xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
}
/*
* Perform a dquot buffer recovery.
* Simple algorithm: if we have found a QUOTAOFF log item of the same type
* (ie. USR or GRP), then just toss this buffer away; don't recover it.
* Else, treat it as a regular buffer and do recovery.
*
* Return false if the buffer was tossed and true if we recovered the buffer to
* indicate to the caller if the buffer needs writing.
*/
STATIC bool
xlog_recover_do_dquot_buffer(
struct xfs_mount *mp,
struct xlog *log,
struct xlog_recover_item *item,
struct xfs_buf *bp,
struct xfs_buf_log_format *buf_f)
{
uint type;
trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
/*
* Filesystems are required to send in quota flags at mount time.
*/
if (!mp->m_qflags)
return false;
type = 0;
if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
type |= XFS_DQTYPE_USER;
if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
type |= XFS_DQTYPE_PROJ;
if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
type |= XFS_DQTYPE_GROUP;
/*
* This type of quotas was turned off, so ignore this buffer
*/
if (log->l_quotaoffs_flag & type)
return false;
xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
return true;
}
/*
* Perform recovery for a buffer full of inodes. In these buffers, the only
* data which should be recovered is that which corresponds to the
* di_next_unlinked pointers in the on disk inode structures. The rest of the
* data for the inodes is always logged through the inodes themselves rather
* than the inode buffer and is recovered in xlog_recover_inode_pass2().
*
* The only time when buffers full of inodes are fully recovered is when the
* buffer is full of newly allocated inodes. In this case the buffer will
* not be marked as an inode buffer and so will be sent to
* xlog_recover_do_reg_buffer() below during recovery.
*/
STATIC int
xlog_recover_do_inode_buffer(
struct xfs_mount *mp,
struct xlog_recover_item *item,
struct xfs_buf *bp,
struct xfs_buf_log_format *buf_f)
{
int i;
int item_index = 0;
int bit = 0;
int nbits = 0;
int reg_buf_offset = 0;
int reg_buf_bytes = 0;
int next_unlinked_offset;
int inodes_per_buf;
xfs_agino_t *logged_nextp;
xfs_agino_t *buffer_nextp;
trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
/*
* Post recovery validation only works properly on CRC enabled
* filesystems.
*/
if (xfs_has_crc(mp))
bp->b_ops = &xfs_inode_buf_ops;
inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
for (i = 0; i < inodes_per_buf; i++) {
next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
offsetof(struct xfs_dinode, di_next_unlinked);
while (next_unlinked_offset >=
(reg_buf_offset + reg_buf_bytes)) {
/*
* The next di_next_unlinked field is beyond
* the current logged region. Find the next
* logged region that contains or is beyond
* the current di_next_unlinked field.
*/
bit += nbits;
bit = xfs_next_bit(buf_f->blf_data_map,
buf_f->blf_map_size, bit);
/*
* If there are no more logged regions in the
* buffer, then we're done.
*/
if (bit == -1)
return 0;
nbits = xfs_contig_bits(buf_f->blf_data_map,
buf_f->blf_map_size, bit);
ASSERT(nbits > 0);
reg_buf_offset = bit << XFS_BLF_SHIFT;
reg_buf_bytes = nbits << XFS_BLF_SHIFT;
item_index++;
}
/*
* If the current logged region starts after the current
* di_next_unlinked field, then move on to the next
* di_next_unlinked field.
*/
if (next_unlinked_offset < reg_buf_offset)
continue;
ASSERT(item->ri_buf[item_index].i_addr != NULL);
ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
/*
* The current logged region contains a copy of the
* current di_next_unlinked field. Extract its value
* and copy it to the buffer copy.
*/
logged_nextp = item->ri_buf[item_index].i_addr +
next_unlinked_offset - reg_buf_offset;
if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
xfs_alert(mp,
"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
"Trying to replay bad (0) inode di_next_unlinked field.",
item, bp);
return -EFSCORRUPTED;
}
buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
*buffer_nextp = *logged_nextp;
/*
* If necessary, recalculate the CRC in the on-disk inode. We
* have to leave the inode in a consistent state for whoever
* reads it next....
*/
xfs_dinode_calc_crc(mp,
xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
}
return 0;
}
/*
* V5 filesystems know the age of the buffer on disk being recovered. We can
* have newer objects on disk than we are replaying, and so for these cases we
* don't want to replay the current change as that will make the buffer contents
* temporarily invalid on disk.
*
* The magic number might not match the buffer type we are going to recover
* (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
* extract the LSN of the existing object in the buffer based on it's current
* magic number. If we don't recognise the magic number in the buffer, then
* return a LSN of -1 so that the caller knows it was an unrecognised block and
* so can recover the buffer.
*
* Note: we cannot rely solely on magic number matches to determine that the
* buffer has a valid LSN - we also need to verify that it belongs to this
* filesystem, so we need to extract the object's LSN and compare it to that
* which we read from the superblock. If the UUIDs don't match, then we've got a
* stale metadata block from an old filesystem instance that we need to recover
* over the top of.
*/
static xfs_lsn_t
xlog_recover_get_buf_lsn(
struct xfs_mount *mp,
struct xfs_buf *bp,
struct xfs_buf_log_format *buf_f)
{
uint32_t magic32;
uint16_t magic16;
uint16_t magicda;
void *blk = bp->b_addr;
uuid_t *uuid;
xfs_lsn_t lsn = -1;
uint16_t blft;
/* v4 filesystems always recover immediately */
if (!xfs_has_crc(mp))
goto recover_immediately;
/*
* realtime bitmap and summary file blocks do not have magic numbers or
* UUIDs, so we must recover them immediately.
*/
blft = xfs_blft_from_flags(buf_f);
if (blft == XFS_BLFT_RTBITMAP_BUF || blft == XFS_BLFT_RTSUMMARY_BUF)
goto recover_immediately;
magic32 = be32_to_cpu(*(__be32 *)blk);
switch (magic32) {
case XFS_ABTB_CRC_MAGIC:
case XFS_ABTC_CRC_MAGIC:
case XFS_ABTB_MAGIC:
case XFS_ABTC_MAGIC:
case XFS_RMAP_CRC_MAGIC:
case XFS_REFC_CRC_MAGIC:
case XFS_FIBT_CRC_MAGIC:
case XFS_FIBT_MAGIC:
case XFS_IBT_CRC_MAGIC:
case XFS_IBT_MAGIC: {
struct xfs_btree_block *btb = blk;
lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
uuid = &btb->bb_u.s.bb_uuid;
break;
}
case XFS_BMAP_CRC_MAGIC:
case XFS_BMAP_MAGIC: {
struct xfs_btree_block *btb = blk;
lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
uuid = &btb->bb_u.l.bb_uuid;
break;
}
case XFS_AGF_MAGIC:
lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
uuid = &((struct xfs_agf *)blk)->agf_uuid;
break;
case XFS_AGFL_MAGIC:
lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
break;
case XFS_AGI_MAGIC:
lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
uuid = &((struct xfs_agi *)blk)->agi_uuid;
break;
case XFS_SYMLINK_MAGIC:
lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
break;
case XFS_DIR3_BLOCK_MAGIC:
case XFS_DIR3_DATA_MAGIC:
case XFS_DIR3_FREE_MAGIC:
lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
break;
case XFS_ATTR3_RMT_MAGIC:
/*
* Remote attr blocks are written synchronously, rather than
* being logged. That means they do not contain a valid LSN
* (i.e. transactionally ordered) in them, and hence any time we
* see a buffer to replay over the top of a remote attribute
* block we should simply do so.
*/
goto recover_immediately;
case XFS_SB_MAGIC:
/*
* superblock uuids are magic. We may or may not have a
* sb_meta_uuid on disk, but it will be set in the in-core
* superblock. We set the uuid pointer for verification
* according to the superblock feature mask to ensure we check
* the relevant UUID in the superblock.
*/
lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
if (xfs_has_metauuid(mp))
uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
else
uuid = &((struct xfs_dsb *)blk)->sb_uuid;
break;
default:
break;
}
if (lsn != (xfs_lsn_t)-1) {
if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
goto recover_immediately;
return lsn;
}
magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
switch (magicda) {
case XFS_DIR3_LEAF1_MAGIC:
case XFS_DIR3_LEAFN_MAGIC:
case XFS_ATTR3_LEAF_MAGIC:
case XFS_DA3_NODE_MAGIC:
lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
break;
default:
break;
}
if (lsn != (xfs_lsn_t)-1) {
if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
goto recover_immediately;
return lsn;
}
/*
* We do individual object checks on dquot and inode buffers as they
* have their own individual LSN records. Also, we could have a stale
* buffer here, so we have to at least recognise these buffer types.
*
* A notd complexity here is inode unlinked list processing - it logs
* the inode directly in the buffer, but we don't know which inodes have
* been modified, and there is no global buffer LSN. Hence we need to
* recover all inode buffer types immediately. This problem will be
* fixed by logical logging of the unlinked list modifications.
*/
magic16 = be16_to_cpu(*(__be16 *)blk);
switch (magic16) {
case XFS_DQUOT_MAGIC:
case XFS_DINODE_MAGIC:
goto recover_immediately;
default:
break;
}
/* unknown buffer contents, recover immediately */
recover_immediately:
return (xfs_lsn_t)-1;
}
/*
* This routine replays a modification made to a buffer at runtime.
* There are actually two types of buffer, regular and inode, which
* are handled differently. Inode buffers are handled differently
* in that we only recover a specific set of data from them, namely
* the inode di_next_unlinked fields. This is because all other inode
* data is actually logged via inode records and any data we replay
* here which overlaps that may be stale.
*
* When meta-data buffers are freed at run time we log a buffer item
* with the XFS_BLF_CANCEL bit set to indicate that previous copies
* of the buffer in the log should not be replayed at recovery time.
* This is so that if the blocks covered by the buffer are reused for
* file data before we crash we don't end up replaying old, freed
* meta-data into a user's file.
*
* To handle the cancellation of buffer log items, we make two passes
* over the log during recovery. During the first we build a table of
* those buffers which have been cancelled, and during the second we
* only replay those buffers which do not have corresponding cancel
* records in the table. See xlog_recover_buf_pass[1,2] above
* for more details on the implementation of the table of cancel records.
*/
STATIC int
xlog_recover_buf_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t current_lsn)
{
struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
struct xfs_mount *mp = log->l_mp;
struct xfs_buf *bp;
int error;
uint buf_flags;
xfs_lsn_t lsn;
/*
* In this pass we only want to recover all the buffers which have
* not been cancelled and are not cancellation buffers themselves.
*/
if (buf_f->blf_flags & XFS_BLF_CANCEL) {
if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
buf_f->blf_len))
goto cancelled;
} else {
if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
buf_f->blf_len))
goto cancelled;
}
trace_xfs_log_recover_buf_recover(log, buf_f);
buf_flags = 0;
if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
buf_flags |= XBF_UNMAPPED;
error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
buf_flags, &bp, NULL);
if (error)
return error;
/*
* Recover the buffer only if we get an LSN from it and it's less than
* the lsn of the transaction we are replaying.
*
* Note that we have to be extremely careful of readahead here.
* Readahead does not attach verfiers to the buffers so if we don't
* actually do any replay after readahead because of the LSN we found
* in the buffer if more recent than that current transaction then we
* need to attach the verifier directly. Failure to do so can lead to
* future recovery actions (e.g. EFI and unlinked list recovery) can
* operate on the buffers and they won't get the verifier attached. This
* can lead to blocks on disk having the correct content but a stale
* CRC.
*
* It is safe to assume these clean buffers are currently up to date.
* If the buffer is dirtied by a later transaction being replayed, then
* the verifier will be reset to match whatever recover turns that
* buffer into.
*/
lsn = xlog_recover_get_buf_lsn(mp, bp, buf_f);
if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
trace_xfs_log_recover_buf_skip(log, buf_f);
xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
goto out_release;
}
if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
if (error)
goto out_release;
} else if (buf_f->blf_flags &
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
bool dirty;
dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
if (!dirty)
goto out_release;
} else {
xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
}
/*
* Perform delayed write on the buffer. Asynchronous writes will be
* slower when taking into account all the buffers to be flushed.
*
* Also make sure that only inode buffers with good sizes stay in
* the buffer cache. The kernel moves inodes in buffers of 1 block
* or inode_cluster_size bytes, whichever is bigger. The inode
* buffers in the log can be a different size if the log was generated
* by an older kernel using unclustered inode buffers or a newer kernel
* running with a different inode cluster size. Regardless, if
* the inode buffer size isn't max(blocksize, inode_cluster_size)
* for *our* value of inode_cluster_size, then we need to keep
* the buffer out of the buffer cache so that the buffer won't
* overlap with future reads of those inodes.
*/
if (XFS_DINODE_MAGIC ==
be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
(BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
xfs_buf_stale(bp);
error = xfs_bwrite(bp);
} else {
ASSERT(bp->b_mount == mp);
bp->b_flags |= _XBF_LOGRECOVERY;
xfs_buf_delwri_queue(bp, buffer_list);
}
out_release:
xfs_buf_relse(bp);
return error;
cancelled:
trace_xfs_log_recover_buf_cancel(log, buf_f);
return 0;
}
const struct xlog_recover_item_ops xlog_buf_item_ops = {
.item_type = XFS_LI_BUF,
.reorder = xlog_recover_buf_reorder,
.ra_pass2 = xlog_recover_buf_ra_pass2,
.commit_pass1 = xlog_recover_buf_commit_pass1,
.commit_pass2 = xlog_recover_buf_commit_pass2,
};